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Machine learning has been extensively applied in small molecule analysis to predict a wide

range of molecular properties and processes including mass spectrometry fragmentation or

chromatographic retention time. However, current approaches for retention time prediction

lack sufficient accuracy due to limited available experimental data. Here we introduce the

METLIN small molecule retention time (SMRT) dataset, an experimentally acquired reverse-

phase chromatography retention time dataset covering up to 80,038 small molecules. To

demonstrate the utility of this dataset, we deployed a deep learning model for retention time

prediction applied to small molecule annotation. Results showed that in 70% of the cases, the

correct molecular identity was ranked among the top 3 candidates based on their predicted

retention time. We anticipate that this dataset will enable the community to apply machine

learning or first principles strategies to generate better models for retention time prediction.
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M
achine learning (ML) has played and still plays a key
role at different levels in fields as diverse as quantum
mechanics, physical chemistry, biophysics or physiol-

ogy1. In chemoinformatics, ML has been widely adopted in the
design of quantitative structure–activity relationship (QSAR)
models2,3 aimed at predicting specific properties such as bioac-
tivity4, toxicity5 or small molecule-protein binding affinity6.
These models enable screening for molecules with specific
properties and their development has been possible given the
availability of public datasets. In that sense, datasets with a wide
set of examples from which an ML model can learn are necessary
to build accurate ML-based prediction models7.

Liquid chromatography coupled to mass spectrometry
(LC–MS) is routinely used in hundreds of laboratories for small
molecule analysis8. In mass spectrometry-based small molecule
analysis, ML has been applied in the prediction of collision-
induced dissociation (CID) or electron ionization (EI) fragmenta-
tion spectra, known as in silico spectra9–11 or in the design of
spectra annotation software12. These ML-based resources enable
scientists to identify and discover molecules that lack experi-
mental spectra in databases, which constitute most of the known
molecules13,14. Historically, the lack of publicly available datasets
to train ML models has hampered the design of new algorithms
for in silico spectra prediction or annotation. Generating these
datasets requires an enormous effort due to the need to analyze
pure standard materials for each compound. Yet, the accuracy of
these spectral annotation approaches has improved over the
years15,16. This accuracy, understood as the ability to rank the
correct identity of an unknown MS/MS within the top three
candidates, has been shown to vary from 50% to 80% with state-
of-the-art computational methods12,17. This increase of success in
computational MS/MS spectra annotation can partly be attrib-
uted to the growing number of publicly available spectral data in
libraries.

Another specific application of ML in small molecule discovery
and analysis has been the prediction of chromatographic reten-
tion time (RT)18. Multiple ML-based RT prediction models,
usually known as as quantitative structure–retention relationship
(QSRR) models, have been reported over the last decade. These
models typically aim at finding a relation between theoretical
molecular descriptors or fingerprints with experimental RT.
Similarly to in silico spectra prediction, the lack of experimental
RT datasets has hampered the design of ML methods for large-
scale RT prediction. Whereas community efforts now enable the
access to thousands of MS/MS spectra19, RT predictions have
been largely based on small datasets, often not publicly available,
ranging from a few hundreds20–27 to less than 220028–32 mole-
cules. Large datasets containing peptide RT data exist33, but the
only large-scale resource covering up to 114,000 unique small
molecules is the commercial NIST retention index (relative RT)
library. This library was designed for gas chromatography–mass
spectrometry (GC–MS) and it is inapplicable to LC–MS.

Combined with mass spectrometry data, RT can be used as an
additional and orthogonal evidence layer for small molecule
putative identification, i.e., annotation15,28. In LC–MS, a compu-
tational model capable of predicting the RT for any molecular
structure would enable filtering candidates with similar spectra but
different RT. However, even in the ideal case of a perfect pre-
diction model, these models only predict the RT for a specific
chromatographic method (CM). Each laboratory usually uses a
particular CM based on their specific needs, e.g., customizing
solvent composition, gradient profile or flow rate, among others
conditions. Although predicting RTs for a single CM lacks, in
principle, scalability to other CMs from other laboratories, it has
been shown that RT from one CM can be projected to other CMs
given the general conservative compound elution order in reverse-

phase (RP) columns34–36. This projection aims at making the RT
of two CMs comparable. This implies that a prediction model for a
particular method can be applied to other RP CMs as long as the
compound elution order is well conserved between methods, thus
making a specific prediction model scalable to other CMs.

