
The Methodology and an Application to Fight against
Unicode Attacks

Anthony Y. Fu1,2

ayf@mit.edu
Xiaotie Deng2

csdeng@cityu.edu.hk
Liu Wenyin2

csliuwy@cityu.edu.hk
Greg Little1

glittle@mit.edu
1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, MA, USA
2Department of Computer Science, City University of Hong Kong, Hong Kong SAR

ABSTRACT
Unicode is becoming a dominant character representation format
for information processing. This presents a very dangerous
usability and security problem for many applications. The
problem arises because many characters in the UCS (Universal
Character Set) are visually and/or semantically similar to each
other. This presents a mechanism for malicious people to carry
out Unicode Attacks, which include spam attacks, phishing
attacks, and web identity attacks. In this paper, we address the
potential attacks, and propose a methodology for countering them.
To evaluate the feasibility of our methodology, we construct a
Unicode Character Similarity List (UC-SimList). We then
implement a visual and semantic based edit distance (VSED), as
well as a visual and semantic based Knuth-Morris-Pratt algorithm
(VSKMP), to detect Unicode attacks. We develop a prototype
Unicode attack detection tool, IDN-SecuChecker, which detects
phishing weblinks and fake user name (account) attacks. We also
introduce the possible practical use of Unicode attack detectors.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General –
Security and protection

General Terms
Security, Legal Aspects, and Verification.

Keywords
Unicode, Spam, Phishing, and Secure Web Identity

1. INTRODUCTION
The globalization of information processing systems pushes for
greater use of Unicode, which allows people of different
nationalities to represent character based information in their
native tongue. Unicode is convenient for many people, but brings
with it potential security risks. Many visually or semantically
similar characters coexist in the UCS. UCS has a large set of
characters. It covers the symbols of almost all languages in the
world. Figure 1 shows a set of samples that are similar to the four
characters “s”, “o”, “u”, and “p” in Arial Unicode MS font (where
the hexadecimal number under each character is the character
code of that character). We see that there are at least two other
characters in UCS that look exactly the same as the character "s",
"o" and "p". There are even more if we include semantically
similar characters, e.g., "a" and "A".
People do not usually look into the code of every Unicode string
they see to evaluate its validity. This opens a door for malicious

people to spoof characters by replacing them with visually or
semantically similar (or even visually identical) characters from
the UCS. We call this a “Unicode attack”.
We classify Unicode attacks into three categories: (1) Spam
attacks: Many machine learning techniques used in anti-spam
filters view an email as a sequence of characters, and look for
patterns commonly associated with spam. If spammers replace
characters in these common patterns with similar characters from
UCS, they may bypass some of these filters. (2) Phishing attacks:
Malicious people can use similar characters as replacements in
IRI/IDN[8] to create visually similar domain names. Ordinary
users may not look into the code under the domain name strings
to verify their validity. User studies in [6] show that almost all
users judge the validity of a website by the domain name, which
makes this attack particularly hazardous. (3) Web identity attack:
There are countless systems in the world using Unicode strings to
represent user names (or accounts). Here again, people tend to
identify each other through the appearance of their user names,
and not through the underlying Unicode representation of their
user names. This allows malicious people to imitate other people
by registering a user name that looks like the username of
somebody else.

s
0073

ｓ
FF53

ѕ
0455

Ⴝ
10BD

Ｓ
FF33

Ѕ
0405

Ϩ
03E8

o
006F

ο
03BF

о
043E

ｏ
FF4F

º
00BA

ﾷ
FFB7

ѻ
047B

u
0075

⊔
2294

υ
03C5

⋃
22C3

∪
222A

Ĳ
0132

ṵ
1E75

p
0070

р
0440

ｐ
FF50

ƿ
01BF

ρ
03C1

 ק
05E7

Р
0420

Figure 1. Characters similar to “s”, “o”, “u”, and “p” (in Arial
Unicode MS Font).
Unicode provides many possible mutations for strings. For
example, the simple Unicode string "citibank" has 24(c) * 58(i) *
21(t) * 58(i) * 24(b) * 22(a) * 21(n) * 14(k) -1=263,189,025,791
potential mutations. It may not be surprising that we have found
no registration systems (including domain name registrars,
chatting applications, BBSes, etc.) which attempt to detect
Unicode attacks. As a matter of fact, we have easily registered
domain names which are visually similar to several prominent
web sites. For instance, we registered, “www.中囯银行.com” (“
中囯银行” is Chinese for “bank of China”, and “囯” is a very
similar character to “国”), “www.中国銀行.com” (“中国銀行” is
Japanese for “bank of China”), which is similar to “www.中国银
行 .com”. We also registered “www.和記黄埔 .com” which is

Submission to SOUPS 2006,JUL, 2006, CMU.

