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Abstract

Planning with numeric state variables has been a challenge for many years, and was
a part of the 3rd International Planning Competition (IPC-3). Currently one of the most
popular and successful algorithmic techniques in STRIPS planning is to guide search by a
heuristic function, where the heuristic is based on relaxing the planning task by ignoring
the delete lists of the available actions.

We present a natural extension of “ignoring delete lists” to numeric state variables,
preserving the relevant theoretical properties of the STRIPS relaxation under the condition
that the numeric task at hand is “monotonic”. We then identify a subset of the numeric
IPC-3 competition language, “linear tasks”, where monotonicity can be achieved by pre-
processing. Based on that, we extend the algorithms used in the heuristic planning system
FF to linear tasks. The resulting system Metric-FF is, according to the IPC-3 results which
we discuss, one of the two currently most efficient numeric planners.

1. Introduction

The planning community has long been aware of the fact that purely propositional rep-
resentation languages, in particular STRIPS (Fikes & Nilsson, 1971), are not well suited
for modeling various phenomena that are essential in real-world problems. In particular,
modeling context dependent effects, concurrent execution of actions with different duration,
and continuous resources are all awkward, or impossible, within the STRIPS language. To
overcome the first of these limitations, Pednault (1989) defined the (nowadays widely ac-
cepted) ADL language, which amongst other things allows for conditional effects (effects
that only occur when their condition holds true in the state of execution). To overcome
(one or both of) the latter two limitations, various proposals have been made (e.g., Ghallab
& Laruelle, 1994; Koehler, 1998; Smith & Weld, 1999). The most recent effort in this di-
rection is the PDDL2.1 language defined by Fox and Long (2002) as the input language for
the 3rd International Planning Competition (IPC-3). The IPC series is a biennial challenge
for the planning community, inviting planning systems to participate in a large scale pub-
licly accessible evaluation. IPC-3 was hosted at AIPS-2002, and stressed planning beyond
the STRIPS formalism, featuring tracks for temporal and numeric planners. This article
describes the approach behind one of the planners that participated in IPC-3, Metric-FF.
Metric-FF is an extension of the FF system (that can handle ADL) to numeric constructs.

Currently one of the most popular and successful algorithmic techniques in STRIPS
planning is to guide search (forward or backward, state space or plan space) by a heuristic
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function, where the heuristic is based on relaxing the planning task by ignoring the delete
lists (i.e. the negative effects) of the available actions. The heuristic value of a search
state in this framework is (an estimate of) the difficulty of extending the state to a solution
using the relaxed actions. This idea was first, independently, proposed by McDermott
(1996) and Bonet et al (1997), and is now widely used in a huge number of variations.
Examples of planners that use the idea are Unpop (McDermott, 1996, 1999), HSP in its
various configurations (Bonet & Geffner, 1998, 1999, 2001), GRT (Refanidis & Vlahavas,
1999, 2001), MIPS (Edelkamp & Helmert, 2001), STAN4 (Fox & Long, 2001), RePOP
(Nguyen & Kambhampati, 2001), Sapa (Do & Kambhampati, 2001), and FF (Hoffmann,
2000; Hoffmann & Nebel, 2001). The search paradigms used by these planners include
forward and backward state space search as well as partial-order planning. The forward
state space planner FF was especially successful at IPC-2 (Bacchus, 2001). In what follows
we extend the heuristic idea for STRIPS, ignoring delete lists, to numeric state variables
in a way that preserves the relevant theoretical properties of the STRIPS relaxation. We
phrase these properties admissibility, basic informedness, and polynomiality. While the
investigation takes place in the setting of forward state space search as used by FF, it
seems likely that the same ideas will also work in other search schemes such as plan-space
search (some more on this in the outlook, Section 8). The Sapa system also deals with
numeric constructs. The heuristic function, however, completely ignores numeric goals and
thus lacks one of the relevant theoretical properties, basic informedness (we will return to
this later). There are also numeric versions of MIPS and GRT. On the respective MIPS
version there is no publication available at the time of writing but an article (Edelkamp,
2003), which the reader is referred to, is to appear in this same JAIR special issue. The
numeric version of GRT, GRT-R (Refanidis & Vlahavas, 2000), allows only for a restricted
form of numeric variables and expressions, basically a limited form of resource allocation
and consumption. The heuristic function considers resource consumption as another form
of state cost. This, like Sapa’s heuristic, lacks basic informedness, as we will see later.

In a numeric planning task, there can be numeric constraints (in action preconditions
and the goal) and numeric effects (in action effects). Constraints and effects can be of
different types. For example, a constraint can require that the value of a variable be either
at least as high as or at most as high as a given constant. The numeric effects can, from a
semantic perspective, either increase or decrease the value of the affected variable. Now, the
delete effects in STRIPS decrease the logical value of the propositional variables, so the idea
we explore is to relax the numeric task by ignoring all decreasing effects. The main difficulty
with this idea is that ignoring the decreasing effects does not necessarily simplify the task.
For example, when the goal requires that x < 0 and x is initially equal to 0, the decreasing
effects are needed to solve the task, so the relaxed task is unsolvable. The relaxation is thus
only adequate (preserves the theoretical properties mentioned above) in tasks where it is
always preferable to have higher variable values. We call such tasks monotonic.1 We observe
that tasks that belong to a subset of the numeric IPC-3 competition language, linear tasks
(in which the numeric variables are only used in linear functions), can be brought into a

1. There is a duality here with respect to ignoring the increasing effects or the decreasing effects. If
lower variable values are always preferable then ignoring the increasing effects is an adequate relaxation.
Whether one chooses one or the other does not seem to make much difference. We choose monotonicity
in the positive sense only because it is conceptually simpler.

292



Translating “Ignoring Delete Lists” to Numeric State Variables

normal form that is monotonic. Based on that, we extend the heuristic algorithms used in
FF, and thereby the whole system, to linear tasks.

FF (Hoffmann & Nebel, 2001) is a close relative of HSP (Bonet & Geffner, 2001). Search
takes place forward in the state space, i.e., starting from the initial state new states are
explored until a goal state is found. The search process in FF is guided by a heuristic
function that is based on solving, in each search state s, the relaxed task starting from s.
The heuristic value to s is the number of actions in the respective relaxed plan, i.e., the
number of actions needed to achieve the goal from s when assuming the delete lists are all
empty. States with lower heuristic value are preferred. The main obstacle in the extension
of FF to numeric state variables is to extend the machinery that solves the relaxed task
in each search state. Once this machinery is defined, the rest of the system translates
effortlessly. We evaluate the resulting planning system Metric-FF by discussing the results
of the numeric domains used in the 3rd International Planning Competition. As it turns out,
Metric-FF and LPG (Gerevini, Saetti, & Serina, 2003a) were the best performing numeric
planners in the competition.2

The article is structured as follows. Throughout the text we refer to related work where
it is relevant. We first give the necessary background in terms of STRIPS notation, and
the techniques that the STRIPS version of FF uses. Section 3 introduces our notation for
numeric state variables, i.e., for the numeric subset of PDDL2.1. Section 4 describes how
the heuristic principle for STRIPS, the relaxation, can be extended to the numeric setting.
Section 5 defines our algorithms for solving relaxed numeric tasks. Section 6 then fills in
the details on how the relaxed plans are used to implement the Metric-FF planning system,
and we briefly describe how ADL constructs can be handled, and how flexible optimization
criteria can be taken into account. The IPC-3 results are discussed in Section 7. Section 8
concludes and outlines future work. An appendix contains most proofs.

2. STRIPS Techniques

In this section, we give background on the techniques that the FF system uses in the STRIPS
language. We start by examining the relaxation that underlies FF’s heuristic function. We
then proceed to the algorithms that are used to solve relaxed tasks. We finally describe
how the relaxed plans are used to implement the actual FF system. The discussion is a
little more detailed than would strictly be necessary to understand the FF workings. This
serves to provide a solid background for what is to come: Sections 4, 5, and 6 will, in turn
for each of the subtopics dealt with in this section, show how these methodologies can be
extended to the numeric setting.

Before we start, we give the notation for the STRIPS language. When we refer to sets we
mean finite sets. We consider the propositional STRIPS language, where all constructs are
based on logical propositions. A world state s is a set of (the true) propositions. An action
a is given as a triple of proposition sets, a = (pre(a), eff(a)+, eff(a)−): a’s precondition, add
list, and delete list, respectively (we use the somewhat unusual notation eff(a)+ and eff(a)−

as this makes the extension to numeric variables more readable).

2. The C source code of Metric-FF is available for free download from the FF homepage at
http://www.informatik.uni-freiburg.de/˜hoffmann/ff.html.
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We first specify the semantics of world states and actions. Throughout the article, we
consider sequential planning only, where a single action at a time is applied to a world
state.3 Actions induce state transitions as follows. Given a world state s and an action
a, the result of executing (the action sequence consisting solely of) a in s, result(s, 〈a〉), is
result(s, 〈a〉) := s \ eff(a)− ∪ eff(a)+ if the action is applicable in s, pre(a) ⊆ s. Otherwise,
result(s, 〈a〉) is undefined. The result of executing an action sequence 〈a1, . . . , am〉 in a state
is recursively defined by result(s, 〈a1, . . . , am〉) := result(result(s, 〈a1, . . . , am−1〉), am), and
result(s, 〈〉) = s.

A STRIPS task – we use the word “task” rather than “problem” to avoid confusion
with the complexity theoretic notion of decision problems – is a tuple (P,A, I,G): the
set P of logical propositions used in the task, the set A of actions, the initial state I (a
world state), as well as the goal G (a partial world state, see below). All propositions in
the actions, initial state, and goal are taken from P . Given a task (P,A, I,G), what one
wants to find is a plan. An action sequence 〈a1, . . . , am〉 ∈ A∗ is a plan for (P,A, I,G) if
G ⊆ result(I, 〈a1, . . . , am〉). Since the ⊆ relation (not equality) is used here, there could be
several goal states in which a plan ends. If there exists at least one plan for a task, then the
task is solvable. Sometimes we refer to optimal plans. In our sequential framework, a plan
is optimal for a task if there is no plan for the task that contains fewer actions.

2.1 Relaxing Strips Tasks

We want to inform the search for a plan by a function that estimates the goal distance of
search states. The idea is to define a relaxation (i.e., a simplification) of planning tasks,
then solve, in any search state, the relaxed task, and take the length of the relaxed solution
as an estimate of how long the solution from the state at hand really is. The relaxation
that was first proposed by McDermott (1996) and Bonet, Loerincs, & Geffner (1997), is to
relax STRIPS tasks by ignoring the delete lists of all actions.

Definition 1 Assume a STRIPS task (P,A, I,G). The relaxation a+ of an action a ∈ A,
a = (pre(a), eff(a)+, eff(a)−), is defined as

a+ := (pre(a), eff(a)+, ∅).

The relaxation of (P,A, I,G) is (P,A+, I,G), where A+ := {a+ | a ∈ A}. An action
sequence 〈a1, . . . , an〉 ∈ A∗ is a relaxed plan for (P,A, I,G) if 〈a+

1 , . . . , a+
n 〉 is a plan for

(P,A+, I,G).

Ignoring the delete lists simplifies the task because the action preconditions and the goal
are all positive. We identify a number of desirable properties that the relaxation has. We
will later define relaxations for numeric variables that have the same properties.

Definition 2 Let RPLANSAT denote the following problem.

Assume a STRIPS task (P,A, I,G). Is the relaxation of (P,A, I,G) solvable?

3. As opposed to, e.g., Graphplan-based approaches (Blum & Furst, 1997), which find sets of actions to be
applied in parallel.
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Proposition 1 The relaxation given in Definition 1 is adequate, i.e., the following holds
true.

1. Admissibility: any plan that solves the original task also solves the relaxed task,
i.e., assuming a STRIPS task (P,A, I,G), any plan for (P,A, I,G) is also a relaxed
plan for (P,A, I,G).

2. Basic informedness: the preconditions and goals can trivially be achieved in the
original task if and only if the same holds in the relaxed task, i.e., assuming a
STRIPS task (P,A, I,G), 〈〉 is a plan for (P,A, I,G) if and only if 〈〉 is a re-
laxed plan for (P,A, I,G), and for a ∈ A, result(I, 〈〉) ⊇ pre(a) if and only if
result(I, 〈〉) ⊇ pre(a+).

3. Polynomiality: the relaxed task can be solved in polynomial time, i.e., deciding
RPLANSAT is in P.

The proof is trivial – admissibility and basic informedness follow directly from the
definitions, and polynomiality was proved earlier by Bylander (1994). The proof can be
found in Appendix A.

If we want to use the length of relaxed plans as a heuristic function, the properties
stated by Proposition 1 are important for the following reasons. Admissibility tells us that
optimal relaxed plan length is an admissible heuristic, since the optimal real plan is also
a relaxed plan.4 Also, we will not mistake a solvable state for a dead end: if there is no
relaxed plan then there is no real plan either (more on this below). The “only if” directions
in basic informedness tell us that the relaxation does not give us any constraints for free
(for example, the heuristic value will be zero only in goal states). If the heuristic does not
have these properties then possibly parts of the problem must be solved in regions where
there is no heuristic information at all (like when the heuristic value is already zero but
no goal state is reached yet).5 Polynomiality tells us that we can compute the heuristic
function efficiently.

2.2 Solving Relaxed Tasks

Ideally, given a search state s, we would like to know how many relaxed actions are at least
needed to reach the goal, i.e., we would like to know what the length of an optimal relaxed
plan is (this would be an admissible heuristic, c.f. above). But finding optimal relaxed plans
is still intractable (Bylander, 1994). So instead we compute arbitrary, i.e., not necessarily
optimal, relaxed plans. This is done with a Graphplan-style algorithm (Blum & Furst,
1997; Hoffmann & Nebel, 2001). Given a search state s in a STRIPS task (P,A, I,G), we
first build a relaxed planning graph starting from s, i.e., for the task (P,A, s,G). Then
we extract a relaxed plan from that graph. The graph building algorithm is depicted in
Figure 1.

4. Note that using the term “admissibility” this way slightly abuses notation, as admissibility usually refers
to a property of the heuristic function, not the technique (relaxation, in our case) it is based on.

5. The formulation of basic informedness might seem unnecessarily complicated. We chose the general
formulation at hand so that the definition can easily be transferred to other relaxation techniques, like
the ones we introduce later.
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P0 := s
t := 0
while G 6⊆ Pt do

At := {a ∈ A | pre(a) ⊆ Pt}
Pt+1 := Pt ∪

⋃

a∈At
eff(a)+

if Pt+1 = Pt then fail endif

t := t + 1
endwhile

finallayer := t, succeed

Figure 1: Building a relaxed planning graph for a task (P,A, s,G).

The planning graph in the relaxed case is simply represented as a sequence P0, A0, . . . ,
At−1, Pt of proposition sets and action sets. These are built incrementally in the obvious
fashion, starting with P0 = s as the initial layer, and iteratively inserting the add effects
of all applicable actions. The algorithm fails if at some point before reaching the goals no
new propositions come in. This only happens when the relaxed task is unsolvable.

Proposition 2 Assume a STRIPS task (P,A, I,G), and a state s. If the algorithm depicted
in Figure 1 fails, then there is no relaxed plan for (P,A, s,G).

The proof is in Appendix A. The main argument is that, if two consecutive proposition
layers are identical, then the same will hold true at all later layers so the graph has reached
a fixpoint.

In case the goals can be reached at layer finallayer, we call the relaxed plan extraction
mechanism depicted in Figure 2. The level of each proposition p (action a) here is the first
layer in the relaxed planning graph at which p (a) appears, i.e., the minimum t such that
p ∈ Pt (a ∈ At).

for t := 1, . . . , f inallayer do

Gt := {g ∈ G | level(g) = t}
endfor

for t := finallayer, . . . , 1 do

for all g ∈ Gt do

select a, level(a) = t − 1, g ∈ eff(a)+

for all p ∈ pre(a) do

Glevel(p)∪ = {p}
endfor

endfor

endfor

Figure 2: Extracting a relaxed plan for a task (P,A, s,G) (levels and finallayer computed
by the algorithm in Figure 1).