Here we introduce the METLIN small molecule retention time
(SMRT) dataset, a large-scale dataset consisting of experimentally
acquired chromatographic RT covering 80,038 small molecules
from the METLIN library37 analyzed by RP liquid chromato-
graphy. To demonstrate the capability of the METLIN’s SMRT
dataset, we trained a deep-learning model for RT prediction. We
analyzed the model’s predictive ability along with the ability to
project predicted RT onto other CMs. Further, we focused on the
ability to rank and filter putative candidates in real metabolomics
experiments based on accurate mass search and predicted RT.

Results
The METLIN SMRT dataset. RP chromatography with high-
performance liquid chromatography–mass spectrometry
(HPLC–MS) was used to acquire RT data for a total of 80,038 small
molecules (Fig. 1a) (see Methods for details). Pure standard
materials for the 80,038 molecules were assembled by the Cali-
fornia Institute for Biomedical Research and consisted of small
molecules including metabolites, natural products and drug-like
small molecules. These molecules can also be found in the
METLIN library37. We used ClassyFire38 to obtain a chemical
taxonomy of molecules in the SMRT dataset. Most of molecules
were classified into seven ClassyFire’s groups (superclass level)
including organoheterocyclic compounds (63.9%), benzenoids
(24.7%), organic acids and derivatives (6.6%), organic nitrogen
compounds (1.65%), organic oxygen compounds (1.18%), orga-
nosulfur compounds (0.66%) and other compounds (1.25%) such
as lipids, lignans, nucleosides, nucleotides, phenylpropanoids and
polyketides (Supplementary Fig. 1). The METLIN’s SMRT dataset
includes the RT in seconds, the PubChem numbers, the molfile
containing the structures (SDF format), and molecular descrip-
tors and extended connectivity fingerprints (ECFP) calculated
with Dragon 7 (Kode Chemoinformatics, Pisa, Italy). See Data
Availability section for information on dataset deposition.

Application of deep learning for RT prediction. We deployed a
deep-learning regression model (DLM) using Keras for R39 (see
Methods for details on the DLM construction and parameters).
From all the molecules in SMRT dataset, 75% of them were
randomly selected and used as training set whereas the remaining
25% was used as validation set. ECFP40,41 together with their
respective RT were used as input data for the DLM (Fig. 1a).

Before choosing and configuring this DLM, we explored
alternative input data and ML methods. We tested the
performance of a DLM using molecular descriptors instead of
fingerprints as input data. We used feature selection techniques to
select relevant molecular descriptors and data normalization
techniques to account for generalization bias42. We observed that
fingerprints outperformed molecular descriptors. We also
assessed other non-deep ML methods such as random forest
regression using fingerprints. The random forest regression
yielded a lower accuracy than the DLM, with mean and median
error of 66 and 42 s, respectively (Supplementary Fig. 2). Finally,
we explored the potential of 3D fingerprints43 as an alternative to
2D fingerprints, which did not improve the prediction perfor-
mance. We hypothesize that the more selective nature of the 3D
fingerprints (they can distinguish between isomeric molecules)
decreased the ability of the DLM to learn from similar molecules.
Also, the influence of the molecular conformer used (i.e.,
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conformational isomer of each molecule) adds an additional
complexity layer to the prediction process.

Prediction results of the proposed DLM for the training and
validation set are shown in Fig. 1b, c. Figure 1c shows the overall
validation set error, with mean and median relative errors of
47.8% and 4.6% and the mean and median absolute errors of 57 s
and 35 s. To assess the magnitude of the error, we can compare
this error with the mean chromatographic peak width of acquired
molecules, which ranged between 20 and 30 s (full-width at half-
maximum). This implies that a median error of 35 s can be
considered low. The large difference between the mean and the
median error is due to the presence of non-retained molecules in
the model. Some compounds will not retain in the column and
will elute before the start of the gradient, typically within the first
minute. These non-retained molecules are not considered for data
analysis in typical metabolomics experiments. The significant
experimental RT gap between retained and non-retained mole-
cules (Fig. 1b) induces a substantial error increase when the DLM
fails at accurately predicting the RT for these non-retained
molecules. If non-retained molecules are not considered, the gap
between the mean and median error becomes significantly smaller,
with mean and median relative errors of 6.8% and 4.5%. For the
rest of the paper, non-retained molecules are not considered.