similar to “www.和记黄埔.com” (“和記黄埔” is Japanese for
“Hutchison”, a company in Hong Kong). We were able to link
these domain names to our Anti-Phishing Group website [3].
Hence there is nothing preventing a malicious person from linking
such a domain to a phishing site. This makes the detection of
Unicode attacks an important direction for researchers in user
interface design, and computer security & privacy to look into.
The concept underlying Unicode attacks is not limited to
straightforward character replacement. It can be more
complicated. For instance, spammers can add noisy symbols to
spam content, as well as replace words with semantically similar
words in order to throw off spam filters. In general, the problem
of detecting Unicode attacks may require layers beneath and
above the character similarly level, including preprocessing to
denoise the data in order to know which characters to compare,
and higher level language processing to detect similarities at a
word or semantic level.
In this paper, we propose a methodology for detecting Unicode
attacks. We analyze both the character-character similarity and
word-word similarity, use string similarity algorithms to evaluate
the similarity of two given Unicode strings, and follow the
methodology to carry out experiments in a demo implementation.
In the implementation part, we first build a Unicode Character
Similarity List (UC-SimList) which can easily retrieve the visual
and semantic similarity of any given pair of characters in UCS.
We implemented a tool, IRI/IDN SecuChecker, to detect
similar/fake IRI/IDN, and demonstrate several possible uses to
domain name registrars, user name (account) registrars, and web
browser based phishing detection add-ins.
The rest of this paper is organized as follows. Section 2
introduces the related work and background of this research. In
Section 3, we address the methodology for Unicode attack
detection. In Section 4, we provide a case study of the
methodology and discuss the experiments based on a demo
implementation to show the effect of Unicode attack detection as
well as the associated computation time. In Section 5 we
introduce a tool, IRI/IDN SecuChecker, which can be used to
detect IRI/IDN based Unicode attacks. We also discuss Web Link
Illustrator, a possible improvement for the address bars of web
browsers. In Section 6, we discuss problems related to using and
deploying these systems. Finally, we present concluding remarks
and future work in Section 7.

2. RELATED WORK AND BACKGROUND
We use symbols to record and represent languages for
information processing. We used illusive 0/1 strings to represent
data in computers at the very beginning. Later, people invented
ASCII [1] to encode textual information. This made it easier for
people to interact with computers, but it only includes the
necessary Latin character symbols. People who use other
languages need to install additional character sets to satisfy their
requirements, such as GB2312 and HZ for simplified Chinese,
BIG5 for traditional Chinese, EUC and Shift-JIS for Japanese, etc.
With the development of symbol technology and the requirement
of information exchange, people wanted a unified character
system to represent all of these characters—hence, Unicode. The
most popular version of Unicode (Ver. 2.1 [26]) uses 16 bits and
can represent up to 216=65,536 characters (the most updated
version uses 32 bits to represent a character) and can represent
almost all standard characters/symbols in the world. Unicode is
widely used all over the world. We see it in emails, webpages,

resource identifiers, various user (account) registration systems,
etc… However, there are too many similar characters in the UCS
and it is quite easy to generate numerous similar/fake Unicode
strings from a given one to carry out Unicode attacks. Some fake
Unicode strings look exactly the same as the original one. We
consider this a very dangerous usability and security problem
because the computer screen can hide its users from the fact that a
string they see may not be exactly what it appears to be. Even
before Unicode IRIs, there was a real case involving the website
of Industrial and Commercial Bank of China,
“WWW.ICBC.COM”, which was mimicked by a phisher using a
very similar domain name, “WWW.1CBC.COM” (“1” is the
number “one” rather than uppercase the letter “i”), to trick people.
Similar attacks are also reported in [12], which are called
“homograph attack”. The potential for abuse increases as Unicode
becomes a trend in modern information processing and we call
such abuses “Unicode attacks”. We classify Unicode attacks into
spam attacks, phishing attacks, and web identity attacks, among
which phishing attacks turn out to be the most typical and
motivating research aspect to fight against.
Phishing is a kind of criminal activity in our modern Internet
society where someone forges the webpage of a real company or
organization to trick their clientele into divulging sensitive
information. Unwary Internet users may be deceived by their
scams and follow their instructions to leak private information,
such as bank account numbers, passwords, and credit card
numbers. Phishing attacks appear to be increasingly common. In
the phishing attack prospering period, it was reported that the
number of phishing attacks increased 50% each month and 5% of
the phishing email receivers respond to them (Anti-Phishing
Working Group[3] Phishing Attack Report of July 2004). People
are progressively notified or alerted to such scams, however
phishers are always trying to use more sophisticated techniques to
circumvent detection. This includes making the appearance of
their web links and the content of their webpages increasingly
similar to the real ones.
Many anti-phishing measures have been carried out. Some
address the more general problem of document duplication
detection. Along these lines, the collection statistics based
approach is proposed by Chowdhury et al. in [5], structure based
repetition detection by Nanno et al. in [23], and a general
evaluation of different plagiary detection measures is discussed
by Hoad et al. in [14], etc. These works focus on plain text
documents and use text level features as similarity measurements.
Nevertheless, a more effective strategy for phishing detection is
proposed by Liu et al. in [20] based on visual comparison of the
DOM [27] generated from HTML. Another vision based phishing
detection approach is proposed by Fu et al. in [11], where the
visual similarity is detected at the image level. Researchers have
also sought solutions along different lines. Garfinkel et al [13] and
Wu et al [28] have worked on anti-phishing through improving
software usability. People also proposed methodologies for anti-
phishing from the cryptography view [7] [16], and SSL [25] is
now a widely used technology in security critical websites.
However, the investigation of web links themselves has been
neglected. A survey of similar characters in UCS and the problem
of IRI/IDN based phishing was introduced in [10], however no
IRI/IDN oriented anti-phishing technique have ever been formally
discussed. However, IRI/IDN based phishing attacks could be a
critically severe problem for the Internet in the near future. It
could be disasterous to delay solving this problem until the usage