Relaxed plan extraction is based on a sequence G1, . . . , Gfinallayer of goal and sub-goal
sets. Goals and sub-goals are always inserted into the set at their respective level, i.e., at the
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position of their first appearance in the relaxed planning graph. The goal sets are initialized
by inserting the respective (top-level) goals. A backwards loop then selects, at each layer,
actions to support the respective goal set. All goals or sub-goals g are supported, and the
preconditions of the respective actions become new sub-goals. This way, upon termination
the selected actions can be used to form a relaxed plan for the state at hand.

Proposition 3 Assume a STRIPS task (P,A, I,G), and a state s for which the algorithm
depicted in Figure 1 reaches the goals. The actions selected by the algorithm depicted in
Figure 2 form a relaxed plan for (P,A, s,G).

As all goals and sub-goals are supported, arranging the actions selected at each layer in
an arbitrary order yields a relaxed plan. The proof is in Appendix A.

2.3 FF

Based on the relaxed plan information, a heuristic state space planner is easily implemented.
Choices must be made on how to use the relaxed plans, and how to arrange the search strat-
egy. We describe the specific methods used in FF, which are very efficient in many STRIPS
and ADL benchmarks (Hoffmann & Nebel, 2001). The extended system uses straightfor-
ward adaptions of these methods. We define a heuristic function, a search strategy, and a
pruning technique. The heuristic estimates goal distances as relaxed plan length.

Definition 3 Assume a STRIPS task (P,A, I,G), and a state s. The FF heuristic value
h(s) for s is defined as follows. If the algorithm depicted in Figure 1 fails, h(s) := ∞.

Otherwise, h(s) :=
∑finallayer

t=1 |At| where At is the set of actions selected at layer t by the
algorithm depicted in Figure 2.

If there is no relaxed plan for a state, then the heuristic value is set to ∞. This is
justified by the first property proved in Proposition 1: when there is no relaxed plan then
there can be no real plan either, i.e., the state is a dead end in the sense that the goals can
not be reached from it. Such states can be pruned from the search. The search scheme we
use is a kind of hill-climbing procedure using a complete lookahead to find better states.
See Figure 3.

Enforced hill-climbing, like (standard) hill-climbing, starts out in the initial state and
performs a number of search iterations trying to improve on the heuristic value, until a
state with zero value is reached. While normally, iterative improvement is done by selecting
one best direct successor of the current search state, enforced hill-climbing uses a complete
breadth first search to find a strictly better, possibly indirect, successor. The search cuts
out states that have been seen earlier during the same iteration, and does not expand states
that the heuristic function recognizes as dead ends. This strategy works well when the
better successors are usually nearby, which is the case in many planning benchmarks when
using the FF heuristic function (Hoffmann, 2001, 2002b). When there is no better successor
below the current search node, the algorithm fails (more on this below).

We finally define a pruning technique, selecting a set of the most promising successors to
each search state. The unpromising successors can then be ignored. A promising successor
is a state generated by an action that is helpful in the following sense.
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initialize the current plan to the empty plan <>
s := I
while h(s) 6= 0 do

starting from s, perform breadth first search for a state s′ with h(s′) < h(s),
avoiding repeated states using a hash table,
not expanding states s′′ where h(s′′) = ∞

if no such state can be found then fail endif

add the actions on the path to s′ at the end of the current plan
s := s′

endwhile

output current plan, succeed

Figure 3: The enforced hill-climbing algorithm, for a task with heuristic h.

Definition 4 Assume a STRIPS task (P,A, I,G), and a state s for which the algorithm
depicted in Figure 1 reaches the goals. The set of helpful actions H(s) to s is defined as

H(s) := {a ∈ A | eff+(a) ∩ G1 6= ∅},

where G1 is the set of sub-goals constructed at layer 1 by the algorithm depicted in Figure 2.

In other words, an action is considered helpful if it achieves at least one of the lowest
level goals in the relaxed plan to the state at hand. The helpful actions information is used
as a pruning technique. During a breadth first search iteration in enforced hill-climbing,
when expanding a state s, only the states generated by actions in H(s) are included into
the search space. Note that states s where the relaxed planning graph does not reach the
goals have h(s) = ∞ so do not get expanded anyway.

In general, neither enforced hill-climbing nor helpful actions pruning maintain complete-
ness. The algorithm fails if enforced hill-climbing gets caught in a dead end state. This can
happen because the search does not backtrack over its decisions, and because the heuristic
function can return a value below ∞ for a dead end state. The algorithm also fails if helpful
actions pruning cuts out important states, which can happen because the technique is a
non-admissible approximation of usefulness. We deal with this issue by employing a safety-
net solution, i.e., if enforced hill-climbing fails then the planner starts from scratch using a
complete heuristic search engine, without any pruning technique. The search engine used is
what Russel and Norvig (1995) term greedy best-first search. This is a weighted A∗ strategy
where the weight wg of the node cost in the equation f(s) = wg ∗ g(s)+wh ∗h(s) is wg = 0,
i.e., search simply expands all search nodes by increasing order of goal distance estimation.
Repeated states are avoided in the obvious way by keeping a hash table of visited states.

3. Numeric State Variables

We introduce notation for the numeric part of the PDDL2.1 language (i.e., PDDL2.1 level
2) defined by Fox and Long (2002), used at IPC-3. We restrict ourselves to STRIPS for
readability reasons. Extensions to ADL will be summarized in Section 6.2. All sets are
assumed to be finite unless stated otherwise.
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In addition to the propositions P , we now have a set V of numeric variables. Notation-
ally, we say V = {v1, . . . , vn} (throughout the article, n will denote the number of numeric
variables). A state s is a pair s = (p(s), v(s)) where p(s) ⊆ P is a set of propositions and
v(s) = (v1(s), . . . , vn(s)) ∈ Qn is a vector of rational numbers (the obvious semantics being
that p(s) are the true propositions, and vi(s) is the value of vi).6

An expression is an arithmetic expression over V and the rational numbers, using the
operators +, −, ∗, and /. A numeric constraint is a triple (exp, comp, exp′) where exp and
exp′ are expressions, and comp ∈ {<,≤,=,≥, >} is a comparator. A numeric effect is a
triple (vi, ass, exp) where vi ∈ V is a variable, ass ∈ {:=,+=, -=, ∗=, /=} is an assign-
ment operator, and exp is an expression (the effect right hand side). A condition is a pair
(p(con), v(con)) where p(con) ⊆ P is a set of propositions and v(con) is a set of numeric
constraints. An effect is a triple (p(eff)+, p(eff)−, v(eff)) where p(eff)+ ⊆ P and p(eff)− ⊆ P
are sets of propositions (the add- and delete-list), and v(eff) is a set of numeric effects such
that i 6= j for all (vi, ass, exp), (vj , ass′, exp′) ∈ v(eff).7 An action a is a pair (pre(a), eff(a))
where pre(a) is a condition and eff(a) is an effect.

The semantics of this language are straightforward. The value exp(v) of an expression
exp in a variable value vector v (in s, if v is the numeric part v(s) of a state s) is the
rational number that the expression simplifies to when replacing all variables with their
respective values, or undefined if a division by 0 occurs. A constraint (exp, comp, exp′) holds
in a state s, written s |= (exp, comp, exp′), if the values of exp and exp′ are defined in s,
and stand in relation comp to each other. A condition con = (p(con), v(con)) holds in a
state s, s |= con, if p(con) ⊆ p(s), and all numeric constraints in v(con) hold in s. The
value (vi, ass, exp)(v) of a numeric effect (vi, ass, exp) in a variable value vector v (in s, if
v is the numeric part v(s) of a state s) is the outcome of modifying the value of vi in s
with the value of exp in s, using the assignment operator ass. A numeric effect is applicable
in s if its value in s is defined. An effect eff = (p(eff)+, p(eff)−, v(eff)) is applicable in s
if all numeric effects in v(eff) are applicable in s. For such eff and s, eff(s) is the state
s′ where p(s′) = p(s) \ p(eff)− ∪ p(eff)+, and v(s′) is the value vector that results from
v(s) when replacing vi(s) with (vi, ass, exp)(s) for all (vi, ass, exp) ∈ v(eff). Putting all of
these definitions together, the result of executing an action a in a state s is result(s, 〈a〉) =
eff(a)(s) if s |= pre(a) and eff(a) is applicable in s, undefined otherwise. In the first case, a
is said to be applicable in s. For an action sequence 〈a1, . . . , an〉, result(s, 〈a1, . . . , an〉) is
as usual defined recursively by result(s, 〈a1, . . . , an〉) = result(result(s, 〈a1, . . . , an−1〉), an)
and result(s, 〈〉) = s.

A numeric task is a tuple (V, P,A, I,G) where V and P are the variables and propositions
used, A is a set of actions, I is a state, and G is a condition. A sequence of actions
〈a1, . . . , an〉 ∈ A∗ is a plan if the result of applying it to I yields a state that models G,
result(I, 〈a1, . . . , an〉) |= G.

In our algorithmic framework, we make distinctions between different degrees of ex-
pressivity that we allow in numeric constraints and effects, i.e., between different numeric

6. We ignore, for readability reasons, the possibility given in Fox and Long’s original language that a
variable can have an undefined value until it is assigned one. Our methodology can be easily extended
– and is in fact implemented – to deal with this case.

7. Fox and Long (2002) make this assumption implicitly, by requiring that the outcome of an action is
well-defined – note that commutative effects on the same variable can be merged.
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languages. A numeric language is a tuple (Cons,Eff-ass,Eff-rh) where Cons is a possibly
infinite set of numeric constraints, Eff-ass is a set of assignment operators, and Eff-rh is a
possibly infinite set of expressions. A task (V, P,A, I,G) belongs to a language if all con-
straints, assignment operators, and effect right hand sides are members of the respective
sets.

The next three sections contain the technical part of this article. They are organized as
follows.

1. Section 4 provides the theory on which Metric-FF’s heuristic function is based. The
relaxation, ignoring delete lists as described in Section 2.1, is extended to numeric
variables. Section 4.1 formalizes the key idea in a restricted numeric language, and
states that the extended relaxation fulfills admissibility, basic informedness, and poly-
nomiality. Section 4.2 abstracts from the restricted language, identifying generalized
semantic properties that make the relaxation work. Section 4.3 then introduces the
language of linear tasks, which can be brought into a linear normal form (LNF) that
has these semantic properties. Metric-FF’s core planning algorithms are implemented
for LNF tasks.

2. Section 5 introduces the algorithms implemented in Metric-FF’s heuristic function.
The algorithms are extensions to the relaxed Graphplan methods described in Sec-
tion 2.2. Section 5.1 describes the algorithms for the restricted language, Section 5.2
extends that to LNF tasks. We state formally that the algorithms are complete and
correct. We also see that the algorithms are, in theory, less efficient than they could
be. The number of relaxed planning graph layers built can be exponential in the
size of the task encoding, in contrast to polynomiality of the relaxation as proved
in Section 4. The reason why the implementation lags behind what is theoretically
possible is that the implementation work was done before the theory was fully devel-
oped. However, from a practical point of view, it is at least debatable how important
the potential exponentiality is (the number of relaxed planning graph layers built is
bounded by the length of a shortest relaxed plan). Exploring this issue in depth is a
topic for future work. More details are in Sections 4.1 and 5.1.

3. Section 6 details how the relaxed plan information is used to implement the Metric-FF
system. Section 6.1 explains the extension of the basic FF architecture as described
in Section 2.3. Section 6.2 explains the extension to ADL, Section 6.3 describes how
flexible optimization criteria can be dealt with.

4. Relaxing Numeric State Variables

We show how the relaxation technique for STRIPS can naturally be extended to the numeric
context. We proceed in the three steps outlined above.

4.1 A Restricted Language

The key idea in our relaxation becomes apparent when one considers the context where
constraints only compare variables to constants via ≥ or >, there are only += and -=
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effects, and the effect right hand sides are positive constants. More formally, our restricted
language is:

( {(vi, comp, c) | vi variable, comp ∈ {≥, >}, c ∈ Q},
{+=, -=},
{c | c ∈ Q, c > 0} )

In STRIPS, delete lists are troublesome because they falsify propositions that we might
need for preconditions or the goal. In the restricted numeric language here, the -= effects are
troublesome because they diminish the value of the affected variables. The idea is therefore
to ignore these effects.

Definition 5 Assume a restricted numeric task (V, P,A, I,G). The relaxation a+ of an
action a ∈ A, a = (pre(a), (p(eff(a))+, p(eff(a))−, v(eff(a)))), is defined as

a+ := (pre(a), (p(eff(a))+, ∅, {(vi,+=, exp) | (vi,+=, exp) ∈ v(eff(a))})).

The relaxation of (V, P,A, I,G) is (V, P,A+, I,G), where A+ := {a+ | a ∈ A}. An action
sequence 〈a1, . . . , an〉 ∈ A∗ is a relaxed plan for (V, P,A, I,G) if 〈a+

1 , . . . , a+
n 〉 is a plan for

(V, P,A+, I,G).

The above relaxation is adequate in the restricted language, in the precise sense intro-
duced in Section 2.1.

Definition 6 Let RESTRICTED-RPLANSAT denote the following problem.

Assume a restricted numeric task (V, P,A, I,G). Is the relaxation of (V, P,A, I,G)
solvable?

Theorem 1 The relaxation given in Definition 5 is adequate, i.e., the following holds true.

1. Admissibility: assuming a restricted numeric task (V, P,A, I,G), any plan for
(V, P,A, I,G) is also a relaxed plan for (V, P,A, I,G).

2. Basic informedness: assuming a restricted numeric task (V, P,A, I,G), 〈〉 is a plan
for (V, P,A, I,G) if and only if 〈〉 is a relaxed plan for (V, P,A, I,G), and for a ∈ A,
result(I, 〈〉) |= pre(a) if and only if result(I, 〈〉) |= pre(a+).

3. Polynomiality: deciding RESTRICTED-RPLANSAT is in P.

The detailed proof can be found in Appendix A. It is a straightforward extension of the
STRIPS proof, exploiting the correspondence between pre/goal-conditions, add lists, and
delete lists on the one hand, and x ≥ [>]c constraints, += effects, and -= effects on the
other hand. The only tricky part lies in proving polynomiality, precisely in how to handle
repeated increasing effects on the same variable. Such effects might have to be applied
an exponential number of times. Consider the tasks, for n ∈ N0, where vi is initially 0,
vi ≥ n is the goal, and we have an action effect (vi,+=, 1). For task n, the shortest relaxed
plan comprises n steps, which is exponentially long in the size of a non-unary encoding
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of n. The trick one can use to decide relaxed solvability in polynomial time is a simple
∞ handling. The polynomial decision process is a forward fixpoint procedure similar to
building a relaxed planning graph. As soon as there appears an action a that increases a
variable vi, one can assume that vi’s value is ∞, reflecting the fact that vi’s value can be
made arbitrarily high by applying a a sufficient number of times. As indicated earlier, the
current implementation of Metric-FF, which we will describe in Section 5, does not make
use of such an ∞ handling technique, and may thus build an exponential number of relaxed
planning graph layers for a search state. More on this in Section 5.1.

A few words on related work are in order here. If one relaxes numeric tasks by ignoring
all the numeric constructs, then one gets admissibility and polynomiality, but not basic
informedness. The heuristic methods used in Sapa (Do & Kambhampati, 2001) and GRT-R
(Refanidis & Vlahavas, 2000) come quite close to this extreme case. In fact, Sapa’s heuristic
constructs a relaxed plan that completely ignores the numeric part of the task. Then the
“resource consumption” of the resulting relaxed plan (roughly, the sum of all decreasing
effects on numeric variables) is used to estimate the number of actions that would be needed
to re-produce these resources, and that number is added to the heuristic value of the state at
hand. In particular, this method ignores all numeric goals and preconditions and thus lacks
basic informedness. Similarly, the heuristic technique used in GRT-R considers resource
consumption as another form of state cost, but does not take any numeric precondition or
goal constraints into account. The heuristic technique does not make explicit use of relaxed
plans so our definitions can not be directly applied. However, as numeric constraints are
not considered, the heuristic value of a purely numeric action precondition is zero even if
the precondition is not true in the current state, and the technique thus also lacks basic
informedness.

