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We formally develop the ideas of the metric universal properties of
maps on an interval and then use these results to determine some universal
aspects of a route to turbulence. All this material has been published
elsewhere in a less condensed fashion.

Start by considering a one parameter family of maps on an interval
where for each fixed value of the parameter, A, the map f has certain
required smoothness properties and possesses a unique extremum within the
interval. We are jinterested in the eventual behavior of the sequence of

iterates under f:

X 41 = f(A,xn) > {xn}(A) .

*
A first possibility is that f possesses a fixed point x :
* *
x =£f(x) .

(when unrelated to a given context, we suppress the A-dependence.) In
* .
order for x to represent the eventual behavior of {xn}, the fixed point
*
must be stable (i.e. X, * X ). Stability is analyzed locally through a

*
lineariza.ion about x :

*
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Thus, the criterinn for stability is

*
1£°(x )] < 1.



* * ., *
Should x be stable, the approach of X, to x is geometric unless f£'(x ) =
0, in which case the approach is faster than any rate of geometric conver=-
gence. We term such a fixed point superstable.

The next possible kind of eventual behavior is seriodic. For period-

* % *
icity n this n-cycle Xos Xy +oos X1 satisfies
'* _ * { =0
Kig1 = f(xi) i=0,1, .... mod n .

In terms of the nth iterate of f, £
£90x) = £(27 1))+ £0x) = x
*

=ach X, is a fixed point:

n, * *
£ (xi) =%, i=0, ..., n-1

Accordingly, an n-cycle is stable if

n(x*

IDf i

)l <1,
*
It is unnecessary to specify which element x, is intended since

Dfn(x:) = nél f'(xj) independent of i .
j=0
It follows from this chain-rule res:lt that an n-cycle is superstable if one
of vhe elements of the cycle is located at the extremum of f.

Finally there can be an aperiodic eventual behavior which is an infin-
ite sequence of elements that is stable if points in a neighborhood of one
of these elements determine sequences that eventually agree with those of
the specified set. For our purposes, infinite utable sets (or attractors)

shall arise as limits of periodic attractors.



The basic question we are addressing is how the nature of attractors
varies with the parameter A. For a large class of one-parameter f's it
turns out that if at same value of A an r-cycle is stable, then as A is
monotonically varied (for definiteness, increased), the r-cycle persists
to be stable over same A-interval at the endpoint of which it btecomes un-
stable, and a 2r-cycle in turn becomes stable. At this bifurcation point,
the elements of the 2r-cycle are infinitesimally separated pairs about the
elements of the now unstable r-cycle, with r iterations required tc se-
quentially visit one element of this pair from the other. As A is further
increased there is again an interval in which the 2r-cycle is stable with
r iterations imaging one element into that element of the cycle nearest to
this one. Again, at the end of this A-interval, the 2r-cycle becomes un-
stable, replaced by a stable 4r-cycle. This behavior recurs ad infiaitum,
so that for each n there is a A-interval in which an r-2" cycle is stable,
In particular within this A-interval there is value, An, such that the
re2" cycle is superstable. Moreover, A < @ (so that the widthe of the
A-intervals + 0).

For simplicity we consider r = 1 (everything to follow is true for
r # 1 simply by replacing f » £°) and imagine a A-dependent coordinate
transformation (conjugacy), if necessary, that maintains the extremum of
f at x = 0 independent of A. Then, An is determined by the root of

fzn(A,O) =0 .
This equation, for n > 0, possesses many roots - in particular An-l’ iy
An. An itself is then defined recursively as the smallest root greater

0

than the previously determined one.



At this point the first metrically universal feature emerges. Thus,

it turns ont that An + A, geometrically: should Gn + & where

5 = n-An+1 (1)
n+l n+2

then asymptotically, A - An « § 2. It is in fact true that én -+ § but

much more interestingly, & is a universal constant indepenuent of the f's

considered. (Actually, & depends on one detail of f alone, and this is the
order of f's extremum. We restrict discussion to those f's with a normal
quadratic extremum.) Numerically, as discovered by the author in Nov.,

1975,
& = 4.6692016091029909 ..