of IRI/IDN becomes popular and phishers start using similar
characters in UCS to carry out attacks.
In the past, people used IP addresses to access different hosts and
resources. Nowadays, most internet resources are identified by
ASCII based Uniform Resource Identifiers (URIs) [4]. However,
URIs are cumbersome and inefficient for people speaking
languages other than English. These people would who would like
more familiar character scripts to identify their web resources.
Another problem with using ASCII based URIs is that of
conflicting URIs when different languages are converted to Latin
character representations. Most non-Latin language scripts have a
mapping from their characters to Latin characters, such as
Chinese Pinyin and Japanese Romaji. People are using these
methods to represent URIs in their languages. However, it can
happen that different companies or organizations want the same
domain name, while they want it for different semantic meanings.
This is called URI confliction and semantic ambiguity.
Nevertheless, with globalization of information technology,
people are using localized operating systems, applications, etc.
People are eager to use these systems with their native scripts,
including the activity of locating universal resources. IRI/IDN is
proposed as a complement to URI. It is a sequence of characters
from a subset of UCS. UCS uses 16 bits to represent a character
and allows up to 65,536 characters to be represented. This permits
most non-Latin scripts to be freely represented in IRI/IDN. This
allows Chinese people unfamiliar with English to input “花旗银
行.公司” (“花旗银行” is pronounced “Hua Qi Yin Hang” and
stands for “Citibank”; “ 公 司 ” is pronounced “Gong Si” and
stands for “Company”) rather than “citibank.com”. Whereas
Japanese people may enter “シテイバンク.会社” (“シテイバン
ク” is pronounced “Shi Tei Ban Ku”, and stands for “Citibank”; “
会社” is pronounced “Kai Shya” and stands for “Company”) to
access the webpage of CitiBank.
These developments make the Internet more accessible as a global
resource, but we must address the potential threats in terms of
Unicode attacks. These same issues also arise as systems allow
Unicode string based web identities, e.g., if email systems allow
Unicode accounts, then someone might be able to register an
account and pretend to be Bill Gates (such as
billg@microsoft.com for MSN Messenger) and send a message to
his CEO, “Hi, Steve, I finally decided to open the source code of
Vista and give Google a billion dollars. Please do it asap!”

3. METHODOLOGY OF UNICODE
ATTACK DETECTION
We propose a general methodology to assess the similarity of a
pair of given Unicode strings. We also present a demo tool that
can be used by people in academic and industrial areas to do
research and develop systems to fight against Unicode attacks.
We organize the methodology from views of string similarity on
several levels. The lowest level is character similarity, which
includes visual similarity and semantic similarity between two
characters. The second level is semantic similarity between
words. The highest level is string similarity, and it is based on
either of the previous two levels or both. We also note that
spammers can add noise characters into the similar/fake Unicode
strings; hence, we do string preprocessing to reduce or eliminate
noise symbols.

3.1 Preprocessing
UCS contains many so-called symbol characters (e.g., ‘|’ and ‘\’
in the string “y0U|HaVE/A |FrEe \G|fT ++”). We consider these

to be noise, which make it difficult for us to detect similar/fake
Unicode strings. Hence, we have to do preprocessing to replace
the symbol characters with empty strings or space characters
(depending on the string similarity evaluation requirements). The
symbol character list can be constructed by referencing the
specification of Unicode [26] manually. Unicode string
preprocessing is quite useful for phishing IRI/URI detection,
especially for detecting spam emails, erotic content, and dirty
words. Phishers will generally not add noise characters to their
fake IRI/IDNs since they want to make them as visually similar as
possible, so the preprocessing step is primarily aimed at spam
attack detection.
However, preprocessing for general Unicode text strings is not
simple work. First of all, we do not have a complete list of symbol
characters. The UCS is a big, complicated and growing list. Also,
we cannot conclude that all symbols are noise; for instance, “|”
can be used by malicious people to replace “I” in the word “GIfT”
(changing it to “G|fT”). Therefore, potential future work can
concentrate on Unicode preprocessing alone.

3.2 Character Level Similarity
The basic trick of a Unicode attack is to replace some characters
with similar ones. We address character similarity in two
dimensions: visual similarity and semantic similarity.
A visual similarity list can be constructed automatically by
comparing the glyphs in UCS. If necessary, we can optimize it
manually. However, we are expecting to have an algorithm to
construct the list completely automatically without additional
manual work, since UCS is a huge database and the manual work
could be overwhelming.
A semantic similarity list can only be constructed manually by
referencing the specification of the Unicode repertoire because we
cannot find an algorithm or a tool with the necessary knowledge
to do it. We still do not have a complete semantic similarity list,
and we list it as future work.
The overall character-character similarity matrix can be
constructed by combining the visual and semantic similarity lists.
We consider multiplication as a good combination method. That
is, if the visual similarity of “ạ” (1EA1) and “a” (0061) is 0.9 and
the semantic similarity of “a” (0061) and “A” (0081) is 1, we can
calculate the overall similarity between “ạ” (1EA1) and “A”
(0041) as 0.9×1=0.9. We also use this method in Section 4.1 to
calculate the character level similarity. Other combination
methods can also be attempted based on more investigation.
The character-character similarity matrix is a good resource for
assessing the similarity of Unicode stings and recovering an
original string from its noisy versions, or other similar tasks. For
instance, we can do noise reduction to the example string in
Section 3.1 and retrieve the intended message: “you have a free
gift”. We can then use the denoised string to perform word level
similarity assessments with any candidate strings as addressed in
Section 3.3.