4.2 Monotonicity, and a Dynamic Relaxation

We now have a look behind the scenes of the relaxation technique that we used above for
the restricted language. We abstract from the syntax of the numeric constructs, and focus
on their semantics instead. We define an extension of our relaxation to the general context,
and identify a group of semantic properties that make this relaxation adequate. We will
later focus on a syntactically restricted language, linear tasks, where it is easier to see that
the relaxation is adequate. The main intention of the abstract work in this subsection is to
provide some theoretical background on the general characteristics for which our relaxation
works.

Let us first ignore semantic issues, and simply extend the definition of our relaxation.
In general, the definition is not as easy as for the restricted case in Definition 5. While our
idea is still to ignore decreasing effects, the difficulty is that whether an effect is decreasing
or not can depend on the context it is executed in.8 As a simple example, say an action a
has a numeric effect (vi,+=, vj). If vj has a negative value in the state of a’s execution,
this effect decreases the value of vi instead of increasing it. So we can not statically relax a

8. It is common practice to refer to += effects as “increasing effects”, and to -= effects as “decreasing
effects”. In contrast to that, we distinguish between syntax and semantics by using += / -= to denote
syntax, and increasing / decreasing to denote semantics (of arbitrary numeric effects).
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by ignoring parts of its specification. Instead, our relaxation now is dynamic: we relax the
state transition function.

Definition 7 Assume a state s and an action a = (pre(a), eff(a)). The relaxed result
of executing a in s is result+(s, a) = s′ such that p(s′) = p(s) ∪ p(eff(a))+, and v(s′) is
the value vector that results from v(s) when replacing vi(s) with (vi, ass, exp)(s) for all
(vi, ass, exp) ∈ v(eff) such that (vi, ass, exp)(s) > vi(s).

For an action sequence 〈a1, . . . , an〉, result+(s, 〈a1, . . . , an〉) is defined recursively as with
the original result function in Section 2. Note that, in STRIPS and the restricted numeric
language, Definition 7 comes down to exactly the relaxations we have used before.

Having generalized our relaxation, we now want to know in exactly which situations
this relaxation is adequate. Obviously, ignoring the decreasing effects is not adequate in
general. As a simple example, if the value of a variable vi is initially 0, there is an effect
(vi, -=, 1), and the goal requires that vi < 0, then the “relaxation” renders the task un-
solvable. Intuitively, the relaxation is adequate if it is always preferable for the numeric
variables to have higher values. Formalizing this intuition turns out to be a bit tricky.
Recall our three conditions for adequacy of a relaxation: admissibility (any real plan is also
a relaxed plan), basic informedness (the relaxation does not ignore any precondition or goal
constraints), and polynomiality (solvability of the relaxation can be decided in polynomial
time). Basic informedness is obviously given for our relaxation here. Not so admissibility
and polynomiality. Say we want to make sure that each real plan is also a relaxed plan.
Not only must the numeric constraints prefer higher variable values, but the effects must
also. As an example, say we have vi = vj = 0 initially, the goal vi ≥ 1, an action effect
(vi, -=, vj), and an action effect (vj , -=, 1). If we ignore the decreasing effect on vj , we can
not solve the task because for the effect (vi, -=, vj) it is better when vj takes on lower values.
Considering polynomiality, to ensure that relaxed solvability can be decided in polynomial
time, all kinds of subtleties must be handled. Say we want to shortcut repeated action
application by an ∞ trick, i.e., by assuming that repeated application of increasing effects
makes the affected variable diverge (as is the case in the restricted language above). Then
we will get in trouble if repeated (relaxed) application of an action makes the value of the
affected variable converge.9 Similar difficulties arise when an expression in a constraint
does not diverge with its variables. Finally, it might be that the constraint looks correct
when inserting ∞, but can never be fulfilled with finite values. An example of this is the
constraint vi ≥ vi + 1, which is fulfilled when inserting ∞ for vi.

In the following definition, we introduce a number of conditions that are sufficient to
ensure that none of the difficulties described above appear. We will see that in “monotonic”
tasks each real plan is also a relaxed plan, and that in “strictly monotonic” tasks, given their
:= effects are acyclic in a certain sense, relaxed plan existence can be decided in polynomial
time.

Definition 8 Assume a numeric task (V, P,A, I,G). The task is monotonic if, for all pairs
of states s and s′ with ∀vi : vi(s) ≤ vi(s′), the following holds.

9. As an example, if vi is initially 1 and we have an effect (vi, +=, 1− vi

2
) then repeated application of the

effect makes the value of vi converge to 2 (the value of vi after n applications is 2 −

1

2

n
).
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(1) For all numeric constraints (exp, comp, exp′) occurring in the task:

s |= (exp, comp, exp′) ⇒ s′ |= (exp, comp, exp′).

(2) For all numeric effects (vi, ass, exp) occurring in the task:

(vi, ass, exp)(s) ≤ (vi, ass, exp)(s′),

where the ≤ relation holds only if both values are defined.

The task is strongly monotonic if the above and the following hold.

(3) For all states s and s′ as above, for all numeric effects (vi, ass, exp) occurring in the
task, with ass ∈ {+=, -=, ∗=, /=}:

(vi, ass, exp)(s) − vi(s) ≤ (vi, ass, exp)(s′) − vi(s′),

where the ≤ relation holds only if both values are defined.

(4) For all expressions exp occurring in the task:

∀vi ∈ v(exp) : lim
vi→∞

exp = ∞,

where v(exp) denotes the set of all variables contained in exp.

(5) For all numeric constraints (exp, comp, exp′) occurring in the task:

∃s : s |= (exp, comp, exp′).

Some explanation of this lengthy definition is in order. Condition (1) ensures that the
numeric constraints prefer higher variable values. Condition (2) does the same for effects,
requiring that the value of an effect can only increase with the variables. In particular,
the value does not become undefined, i.e., no division by zero occurs when the variables
grow. These two conditions suffice to make each real plan a relaxed plan, as higher variable
values are always preferable. Conditions (3) to (5) aim at making relaxed solvability easy
to decide. Condition (3) is a stronger version of condition (2). We require that the value
that the effect adds to the affected variable increases with the variables. This ensures that
repeated application of the effect causes the value of the affected variable to diverge. To
illustrate this, an effect (vi,+=,−vj + c) fulfills condition (2) but not condition (3). The
outcome of this effect is always c, which is monotonic in its (zero) variables but affects
vi more as vi’s own value becomes higher. Condition (4) postulates that all expressions
diverge in all variables, and condition (5) postulates that to all constraints there is a finite
variable assignment that makes these constraints true. Together with condition (1) these
requirements ensure that the constraints will eventually be fulfilled when increasing the
values of the variables.10

10. One could weaken conditions (1) to (3) of Definition 8 by exploiting the fact that we are only interested
in reachable states. It does not matter if, e.g., a constraint is not monotonic in a region of variable values
that will never be reached due to the semantics of the task. Metric-FF implements no such analysis
techniques, except throwing away actions – and with them, numeric constraints and effects – whose
preconditions can not be reached in the relaxed planning graph for the initial state, when ignoring all
numeric constructs. Exploring the topic in more depth is future work.
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The := effects are separated out from the definition of strong monotonicity, i.e., while
we do postulate condition (2) for them, we do not postulate condition (3). Postulating
condition (3) for := effects would also suffice. But this condition does not hold for even
the simplest form of := effects, namely (vi, :=, c), assigning a constant to a variable. Note
that this is in principle the same effect as the example given above, (vi,+=,−vj + c).
Effects of this kind are common even in the limited suits of benchmarks that are currently
available (e.g., when filling up a tank, the fuel level is assigned the maximum level). So we
identify a different sufficient criterion that makes := effects tractable, and that captures the
common forms of these effects. Computing the maximum outcome of a set of assignment
effects, in the relaxation and under condition (2), becomes easy if the value changes on each
single variable can not be propagated into their own value. The proof argument is that,
if, transitively, a change on vi can not influence vi’s own value then all one needs to do
is to perform value propagation steps, at each step computing the maximum assignment
available for each variable. After at most as many steps as there are variables, the values
will be fixed. We formalize the possible value propagations with a straightforward graph
definition.

Definition 9 Assume a numeric task (V, P,A, I,G). The task has acyclic := effects if the
graph (V,E) is cycle-free, where

E = {(vi, vj) ∈ V × V | ∃a ∈ A, (vj , :=, exp) ∈ v(eff(a)) : vi ∈ v(exp)},

with v(exp) denoting the set of all variables contained in exp.

We now state in which ways our definitions imply adequacy of ignoring decreasing effects
as a relaxation. In the notation for the relaxed plan existence decision problem, we abstract
from syntactic issues, and assume that a well-formed input task to the decision procedure
is strongly monotonic and has acyclic := effects.

Definition 10 Let STRONGLY-MONOTONIC-RPLANSAT denote the following prob-
lem.

Assume a numeric task (V, P,A, I,G). Is there a relaxed plan for (V, P,A, I,G), provided
the task is strongly monotonic and has acyclic := effects?

Theorem 2 The relaxation given in Definition 7 is adequate for strongly monotonic tasks
with acyclic := effects. Precisely the following holds true.

1. Admissibility: assuming a monotonic numeric task (V, P,A, I,G), any plan for
(V, P,A, I,G) is also a relaxed plan for (V, P,A, I,G).

2. Basic informedness: assuming a numeric task (V, P,A, I,G), 〈〉 is a plan for
(V, P,A, I,G) if and only if 〈〉 is a relaxed plan for (V, P,A, I,G), and for a ∈ A
result(I, 〈〉) |= pre(a) if and only if result+(I, 〈〉) |= pre(a).

3. Polynomiality: deciding STRONGLY-MONOTONIC-RPLANSAT is in P.
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The proof, given in Appendix A, is basically a straightforward exploitation of the proper-
ties ensured by the above definitions. Note that Theorem 2 only identifies sufficient criteria
that make our relaxation work. Interesting questions are, are there other, maybe weaker,
criteria? As a concrete example, there seem to be certain cases of cyclic assignment effects
that can be easily handled. What exactly are these cases? Answering these questions is a
topic for future work.

Another thing we have not dealt with is how our semantic constraints translate to the
syntax of the arithmetic expressions that are allowed in PDDL2.1. We do not consider the
details of this but base the rest of the article on a subset of PDDL2.1 where the required
semantic properties can easily be achieved – the language for which the Metric-FF system is
actually implemented. Extending the system to richer languages is an open research topic.

4.3 Linear Tasks, and LNF

The Metric-FF system is implemented to deal with what we call linear tasks. This is the
language of numeric tasks where there are no ∗= or /= effects, and the numeric variables
are only used in linear expressions. More formally:

( {(exp, comp, exp′) | exp, exp′ linear expression, comp arbitrary},
{:=,+=, -=},
{exp | exp linear expression} )

Metric-FF’s implementation allows for tasks that are linear after the following pre-
processing step. Assume we are given a planning task (V, P,A, I,G). A variable vi ∈ V is
a task constant if vi is not affected by the effect of any action in A. An expression is a task
constant if all variables occurring in it are task constants. The pre-process replaces all task
constants with the respective rational numbers resulting from inserting the initial variable
values.11

Linear tasks are, of course, not necessarily monotonic. In fact, all of the illustrative
counter examples we have given above are linear. But linear functions are monotonic, more
precisely strictly monotonic and diverging, in all variables, either in the positive or in the
negative sense. The idea is to introduce, for a variable vi that is used in the negative sense
at some point, an inverted variable −vi that always takes on the value (−1) ∗ vi. One can
then replace vi with −vi at the points where vi is used negatively. When this has been done
for all variables, the task is (strictly) monotonic: all variables are only used in the positive
sense (more details below). Introducing inverted variables can be viewed as a shortcut way
of informing the heuristic function about which places to use the variables in the positive or
in the negative sense.12 We will return to this issue when considering Metric-FF’s heuristic
algorithms in Section 5.2.

Given a linear task, Metric-FF transforms the task into what we call its linear normal
form (LNF). In an LNF task, the expressions are weighted sums of variables, where the
weights are all greater than 0. The transformation process works as follows. First, a series
of simple steps transforms the task into the following language.

11. If, in a quotient (exp/exp′), exp′ simplifies to 0 then the expression is undefined and the respective
constraint can never be fulfilled / the respective action’s effects can never become applicable. In this
case one can replace the constraint with “false”/ remove the action.

12. David Smith, personal communication.
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( {(
∑

j∈X cj ∗ vj + c,≥ [>], 0) | cj, c ∈ Q, cj 6= 0},
{:=,+=},
{
∑

j∈X cj ∗ vj + c | cj , c ∈ Q, cj 6= 0} )

To achieve this language format, one replaces all constraints (exp,=, exp′) with (exp,≤
, exp′) and (exp,≥, exp′), and all effects (vi, -=, exp) with (vi,+=,−exp). The rest is a
matter of normalizing linear functions. The language format differs from LNF only in that
the variable weights may be negative. This, of course, makes all the difference. Reconsider
the example where a variable vi is initially 0, there is an action a with effect (vi, -=, 1), and
the goal requires that vi < 0. We take this as the running example in the following. In the
above language format, a’s effect is (vi,+=,−1), and the goal requires that (−1) ∗ vi > 0.
Due to the negative weighting of vi in the goal condition, ignoring decreasing effects is not
viable.

The way we introduce inverted variables is an extension to the methodology that elimi-
nates negative preconditions in STRIPS planning (a technique first introduced by Gazen &
Knoblock, 1997). The process works as follows. Initialize the set T of translated variables
to T := ∅. Iterate until there are no more negative weights, otherwise select an (arbi-
trary) occurrence cj ∗ vj , cj < 0, in a weighted sum. Introduce a new variable −vj. Set
−vj(I) := (−1) ∗ vj(I). For all effects (vj ,+=[:=],

∑

j∈X cj ∗ vj + c), introduce (into the
effect set of the same action) the effect (−vj ,+=[:=],

∑

j∈X((−1)∗ cj)∗ vj +((−1)∗ c)). Set
T := T ∪{vj ,−vj}. For all occurrences of c ∗ v in weighted sums such that c < 0 and v ∈ T
(where v may be one of the original variables or one of the introduced inverse variables),
replace c∗v with ((−1)∗c)∗−v (where −v is the respective inverse counterpart to v). After
at most |V | iterations, all weights are positive and the process terminates. The task is then
in the following linear normal form.

( {(
∑

j∈X cj ∗ vj + c,≥ [>], 0) | cj, c ∈ Q, cj > 0},
{:=,+=},
{
∑

j∈X cj ∗ vj + c | cj , c ∈ Q, cj > 0} )

For our running example, the LNF transformation is the following. There are now two
variables, vj and −vj, both of which are initially 0. The action a has two effects, namely
(vi,+=,−1) and (−vi,+=, 1). The goal condition is now expressed in terms of the value of
−vi, and reads −vi > 0. A single application of the action achieves the goal, as it also does
under the relaxed transition function because the effect on −vi is increasing.13 In general,
it is easy to see that LNF tasks are strongly monotonic.

Proposition 4 Assume a linear numeric task (V, P,A, I,G). If the task is in LNF, then
it is strongly monotonic.

Proof: All conditions in Definition 8 are trivially fulfilled in LNF tasks. As examples,
condition (1) is true because we only compare expressions that are (positively) monotonic
in all variables to constants via ≥ or >. Condition (3) is true because we only have +=
effects whose right hand sides are (positively) monotonic in all variables. 2

13. Note that estimating the maximum value of −vi is the same as estimating the minimum value of vi.
More on this in Section 5.2.
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With Proposition 4, if an LNF task (V, P,A, I,G) has acyclic := effects (remember that
these are separated out from Definition 8 condition (3)) then the task fulfills the prerequisites
of Theorem 2, so ignoring the decreasing effects is an adequate relaxation. It is thus feasible
to use solutions to the relaxation as a means of heuristic estimation.