Literature describing RT prediction models usually reports
prediction performance errors via R2 values. These R2 values
depend largely on the size of the dataset used (number of
molecules) and make performance comparison between studies
difficult. Among studies reporting results in directly comparable
values such as relative or absolute errors, Wolfer et al.25 reported
average relative and absolute errors of 13% and 23 s, respectively,
in RP ultra-high performance liquid chromatography (UHPLC).
In UHPLC, chromatograms are typically shorter and smaller
absolute errors than in HPLC are expected. Falchi et al.29

reported similar performance to our method with a median
relative and absolute errors of 5% and 12 s in UHPLC, using a
training set of 968 molecules.

First, we calculated the RT differences among similar molecules
and evaluated the DLM’s ability to accurately predict these
differences. We used the Tanimoto similarity coefficient44 to
measure the similarity among molecules. The Tanimoto similarity
coefficient measures how similar the 2D structures of two
molecules are and it ranges from 0 (no similarity) to 100%
(identical molecules). To assess the DLM’s ability to accurately
predict the RT differences among similar molecules, we
implemented a naïve RT prediction approach by assuming that
similar molecules will have similar RT. In that sense, a molecule’s
RT could be approximated with the median RT of other similar
molecules. We implemented this naïve median RT approach
using a k-nearest neighbors (k-NN) regression: for each molecule
in the validation set, the k-NN searched the training set for the k
most similar molecules (we set k to 3). Then, we determined the
error between the molecule’s experimental RT and the median RT
of all the k most similar molecules in the training set. Next, for all
the molecules for which the k-median error was computed, we
calculated the error between the experimental RT and the DLM’s
predicted RT. To further consider the effect of molecules’
similarity, we compared the naïve and DLM’s prediction error
in five groups, each group considering those molecules in the
validation set that had at least one similar molecule in the training
set above a specific similarity threshold. The thresholds used were
95, 90, 80, 70 and 50%. The lack of molecules in the set with
higher similarity scores (e.g., 99% or 98%) prevented the use of
higher thresholds. Of note, nearly all molecules (99%) in the
validation set had at least one molecule in the validation set with a
50% of similarity or more. We used the naïve k-NN approach as a
control case to show whether or not an ML approach (DLM) can
outperform a heuristic approach based on a general assumption
(k-NN). Figure 2 shows the relative RT error for both the naïve
approach (N) and the DLM predicted values (P). No statistically
significant differences of exactitude (mean error) were observed
for the 95% threshold (paired Wilcoxon rank test) although
statistically significant differences in accuracy (standard
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deviation) were observed (Ansari–Bradley paired test, P < 0.01,
n= 648). For the remaining thresholds, statistically significant
differences in mean error were observed between the median
approach and the DLM (paired Wilcoxon rank test, P < 0.0001,
n90 = 6018, n80 = 14028, n70 = 16974, n50 = 19817).

The DLM was able to predict RT for similar molecules more
accurately than the naïve k-NN approach (IQRP = 4.6%
compared to IQRN = 5.5% for the 95% threshold and IQRP =

6.3% compared to IQRN = 8.1% for the 50% threshold). Yet, the
(statistically significant) differences in mean error (exactitude)
were relatively small (medianP = 3.5% compared to medianN =
3.9% for the 90% threshold and medianP = 4.4% compared to
medianN = 5.3% for the 50% threshold). The fact that a naïve
approach that considered only molecular similarity was capable
of achieving a similar exactitude to the DLM suggests a strong
influence of the structural similarity in the RT prediction.
Previous studies have already observed that RT prediction
performance improved when the training set included structu-
rally similar molecules to those in the validation set45,46. Still, for
highly similar molecules (similarity of 95% or above), results
showed that there are no statistically significant differences
between the predicted and naïve approach mean error (Fig. 2).
This implies that it is more challenging for the DLM to accurately
predict RT differences among highly similar molecules. We
hypothesize that a training set with a greater number of groups of
highly similar molecules is needed to allow the DLM to accurately
predict RT differences among highly similar molecules.