3.3 Word Level Similarity
Unicode attacks can be carried out by replacing words with other
semantically similar ones (e.g. synonyms). The following four
types of semantic substitutions are most likely to occur in the near
future:

3.3.1 Phonetic Substitution:
A malicious person may change some part of the string but still

keep the original pronunciation, e.g., “BankForYou” can be
changed to “Bank4U”, “中国银行” to “ZhongGuoYinHang”, “日
本銀行” to “にほんぎんこう” or “NiHonGinKou”.
3.3.2 Acronym Substitution:
A malicious person may use the acronyms of the keywords of the
original Unicode strings to carry out attacks, e.g., “BankOfChina”
to “BOC”, “中国银行” (Bank of China) to “中银”, and “とうき
ょうだいがく” (the University of Tokyo) to “とうだい”, etc.
3.3.3 Tongue Shifting Substitution:
A malicious person may translate some words in the original
Unicode string to another language to carry out attacks. E.g.,
“BankOfChina” to “中国银行” or “中国バンク”
3.3.4 Synonym Substitution:
The words in a Unicode string could be replaced with their
synonyms, e.g., “this is spam” to “this is junk mail”, or “Hi,
buddy” to “Hello, friend”, etc.
These four types of word level obfuscations could be used
together in many ways to make a single string even more
complicated and difficult to detect, while still allowing humans to
understand it.
The solution to detect word level obfuscations is to establish a
word-word semantic similarity matrix to assess the similarity of
strings. However, the matrix could be very complicated and large.
We have constructed one based on word-word semantic similarity
assessment algorithms. However we are still on the way toward
constructing a complete one. It turns out that we need to use
excellent word-word similarity algorithms and a lot of human
intervention. It is also a growing matrix since new words are
invented continuously. The matrix data structure should be well
constructed because it quite large.

3.4 String Similarity Algorithms
We propose the methodology of using character-character
similarity, as addressed in Section 3.2, and word-word similarity,
as addressed in Section 3.3, to calculate the similarity of Unicode
strings (which can be domain names, user names (accounts),
sentences, passages, or even documents).
There are many standard string similarity evaluation algorithms
from information retrieval (IR), natural language processing
(NLP), and even bioinformatics which can be applied, such as
edit distance [19], KMP[18], Needleman-Wunch distance [24],
and n-gram etc. Many of them are based on character level
similarity. Hence, we can apply them directly to evaluating the
character level similarity. Since we have the word-word
similarity, we could simply consider each word as a character,
and then use character level similarity algorithms to calculate
string similarity. We need to consider time complexity when we
choose specific algorithms to calculate the string similarity. We
provide an application based on implementing VSED and
VSKMP at the character level as an example in Section 4 for
demonstration.

4. A DEMO IMPLEMENTATION STUDY
ON THE METHODOLOGY
The methodology in Section 3 turns out to be abstractive. Here we
carry out a case study by applying part of the methodology. We
organize this section in three subsections. In Section 4.1, we
introduce our method of generating a Unicode similarity list (UC-

SimList). The word-word similarity matrix is an ongoing study
and we would rather omit this part since it does not affect the
discussion here. In Section 4.2, we present a possible string
similarity algorithm; this is implemented as the algorithm for use
in our experiments. In Section 4.3, we address the problem of
associating relatively long similar/fake Unicode strings with the
genuine ones. We use the strings to imitate spam attacks. In
Section Error! Reference source not found., we address the
problem of detecting phishing IRI/IDNs in a set of protected ones.
It is a special and critical issue, so it should be considered
specifically. In Section 4.3 and Error! Reference source not
found., we discuss aspects of experimental data generation,
classification effects and time performance evaluation.

4.1 Unicode Character Similarity List (UC-
SimList) Generation
Since online calculation of character similarity is expensive, a
lookup table (character-character similarity matrix) can be pre-
constructed offline, which consists of a list of similar characters
for each individual character in Unicode. We refer to the lookup
table as UC-SimList in this paper. The construction of UC-
SimList is based on Arial MS Unicode [21] [22] simply because it
covers more character glyphs than any other existing font. The
visual similarity is calculated by calculating the similarity of each
pair of characters. We denote the visual similarity of character c1
and c2 with vs(c1,c2), which can be calculated using Eq. 1.

1 2
1 2

1 2

| (,) |
(,)

| () | (1) | () |
OverlapPix c c

vs c c
p Pix c p Pix c

=
+ −

 , (1)

where |OverlapPix(c1,c2)| is the number of overlapping pixels of
the bitmaps of c1 and c2, |Pix(c)| is the number of pixels of
character c, and p∈[0,1] is the factor for tuning the similarity
computation validity. Experiments show that p performs the best
when it is defined as Eq. 2.

 1 21 | () | | () |
0

if Pix c Pix c
p

otherwise
≥⎧

= ⎨
⎩

 (2)

Semantic similarity of two characters is the measurement of
character similarity in terms of meaning. It is common that one
character has more corresponding representations in the same or
different languages. In our approach, we define the semantic
similarity of two characters as a binary value, i.e. either 1 or 0.
E.g., ss(“a”, “A”)=1, and ss(“a”, “b”)=0, where ss(c1,c2) is the
semantic similarity of character c1 and c2. UC-SimList is
generated by first considering the semantically similar characters
for each character in UCS, finding all visually similar characters
of each semantically similar character, and finally ranking all
these characters with their visual similarities for each character.
That is, UC-SimList(c)=UC-SimListv(UC-SimLists(c)), where c is
a given character, UC-SimLists(c) denotes the semantically
similar character set of c, UC-SimListv(·) denotes the visually
similar character set of character set · , and UC-SimList(c)
denotes the similar character set of character c. We denote UC-
SimListT as the Unicode Character Similarity List that only
contains the characters with similarities larger than T (the
similarity threshold), e.g., UC-SimList0.8 is a subset of UC-
SimList that only contains the characters with similarities larger
than 0.8. We also define the notation UC-SimListvT in a similar
way. We provide the UC-SimList and UC-SimListv online for free
on our Anti-Phishing Group website. People can download them
from www.mit.edu/~ayf/IRI.