For the := effects, one can easily translate these into, e.g., += effects – (vi, :=, exp)
translates to (vi,+=, ((−1)∗vi)+exp). So the reader might wonder why we bother treating
:= effects at all. The point is that, while the translated effects behave equivalently under the
real transition function, they behave differently in the relaxation. In our running example
suppose there is a second action a′ with the effect (vi, :=, 10). In the LNF transformation,
the translated version of this effect is (vi,+=,−vi + 10). Say we execute, under result+,
first a (with effects (vi,+=,−1) and (−vi,+=, 1)) then a′. In the original task, the resulting
value of vi is 10. In the translated task, that value is 11 (because the decreasing effect on vi

is ignored). So it does make a difference whether we treat := effects separately or not. An
open question is whether, or in which situations, that difference is important for planner
performance.

We also remark that, while Metric-FF implements the introduction of inverted variables
for LNF tasks only, it seems likely that similar processes will work for richer languages,
when all functions are strictly monotonic and diverging in all variables.

5. Solving Relaxed Tasks

We now concentrate on the algorithms used in FF, more generally algorithms that can be
used to obtain heuristic information in a forward state space search. We explain how to
solve relaxed numeric tasks. We first consider the restricted language, then extend the
methods to LNF tasks. The algorithms form the basis of the Metric-FF implementation.

5.1 Restricted Tasks

The implementation uses a straightforward extension of the Graphplan-style algorithms
introduced in Section 2.2. We still use a two-step process that first builds a relaxed planning
graph then extracts a relaxed plan from that (if the graph succeeds in reaching the goals).
In parallel to the structures that keep track of the progress in logical propositions, we now
have structures that keep track of the progress in terms of maximally possible variable
values. The graph building mechanism is outlined in Figure 4.

The parts of the algorithm concerned with the propositions work exactly as in the
STRIPS case, c.f. Section 2.2. As for the numeric variables, the max value vector at a
layer t specifies the current maximum value that the variables can take on. The vectors are
updated in the obvious fashion, adding at each layer the total sum of the increasing effects
at that layer. The termination condition now checks whether the maximum values of all
variables have either not changed, or are already higher than needed: the mneedi value for
each variable vi is defined as the highest requirement on that variable, i.e.,

mneedi := max(−∞, {c | (vi,≥ [>], c) ∈ v(G) ∪
⋃

a∈A

v(pre(a))}).

Note that the algorithm fails only if there is no relaxed plan for (V, P,A, s,G): if the
algorithm fails at a layer m then the termination condition will hold true at all later layers.
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P0 := s, for all vi do maxi
0 := vi(s) endfor

t := 0
while p(G) 6⊆ Pt or (vi,≥ [>], c) ∈ v(G), maxi

t 6≥ [6>]c do

At := {a ∈ A | p(pre(a)) ⊆ Pt,

∀(vi,≥ [>], c) ∈ v(pre(a)) : maxi
t ≥ [>]c}

Pt+1 := Pt ∪
⋃

a∈At
p(eff(a))+

for all vi do maxi
t+1 := maxi

t +
∑

a∈At,(vi,+=,c)∈v(eff(a)) c endfor

if Pt+1 = Pt and

∀vi : maxi
t+1 = maxi

t or maxi
t > mneedi then

fail

endif

t := t + 1
endwhile

finallayer := t

Figure 4: Building a relaxed planning graph for a state s in a restricted numeric task
(V, P,A, I,G).

Also, note that there can be only a finite number of layers as the numeric variables that do
increase will eventually reach their finite mneed values. But, as mentioned in Section 4.1, the
number of layers can be exponential in the task encoding. Reconsider the example where,
for n ∈ N0, vi is initially 0, vi ≥ n is the goal, and we have an action effect (vi,+=, 1). The
number of graph layers built for this example, n, is exponential in a non-unary encoding
of n, whereas one could easily decide solvability with the ∞ trick outlined in Section 4.1.
On the other hand, it appears unlikely that an implementation of the provably polynomial
decision procedure would be better in practice. The graph building algorithm is polynomial
in the length of its output (the minimal length of a relaxed plan). Also, the possibly
exponential minimal length of a relaxed plan (exponential in a non-unary encoding of the
variable values) does not seem particularly relevant, at least not in examples that are not
specifically constructed to provoke this exponentiality. It remains an open question whether
an implementation of ∞ handling can achieve better performance in realistic examples.

We now focus on relaxed plan extraction. This is invoked if the relaxed planning graph
succeeds in reaching the goals. The information that the graph provides us with are the
levels of all actions, propositions, and numeric goals. For actions and propositions the level
is the first graph layer at which they appear, c.f. Section 2.2. For numeric goals (vi,≥ [>], c),
the level is the graph layer t where the goal can first be achieved, i.e., where maxi

t ≥ [>]c
holds the first time. The plan extraction mechanism is outlined in Figure 5.

Again, the logical entities are dealt with exactly as in the STRIPS case, c.f. Section 2.2.
In addition to the propositional (sub-)goal set p(Gt) at each layer t we now have a set v(Gt)
of numeric goals. Like in STRIPS, goals and sub-goals are always inserted into the set at
their first appearance in the relaxed planning graph, and the goal sets are initialized by
inserting the respective (top-level) goals. Then there is a backwards loop from the top to
the bottom layer, selecting actions to support the propositions and numeric variables in the
respective goal sets. The propositions are supported as before, the only difference being
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for t := 1, . . . , f inallayer do

p(Gt) := {g ∈ p(G) | level(g) = t}

v(Gt) := {(vi,≥ [>], c) ∈ v(G) | level(vi,≥ [>], c) = t}
endfor

for t := finallayer, . . . , 1 do

for all g ∈ p(Gt) do

select a, level(a) = t − 1, g ∈ p(eff(a))+

for all p ∈ p(pre(a)), (vi,≥ [>], c) ∈ v(pre(a)) do

p(Glevel(p))∪ = {p}

v(Glevel(vi ,≥[>],c))∪ = {(vi,≥ [>], c)}
endfor

endfor

for all (vi,≥ [>], c) ∈ v(Gt) do

while maxi
t−1 6≥ [6>]c do

select a, level(a) = t − 1, (vi, +=, c′) ∈ v(eff(a)),
a not previously selected in this while-loop

c := c − c′

/* introduce a’s preconditions as above */
endwhile

v(Gt−1)∪ = {(vi,≥ [>], c)}
endfor

endfor

Figure 5: Extracting a relaxed plan for a state s in a restricted numeric task (V, P,A, I,G)
(levels and finallayer computed by the algorithm in Figure 4).

that now also the numeric preconditions of the supporting actions must be inserted into
the goal sets below. When uniting sets of numeric goals that both contain a constraint on
the same variable vi, the stronger one of both constraints is taken. For the numeric goals
(vi,≥ [>], c) ∈ v(Gt) it is in general not enough to select a single action as several actions
at t−1 might have contributed to vi’s maximum value at t. So supporters are selected until
the goal can be achieved one layer earlier. Note that maxi

t −
∑

a∈At−1,(vi,+=,c)∈v(eff(a)) c =

maxi
t−1, so the while loop will always terminate successfully. Note also that one occurrence

of an action can support different logical and numeric goals by different effects, but can not
be used to support the same numeric goal twice.

Upon termination of plan extraction, the selected actions can be used to form a re-
laxed plan: with At denoting the actions selected at layer t, an arbitrary linearization of
A0, . . . , Afinallayer−1 is a relaxed plan for the task. Note that one can apply various simple
heuristics, like selecting += effects with maximum right hand side first, to make the relaxed
plans as short as possible.

5.2 LNF Tasks

The algorithms for numeric tasks in linear normal form differ from those for restricted tasks
in that we need to take care of := effects, and of the more general expressions in numeric
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constraints and in effect right hand sides. As it turns out, integrating these extensions is
not overly difficult. The only issue that becomes slightly involved is the exact termination
criterion for relaxed graph building. In our solution to the issue we assume, as in the
theoretical analysis underlying Theorem 2, that the := effects are acyclic. An outline of the
graph building mechanism is shown in Figure 6.

P0 := s, for all vi do maxi
0 := vi(s) endfor

t := 0
while p(G) 6⊆ Pt or (exp,≥ [>], 0) ∈ v(G), exp(maxt) 6≥ [6>]0 do

At := {a ∈ A | p(pre(a)) ⊆ Pt,

∀(exp,≥ [>], 0) ∈ v(pre(a)) : exp(maxt) ≥ [>]0}

Pt+1 := Pt ∪
⋃

a∈At
p(eff(a))+

for all vi do maxi
t+1 := maxi

t +
∑

a∈At:(vi,+=,exp)∈v(eff(a)),exp(maxt)>0 exp(maxt) endfor

for all vi do maxi
t+1 := max(maxi

t+1, max
a∈At,(vi,:=,exp)∈v(eff(a))

exp(maxt)) endfor

if Pt+1 = Pt and

∀vi : maxi
t+1 = maxi

t or maxi
t > mneedi(s) then

fail

endif

t := t + 1
endwhile

finallayer := t

Figure 6: Building a relaxed planning graph for a state s in an LNF task (V, P,A, I,G).

Compare Figure 6 with Figure 4. We deal with the expressions in constraints and
effect right hand sides simply by inserting the respective max values of the variables, and
computing the respective outcome (recall that exp(v) for an expression exp and a variable
value vector v denotes the value of exp when inserting the values v). The += effects are
taken into account to obtain the maxt+1 values exactly as before, i.e., by adding their
combined contributions to maxt (except that the value of the right hand sides must now be
computed using the maxt values). The := effects are taken into account by determining,
after all += effects have contributed to maxt+1, whether there is a := effect in the graph
whose value, when inserting the maxt values, is higher than the hitherto maxt+1 value.
In this case, maxt+1 (for the respective variable) is updated to the maximum assignment
possible.

The only part of the algorithm that becomes somewhat complicated, in comparison to
the algorithm for restricted tasks, is the termination criterion. The difficult part is the
computation of the mneed values, i.e., the values above which the variables can no longer
contribute anything to a relaxed solution. These values can now depend on the state s we
start from. To derive the values, we start with the static (non state-dependent) notion of
solution-relevant variables. A variable vi is solution-relevant if it either occurs in a numeric
constraint, or in the right hand side exp of an effect (vj ,+=[:=], exp) on a solution-relevant
variable vj . Note that solution-relevance thus transfers transitively over the variables. We
denote the set of solution-relevant variables with rV . For the state-dependent aspects of
the relaxed task, we provide notation for the value that a variable vi must at least take
on in a state s in order to raise (or “support”) the value of a positively weighted sum
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exp =
∑

j∈X cj ∗ vj + c above a constant c′.

supvi(s, exp, c′) := (c′ − c −
∑

i6=j∈X

cj ∗ vj(s)) / ci

Of course, the support value supvi(s, exp, c′) is only defined if vi ∈ v(exp), i.e., if vi is a
part of the weighted sum. As the reader can easily convince him/herself, if we raise the
value of vi in s above supvi(s, exp, c′) then we know that the value of exp is at least c′. We
use this concept to determine the point above which a variable vi contributes sufficiently
to all constraints and effect right hand sides that it can contribute to. For constraints
(exp,≥ [>], 0) with vi ∈ v(exp) this point is reached with vi ≥ supvi(s, exp, 0) (then the
constraint is fulfilled). For += effect right hand sides in (vj ,+=, exp) with vi ∈ v(exp)
and vj ∈ rV (vj may be needed) this point is reached with vi ≥ supvi(s, exp, 0) (the effect
can then eventually increase vj to arbitrarily high values). As for := effect right hand
sides, in an effect (vj , :=, exp) with vi ∈ v(exp) and vj ∈ rV the value of vi is sufficient if
vi ≥ supvi(s, exp,mneedj(s)): then the effect is high enough to assign vj a sufficient value.
The main complication here is that we want to use the supv values to define the mneed
values so our definition for := effects is recursive. That does not constitute a problem given
our assumption that the := effects are acyclic. In effect, the recursion is guaranteed to
terminate. Altogether, the definition is the following.

mneedi(s) := max



















−∞,

{supvi(s, exp, 0) | (exp,≥ [>], 0) ∈ v(G) ∪
⋃

a∈A v(pre(a)), vi ∈ v(exp)},

{supvi(s, exp, 0) | (vj , +=, exp) ∈
⋃

a∈A v(eff(a)), vi ∈ v(exp), vj ∈ rV },

{supvi(s, exp, mneedj(s) | (vj , :=, exp) ∈
⋃

a∈A v(eff(a)), vi ∈ v(exp), vj ∈ rV }

Note that, with this definition, the variables with mneedi(s) = −∞ are the variables that
are not solution-relevant.

Theorem 3 Assume a linear numeric task (V, P,A, I,G) that is in LNF and has acyclic
:= effects. Assume a state s. If the algorithm depicted in Figure 6 fails, then there is no
relaxed plan for (V, P,A, s,G).

The main proof idea is, as before, this: if the algorithm fails at a layer m then the ter-
mination condition will hold true at all later layers. The argument concerning the mneed(s)
values follows what is outlined above. The full details are a bit lengthy. See Appendix A.

As discussed before for the restricted language, the number of graph layers built before
termination is finite – eventually, all variables either do not increase or reach their finite
mneed values – but can be exponential in the encoding length of the task. Again, one
could implement a provably polynomial algorithm along the lines of the method used in
the proof to Theorem 2, and again it is debatable whether such an implementation would,
for realistic examples, achieve any significant performance improvements over the existing
implementation.

It is interesting to consider the role that the inverted variables – as introduced by
Metric-FF during LNF pre-processing, see Section 4.3 – play in the relaxed planning graph
process described above. Estimating the maximum value of an inverted variable is the same
as estimating the minimum value of the respective original variable. More precisely, in
Figure 6, if vj is the inverted variable to vi then (−1) ∗ maxj

t is, for all t, an optimistic

312



Translating “Ignoring Delete Lists” to Numeric State Variables

approximation of the minimum value that vi can take on after t steps: the value that
results when one ignores all increasing effects on vi, and is optimistic about the decreasing
effects. In this sense, the introduction of the inverted variable −vi = vj can be viewed as
a way of informing the relaxed planner of where, in the numeric constraints and effects,
to use the minimum or the maximum possible value of vi, when computing an optimistic
approximation of these maximum and minimum values.14

We now focus on relaxed plan extraction. As justified by Theorem 3, this is invoked only
if the relaxed planning graph succeeds in reaching the goals. Also as before, the information
that the graph provides are the levels of all actions, propositions, and numeric goals. For
actions and propositions the definitions stay the same, for numeric goals (exp,≥ [>], 0) the
level is the graph layer t where the goal can first be achieved, i.e., where exp(maxt) ≥ [>]0
holds the first time. An outline of the plan extraction mechanism is shown in Figure 7.

Compared to the algorithm for restricted tasks, shown in Figure 5, the novelties in
Figure 7 are that complex numeric goals get split up into goals for the individual variables,
that effect right hand sides are forced to have a sufficiently high value, and that := effects
are handled. The first issue, given a numeric goal (exp,≥ [>], 0), is dealt with simply by
constraining all variables vi ∈ v(exp) to take on their respective max value. Similarly,
effect right hand sides in (vi, :=[+=], exp) are forced to be sufficiently high by requiring all
vj ∈ v(exp) to take on the respective max value. The := effects are taken into account as
an alternative way of achieving a numeric goal (vi,≥ [>], c) ∈ v(Gt). If there is an effect
(vi, :=, exp) with sufficiently high value, exp(maxt−1) ≥ [>]c, then the respective action is
selected. Otherwise a set of actions with += effects is selected in a similar fashion as for
restricted tasks. As in Figure 5, when uniting sets of numeric goals that both contain a
constraint on the same variable vi, the stronger one of both constraints is taken. It is easy
to see that, upon termination, the selected actions can be used to form a relaxed plan for
the state at hand.