To collect more evidence to support the hypothesis that a
larger number of similar molecules in the training set increases
the model’s prediction performance, we tested whether the
number of similar molecules in the training set had an impact on
the RT prediction error (see Methods for details). We observed
that when a molecule in the validation set had at least one similar
molecule in the training set (similarity of 90% or above), the
prediction error for that molecule was statistically significant
smaller than those molecules without a similar molecule in the
training set (P<0:0001, n = 5607, Fig. 3). The same effect was
observed for the remaining of similarity thresholds (80%, 70%
and 50%, P<0:0001, n80 = 5425, n70 = 2718, n50 = 177) but it
was not observed for a 95% similarity. We hypothesize that two
or more highly similar molecules (>95% similarity) are necessary

in the training set to observe a decrease in error in the case of
95% similarity or above. The lack of molecules with two or more
highly similar molecules in the training set prevented determining
the minimum number of molecules needed to observe statistically
significant changes. This demonstrates that the ML-based RT
prediction performance depends on the number and similarity
level of molecules in the training set to those in the validation or a
real case set.

Projection of predicted RT in other CMs. We studied the
scalability of the prediction model by assessing how well pre-
dicted RT in our CM was able to predict RT in other CMs via
predicted–experimental projections. We used the PredRet data-
base36 as a reference, which comprises small molecule experi-
mental RTs for different CMs reported in the literature and
generated in independent laboratories.

First, we analyzed the DLM’s ability to accurately predict RT
for biologically relevant metabolites. We predicted the RT for the
6823 molecules with KEGG number in The Human Metabolome
Database (HMDB)47. Next, we selected the four RP CMs in the
PredRet database that contained the largest number of molecules
with KEGG number—we will refer to them as experimental
chromatographic methods (ECMs). These methods are known in
the PredRet database as FEM_long (ECM 1), LIFE_old (ECM 2),
RIKEN (ECM 3) and FEM_orbitrap_plasma (ECM 4). ECMs 2
and 3 are short CMs (<5 min) whereas ECMs 1 and 4 are long
CMs (25 min or more). To make the predicted and each ECM RT
comparable, we projected predicted RT onto experimental RT35

using predicted–experimental projections (see Methods for
details). This projection yielded a non-linear function that
allowed the RT interchange between the two CMs, i.e., by
knowing the RT of a metabolite in one CM, we can predict the
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expected metabolite’s RT in the other CM, and vice versa
(Fig. 4a). To accurately project from one method onto another, a
specific number of molecules need to be identified in both
methods36. In our projection, we considered 50 randomly selected
molecules in the ECM to simulate a scenario in which a fraction
of the metabolite identities is known and confirmed. In the next
step, we considered the protonated/deprotonated ion for each
compound in the ECM without taking molecules’ identities into
account. This is done to simulate a common situation in
untargeted metabolomics in which the protonated/deprotonated
ion peak is observed (annotated) but the molecule’s identity is not
known. Typically, protonated/deprotonated ions of underlying
metabolites in samples can be retrieved through a computational
annotation process15. We used the mass determined from each
metabolite’s protonated/deprotonated ion to perform an accurate
mass search (10 ppm mass error) against the HMDB to retrieve
all the possible molecules with KEGG number that could be
attributed to that protonated/deprotonated ion. We then
compared the predicted RT for those molecules with their
experimental RT (Fig. 4b). Here we aim at studying how

predicted RT can be used to rank potential identities and filter
as many false-positive identities as possible (Fig. 4c). Of note,
ECMs 1 to 4 had 4, 2, 3 and 4 molecules, respectively, that were
included in the DLM’s training set.

Results from these projections are shown in Fig. 5. The figure
shows the four CMs (ECM 1–4) with five panels each. Panels a, f,
k, p (Fig. 5) show the projection between the experimental and
predicted RT. Relative errors between experimental and predicted
RT for these ECM are shown in panels b, g, l, q (Fig. 5). These
errors vary depending on the length of each ECM; the median
error spans from 8 and 10% in short ECM (ECMs 3 and 2,
respectively) to 14 and 17% in the remaining ECMs (ECMs 4 and
1, respectively). In seconds, this median absolute error is 5.7, 9.7,
89.4 and 210 s for ECM 3, 2, 4 and 1, respectively.