4.2 Unicode String Similarity Algorithm for
Experiments
We use edit distance [19] to calculate the dissimilarity of the pair
of Unicode strings under evaluation. Edit distance represents the
minimum editing operations needed to transform one string into
another, where the only operations are insertion, deletion, and
substitution. We define the cost (cost function) of insertion and
deletion to be 1 and the cost (cost function) of substitution to be 1
minus the similarity in UC-SimList0.8. We use a standard
dynamic programming algorithm to calculate edit distance for
better efficiency and performance. Its time complexity is Θ(mn),
where m and n are the respective lengths of the two Unicode
strings. Experiments in Section 4.3 and Error! Reference source
not found. show that this is sufficient for online similar/fake
Unicode string detection. The edit distances are normalized by
dividing by Max(m,n), such that we can define a threshold to
classify whether a given suspected Unicode string is too similar to
a string in a set of protected Unicode strings.

4.3 Experiments with Normal Text Strings
We begin our experiments with three Unicode strings extracted
from three webpages, namely the English, Chinese and Japanese
versions of CitiBank, as shown in

Figure 2. We denote these strings as USE, USC, and USJ,
respectively. We then generate similar/fake strings based on each
of these strings by substituting some characters with visually or
semantically similar ones from UC-SimListv or UC-SimList. For
each original string, we generate 5 sets of similar/fake ones using
each of UC-SimListT and UC-SimListvT, where T∈{0.8, 0.85,
0.9, 0.95, and 1}. Each of the original Unicode strings
corresponds to 10 sets of similar/fake ones and each set contains
at most 100 similar/fake Unicode strings. We denote the 10 sets of
similar/fake Unicode strings of USE as SUSE(X), the 10 sets of
USC as SUSC(X), and the 10 sets of USJ as SUSJ(X), where
X∈{0.8, 0.85, 0.9, 0.95, 1, V0.8, V0.85, V0.9, V0.95, and V1}.
SUSE(0.8) is the similar/fake Unicode string set generated using
UC-SimList0.8, and SUSE(V0.8) is the similar/fake Unicode
string set generated using UC-SimListv0.8, and so on. We use the
83,198 Unicode strings in TREC-5 Confusion Track (part
original-01) [17] as noise data and denote this set as RUS. We
combine SUSE(X) with RUS to form the set of suspected Unicode
strings for USE and calculate the precision and recall value of our
similar/fake Unicode string detection algorithm for USE with
varying thresholds (from 0 to 1, with a step of 0.01). A partial
result is shown in Figure 3 and the complete results are available
in [2].

We also perform the same experiments on USC and USJ, as shown
in Figure 4 and Figure 5 respectively, and the complete results are
also available in [2]. We calculate the precision value using Eq. 3
and the recall value using Eq. 4 respectively, where TN denotes
the total detection number, CN denotes the correct detection
number and TF denotes the total ground truth number of fake
ones (phishing) in the corresponding test set.

100%CNprecision
TN

= × (3)

100%CNrecall
TF

= × (4)

It is obvious that in a certain threshold range, we can achieve very
good precision and recall values (both are approximately 100%)
at the same time, i.e., 0.25~0.75 for USE, 0.05~0.95 for USC, and
0.05~0.97 for USJ. The wider the range is, the easier the
classification of similar/fake Unicode strings is. Intuitively,
similar/fake Unicode strings of Chinese and Japanese are easier to
detect than those of English, and the reason is that English has far
more similar characters in UCS than Chinese and Japanese do.
We can observe two phenomena from the precision and recall
figures. First, the threshold range is wider when the similar/fake
Unicode strings are generated using UC-SimListT or UC-
SimListvT with higher T (similarity threshold) values. Second, the
threshold range is wider when similar/fake Unicode strings are
generated using UC-SimListvT rather than UC-SimListT with the
same T. However the second phenomenon is not very obvious in
our experiments when we used UC-SimList0.8 as the cost
function in Section 4.2. These phenomena also adapt to the
experiment in Section Error! Reference source not found.. It
takes 0.15 seconds to calculate the similarity of a Unicode string
to USE, 0.035 second to USC, and 0.045 second to USJ on average
(using a PC with P4 2.4G CPU and 512M RAM). The proportion
of computation time, 0.15:0.035:0.045=1:0.23:0.3 is roughly
equivalent to the character number proportion of the three original
Unicode strings, 313:79:102=1:0.25:0.33, which verifies that the
computational complexity grows linearly with the target string
length as addressed in Section 4.2. All of the experimental data
sets are available at [2].

From Original Unicode strings (attacked targets)

www.citibank.com

Every Internet user should know about spoof
(a.k.a. phishing or hoax) e-mails that appear
to be from a well-known company but can
put you at risk. Although they can be difficult
to spot, they generally ask you to click a link
back to a spoof web site and provide, update
or confirm sensitive personal information.
(total: 313 characters)

www.citibank.com.c
n

最近，电子邮件用户成为全球网络黑客的攻击
目标。花旗银行相信让所有网上银行用户了解
邮件欺诈是至关重要。因此，我们为您提供了
一系列建议以防止您的金融信息受到攻击。
(total: 79 characters)

www.citibank.co.jp

最近、シティバンクを装って送られる偽の電
子メールが増えております。一般的にこのよ
うな電子メールにあるリンクをクリックする
と、暗証番号や口座番号など個人の機密情報
の入力を促す偽のウェブページがあらわれま
す。(total: 102 characters)

Figure 2. Original Unicode strings or English, Chinese and
Japanese from the webpages of CitiBank

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=0.8

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=V0.8

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=1

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=V1

Figure 3. Precision and recall evaluation of detecting similar/fake
Unicode strings to USE (the purple curve is recall, the blue one is
precision, the x-axis denotes the varying thresholds and the y-axis
denotes the precision/recall percentage value)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=0.8

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=V0.8

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.55 0.6
0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=1

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.55 0.6
0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=V1

Figure 4. Precision and recall evaluation for detecting
similar/fake Unicode strings to USC (the legend is the same as in
Figure 3)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=0.8