Theorem 4 Assume a linear numeric task (V, P,A, I,G) that is in LNF and has acyclic :=
effects. Assume a state s for which the algorithm depicted in Figure 6 reaches the goals. The
actions selected by the algorithm depicted in Figure 7 form a relaxed plan for (V, P,A, s,G).

The (straightforward) proof can be found in Appendix A. We conclude this section with
two additional remarks. One thing that might also have occurred to the reader is that one
does not necessarily need to support a goal (exp,≥ [>], 0) by requiring all vi ∈ v(exp) to
take on the maximum possible value. Weaker requirements might already be sufficient. The
same holds true for effect right hand sides. One might be able to find shorter relaxed plans
by using some simple heuristics at these points. It also seems plausible that the algorithms
specified here will work for any strictly monotonic task that uses only += effects and acyclic
:= effects, assuming the mneed value computation is modified appropriately. Exploring this
idea for richer language classes is left open as a topic for future work. It is also left open if
and how ∗= effects and /= effects could be taken into account.

14. This insight has been pointed out to the author by David Smith in a comment on the submitted version
of this article. Optimistically estimating maximum and minimum variable values, or more generally
multiple variable values, is an alternative viewpoint to the monotonicity paradigm we explore here.
Investigating the alternative viewpoint in more depth is an open topic.
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for t := 1, . . . , f inallayer do

p(Gt) := {g ∈ p(G) | level(g) = t}

v(Gt) := {(vi,≥ [>], maxi
t) | (exp,≥ [>]0) ∈ v(G), level(exp,≥ [>], 0) = t, vi ∈ v(exp)}

endfor

for t := finallayer, . . . , 1 do

for all g ∈ p(Gt) do

select a, level(a) = t − 1, g ∈ p(eff(a))+

for all p ∈ p(pre(a)), (exp,≥ [>], 0) ∈ v(pre(a)) do

p(Glevel(p))∪ = {p}

v(Glevel(exp,≥[>],0))∪ = {(vi,≥ [>], maxi
level(exp,≥[>],0)) | vi ∈ v(exp)}

endfor

endfor

for all (vi,≥ [>], c) ∈ v(Gt) do

if ∃a, level(a) = t − 1, (vi, :=, exp) ∈ v(eff(a)), exp(maxt−1) ≥ [>]c then

v(Gt−1)∪ = {(vj ,≥, maxj
t−1) | vj ∈ v(exp)}

/* introduce a’s preconditions as above */
else

while maxi
t−1 6≥ [6>]c do

select a, level(a) = t − 1, (vi, +=, exp) ∈ v(eff(a)), exp(maxt−1) > 0
a not previously selected in this while-loop

c := c − exp(maxt−1)
/* introduce max constraints for all vars in exp as above */
/* introduce a’s preconditions as above */

endwhile

v(Gt−1)∪ = {(vi,≥ [>], c)}
endif

endfor

endfor

Figure 7: Extracting a relaxed plan for a state s in an LNF task (V, P,A, I,G) (levels and
finallayer computed by the algorithm in Figure 1).

6. Metric-FF

This section details how the theoretical and algorithmic work described so far is used to
implement the heuristic planning system Metric-FF. Section 6.1 specifies how the relaxed
plan information is used to define the basic architecture of a planner that handles STRIPS
plus linear tasks with acyclic := effects. We then describe extensions that are integrated
into the system: Section 6.2 explains how the extension to ADL is handled, Section 6.3
explains how flexible optimization criteria can be taken into account.

6.1 Basic Architecture

As in the STRIPS case, once we have the techniques for extracting relaxed plans, a state
space planner is easily implemented. The given linear task is transformed into an LNF
task using the algorithms described in Section 4.3. We define a heuristic function, a search
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strategy, and a pruning technique analogous to that used in the STRIPS version of FF, c.f.
Section 2.3. All methods are straightforward adaptions of the STRIPS techniques. The
heuristic function still estimates goal distance as the number of actions in the relaxed plan.

Definition 11 Assume a linear numeric task (V, P,A, I,G) that is in LNF and has acyclic
:= effects, and a state s. The Metric-FF heuristic value h(s) for s is defined as follows.

If the algorithm depicted in Figure 6 fails, h(s) := ∞. Otherwise, h(s) :=
∑finallayer

t=1 |At|
where At is the set of actions selected at layer t by the algorithm depicted in Figure 7.

The search strategy remains exactly the same, namely enforced hill-climbing as depicted
in Figure 3. The only difference lies in the the way we avoid repeated states. In the
STRIPS case, this is a simple hash table lookup procedure. The straightforward adaption
would be to store all visited states s, and cut out a new state s′ if an identical state s
has been visited before. We can, however, derive a weaker cutoff criterion that has an
important performance impact in certain situations. It might be that s′ differs from s only
in that some solution-irrelevant numeric variables have other values. For example, the only
difference between s and s′ might be that in s′ more execution time has been spent. If we
expand s′ then iteratively we might end up with an infinite sequence of succeeding states
that do nothing but increase execution time (this phenomenon can be observed in various
benchmark domains). We can avoid such phenomena by cutting out new states s′ that are
dominated by a stored state s. Given a task (V, P,A, I,G), a state s′ is dominated by a
state s if the propositions in s and s′ are the same, and for all vi ∈ V , either vi is not
solution-relevant, vi ∈ V \ rV , or vi(s′) ≤ vi(s) holds.15 If s′ is dominated by s, and the
task at hand is monotonic in the sense of Definition 8, then all action sequences that achieve
the goal starting from s′ do the same starting from s.

Proposition 5 Assume a numeric task (V, P,A, I,G) that is monotonic. Assume two
states s and s′. If s′ is dominated by s then, for all action sequences P ∈ A∗, if result(s′, P ) |=
G then result(s, P ) |= G.

Proof: Say P = 〈a1, . . . , an〉 is an action sequence such that result(s′, P ) |= G holds. We
show that, for all solution-relevant variables vi ∈ rV and for all 0 ≤ j ≤ n, vi(result(s′, 〈a1,
. . . , aj〉)) ≤ vi(result(s, 〈a1, . . . , aj〉)) holds. This proves the proposition: the variables in
the goal constraints are all in rV , the goal constraints are monotonic (Definition 8 condition
(1)), and the goal constraints are fulfilled in result(s′, P ). So with the claim above they
are also fulfilled in result(s, P ). We prove the claim on the solution-relevant variable values
by induction over j. Base case j = 0: by prerequisite, vi(s′) ≤ vi(s) holds for all vi ∈ rV .
Inductive case j → j+1. First, the preconditions of aj+1 are fulfilled in result(s, 〈a1, . . . , aj〉)
due to the same argument as used for the goal constraints above. Second, all variables
that are contained in effect right hand sides on solution-relevant variables are themselves
solution-relevant by definition so the induction hypothesis holds for them. This proves the
claim with monotonicity of numeric effects (Definition 8 condition (2)). 2

15. Recall the definition of the solution-relevant variables rV , given in Section 5.2: all variables that occur
in a numeric constraint, or in the right hand side exp of an effect (vj , ass, exp) on a solution-relevant
variable vj .
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LNF tasks are monotonic. So with Proposition 5, if there is a solution plan from s′, then
there is a solution plan from s. Thus cutting s′ out of a search space that already contains
s is solution preserving. Consequently, during each search iteration performed by enforced
hill-climbing, our implementation keeps a hash table of states visited in that iteration, and
skips a new state if it is dominated by at least one of the visited states.16 As indicated
above, in various benchmark examples this prevents the planner from looping when the new
states do nothing but increase the value of some solution-irrelevant variable like execution
time.17

To extend our STRIPS pruning technique, helpful actions now are all those actions
that can support either a propositional or a numeric goal at the lowest layer of the relaxed
planning graph.

Definition 12 Assume a linear numeric task (V, P,A, I,G) that is in LNF and has acyclic
:= effects, and a state s for which the algorithm depicted in Figure 6 reaches the goals. The
set of helpful actions H(s) for s is defined as

H(s) := { a ∈ A | p(eff(a))+ ∩ p(G1) 6= ∅ ∨
∃(vi,≥ [>]c) ∈ v(G1) : ∃(vi, :=, exp) ∈ v(eff(a)) : exp(v(s)) ≥ [>]c ∨
∃(vi,≥ [>]c) ∈ v(G1) : ∃(vi,+=, exp) ∈ v(eff(a)) : exp(v(s)) > 0 },

where G1 is the set of sub-goals constructed at layer 1 by the algorithm depicted in Figure 7.

Supporting a numeric goal here means: for := effects, that the right hand side of the
effect is sufficient to fulfill the goal; for += effects, that the respective right hand side
expression is greater than 0. Note that the right hand side value of an effect at the lowest
layer of the relaxed planning graph is exactly its value in the state s at hand. During a search
iteration in enforced hill-climbing, when expanding a state s, only the states generated by
the actions in H(s) are included into the search space. Note that states s where the relaxed
planning graph does not reach the goals have h(s) = ∞ so do not get expanded anyway.

As in STRIPS, the algorithm can fail if either enforced hill-climbing gets trapped in
a dead end state or helpful actions pruning cuts out important states. We have observed
that helpful actions pruning is too severe in some numeric domains. So, in case enforced
hill-climbing fails we try again with the pruning technique turned off, i.e., we continue the
hill-climbing procedure from the point of failure without pruning. If this fails too, then like
in STRIPS we employ a safety net solution: a complete greedy best-first strategy trying
to solve the task from scratch. This strategy expands all search nodes by increasing order
of goal distance estimation. New states are cut out if they are dominated by an already
visited state.

16. More precisely, a new state s′ is skipped only if there is a dominant visited state s in the same hash

entry. If the value of all solution-relevant variables is the same in s′ and s (like when only execution
time has increased), then our implementation ensures that this is the case. Otherwise it is a matter of
chance. It is an open question how the visited states could be indexed in order to provide a fast exact
answer to the query whether they contain a dominant state or not.

17. What we have here is a consequence of the undecidability of numeric planning (Helmert, 2002), which
can be observed even in seemingly benign benchmarks. In a finite state space we of course would not
run the risk of entering an infinite loop.
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6.2 ADL

ADL (Pednault, 1989) goes beyond STRIPS in that it allows, in action preconditions and
the goal, arbitrary equation-free first-order logical formulae, and actions with conditional
effects – effects that only occur when their effect condition holds true. The effect condition
can be an arbitrary (equation-free) first-order logical formula. In the numeric setting, the
effects can contain updates on numeric variables. The numeric constraints can now appear
at any point in a logical formula where a logical atom is allowed.

Like the previous FF version (Hoffmann & Nebel, 2001), Metric-FF compiles quantifiers
and disjunctions away in a pre-processing phase. Metric-FF does not compile conditional ef-
fects away. So Metric-FF’s internal language differs from STRIPS (with numeric constraints
and effects) only in that actions can have conditional effects, where the effect conditions are
conjunctions of propositions (and numeric constraints). The reason why ADL is compiled
into this language is that the heuristic algorithms (i.e., the relaxed planning graph) can be
implemented very efficiently for this more restricted language format. The compilation can
be exponentially costly in general but is feasible when, as one might expect in the formula-
tion of a realistic planning scenario, the logical formulae are not overly complex. The reason
why conditional effects are not also compiled away (which could be done in principle) is
that, as Nebel (2000) proved, this would imply another exponential blow up given we want
to preserve solution length. Fortunately the conditional effects can easily be dealt with so
there is no need to compile them away. In the following, we give a brief overview of the
compilation process, and of the extended heuristic function implementation. Except for
the heuristic function, the only thing that must be adapted is the state transition function,
which is conceptually trivial.

The compilation process is largely an implementation of ideas that have been proposed
by Gazen and Knoblock (1997), as well as Koehler and Hoffmann (2000b). The extensions
to handle numeric constructs are all straightforward. The process starts with the usual
planner inputs, i.e., with a set of parameterized operator schemata, an initial state, and a
goal formula. The compilation works as follows.

1. Determine predicates and numeric functions that are static in the sense that no oper-
ator has an effect on them. Such predicates and functions are a common phenomenon
in benchmark tasks. Examples, in a transportation context, would be the connections
between locations as given by a static (connected ?l1 ?l2) predicate, or the distances
between locations as given by a static (distance ?l1 ?l2) function. Static predicates
and functions are recognized by a simple sweep over all operator schemata.

2. Transform all formulae into quantifier-free DNF. This is subdivided into three steps:

(a) Pre-normalize all logical formulae. Following Gazen and Knoblock (1997), this
process expands all quantifiers, and translates negations. We end up with for-
mulae that consist of conjunctions, disjunctions, and atoms containing variables
(where the atoms can be numeric constraints).

(b) Instantiate all parameters. This is simply done by instantiating all operator and
effect parameters with all type consistent constants one after the other. The
process makes use of knowledge about static predicates, in the sense that the
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instantiated formulae can often be simplified (Koehler & Hoffmann, 2000b). For
example, if an instantiated static predicate (p ~a) occurs in a formula, and that
instantiation is not contained in the initial state, then (p ~a) can be replaced with
“false”. As another example, if both sides of a numeric constraint are static then
the constraint can be replaced with either “true” or “false”.

(c) Transform formulae into DNF. This is postponed until after instantiation, be-
cause it can be costly, so it should be applied to the smallest formulae possible.
In a fully instantiated formula, it is likely that many static predicate occurrences
(constant constraint occurrences) can be replaced by “true” or “false”, resulting
in a much simpler formula structure.

3. Finally, if the DNF of any formula contains more than one disjunct, then the corre-
sponding effect, operator, or goal condition gets split up in the manner proposed by
Gazen and Knoblock (1997).

When all the logical constructs have been normalized, the numeric constructs in the task
are transformed into LNF in a manner analogous to the process described in Section 4.3.
Integrating conditional effects into the relaxed planning process is an easy matter. The
relaxed planning graph differs from its STRIPS counterpart only in that it now keeps track
of the graph layers at which an action’s effects first become applicable. The relaxed plan
extraction process differs from its STRIPS counterpart only in that it now selects supporting
effects for the propositional and numeric goals.

6.3 Optimization Criteria

In PDDL2.1, the user can specify an optimization criterion for a task. The criterion consists
of an arbitrary numeric expression together with a keyword “maximize” or “minimize”
saying whether higher or lower values of the expression are preferred. The semantics are
that a solution plan is optimal iff the state it leads to is a maximal / minimal goal state with
respect to the optimization expression. Metric-FF supports, run in “optimization mode”, a
somewhat more restrictive form of optimization. It accepts the optimization criterion only
if the criterion can be transformed, according to a certain schema, into additive action cost
minimization. The heuristic cost of a state is then the summed up cost of the actions in
the respective relaxed plan, and search is a standard weighted A∗ where the weights can
be set via the command line. Note that this methodology can not give a guarantee on
the quality of the returned solution as the heuristic function is not provably admissible.
The methodology is an obvious option given that the cost of a relaxed plan (in an additive
setting) gives us a remaining cost estimation technique for free. It is an open question how
more general optimization criteria can be dealt with. In the following, we describe our
implemented methodology in a little more detail. We start with the STRIPS setting, then
outline the changes made in the extension to ADL.