Experimental–experimental projections, i.e., those that exclu-
sively project experimental RT from one CM onto another, have
reported average relative errors of 2.6%34,36. Greater errors are
expected in predicted–experimental projections in comparison
with experimental–experimental projections mainly due to the
inherent prediction error but also due to the projection error
itself, which propagates the predicted RT error. In another
study using the PredRet database to train and compare different
ML-based prediction methods27, models specifically designed
for each ECM yielded median absolute errors ranging from
150 to 250 s for ECM 1 and from 7 to 14 s for ECM 3. Our
predicted–experimental projections yielded median absolute
errors of 210 and 5.7 s for ECM 1 and 3, respectively. In that
sense, our predicted–experimental projections showed excellent
performance compared to ML models generated from small
datasets from individual CMs.

Next, we focused on the predicted RT ability to filter putative
identities of annotated protonated/deprotonated ions in cases
where there are multiple matches. After projecting predicted
metabolite RTs onto each ECM, we determined an RT error
threshold to filter metabolite identities, i.e., those metabolites with
experimental–predicted RT difference under the error threshold
will be considered correct identities and those above the threshold
will be considered incorrect. To determine the best error
threshold, we used a receiver operating characteristic (ROC)
curve. We calculated the ROC curve by discretizing the range of
relative RT error from 0 to 100% in intervals of 2.5%. For each
error interval, we calculated the true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN). Then, we
determined the accuracy or true-positive rate (TPR) and the
specificity or false-positive rate (FPR) (see Methods for details on
the calculation of TP, TN, FP, FN, TPR and FPR). Panels d, i, n, s
(Fig. 5) show the ROC curve for each ECM, with areas under the
curve (AUC) ranging from 0.65 to 0.69 for all ECM.

The best filtering error thresholds determined by the ROC
curves were 27.5%, 12.5%, 10% and 27.5% for ECM 1 to 4,
respectively. This optimal threshold is the one that maximized the
TPR while minimizing the FPR and, in effect, enabled filtering
out as many FP by compromising as few TP as possible. The
quantitative filtering performance, which can be assessed by
comparing the total number of putative molecule candidates
before and after filtering, is shown in panels c, h, m, r (Fig. 5).
This filtering also incorrectly categorized a fraction of correct
molecule identities (TP) as FP since they fall above the filtering
threshold. Specifically, 31%, 41%, 36% and 21% of correct
molecule identities for ECM 1 to 4, respectively, were considered
as FP and filtered out. Altogether, ROC curves and their
respective AUC values together with quantitative filtering results
(Fig. 5c, h, m, r) show a moderate filtering capacity when using
predicted–experimental projections.

Finally, we assessed the DLM’s ability to rank putative
identities, i.e., the ability to rank candidates from the most to
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the least likely identity according to their RT error, with a special
focus on the ability to rank the correct identity among the top
three first candidates (Fig. 4c). Panels e, j, o, t (Fig. 5) show the
ranking results. These panels show the percentage of molecules in
which the correct identity was ranked as the first, second or third
candidate (y-axis) and whether there were more than 1, 2 or 3
putative candidates in total (x-axis). Percentages were calculated

out of the total number of cases with more than 1, 2 or 3
candidates in each case. The top three chart shows the percentage
of cases in which the correct identity was ranked among the top
three candidates of the total of cases with more than three
candidates. Ranking results showed that predicted RT enabled
ranking the correct identity among the top three candidates in
~70% of the cases for all methods. This demonstrates an excellent
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ranking capacity at the same level as current MS/MS annotation
algorithms12,17. An example of a successful ranking is shown in
Fig. 4c, where an observed experimental protonated/deprotonated
ion could be attributed to multiple unique molecular identities,
some of which were structurally similar. Based on RT error, the
correct molecule’s identity, vanillic acid, was ranked first.

Further, we performed predicted–experimental projections for
all remaining ECMs in the PredRet database that contained at
least 20 molecules with KEGG number (Supplementary Figs. 3–
15). These results are in good alignment with those observed for
ECM 1 to 4, with AUC for the ROC curve all above 0.6 and with
ranking performance above 50%. The differences between the
CMs being projected and the low number of identified molecules
(experimental RT data points) in the ECMs negatively impacted
the performance for some methods such as MTBLS38 or
UniToyama_Atlantis (Supplementary Figs. 10 and 15).