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=V0.8

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=1

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=V1

Figure 5. Precision and recall evaluation for detecting
similar/fake Unicode strings to USJ (the legend is the same as in
Figure 3)

4.4 Experiments with IRI/IDNs
Although IRI/IDN could be the complement or the replacement of
URI in the near future, IRI/IDN is not used widely at present, and

the number of real phishing URIs or IRI/IDNs is small. Hence, we
also need to generate phishing IRI/IDNs for our experiments.
Suppose we have 10 IRI/IDNs under protection as listed in Figure
6. We’ll denote these as USIRI. Next, we generate 100 similar
IRI/IDNs for each of them by replacing similar characters in each
original IRI/IDNs using UC-SimListT and UC-SimListvT, where
T∈{0.8, 0.85, 0.9, 0.95, and 1}. Note that we get 1,000 IRI/IDNs
for each element of USIRI, since there are 5 different T values, and
we use each value in both UC-SimListT and UC-SimListvT. We
treat all of these generated IRI/IDNs as phishing IRI/IDNs, and
we denote the 10 sets as SUSIRI(X), following the conventions
defined in Section 4.3.

www.citibank.com www.icbc.com

www.bank-of-china.com www.wellsfargo.com

www.ebay.com www.keybank.com

www.wamu.com www.花旗银行.公司

www.usbank.com www.シテイバンク.会社
Figure 6. The 10 IRI/IDNs under protection

Now we mix the phishing IRI/IDNs up with 10,269 real web
addresses that are randomly collected from the Internet. We then
use the algorithm in Section 4.2 to perform phishing IRI/IDN
detection. We use precision and recall values to evaluate our
approach with varying edit distance thresholds. We also do
experiments with UC-SimLists with various filtering thresholds
(from 0 to 1, with a step of 0.01). We mix up SUSIRI(X) with
11,269 IRI/IDNs in random order to form the suspected Unicode
strings and calculate the precision and recall value of detecting
similar/fake Unicode strings to the 10 protected IRI/IDNs with
varying thresholds. The partial experimental results are shown in
Figure 7Error! Reference source not found., and the complete
results are in [2]. It is obvious that there is a clear threshold range,
0.08~0.17, where both high precision and recall values (both
approaching 100%) can be achieved. It takes about 10-3 second to
calculate the similarity of one pair of IRI/IDNs using the same
machine we used in Section Error! Reference source not
found.. This performance is sufficient for online phishing
IRI/IDN detection.

5. IRI/IDN SECUCHECKER
With the internationalization of information processing, the use of
IRI/IDN is becoming a trend. However, we’ve shown that
IRI/IDNs can be deceptive; in particular, it is possible to have two
distinct IRI/IDNs which are hard (or impossible) to distinguish
visually. This problem has already been reported for URIs in [12],
which notes the possibility of mimicking English “microsoft.com”
with Cyrillic “microsoft.com”. However, there is no application
or tool available for IRI/IDN detection. The domain name
registration regulations are made by ICANN [15]. It can improve
the domain name registration guidelines and ask its authorized
registrar companies to follow them. ICANN first added the related
section in “Additional Remark” in IRI/IDN Ver. 2.0, Nov. 8,
2005, and continued listing it in the “Additional Remark” of Ver.
2.1, Feb. 22, 2006. However no solution has been provided yet.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=0.8

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=V0.8

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=1

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

X=V1

Figure 7. Precision and recall evaluation of detecting phishing
IRI/IDNs to USIRI (the legend is the same as in Figure 3)

We implement IRI/IDN SecuChecker, which provides a
mechanism to help domain name registrars check the validity of
new registered domain names. Figure 8 shows the interface of

IRI/IDN SecuChecker. It includes a textbox to input a new
registered IRI/IDN, a display showing the Unicode form of the
inputted IRI/IDN, an option pane for selecting the Kernel
Algorithm, a “Search” button, a “Clear” button, and a listbox to
show the detected similar/fake IRI/IDN(s). There are two
important lists in the database running behind the application: the
UC-SimList and the registered IRI/IDN list. According the
methodology in Section 3.4, various string matching algorithms
(including string similarity algorithms and substring searching
algorithms, etc.) could be applied. We have implemented visual
and semantic based edit distance (VSED), where we use the UC-
SimList to evaluate the cost of replacing one character into
another. We choose the threshold to be 0.12, where we can
achieve the best recall and precision values at the same time, as
already shown in Figure 7Error! Reference source not found..
We also implement the visual and semantic based Knuth Morris
Pratt (KMP) algorithm (VSKMP), where we use UC-SimList to
assess the similarity between two given characters. We use a
character similarity threshold of 0.08 to evaluate the two given
characters—empirically, we find that this threshold can classify
the characters well, as shown in Figure 9. Characters to the left of
the thick vertical bars have similarity values to the given
characters (GCs) of more than 0.8.
VSED shows better performance in phishing IRI/IDN detection.
VSED can detect “www.bankofthevvest.com” (double “v” to
mimic “w”) from “www.bankofthewest.com”, while VSKMP
cannot, as shown in Figure 10. However VSKMP has better time
complexity, namely Θ(m+n) compared to Θ(mn) for VSED
(where m and n are the lengths of the two strings under
assessment). In real experiments, VSKMP tends to be fast, and it
also behaves well when the protected IRI/IDN is a substring of
the new domain name under registration, e.g. VSKMP can detect
the phishing IRI/IDN “www.citibank.com.info123.biz”, while
VSED cannot, as shown in Figure 11. Each pair of domain name
evaluations takes about 0.0012 seconds with VSDE and about
0.0005 seconds with VSKMP (on average, on a P4 2.4G PC with
512MB RAM). So if the user thinks the system is fast enough, we
recommend selecting “Both” in the kernel algorithm group before
pressing the “Search” button. In this way, the phishing IRI/IDN(s)
detected by any of VSED or VSKMP will be reported.
IRI/IDN SecuChecker is not just limited to checking the validity
of domain names; it can also be used in any instance where
visually and semantically unique Unicode identifiers are desired.
For instance, it can be used in a user name (account) registration
server, preventing users from spoofing the identities of other
users.
In the new registration textbox, we used different colors to
represent characters from different language character sets. It is
another feature of IRI/IDN SecuChecker and we call it Web Link
Illustrator. We can simply add this web address convention to
web browsers’ address bars. A demo of the Web Link Illustrator
for Microsoft IE is available at [9] as shown in Figure 12. ICANN
classifies characters that can be used in many different languages,
which are listed in [15]. To implement a Web Link Illustrator, one
can simply study and implement the character code ranges and
program add-ins for IE, FirFox, etc. In this demo, the fake address
for CitiBank contains an “a” from a different character set, which
is highlighted in a different color (red) to remind users to be
cautious (we choose to change the color because human eyes are
sensitive to colors). We consider this a simple but effective
potential feature for web browsers.