Metric-FF rejects the optimization expression if it is not linear. Otherwise, if the opti-
mization keyword is “maximize” then the expression is multiplied by −1 so minimization
is required. The expression is then brought into LNF,

∑

j∈X cj ∗ vj (the constant part can
obviously be skipped). With this notation, the optimization criterion is accepted (only)
if all action effects on variables vj ∈ X increase the optimization expression value by a
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constant, i.e., if all effects on vj ∈ X are of the form (vj ,+=, c) where c ∈ Q, c ≥ 0. For
each action a, the cost of the action is then defined as

cost(a) :=
∑

(vj ,+=,c)∈v(eff(a)),vj∈X

cj ∗ c,

i.e., as the sum of all increases in cost variables for the action, multiplied by their weight
in the optimization expression. The cost of an action sequence or set is the sum of the
individual costs. It is easy to see that, in this setting, finding a goal state that minimizes the
optimization expression value is equivalent to finding a plan with minimal cost. The search
algorithm we then use is, as stated above, a standard weighted A∗ algorithm implementing
a best-first search on the function f(s) = wg ∗ g(s) + wh ∗ h(s) where g(s) is the cost of the
search path that leads to s, h(s) is the remaining cost estimate (i.e., the cost of the relaxed
plan from s), and the weights wg and wh can be given in the command line. Since the
remaining cost estimate is in general not admissible, the first plan found is not guaranteed
to be optimal. But one would expect that empirically better plans can be found. We will
see below that this is, in fact, the case in some of the IPC-3 testing domains.

In ADL, the cost of an action in a state is the sum of the costs of all effects that appear,
the cost of an action sequence is the sum of the costs of the actions in the respective states,
and minimizing the optimization expression is as before equivalent to minimizing plan cost.
Estimating the remaining cost by means of a relaxed plan becomes somewhat less obvious,
since a choice has to be made on which effect costs are counted for the result. There
are effects that have been selected to support logical or numeric goals during relaxed plan
extraction, and there are effects that will get triggered when actually executing the relaxed
plan. We have chosen to only count the costs of the former effects. The heuristic search
algorithm remains exactly the same as in the STRIPS case.

7. Competition Results

We briefly examine the IPC-3 competition data relevant to Metric-FF. The competition
featured domains spanning the whole range from STRIPS to PDDL2.1 level 3, which permits
a combination of logical, numeric, and temporal constructs. FF participated in the STRIPS
domains and in the numeric domains, demonstrating very competitive performance. We
only discuss the data for the numeric domains. A discussion of the STRIPS results can be
found in the competition overview article by Long and Fox (2003).

There were six numeric domains used in the competition. For each of these domains, we
include a figure showing runtime curves, and discuss relative (runtime and solution quality)
performance in the text. Like FF, the MIPS and LPG systems could be configured to either
favor speed or quality, i.e., to either find some plan as fast as possible or to search for a
good plan in the sense of the optimization criterion. To make the graphs readable, we only
show the runtime curves of those planners that favor speed. We discuss the solution quality
behavior of these planners in terms of plan length, i.e., number of steps. Note that these
planners do not take account of the optimization criterion anyway. For the planners that
favor quality, we discuss their runtime and solution quality behavior in the text. Given
that the optimization mode in Metric-FF is only a preliminary implementation, we keep
the discussions short. We also give only brief descriptions of the domain semantics. More
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details on these can be found in the overview article (Long & Fox, 2003). We focus on the
six domains in turn, then give a short summary of Metric-FF’s performance.

7.1 Depots

The Depots domain is a combination of the well-known Logistics and Blocksworld domains.
Objects must be transported with trucks as in Logistics, and must then be arranged in
stacks as in Blocksworld. The numeric constructs define fuel consumption for trucks and
the hoists that lift the objects (in order to stack them somewhere). Objects have weights
and the sum of the weights of the objects loaded onto a truck at any time must be lower
than or equal to that truck’s capacity. Figure 8 shows the runtime data on the 22 Depots

instances used in the competition.
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Figure 8: Runtime curves on Depots instances for the planners favoring speed. Time is
shown on a logarithmic scale, instance size scales from left to right.

The four planners participating in the numeric version of Depots were Metric-FF, LPG,
MIPS, and SemSyn. At the time of writing, no paper on the numeric version of any of
these planners is published. for LPG and MIPS, the reader is referred to the respective
articles to appear in this same JAIR special issue (Gerevini et al., 2003a; Edelkamp, 2003).
As Figure 8 shows, SemSyn can only solve the single smallest instance, and MIPS solves 10
instances scattered across the whole set. Metric-FF and LPG solve most of the instances
and exhibit similar behavior. Metric-FF is the only planner that can solve the two largest
instances. As stated above, we only show the curves for those configurations favoring speed.
In the competition data, this version of Metric-FF is called “FF.speed”, this version of LPG
is called “LPG.speed”, and this version of MIPS is called “MIPS.plain”.
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To assess relative plan quality behavior (i.e., plan length or minimization expression
value), we computed quotients as follows. Given planners A and B, measure, for all in-
stances solved by both planners, A’s plan quality divided by B’s plan quality. Compute
the average quotient. At points where we need an absolute measure of comparison between
the participating planners in a domain, we set the planner B to a hypothetical “Best-of”
planner whose data is obtained by selecting the best (i.e., lowest) results of all planners.
The individual planners in the domain are then all ranked by comparing them to Best-of.

The data obtained concerning plan length in Depots, for the planners shown in Figure 8,
is this. FF.speed’s plans are on average 1.23 times as long as Best-of’s plans, LPG.speed’s
plans are on average 1.25 times as long as Best-of’s plans, and MIPS.plain’s plans are on
average 1.29 times as long as Best-of’s plans. Thus plan lengths are roughly similar here.
For the single instance that SemSyn solves, its plan has 5 steps while FF.speed’s has 10
steps, and those of LPG.speed and MIPS.plain have 11 steps.

We next comment on the algorithms used in the planner versions favoring quality. In
MIPS, similar to Metric-FF, in optimization mode the heuristic function becomes a kind
of relaxed plan cost in an A∗ algorithm. In contrast, the LPG optimization method starts
from the first plan, and then continues search for plans that are better. Metric-FF performs
best-first search on the function f(s) = wg ∗g(s)+wh∗h(s). In the competition, the weights
were set to wg = 1 and wh = 5. The quality version of MIPS is simply called “MIPS” in
the competition data. To improve readability we call it “MIPS.quality” here, similar to the
quality-favoring versions of Metric-FF and LPG, called “FF.quality” and “LPG.quality”.

The optimization criterion in Depots is to minimize overall fuel consumption. For run-
time, the quality versions of MIPS and LPG behave only slightly worse than the speed
versions. In contrast, Metric-FF’s quality version solves only the smallest 3 instances. For
solution quality, the fuel consumption of FF.speed on the first 3 instances is 22, 33, and 35,
while that of FF.quality is 22, 33, and 36. Thus no optimization effect is observable. On the
same instances, MIPS.quality finds more costly plans (32, 63, and 44), and LPG.quality’s
plans are slightly better (22, 33, and 29). Across all instances, LPG.quality’s plans con-
sume, on average, 1.01 times the fuel that Best-of’s plans consume, while that average value
is 1.46 for MIPS.quality.

7.2 Driverlog

The Driverlog domain is a variation of Logistics where the trucks need drivers, and the
underlying map is an arbitrary undirected graph (as opposed to the fully connected graphs
in the standard version of the domain). Drivers can move on different paths than trucks.
The numeric constructs specify the total time driven and walked. Figure 9 shows the
runtime data for the 20 Driverlog instances used in the competition.

As in Depots, the participating planners were Metric-FF, LPG, MIPS, and SemSyn.
Again, SemSyn solved only the smallest instance. LPG.speed is the only planner that
solves all instances. FF.speed solves one more task than MIPS.plain (the respective data
point is almost hidden behind “SemSyn” in the top right corner), and is roughly as fast
as LPG.speed on the tasks that it solves. As for plan length, again none of the planners
is clearly superior. The average quotients versus Best-of are: 1.34 for FF.speed, 1.44 for
LPG.speed, and 1.21 for MIPS.plain. FF.speed’s and LPG.speed’s plan lengths are thus
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Figure 9: Runtime curves on Driverlog instances for the planners favoring speed. Time is
shown on a logarithmic scale, instance size scales from left to right.

on average somewhat longer than those of MIPS.plain. The difference has no tendency to
grow with instance size, though. On the single instance solved by SemSyn, SemSyn’s plan
has 3 steps while those of the other planners have 8.

The optimization criterion in Driverlog is to minimize some (instance-specific) linear
combination of total time, driven distance, and walked distance. FF.quality’s runtime
behavior is, as in Depots, a lot worse than that of FF.speed, solving only 5 of the smaller
instances. The quality of the plans is slightly better, though, 0.94 times FF.speed’s values
on average. MIPS.quality and LPG.quality solve the same instances as their speed-favoring
counterparts. The average comparison of LPG.quality to Best-of is 1.00 (precisely 1.000411),
that of MIPS.quality is 1.31 – on a single instance, MIPS.quality’s plan consumes less fuel
(730 units) than LPG.quality’s plan (736 units).

The competition also featured a version of Driverlog (“Hard-Numeric”) where driving a
truck consumes fuel proportional to the square of its load, and the criterion is to minimize an
instance-specific linear combination of total time and fuel consumption. Interestingly, with
this optimization criterion FF.quality is only slightly less efficient than FF.speed, solving
the same instances as the speed-favoring version. We will come back to this phenomenon in
the outlook, when we discuss the effect of optimization expressions on runtime performance.
The overall runtime performance of all other planners is similar to that in the domain version
described above. For the optimization expression, FF.quality’s values are on average 0.77
times those of FF.speed (so an optimization effect can be observed). The comparison to
Best-of is 1.59 for FF.quality, 1.007 for LPG.quality, and 1.72 for MIPS.quality.
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7.3 Zenotravel

The Zenotravel domain, as used in the competition, is a rather classical transportation
domain, where objects must be transported via airplanes. The planes use fuel, and can
fly either slow or fast. Fast movement consumes more fuel. In the numeric version of
the domain, the fuel level of a plane and the overall fuel usage are numeric variables. In
addition, a numeric variable counts the passengers on board a plane, and fast movement is
only allowed if the number of passengers is below a certain threshold. A refuel operator can
be used to set the fuel level of a plane back to its maximum capacity. Without durations, the
only difference between the effects of slow and fast flying lie in the higher fuel consumption,
thus “fast” flying is a useless action. Figure 10 shows the runtime data on the 20 Zenotravel

instances used in the competition.
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Figure 10: Runtime curves on Zenotravel instances for the planners favoring speed. Time
is shown on a logarithmic scale, instance size scales from left to right.

Again, the participating planners were Metric-FF, LPG, MIPS, and SemSyn. Sem-
Syn solves only the smallest three instances, the other planners solve the whole test set.
FF.speed is an order of magnitude faster than LPG.speed and MIPS.plain. For plan length,
FF.speed and MIPS.plain behave similarly, while LPG.speed finds somewhat longer plans.
The quotient values versus Best-of are 1.28 for FF.speed, 1.45 for LPG.speed, and 1.22 for
MIPS. When visualizing the data, one finds that the difference between LPG.speed’s and
FF.speed’s plans grows with instance size. SemSyn, again, finds the best (shortest) plans
for those instances that it solves. The quotients FF.speed versus SemSyn are 1.00, 2.72,
and 4.50 on the three instances solved by SemSyn.
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The optimization criterion in Zenotravel is to minimize some (instance-specific) linear
combination of total time and fuel consumption. FF.quality’s runtime behavior is worse
than that of FF.speed, solving only the smaller half of the test set. MIPS.quality solves
only the first 16 instances, LPG.quality solves all but the largest instance. The optimization
criterion values of FF.quality are on average 0.82 times those of FF.speed, so an optimization
effect can be observed. The quotient values versus Best-of are 1.51 for FF.quality, 1.39 for
LPG.quality, and 1.14 for MIPS.quality.

7.4 Satellite

In Satellite, a number of Satellites must make a number of observations using their installed
instruments. This involves turning the Satellites the right direction, switching the instru-
ments on or off, calibrating the instruments, and taking images. In the numeric version
of the domain, turning the Satellites consumes (non-replenishable) fuel, the images occupy
data memory, and the Satellites have only limited data memory capacity. Figure 11 shows
the runtime data on the 20 problem instances used in the competition.
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Figure 11: Runtime curves on Satellite instances for the planners favoring speed. Time is
shown on a logarithmic scale, instance size scales from left to right.

In this domain, the participating planners were Metric-FF, LPG, MIPS, and TP4
(Haslum & Geffner, 2001). TP4 (which finds plans with optimal makespan) solves 3 of
the smallest instances, MIPS.plain solves 7 of the smaller instances, LPG.speed solves 10
instances, and FF.speed solves 14. Note, though, that the instances that LPG.speed fails
to solve but FF.speed solves are mainly the smaller ones. As for plan length, the quotients
versus Best-of are 1.11 for FF.speed, 1.04 for LPG.speed and MIPS.plain, and 1.09 for TP4.

324



Translating “Ignoring Delete Lists” to Numeric State Variables

So plan lengths are roughly similar, but LPG.speed and MIPS.plain seem to have a slight
advantage over FF.speed.

The optimization criterion in Satellite is to minimize overall fuel consumption.
FF.quality’s (MIPS.quality’s) runtime behavior is a lot worse than that of FF.speed
(MIPS.plain), solving only 2 (4) of the smallest instances. LPG.quality solves the same in-
stances as LPG.speed. The fuel consumption of FF.speed on the 2 instances that FF.quality
solves is 109 and 97. That of FF.quality is 109 and 83, so there is a slight optimization
effect on one of the two instances. LPG.quality finds the best plans for all instances that it
solves (thus the quotient versus Best-of is constantly 1.00), the comparison of MIPS.quality
to Best-of is 2.54.

The competition also featured a version of Satellite (“Hard-Numeric”) where there were
no logical or numeric goals at all, and the optimization criterion was to maximize the amount
of stored data (i.e., the memory occupied by the taken images). This is an example of an
optimization criterion that can not be transformed into action costs in the sense explained
in Section 6.3. The actions that take images have negative costs. Metric-FF thus rejects
the optimization criterion and reports, for all instances, that they are trivially solved by the
empty plan. Similarly, the plans returned by MIPS.plain are all empty. The MIPS.quality
version finds non-trivial plans for the smaller half of the instances. For LPG there is no
data in the competition results for this domain version.

7.5 Rovers

In Rovers, a number of planetary rovers must analyze a number of rock or soil samples, and
take a number of images. This involves navigating the rovers, taking or dropping samples
(rovers can only hold one sample at a time), calibrating the camera and taking images, and
communicating the data to a lander. In the numeric version of the domain, all the activities
decrease the energy available for the rover by a certain amount, and an energy recharge
operator can be applied when the rover is located in a sunny spot. Figure 11 shows the
runtime data on the 20 Rovers instances used in the competition.

The participating planners in this domain were Metric-FF, LPG, and MIPS. None of
the planners can solve the whole test set, in fact LPG, which scales best, is the only planner
that can solve most of the larger instances.18 The smaller instances are solved quickly by
all three participants. FF.speed might have a slight plan length advantage. The quotients
versus Best-of are 1.02 for FF.speed, 1.26 for LPG.speed, and 1.19 for MIPS.plain.

The optimization criterion in Rovers is to minimize the number of recharge actions
applied in the plan (i.e., the cost of recharging is 1, the cost of all other actions is 0).
With this optimization criterion, FF.quality does not solve a single instance (we will return
to this in the outlook). MIPS.quality and LPG.quality solve the same instances as their
speed-favoring counterparts. LPG.quality’s plan quality is 0 in all the 8 instances that
MIPS.quality solves. MIPS.quality’s plans contain 0 recharge actions in three cases, 1
recharge action in four cases, and 2 recharge actions in one case.

18. In the actual competition data, LPG failed to solve 8 of the instances due to an implementation bug.
We show the corrected data provided by Alfonso Gerevini.
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Figure 12: Runtime curves on Rovers instances for the planners favoring speed. Time is
shown on a logarithmic scale, instance size scales from left to right.