When performing predicted–experimental projections, we
searched for putative identities within a relatively small number
of molecules (a total of 6823 molecules with KEGG number).
When this search space was increased, covering the 18,457
molecules in HMDB with PubChem number, the overall ranking
and filtering performance of the predicted–experimental projec-
tion strategy decreased as expected. Specifically, AUC values for
the ROC curves were comprised between 0.57 and 0.58 for ECM
1 to 4 and top three ranking performance was comprised between
41% and 45% for all cases (Supplementary Fig. 16). This is due to
the fact that a specific protonated/deprotonated ion can match to
a larger number of molecules, making the ranking of the correct
identity more challenging than when fewer candidates are
considered. The use of MS/MS data (in combination with other
orthogonal properties like RT) is required for a confident
identification48. However, our predicted–experimental RT pro-
jections—based only on accurate mass matching and predicted
RT—showed a significant ranking capacity without the use of
MS/MS data. We anticipate an enhanced ranking performance by
combining RT prediction with MS/MS libraries13 or with
advanced annotation approaches like computational MS/MS
spectral annotation12 or MS1 in-source annotation49.

Overall, results demonstrated that a DLM generated with the
METLIN’s SMRT dataset accurately predicts RT for a large
number of molecules. We demonstrated that this RT prediction
model is scalable and applicable for the annotation of small
molecules in other CMs from independent laboratories. RT
projections require knowing the identity and RT of a specific
number of molecules in both the CMs being compared. For ECM
1 to 4, we randomly selected a subset of molecules (50) to
calculate the projection function. Results varied each time that the
projection was calculated due to this random selection mainly due
to aberrant RT predictions. By computing several iterations, we
observed significant variations mainly in the value of the filtering
error threshold, which reinforces our conclusion that
predicted–experimental RT filtering is not a robust approach.
Overall prediction error and ranking results yielded similar values
across iterations. Therefore, these projections need supervision to
ensure that they are not biased. Alternative projection methods
based on taking into account the CM gradient and flow rate
differences29,50 have been shown to be more robust because the
molecules’ RT is not considered in the determination of the
projection function. Yet, these methods require a comprehensive
characterization of each CM.

The METLIN’s SMRT dataset provides RT data for RP
chromatography. RP is one of the two most widely used
chromatography methods along with hydrophilic interaction
(HILIC). HILIC chromatography provides complementary
separation to RP, enabling the separation and measurement of

molecules that might not be retained in RP. As opposed to RP,
the elution order among different HILIC CMs is not well-
conserved. Since a similar elution order is needed for accurate RT
projections between CMs, the use of HILIC compromises both
experimental–experimental and predicted–experimental projec-
tions when two different HILIC-based CMs are being compared.

In conclusion, the METLIN’s SMRT dataset enabled accurate
RT prediction through a deep-learning approach with median
relative and absolute errors of 4.6% and 35 s (HPLC),
respectively. We showed that predicted RT generated with a
training set from a particular CM can be projected onto other
CMs. Results demonstrated that predicted–experimental projec-
tion has a significant capability to rank the correct identity among
the top three putative candidates with the same formula mass.
Specifically, predicted–experimental projection ranked the correct
identity among the top three candidates in up to 70% of cases.
Results also demonstrated that ML-based prediction performance
is limited by the number and similarity level of molecules in the
training set to those in the validation or a real case set. A greater
prediction error is expected for those molecules lacking
structurally similar molecules in the training set. Yet, the SMRT
dataset provides sufficient data to enable the design of alternative
first principles or ab initio strategies (e.g., based on quantum
chemistry) to overcome natural ML limitations.

Collectively, the METLIN’s SMRT dataset provides the
community with a large-scale dataset for RT prediction, enabling
a more confident metabolite annotation with broad applications
in pathway enrichment or natural language processing (NLP)
platforms—which digest scientific literature to rapidly interpret
complex datasets within biological contexts. The use of ML,
including NLP for scientific literature interpretation, represents
a future direction for metabolomics research. We anticipate that,
in the same way that the availability of MS/MS spectral datasets
has improved the performance of in silico MS/MS prediction
algorithms, the METLIN’s SMRT dataset will contribute to
enhancing the accuracy of RT prediction models.