Figure 8. The interface of IRI/IDN SecuChecker

GC
 Rank 1 2 3 4 5 6 7

M
004D

Ｍ
FF2D

Μ
039C

М
041C

Ⅿ
216F

Ṃ
1E42

Ṁ
1E40

Ⅸ
2168

N
004E

Ｎ
FF2E

Ν
039D

Ṇ
1E46

Ņ
0145

Ṉ
1E48

Ṋ
1E4A

ǋ
01CB

Z
005A

Ζ
0396

Ｚ
FF3A

Ẓ
1E92

Ẕ
1E94

Ƶ
01B5

Ʃ
01A9

Σ
03A3

Figure 9. The threshold selection for characters’ visual similarity.
Note: GC for given character. In each row, higher ranks indicate
higher visual similarities to GC.

a) Phishing IRI/IDN detected using VSED

b) Phishing IRI/IDN not detected using VSKMP
Figure 10. VSED can detect the string“www.bankofthevvest.com
” (double “v” to mimic “w”), while VSKMP cannot.

a) Phishing IRI/IDN not detected using VSED

b) Phishing IRI/IDN detected using VSKMP

Figure 11. VSKMP can detect the string “www.citibank.com.
info123.biz”, while VSED cannot.

a) Correct web link. Web Link Illustrator paints all characters
blue, which is the color corresponding to Latin characters.

b) Web Link Illustrator paint the “a” red, since it is from another
character set.

Figure 12. Demo for Web Link Illustrator.

6. DISCUSSION-PRACTICAL USE AND
DEPLOYMENT PROPOSAL
We have demonstrated in Section 4 that the prototype application
performs well for Unicode attack detection. All it needs is a list of
domain names to protect and the attack detection algorithms.
However, deploying the technology in real-world situations raises
issues that we would like to address in this section.

6.1 Domain Name Server
When we need a domain name, we get it from domain name
registrars. The registrars are relatively autonomous. However they
are under the supervision of ICANN (Internet Corporation for
Assigned Names and Numbers). ICANN makes regulations for
the Internet domain name registration. It will be very helpful if
ICANN can promote the pre-checking process before a malicious
web page can be registered. People may worry that this limits
their freedom to register any domain name, but it may protect
more people than it hurts.. As a matter of fact, ICANN is realizing
this problem. ICANN first added the related section in

“Additional Remark” in IRI/IDN Ver. 2.0, Nov. 8, 2005, and
continued listing it in the “Additional Remark” of Ver. 2.1, Feb.
22, 2006. However we have not seen a solution yet. We hope that
the method proposed in this paper can be used to address this
issue.
Another solution is that domain name service registrars may
provide the following service: once a domain name is registered,
all similar domain names will automatically be registered to the
same domain name owner. This service can be implemented by
enumerating every way of substituting similar characters from
UC-SimList for the characters in the domain name. The obvious
drawback of this approach is that some domain names will have a
prohibitively large number of similar names (since this number
grows exponentially in the length of the name). However, some
organizations may be willing to pay a premium for the resulting
security if their name is small enough to secure in this manner.

6.2 Anti-Phishing Client Application
There are solutions to protect end user computers. The Unicode
attack method can be embedded into anti-phishing client
applications or web browser plugins and installed in end user
computers. These client applications and plugins act as filters for
the web links that users try to use to access the Internet. If any
suspected web link is found, then they can provide alert
information. One possible problem is that it may be hard for client
applications or plugins to maintain one complete list of legitimate
domain names. However they can be designed as only
maintaining the most security sensitive domain names, e.g. only
maintain the list of banks, credit card companies, and online
transactions services.

6.3 Registrar applications
As we discussed, Web Identity could become a big target for
malicious people. They can use Unicode attacks to create similar
user names and accounts on the Internet. We would like to
propose that username/account registrars in various online
systems use Unicode attack detection systems to overcome
possible attacks. E.g. when someone wants to register a new
username/account in a BBS system, if the BBS system allows
users to register with Unicode strings (they will do this if it has
many international users that prefer to use Chinese, French etc.),
then Unicode attacks could happen. We propose using Unicode
detection systems to verify the legitimacy of new usernames
during registration.

6.4 Content Filtering
It is possible that phishers can carry out attacks through systems
such as Email Servers, BBSs, Wikis, and Search Engines. It has
been reported that people have directed phishing web pages
through Google Searches. Such attacks not only cause network
security problems, but also affect the reputations of decent service
providers. Our method can be used by such systems to detect
phishing Unicode attacks.