7.6 Settlers

The Settlers domain is about building up an infrastructure in an unsettled area. The things
to be built include housing, railway tracks, sawmills, etc. There are a lot of operator
schemata encoding a complex building process. The raw materials, timber, stone, and ore,
must first be felled, broken, or mined. One can then process timber into wood or coal, and
process ore into iron. Carts, trains, or ships can be built to transport materials. One can
combine materials to build docks, wharfs, rails, housing, etc. The encoding makes a more
intensive use of numeric variables than the other domains. While in the other domains
the numeric constructs mainly encode resource constraints and action costs, in Settlers the
numeric variables play an active part in achieving the goal. Indeed, many of the operator
schemata have no logical effects at all. For example, felling timber increases the amount
of timber available at the respective location by one unit. Loading (unloading) a material
unit onto (from) a vehicle is encoded by increasing (decreasing) the respective material
availability in the vehicle while decreasing (increasing) the material’s availability at the
respective location. For building a housing unit at least one wood and stone unit must be
available, resulting in increased housing units and decreased wood and stone units. With
the numeric variables playing such an active role in the domain encoding, Settlers is a very
interesting benchmark for numeric planners. Figure 11 shows the runtime data on the 20
Settlers instances used in the competition.

Only Metric-FF and MIPS (in the versions that favor speed) were able to solve some of
the Settlers instances. LPG could not participate in this domain because some operators
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Figure 13: Runtime curves on Settlers instances for the planners favoring speed. Time is
shown on a logarithmic scale, instance size scales from left to right.

make use of universally quantified effects, which LPG does not support. MIPS.plain solves
only a single instance while FF.speed solves the 6 smallest instances. It should be noted
here that the instances in this example suite appear to be rather large. FF.speed’s plans
on the 6 smallest instances contain 53, 26, 102, 67, 74, and 81 actions respectively. For
comparison, in all of the other domains except Depots FF.speed’s longest plan in the first 6
instances contains 26 steps. In Depots the numbers are 10, 15, 35, 34, 75, the 6th instance
isn’t solved by any planner. The plan that MIPS.plain finds for the second smallest instance
contains 36 steps (as stated above FF.speed’s plan for this instance contains 26 steps). No
planner favoring quality solved any of the Settlers instances.

7.7 Performance Summary

In their speed-favoring configurations, Metric-FF and LPG perform the best, both in terms
of runtime and solution length. For runtime, in Driverlog and Rovers, LPG scales better
(solves more instances). In Zenotravel, Metric-FF scales better (an order of magnitude
advantage in runtime). In Settlers, LPG could not be run, but Metric-FF can solve some
rather large instances. In Depots and Satellite, there is a slight advantage for Metric-FF,
which solves a few more instances. MIPS lags behind both Metric-FF and LPG in all the
domains except Zenotravel where it scales roughly similar to LPG. As for solution length,
this is roughly similar for LPG and Metric-FF in all of the domains except Zenotravel,
where LPG’s plans are longer. In Satellite there might be a slight advantage for LPG, and
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in Rovers there might be a slight advantage for Metric-FF. The plan lengths of MIPS are
roughly similar to those of Metric-FF across all the domains.

The results for Metric-FF in optimization mode, FF.quality, are less satisfying, at least
as far as runtime behavior is concerned. FF.quality does not solve a single instance in Rovers

and Settlers, and it solves only very few instances in Depots, Driverlog (with the normal,
i.e. not “hard” optimization expression), and Satellite. FF.quality’s runtime behavior is
reasonably good only in Zenotravel and Driverlog (with the “hard” optimization expression).
The solution quality behavior is mixed. In most cases it can be observed that FF.quality’s
plans are better in the sense of the optimization criterion than FF.speed’s plans are. Better
plan quality is clearly observable in Driverlog (with the “hard” optimization expression) and
Zenotravel. It is also observable in Driverlog (with the normal optimization expression)
and Satellite, although only a small number of instances were solved in these domains.
Compared to LPG.quality and MIPS.quality, FF.quality is the only quality-favoring planner
here that shows dramatically worse runtime behavior than its speed-favoring counterpart.
The reasons for that must lie in the algorithmic differences between the systems, concerning
the way they treat optimization expressions. In the outlook we speculate on the reasons for
FF.quality’s poor runtime behavior, and what might be done about it.

8. Conclusion and Outlook

We have presented a natural extension of a popular heuristic technique for STRIPS –
ignoring delete lists – to numeric planning. The straightforward implementation of Metric-
FF based on the technique was one of the two best performing numeric planning systems
at IPC-3.

Let us summarize the contributions of this work in a little more detail. The most
important contribution is the “monotonicity” idea, i.e., a numeric framework in which
the main STRIPS concepts (pre/goal-conditions, add lists, and delete lists) translate very
naturally to the numeric concepts (monotonic constraints, increasing effects, and decreasing
effects). The monotonicity idea might be useful in many other contexts beside the specific
heuristic planner implementation we focus on in this article (some ideas on that are given
in the outlook below). In the heuristic context considered here, we have:

• Abstracted the desirable properties (admissibility, basic informedness, and polynomi-
ality) that ignoring delete lists has as a relaxation in STRIPS.

• Defined a natural extension of this relaxation to the numeric case and provided suf-
ficient criteria to identify numeric tasks where the relaxation preserves the desirable
properties.

• Defined a subset of PDDL2.1 level 2, linear tasks, where the sufficient criteria can be
achieved by a pre-processing technique.

• Defined algorithms that solve relaxed tasks in this language and thus provide a heuris-
tic function.

• Implemented a straightforward extension of FF, and a first technique that takes user-
specified optimization criteria into account. The FF extension (FF.speed) shows rea-
sonable performance across a number of benchmark domains. Specifically it performed
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best, together with LPG, in the numeric track of the 3rd International Planning Com-
petition, both in terms of runtime and solution length.19 The runtime behavior of the
optimization technique (FF.quality) is unsatisfying, but plan quality improvements
can be observed.

Various research topics have been left open:

• The background theory given in Section 4.2 provides only sufficient criteria for the
numeric relaxation to be adequate. The question is, are there weaker sufficient cri-
teria, and can one come up with a complete analysis (i.e., find the exact borders
beyond which ignoring decreasing effects is no longer adequate)? Also, how do the
identified borderlines translate, syntactically, to the mathematical constructs allowed
in PDDL2.1 level 2?

• The pre-processing algorithm given in Section 4.3 (transforming linear tasks into LNF
tasks) is defined for linear tasks only. Can it be extended to richer language classes?
Similarly, the algorithms given in Section 5.2 only work for LNF. Is there an easy
extension to richer language classes?

• As mentioned in Section 4.3, various kinds of numeric effects can easily be translated
into each other (e.g., := effects into += effects or vice versa), but the respective
translations behave differently in the relaxation. Can one identify problem classes
where one or the other formulation yields better heuristic performance?

• The current optimization technique, FF.quality, is restricted to optimization criteria
that can be transformed into action cost minimization according to a certain simple
translation schema. How can more general optimization criteria be handled?

• We have seen that the runtime performance of FF.quality is unsatisfying. There
appears to be some interaction (as exemplified by the two different quality metrics in
Driverlog) between the form of the optimization (i.e., the action cost minimization)
expression and runtime behavior. An explanation for this might be the degree of “goal-
directedness” of the minimization expression. Intuitively, a minimization expression is
goal-directed if it is closely correlated with goal distance, i.e., the lower the expression
value the nearer the goal and vice versa. The maximally goal-directed minimization
expression is the goal distance itself (i.e., “total-time” in our sequential framework).
In contrast, the minimization expression in Rovers, number of recharge operations, is
only very loosely connected with goal distance. It would be worthwhile to come up
with a good formal notion of goal-directedness, and to investigate its connection with
runtime performance (in Driverlog the connection is less obvious than in Rovers). On
the more practical side, algorithms remain to be found that show better performance
no matter what the form of the optimization expression is. One option is to always
integrate, to some extent, the current goal distance estimate (i.e., the length of the

19. Note that one can easily imagine domains where relaxed plans in the way Metric-FF uses them would
likely yield no good heuristic information. As an example, consider the 15-puzzle, with numeric variables
encoding the positions of the tiles. In this situation, there is a large degree of interaction between the
numeric variables, and relaxed plans will presumably not be able to capture this interaction.
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relaxed plan in our case) into the remaining cost estimation. Another option is to use
different search schemes. A branch-and-bound like approach appears possible (first
find some plan quickly then use the cost of this plan as an upper bound during further
exploration of the search space).

It would be exciting to explore the impact of the monotonicity idea, i.e., the corre-
spondence that it brings between pre/goal-conditions and monotonic constraints, add lists
and increasing effects, as well as delete lists and decreasing effects, in different contexts of
planning research. Examples that spring to mind are other heuristic approaches, Graphplan-
based numeric planning, or goal ordering techniques. To stimulate the imagination of the
reader:

• It seems likely that similar methods can be used in other heuristic approaches that
relax the task by ignoring the delete lists. For example, our techniques can presum-
ably be adapted to heuristic estimators in the partial order framework used in RePOP
(Nguyen & Kambhampati, 2001), yielding a heuristic numeric partial-order planner.
Also, it appears feasible to integrate our techniques into Sapa’s (Do & Kambham-
pati, 2001) heuristic function, possibly making that function more accurate in various
numeric situations. As another possible avenue, one might be able to adapt the tech-
niques presented here for use in LPG’s heuristic precondition cost estimation process
(Gerevini, Serina, Saetti, & Spinoni, 2003b), making it more sensitive to the numeric
constructs, and thereby – potentially – further improving LPG’s performance.

• Koehler’s extension of IPP to a numeric context (Koehler, 1998) suffers from compli-
cations in the backward search procedure, which significantly degrade runtime perfor-
mance. Do the same difficulties arise in the monotonic context?

• Koehler and Hoffmann (2000a) argue that there is a reasonable ordering B ≤ A
between two goals A and B if, from all states where A is achieved first, one must
delete A in order to achieve B. Under monotonicity, the straightforward translation
of this is that two numeric goals A and B are ordered B ≤ A if, once the values
of the variables that participate in A are sufficient to achieve A, their values must
be decreased below the necessary value again in order to achieve B. It seems that
Koehler and Hoffmann’s techniques to approximate STRIPS goal orderings transfer
easily to this situation. Similarly, it seems that under monotonicity the definitions
and approximation techniques given for landmarks (subgoals that will necessarily
arise during planning) by Porteous, Sebastia, and Hoffmann (2001) can directly be
transferred to numeric goals.
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Appendix A. Proofs

This appendix presents the proofs to all theorems in detail. There are three different classes
of results, which we focus on in turn: relaxation adequacy, relaxed Graphplan completeness,
and relaxed Graphplan correctness. Within each of these classes, the results are given for
languages of increasing expressivity.

A.1 Relaxation Adequacy

For STRIPS, the restricted numeric language, and numeric tasks in general, we prove that
the respective relaxations are adequate (in the general case, we identify situations where
the relaxation is adequate). The proof for the STRIPS case is trivial.

Proposition 1 The relaxation given in Definition 1 is adequate, i.e., the following holds
true.

1. Admissibility: any plan that solves the original task also solves the relaxed task,
i.e., assuming a STRIPS task (P,A, I,G), any plan for (P,A, I,G) is also a relaxed
plan for (P,A, I,G).

2. Basic informedness: the preconditions and goals can trivially be achieved in the
original task if and only if the same holds in the relaxed task, i.e., assuming a
STRIPS task (P,A, I,G), 〈〉 is a plan for (P,A, I,G) if and only if 〈〉 is a re-
laxed plan for (P,A, I,G), and for a ∈ A, result(I, 〈〉) ⊇ pre(a) if and only if
result(I, 〈〉) ⊇ pre(a+).

3. Polynomiality: the relaxed task can be solved in polynomial time, i.e., deciding
RPLANSAT is in P.

Proof: 1. After application of each action in the relaxed action sequence, at least the
propositions are true that are true in the real sequence. So each action precondition, and
the goal, is fulfilled.

2. Holds because we are not dropping any precondition or goal constraints. The empty
plan 〈〉 is a plan for (P,A, I,G) if and only if G ⊆ I holds. The same is true for (P,A+, I,G).
Similarly for action preconditions.

3. This was proved by Bylander (1994). 2

The proof for the case of the restricted numeric language is a straightforward extension
to the STRIPS proof, exploiting the correspondence between pre/goal-conditions, add lists,
and delete lists on the one hand, and x ≥ [>]c constraints, += effects, and -= effects on
the other hand.

Theorem 1 The relaxation given in Definition 5 is adequate, i.e., the following holds true.
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1. Admissibility: assuming a restricted numeric task (V, P,A, I,G), any plan for
(V, P,A, I,G) is also a relaxed plan for (V, P,A, I,G).

2. Basic informedness: assuming a restricted numeric task (V, P,A, I,G), 〈〉 is a plan
for (V, P,A, I,G) if and only if 〈〉 is a relaxed plan for (V, P,A, I,G), and for a ∈ A,
result(I, 〈〉) |= pre(a) if and only if result(I, 〈〉) |= pre(a+).

3. Polynomiality: deciding RESTRICTED-RPLANSAT is in P.

Proof: 1. After application of each step in the relaxed plan, at least the propositions are
true that are true in the real plan, and the values of all numeric variables are at least as high
as in the real plan. As all action preconditions and the goal only require variable values to
be greater than or equal to a constant, all these constraints remain fulfilled.

2. Holds because we are not dropping any precondition or goal constraints. The empty
plan 〈〉 is a plan for (V, P,A, I,G) if and only if I |= G holds. The same is true for
(V, P,A+, I,G). Similarly for action preconditions.

3. The following is a polynomial time algorithm that decides RESTRICTED-RPLANSAT.

M := I, m := v(I)
remove, from action preconditions and the goal, all propositions in M and
all numeric constraints that are fulfilled by the mi values (i.e., mi ≥ [>]c)
while G 6= ∅ do

A := {a ∈ A | pre(a) = ∅}
M ′ := M ∪

⋃

a∈A p(eff(a))+

m′ := m
for i ∈ {1, . . . , n},mi 6= ∞ do

if ∃a ∈ A : (vi,+=, c) ∈ v(eff(a)) then (m′)i := ∞ endif

endfor

if M ′ = M and m′ = m then fail endif

M := M ′, m := m′

remove, from action preconditions and the goal, all propositions in M and
all numeric constraints that are fulfilled by the mi values

endwhile

succeed

Remember that n denotes the number of numeric variables. Denote by At the action set
in iteration t of this algorithm. We prove that the algorithm succeeds if there is a relaxed
plan, that there is a relaxed plan if the algorithm succeeds, and that the algorithm takes
polynomial time in the size of the task.

If there is a relaxed plan 〈a1, . . . , ak〉 for (V, P,A, I,G), then at ∈ At holds true for
1 ≤ t ≤ k: the set M (the values m) always include (are always at least as high as) the true
facts in the relaxed plan (the variable values in the relaxed plan). The algorithm succeeds
after at most k iterations. It does not fail earlier as this implies a fixpoint in contradiction
to reachability of the goals.

In the other direction, if the algorithm succeeds in an iteration k then one can construct
a relaxed plan. Simply linearize the (relaxations of the) actions in the sets A1, . . . , Ak in an
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arbitrary order. If an action at a layer t has a += effect on a variable xi, then repeatedly
execute the action until all constraints on xi that have been removed in iteration t are
fulfilled (as all the constraints are of the form xi ≥ [>]c, this will eventually happen). The
actions applied this way all have their preconditions fulfilled as these were empty at the
respective iteration, and the execution sequence makes the same constraints true as the
algorithm.

As for runtime, each single iteration is polynomial. An upper bound on the number of
iterations is |V |+ |P |. In each iteration, to avoid failure, at least one new proposition must
enter M or one new variable value must be set to ∞. 2

Generalizing from the restricted language, ignoring the decreasing effects is adequate if
all numeric constraints are monotonic, and all numeric effects are strongly monotonic (plus
changes due to := effects can not propagate into a numeric variable’s own value). The proof
generalizes, in this way, from the proof above.

Theorem 2 The relaxation given in Definition 7 is adequate for strongly monotonic tasks
with acyclic := effects, i.e., the following holds true.