Methods
Dataset assembly and RT acquisition by LC–MS. The pure standard materials
for the 80,038 molecules were analyzed in batches composed of mixtures of ~100
molecules with different molecular weight. Pure standard materials were analyzed
by HPLC on an Agilent 1100/1200 series liquid chromatography (LC) system
coupled to a quadrupole-time of flight (Q-TOF) mass spectrometer G6538A
(Agilent Technologies, Santa Clara, CA) using a Zorbax Extend-C18 reverse-phase
column (2.1 ´ 50 mm, 1.8 μm, Agilent Technologies, Santa Clara, CA). The
gradient consisted of 5% B for 3 min, 50% B over 2 min, 85% B over 15 min and
held at 85% B for 3 min, with a flow rate of 100 μL/min. All analyses were per-
formed in positive and negative ionization mode. The composition for the mobile
phases A and B consisted of water + 0.1% formic acid and acetonitrile + 0.1%
formic acid, respectively. Dead and dwell volume were 40 μL and 900 μL. Resulting
molecules’ protonated/deprotonated or other adducts peaks were computationally
extracted via a peak-picking approach. All peaks were manually inspected prior to
RT integration to the database. RT data were acquired over the course of 3 months
and certain RT variability is expected. We used a subset of 198 molecules to
determine the RT variability. Throughout the analysis of molecules’ batches, we
randomly selected and analyzed one of the reference molecules each time that a
new batch was analyzed. Each molecule was analyzed at least twice with a differ-
ence of at least 30 days and we computed the RT variability of the same molecule.
We observed a mean and median RT variability of 36 and 18 s, respectively.

Deep-learning model construction and parameters. A deep-learning model
using Keras for R39 was deployed following the typical scalar regression config-
uration42 and consisted of 4 fully connected hidden layers with 1000, 500, 200 and
100 units, respectively, activated via a non-linearity function (relu), connected to an
output layer consisting of one unit with no activation. Regularization was per-
formed by a L2 regularizer and the regulation parameter was set to 0.0001. An
adam optimizer was used with a learning rate of 0.01 and mean squared error was
used as loss function. A total of 20 epochs were used to train the model with a
batch size of 35. Training and validation set molecules were randomly selected.
Results and statistical significance remained consistent across multiple iterations
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with randomly selected training and validation sets. The sample size (n) denoted
for each case in this paper varied depending on the training/validation set used.
When a statistically significant difference was observed only for certain training/
validation sets, we considered this difference as not statistically significant.

Impact of the number of similar molecules on RT prediction error. To test
whether the number of similar molecules in the training set had an impact on the
RT prediction error we performed the following procedure: we compared the RT
error for those molecules in the validation set having at least one similar molecule
in the training set above a specific similarity threshold to molecules with no similar
counterpart (Fig. 3). This threshold varied and is described in the Results section.
Since two groups with different sizes (n) were being compared (e.g., a group from
molecules with and without similar counterpart in the training set), we tested for
statistical significance using a subset of observations. For each case, the size of the
subset corresponded to the smallest of the two group’ sizes (sizes are reported in
the Results section). To account for false null hypothesis rejection when using a
sample subset, we repeated a Wilcoxon rank test 1000 times, each time selecting a
different random subset of observations from the group with the largest size.
Resulting P values where further corrected using the Bonferroni method. The final
statistical significance level (n.s., P <0:05, P <0:01, P <0:001, P <0:0001) was
selected as the smallest significance level having at least 95% of the corrected P
values under the specific significance level.

Predicted–experimental RT projection. Predicted RT was projected onto
experimental CMs via a robust polynomial regression (least squares regression of a
polynomial function), using the function poly from the R package stats. The
polynomial function (four polynomials) was adjusted by minimizing the error
between the experimental RT of the molecules in the specific CM and the DLM’s
predicted RT of the same molecules. This yielded a projection function that allowed
adjusting all the predicted RTs to make them comparable to the given CM. Only a
random subset of molecules (50 molecules) from all the molecules in each CM were
used for determining the projection function.

ROC curve-associated parameters. For each threshold used to determine the
ROC curve, we calculated the number of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN). TP was the number of cases where
correct identities’ RT error was under the error threshold, TN was the number of
cases where false identities’ RT error was above the error threshold, FP was the
number of cases where false identities’ RT error was under the error threshold
and FN was the number of cases where false identities’ RT error was above
the error threshold. The accuracy or true-positive rate (TPR) was calculated
as FP/(FP+TN) and the specificity or false-positive rate (FPR) was calculated
as TP/(TP+FN).

Data availability
The METLIN’s SMRT dataset is available in the Figshare repository: https://doi.org/

10.6084/m9.figshare.8038913.

Code availability
The R scripts to reproduce the results are available in the Figshare repository: https://doi.

org/10.6084/m9.figshare.8038913.
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