7. CONCLUSION AND FUTURE WORK
We have identified a severe security and privacy threat to various
systems which use Unicode as text media, namely the Unicode
attack. The problem arises from the fact the computer screens are
hiding the truth from their users about which characters they are
displaying. To resolve Unicode attack problems, we propose a
methodology, which can be used to implement Unicode attack
detection systems. Following this methodology, we provide a real
demo implementation study using vision and semantic based

algorithms to perform similar/fake Unicode string detection.
Experiments show that both the classification effect and time
efficiency of the proposed method are satisfactory. The threshold
for VSED could reach an optimum around 0.12. We also
implemented VSMKP, where we showed that the threshold for
character-character similarity of 0.80 is an empirical optimization
of VSKMP. We also built up IRI/IDN SecuChecker using the two
algorithms to perform IRI/IDN based phishing and fake web
identity detection. The demo of Web Link Illustrator [9]
demonstrated a possible improvement for web browsers.
The establishment of UC-SimLists is a complicated work, as
discussed in Section 4.1. The current version of UC-SimLists only
includes characters in English, Chinese, and Japanese. It is
expected to include more languages in our future work. We also
would like to keep working on the generation of the word-word
similarity matrix and apply it to the IRI/IDN SecuChecker. The
algorithms, VSED and VSMKP, in IRI/IDN SecuChecker are the
kernel parts to construct potential future similar/fake Unicode
string detection systems. We expect that they could be
implemented in email servers, BBSes, chatting rooms, and
gateway filters to perform Unicode attack detection tasks.

REFERENCES
[1]. ANSI, American Standard Code for Information

Interchange, www.ansi.org.
[2]. Anti-Phishing Group of City University of Hong Kong,

http://antiphishing.cs.cityu.edu.hk
[3]. Anti-Phishing Working Group, http://www.antiphishing.org.
[4]. Berners-Lee T., Fielding R., Masinter L., RFC 3986:

Uniform Resource Identifier (URI): Generic Syntax, The
Internet Society (2005), Jan. 2005.

[5]. Chowdhury A., Frieder O., Grossman D., and McCabe. M.
Collection statistics for fast duplicate document detection,
ACM Transactions on Information Systems, Volume 20(2),
pages 171-191, 2002.

[6]. Dhamija R., Tygar J. D., and Hearst M. Why Phishing
Works, to appear in Proceedings of CHI-2006: Conference
on Human Factors in Computing Systems, April 2006.

[7]. Dhamija R., Tygar J. D., The Battle against Phishing:
Dynamic Security Skins, Symposium on Usable Privacy and
Security 2005, pages 77-99, 2005.

[8]. Duerst M.,Suignard M., RFC 3987: Internationalized
Resource Identifiers (IRIs), The Internet Society (2005),
Jan. 2005.

[9]. Fu A. Y. Web Link Illustrator Demo for Microsoft IE,
www.mit.edu/~ayf

[10]. Fu A. Y., Deng X. , Liu W., A Potential IRI based Phishing
Strategy, in the Proceedings of 6th International Conference
on Web Information Systems Engineering, LNCS Volume
3806, pages 618 - 619 , 2005

[11]. Fu A. Y., Liu W., Deng X., EMD based Visual Similarity
for Detection of Phishing Webpages, in Proceedings of
International Workshop on Web Document Analysis 2005,
2005.

[12]. Gabrilovich E. and Gontmakher A. The homograph attack.
Communications of the ACM, 45(2):128, 2002.

[13]. Garfinkel, S., Miller, R., Johnny 2: A User Test of Key
Continuity Management with S/MIME and Outlook Express.
SOUPS, 2005.

[14]. Hoad T.C., Zobel J. Methods for identifying versioned and
plagiarized documents, Journal of the American Society for
Information Science and Technology, Volume 54(3), pages

203-215, 2003.
[15]. ICANN. http://www.icann.org/
[16]. Jakobsson M., Modeling and Preventing Phishing Attacks,

Phishing Panel of Financial Cryptography, 2005.
[17]. Kantor P., Voorhees E., The TREC-5 Confusion Track:

Comparing Retrieval Methods for Scanned Text,
Information Retrieval, Volume 2(2/3), pages 165-176, 2000.

[18]. Knuth D., Morris J. H., and Pratt V., Fast pattern matching
in strings. SIAM Journal on Computing, 6(2):323¨C350.
1977. Citations. Original publication.

[19]. Levenshtein V.I., Binary codes capable of correcting
deletions, insertions, and reversals, Cybernetics and Control
Theory, Volume 10, pages707-710, 1966.

[20]. Liu W., Deng X, Huang G., Fu A. Y., An Anti-Phishing
Strategy based on Visual Similarity Assessment, IEEE
Internet Computing, Vol. 10, No. 2, pp. 58-65, 2006

[21]. Microsoft, Arial Unicode MS, Version 1.01, 2000.
[22]. Microsoft, Description of the Arial Unicode MS font in

Word 2002, http://support.microsoft.com/kb/q287247.
[23]. Nanno T., Saito S., and Okumura M., Structuring Webpages

based on repetition of elements, in Proceedings of the 7th
International Conference on Document Analysis and
Recognition, 2003.

[24]. Needleman S. and Wunsch C., A general method applicable
to the search for similarities in the amino acid sequence of
two proteins, Journal of Molecular Biology, 48(3):443_453,
1970.

[25]. Netscape, http://wp.netscape.com/eng/ssl3.
[26]. The Unicode Consortium, http://www.unicode.org.
[27]. Wood L., Document Object Model (DOM) Level 1

Specification, http://www.w3.org/TR/ REC-DOM-Level-1.
[28]. Wu, M., Miller, R., Garfinkel, S., Do Security Toolbars

Actually Prevent Phishing Attacks?, to appear in CHI 2006