1. Admissibility: assuming a monotonic numeric task (V, P,A, I,G), any plan for
(V, P,A, I,G) is also a relaxed plan for (V, P,A, I,G).

2. Basic informedness: assuming a numeric task (V, P,A, I,G), 〈〉 is a plan for
(V, P,A, I,G) if and only if 〈〉 is a relaxed plan for (V, P,A, I,G), and for a ∈ A
result(I, 〈〉) |= pre(a) if and only if result+(I, 〈〉) |= pre(a).

3. Polynomiality: deciding STRONGLY-MONOTONIC-RPLANSAT is in P.

Proof: 1. Say 〈a1, . . . , an〉 is a plan for (V, P,A, I,G). Executing the sequence under result,
all precondition and goal constraints are fulfilled. Denote by vi(t) the value of variable i
after execution of action at, and denote by vi(t)+ the value of variable i after execution of
action at under result+. We show that vi(t) ≤ vi(t)+ for all i and t. With monotonicity
of numeric constraints, Definition 8 condition (1), this suffices. The claim is easily shown
by induction over t. With t = 1, vi(1) ≤ vi(1)+ holds for all i simply because result+ is
identical to result except that all effects that decrease the value of a variable are ignored.
From t to t + 1, if vi(t) ≤ vi(t)+ for all i then vi(t + 1) ≤ vi(t + 1)+ holds for all i due to
the same argument, plus the monotonicity of the numeric effects in the sense of Definition 8
condition (2): the higher the input numeric variables are, the higher the resulting value of
the affected variable becomes.

2. The empty plan 〈〉 is a plan for (V, P,A, I,G) if and only if I |= G holds. The same
is true for 〈〉 as a relaxed plan, as we are not dropping any goal constraints. Similarly for
action preconditions.

3. The following is a polynomial time algorithm that decides relaxed solvability of a
strongly monotonic task with acyclic := effects.

1. M := I, m := v(I)
2. remove, from action preconditions and the goal, all propositions in M and
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all numeric constraints that are fulfilled by the mi values
3. while G 6= ∅ do

4. A := {a ∈ A | pre(a) = ∅}
5. M ′ := M ∪

⋃

a∈A p(eff(a))+

6. m′ := m
7. for i ∈ {1, . . . , n},mi 6= ∞ do

8. if ∃a ∈ A, (vi, ass, exp) ∈ v(eff(a)) :
9. ass ∈ {+=, -=, ∗=, /=}, (vi, ass, exp)(m) > mi then (m′)i := ∞ endif

10. endfor

11. for i ∈ {1, . . . , n},mi 6= ∞ do

12. if ∃a ∈ A, (vi, :=, exp) ∈ v(eff(a)) : (vi, :=, exp)(m) > mi then

13. (m′)i := max
a∈A,(vi,:=,exp)∈v(eff(a)):(vi,:=,exp)(m)>mi (vi, :=, exp)(m)

14. endif

15. endfor

16. if M ′ = M and m′ = m then fail endif

17. M := M ′, m := m′

18. remove, from action preconditions and the goal, all propositions in M and
all numeric constraints that are fulfilled by the mi values

19. endwhile

20. succeed

Here, as above, v(exp) for an expression exp denotes the set of all variables contained
in exp. The value of an expression that contains variables set to infinity is given as the
limit of the expression in these variables. Note that by assumption the limits are all ∞
(Definition 8 condition (4)) so they can, in particular, be computed efficiently. We prove
that the algorithm succeeds if there is a relaxed plan, that there is a relaxed plan if the
algorithm succeeds, and that the algorithm takes polynomial time in the size of the task.

Denote by At the action set in iteration t of the algorithm. If there is a relaxed plan
〈a1, . . . , ak〉 for (V, P,A, I,G), then at ∈ At holds true for 1 ≤ t ≤ k: the variable updates
on m performed in the algorithm are always at least as high as those performed by the
result+ function. Note here that line 13 takes the maximum over the available := effects.
Note also that all effects obey Definition 8 condition (2), so one needs consider only the
maximum input values in order to obtain the maximum output value. In consequence, with
monotonicity of numeric constraints in the sense of Definition 8 condition (1), the algorithm
reaches the goals and succeeds after at most k iterations. It does not fail earlier as this
implies a fixpoint in contradiction to reachability of the goals.

If the algorithm succeeds after an iteration k then one can construct a relaxed plan as
follows. Perform an upwards loop from 1 to k. At each iteration t, repeatedly apply all
actions in At until all the constraints that have been removed in line 18, in iteration t,
are fulfilled. We show below that this point will eventually be reached. Once the point
is reached, one can continue with the next higher t value until the step at the succeeding
iteration k has been completed. All the actions applied this way have their preconditions
fulfilled as these were all empty at the iteration t where the actions are applied, as the con-
structed relaxed plan always fulfills the same constraints that were removed in an iteration,
and as by Definition 8 condition (1) constraints can not become false again once they are
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true in a relaxed plan. For the same reason the goals are fulfilled at the end of iteration
k. It remains to show that, at an iteration t, repeatedly applying the actions in At will
eventually fulfill all the constraints removed in that iteration. Denote by It the set of all
variables that got set, in iteration t, to ∞ in line 9, denote by I ′t the set of all variables that
got set to ∞ in line 13, and denote by Ft the set of all variables that got set to a new value
below ∞ in line 13. We show that:

1. After one application of the actions in At the variables in Ft have at least the values
that they had at constraint removal in line 18.

2. With repeated application of the actions in At the variables in It∪ I ′t reach arbitrarily
high values.

This suffices for the constraints eventually being fulfilled. Assume the two claims hold
true. Then, with monotonicity of the constraints (Definition 8 condition (1)) the variables in
Ft contribute at least as much to the fullfillment of these constraints as they did in iteration
t of the decision algorithm. As for the variables in It∪I ′t, there is a finite assignment to these
variables, higher than their previous values, that makes the respective constraints true at
this point. This is a simple consequence of Definition 8 condition (1) (the constraints prefer
higher variable values), condition (4) (the expressions diverge in the variables), condition
(5) (existence of a finite fulfilling assignment), and the fact that the constraints were not
true in the previous iteration but became true when setting the variables in It ∪ I ′t to ∞.

The first claim follows from the simple fact that the actions responsible for increasing
the values of the variables in Ft – the actions that fulfill the condition in line 12 – are,
in particular, contained in At. Their outcome might be higher if other variables in the
respective effect right hand side have been increased first; there are no negative interactions
with other variables as we are considering the relaxed transition function. The argument
for the second claim is as follows. As for the variables in It, At contains the respective
responsible action fulfilling the condition in lines 8 and 9. Each application of this action
increases, by Definition 8 condition (3), the variable’s value by at least as much as the
previous application, so repeated application diverges. Note that, again, under relaxed
state transition, applying an action can not worsen the situation for other variables. As
for the variables in I ′t, At contains the action a fulfilling the condition in line 13, with
(vi, :=, exp) ∈ v(eff(a)), exp containing at least one variable v′ ∈ v(exp) set to ∞ at this
point (as (vi, :=, exp)(m) = ∞). Recursively, a responsible action a′ setting v′ to ∞ must
have been included in the previous iteration. If the effect of a′ on v′ is a := effect, a
responsible action must have been included earlier, and so on. At one point, the responsible
action a′′ for the respective ancestor variable v′′ must have been included in line 9. Repeated
application of a′′ causes the value of v′′ to diverge (with the same argument as above), and
in effect transitively causes the value of vi to diverge.

It finally remains to show that the algorithm terminates in polynomial time. Obviously
each single iteration is polynomial. The number of iterations is bounded by the number of
times that M ′ or m′ can be different from M respectively m. Changes to these values occur
in lines 5, 9, and 13. The overall number of changes in line 5 is bound by the number of
logical propositions, |P |. The overall number of changes in line 9 is bound by the number of
numeric variables, |V |. So if there was an exponential number of iterations until termination
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then there would be an exponential number of consecutive iterations where changes occur
only in line 13. The number of such consecutive iterations is, however, bound by |V | ∗ |A|.
This can be seen as follows. Throughout the entire sequence of iterations, only := effects
contribute to the changes. The := effects are acyclic by our assumption so their value
change can not propagate into their own value, and the only possible further change can
occur when a new action comes in. It takes at most |V | iterations to propagate the changes
through all variables (this is the length of the longest possible propagation path), so, if
at least one new action comes in at an iteration t, then another new action comes in at
iteration t + |V | at the latest. The obvious bound on the number of iterations where new
actions come in is |A|, which concludes the argument. 2

A.2 Relaxed Graphplan Completeness

For STRIPS and LNF tasks we prove that the respective relaxed Graphplan mechanisms
are complete, i.e., that they find a relaxed plan if there is one. The proof for the STRIPS
case is trivial.

Proposition 2 Assume a STRIPS task (P,A, I,G), and a state s. If the algorithm depicted
in Figure 1 fails, then there is no relaxed plan for (P,A, s,G).

Proof: We show the contrapositive, i.e., if there is a relaxed plan for (P,A, s,G), then
the algorithm succeeds. Say there is a relaxed plan P = 〈a1, . . . , am〉 for (P,A, s,G). The
algorithm applies, at the first layer, all possible actions. In particular, this includes a1, so
at layer P1 at least the facts are true that are true after executing the first step in P . The
same argument can inductively be applied for all actions in P , implying that at each layer t
we have at ∈ At, and Pt contains all facts that are true upon execution of the first t actions
in P . This implies that the goals are true at some layer m′ ≤ m, G ⊆ Pm′ . Moreover, the
algorithm does not fail at any layer m′′ < m′: if so then it follows that a fixpoint is reached,
Pi = Pm′′ for all i > m′′, so G 6⊆ Pm′ , which contradicts our assumptions. 2

The proof for LNF tasks proceeds along the same line, but requires some care with the
details concerning the values beyond which numeric variables can no longer contribute to a
solution.

Theorem 3 Assume a linear numeric task (V, P,A, I,G) that is in LNF and has acyclic
:= effects. Assume a state s. If the algorithm depicted in Figure 6 fails, then there is no
relaxed plan for (V, P,A, s,G).

Proof: We show the contrapositive, i.e., if there is a relaxed plan for (V, P,A, s,G), then
the algorithm succeeds. Say there is a relaxed plan P = 〈a1, . . . , am〉 for (V, P,A, s,G).
The algorithm applies, at the first layer, all possible actions. In particular, this includes a1,
so at layer P1 at least the facts are true that are true after executing the first step in P ,
and the maxi

1 values are at least as high as the respective variable values. Together with
the fact that the effect right hand sides are positively monotonic (so inserting the maxt

values can only increase the outcome), the same argument can inductively be applied for
all actions in P , implying that at each layer t we have at ∈ At, Pt contains all facts that
are true upon execution of the first t actions in P , and the maxi

t values are at least as high
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as the respective variable values. This, with the monotonicity of the numeric constraints,
implies that the goals will be reached at some layer m′ ≤ m, p(G) ⊆ Pm′ and for all
(exp,≥ [>], 0) ∈ v(G) : exp(maxm′) ≥ [>]0. Moreover, the algorithm does not fail at any
layer m′′ < m′. Assume it does. Then at m′′ no new propositions have come in, and the
maxi values all either have not changed, or are already above their maximum needed value.
Denote by L the set of variables vi whose value is still too low, maxi

m′′ ≤ mneedi(s). Note
that L ⊆ rV holds since outside rV the mneed values are −∞. We have Pm′′+1 = Pm′′

and, for all vi ∈ L, maxi
m′′+1 = maxi

m′′ . We show that Pm′′+2 = Pm′′+1 and, for all vi ∈ L,
maxi

m′′+2 = maxi
m′′+1. This proves the claim: by iterating the argument, the same holds

true at all layers t > m′′ + 1, and we get a contradiction to the goals being reached at m′

(note that all constraints in which a variable out of V \L participates are already fulfilled,
so increasing these variables can not reach new goal constraints). The set of propositions
could increase at layer m′′+2 if a new action came in, i.e., if there was a ∈ Am′′+1, a 6∈ Am′′ .
The value of a variable vi ∈ L could increase at layer m′′ + 2 if: a new action came in; a
+= effect right hand side expression (vi,+=, exp) became positive in Am′′+1 as a result of
increasing the V \ L variable values from m′′ to m′′ + 1; a := right hand side expression
(vi, :=, exp) in Am′′+1 became higher than maxi

m′′+1 as a result of increasing the V \ L
variable values from m′′ to m′′ + 1. None of these three cases can occur by definition of
the mneed values (that the variables in V \ L have reached). As for the first case, Am′′+1

can not contain a new action because no new precondition constraints became true from
m′′ to m′′ + 1 – only the V \L variable values have increased, and the constraints in which
these participate are already fulfilled at m′′. As for the second case, all (vi,+=, exp) effect
right hand sides in which V \L variables participate are already above 0 with the values at
m′′ (vi ∈ L ⊆ rV , so the mneed definition for += effects applies). As for the third case, if
this occurred then there was at least one variable vj ∈ V \ L contained in the right hand
side of the responsible effect (vi, :=, exp). This variable would fulfill maxj

m′′ > mneedj(s),
thus exp(maxm′′) > mneedi(s) would hold (vi ∈ L ⊆ rV , so the mneed definition for :=
effects applies), thus maxi

m′′+1 > mneedi(s) would hold (through application of (vi, :=, exp)
in Am′′) in contradiction to our assumptions. This concludes the argument. 2

A.3 Relaxed Graphplan Correctness

For STRIPS and LNF tasks we prove that the respective relaxed Graphplan mechanisms
are correct, i.e., that the actions they select form a relaxed plan. The proof for the STRIPS
case is trivial.

Proposition 3 Assume a STRIPS task (P,A, I,G), and a state s for which the algorithm
depicted in Figure 1 reaches the goals. The actions selected by the algorithm depicted in
Figure 2 form a relaxed plan for (P,A, s,G).

Proof: First, note that at each layer t and for each goal g ∈ Gt, there is at least one action
a such that level(a) = t − 1, g ∈ eff(a)+, due to the way the levels are computed. Also, an
action’s preconditions always have a lower level than the action itself.

The algorithm selects a set At at each layer t. We can arrange the actions in each of
these sets in an arbitrary order to obtain a relaxed plan for (P,A+, s,G). All goals and

337



Hoffmann

sub-goals at a layer t are achieved by the actions in At−1. So with delete effects being
ignored, at least the propositions are true which are needed. 2

The proof for LNF tasks is a straightforward extension of the STRIPS proof.

Theorem 4 Assume a linear numeric task (V, P,A, I,G) that is in LNF and has acyclic :=
effects. Assume a state s for which the algorithm depicted in Figure 6 reaches the goals. The
actions selected by the algorithm depicted in Figure 7 form a relaxed plan for (V, P,A, s,G).

Proof: First, note that at each layer t and for each goal g ∈ Gt, there is at least one action
a such that level(a) = t − 1, g ∈ eff(a)+, due to the way the levels are computed. For the
numeric goals (exp,≥ [>], 0) ∈ v(Gt), there is always a := effect with sufficiently high right
hand side value, or

maxi
t −

∑

a∈At:(vi,+=,exp)∈v(eff(a)),exp(maxt−1)>0

exp(maxt−1) = maxi
t−1

holds. In the first case the while loop is not entered, in the second case it terminates
successfully. Note that one occurrence of an action can support different logical and numeric
goals by different effects, but can not be used to support the same numeric goal twice.

Denote, for a layer t, by At the set of actions selected by the algorithm at that layer. We
can arrange the actions in each of these sets in an arbitrary order to obtain a relaxed plan
for (A+, s,G). All goals and sub-goals at a layer t, both logical and numeric, are achieved
by the actions in At−1. The expressions in numeric goals and the effect right hand sides are
always at least as high as required as we constrain all contained variables to take on their
respective maximum values. With delete effects being ignored, at least the propositions are
true which are needed. With decreasing effects being ignored and monotonicity of effect
right hand sides, the expression values in constraints are at least as high as required. 2
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