In order to understand this universality and determine an equation
for 6, another more fundamental, universsl feature had to be unearthed.
This feature is a scaling phenomenon, rclating the separation of x = 0
from its nearest element from cycle to cycle. TLis spacing in a 2°
superstable cycle is

n-1

4 = £ (A,40)

and the scaling result is

d
n

n+l

+ o with o also universal . (2)

Numerically,

o = 2,50290787509589284 ...



Clearly
-n
d, ~ (-a)

where An is required to evaluate dn' The special meaning of A_ now emerges

as that isolated parameter value for which

n
£2 (A

v ?

0) ~ (-a)™® for all n sufficiertly large .
Since

n
(-a)" fz (Ay,50) * v (constant, dependent upon f)

and since coordinate magnification, are preserved by iterations, we are led

to construct

n
(-0® £ (A, x/(-)%) » vg(x/v) ; 8(0) = 1

Indeed, a function g is converged to, and is also universal.

It is nov straightforward to deduce an equation for & and g. Denoting
the left-hand side of the above equation by Gn(x), it is trivially verified

that
-0 Gn(Gn(-x/a)) o Gn+l(x) .

However, apart from an irrelevant magnification by v, Gn + g. Also, had £
been a symmetric function of x, so too would all the Gn' Since g is uni-

versal, then

s(x) = ~ag{g(x/a)) . (3)



This equation is solved by requiring g to be an analytic function of x2

with g(0) = 1. This expression is truncated at same order N and the above
equation evaluated at N peints in the unit interval. The resulting system
is then numerically solved and yields an approximation for both o and g.
(The author obtained a solution in this fashion satisfied to 20 signifi-
cant figures on the unit interval with agreement of o and g to their re-
cur3ive definitions to full available precision in May, 1976).

It is now possible to determine 6 as the A convergence rate as well as
to establish the strongest universality property - namely the locations of

elements of the attractors. To this end, write

£(A,x) = £(A,x) + (A-A)) £,(A_,x) + ...

Al

"

Gox) + ity (x) + 0(u?)

and define

n
o)™ £ Ox/(-0) = 6 (x) + uH_(x) + 0(u?) . 4)

By iterating (4), it is easy to deduce that

[[]
m

G ., (x)

n+l o Gn(Gn("x/a))

T(Gn)

H

+

(x) = ~alH_(€_(-x/a)) + G.(G_(-x/a)) H_(-x/o)]

ntl

Now, by the property of A“, Gn + g, so that asymptotically,

H () 2 ~alH (g(x/a)) + 3"(8(x/a)) H_(-x/a))

(DT)' Hn (the derivative map of T at it« fixed point g)

It is now a computer fact aad not yet completely proven conjecture that



DT8 has a unique eigenvalue ip excess of 1, which, as will become apparent,

is 6. Thus,
H ~c(f) 8" h(x) (5)

where h is the associated eigenfunction to 6§ snd uormalized to h(0) = 1.

Substituting (5) into (4),

n
o £ (,x/(-0)%) ~ g(x) + (A-A)) c(£) 8% h(x) + 0(A-A)? .

Setting x = 0 and A = An'

n
0= (-0 £ (A_,0) ~ 1+ (A-A) c(£) 8"+ .

*+ c(£)(A_-A,) ~ n6 " (6)

for some n, which as shall follow, is independent of f. Formula (6)
estabiishes the leading eigenvalue of DT as 6 of (1).

Next, set A = A o for & fixed r > 0:

n+
n 2" Y -r
(o)™ £7 (A, »x/(-0)") ~g-n6 " h . (7)

Since 2° iterations of the right hand of (7) wust possess x = 0 as a fixed
point, we see that n is in fact determined and, as claimed, independent of

f. Moreover, we see that

n
lim (-)" £2 (A, x/(-0)%) = g (x) . (8)
o0

That is, the limit exists and the functions 8, are all universal. (Actu-

ally a magnification by the same v for all r is understood.) The functions



g, serve as a basis on which T is the shift:

8oy = T8, z—gsr-
By the chain rule and the definition of &y’ it is clear that apart from
the f-dependent scuele, v, g locates the elements of asymptotic 2" cycles
about x = 0 as fixed points at extrema. Thus the elements of the attrac-
tors are locally universally distributed. (Numerically discovered by the
author, March, 1976.) In order to compute 8y° (3) is solved, (DT)8 is
computed and & and h determined. For sufficiently large r, 8, is con-
structed according to the asymptotic formula (7), and then 2t applications
of T determines gy

The entirety of this theory was constructed by the author by Nov.,
19761’2 together with an analysis of the approach to the universal
asymptotic regime for an arbitrary one parameter family. The proof of
the validity of this theory was also claimed at that time tc rest upon
two conjectures:

i) The uniqueness and existance of the solution to (3) with the

stated requirements on g

and ii) The existance of a unique eigenvalue of DT outside the unit disk.
Since that time, rigorous progress has occured. At the end of 1978 Collet3
et. »21. succeeding in proving i) and ii) for z = 1+¢ where z is the order
of the maximum of f, with g then a function of lez. Their renormalization
group - € - expansion method, however, did not exierd to the case of real
interest (i.e. z=2). However Campinino et. al., early in 1980, have
succeeded in proving (i) for z = 2, while the uniqueness of § is not yet

established.



10

Collet4 et. al. also demonstrated, by late 1979, that a wap from R"
o R® for arbitrary n generically possesses the onz-dimensional fixed
point g, although such maps must contract volumes near the fixed point.
This result explained the appearance of o and § in multidimensional maps
and, by implication, in multidimensional differential flows that bv mid
1979 were computationally well established.5’6 Moreover during the summer
of 1979 Libchaber et. 31.7 had observed a systematic period doubling (some
five times) for a physical Beinard flow comprising its transition to
turbulence, although at a resolution cobsistent with 6 = 4.669 ... to
less than a significant figure, while obtaining the Fourier time spectrum
at the transition which, in fact, determines a = 2.5029 ... to better
than two significant figures. This extraction of o from the spectrum

follows from the author's work of Oct., 19798,9

which employs the theory
to actually determine the evolution of the spectrum throughout the transi-
tion regime. We briefly explore this last poin..

Consider a system specified by N first order differential equations

which depend upon a parameter A. At the value An the system is in a 2"

cycle, so that if the original period is TO’
%, (6+2°T) = x (t)

where 5n(t) is the N-dimensicnal trajectory at An. At A 1 the period has

n+

doubled so that
X041 (842°T0) = x  (8) # 0 (8)
while

(v) .

n+l -
X (tr2 T) = %4
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However the quantity of (8) is the spacing of two elements half a cycle
apart so that for some appropriate t along the trajectory (analogous t.
the maximum point) this quantity scales with a from one period doubling to

the next (Eq. (2)). That is, for an appropriate t,

Xury B42°T0) = x (®) ~ o7 g (2™l - x ()] (9)

If (9) can be extended to all t in the trajectory, then a powerful recur-
sion would be established. Accordingly, Eq. (2) is first extended to

determine the scaling at any point of a cycle. Specifically, we compute

. ontly _ (n+1),.(n)
on(1/2 ) = di /di
where
n-1
d(u) S xgn) - x(n) = xgn) - f2 (A ,x(n))
i i i+2n~1 i n'’i
and

() _ 20,
;= f \An,o)

-

It turns out that

<1

*®

o(x) = lim on(x) 0 <
n->o
is computible through iterates of the universal functions 8, of (8), and
80 i3 universally determined. Accordingly (9) can be extended to any t
by replacing (-(1).1 by o(t/2n+1To). Thus if the differences along a
trajectory (the right hand bracketed term of (9)) in its 2° cycle are

n+l

known, then these differences in the 2 cycle are determined by (9),
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so that, through a Fourier transform, 5n+l(t) is also determined. (All
that is required is a Fourier transform of 0.) Since (9) is recursive,
x(t) can now be computed for all further period doublings. The outcome
of this procedure can be easily approximated:
i) Each spectral component ox X0 remains approximately constant
as n doubles
ii) Each time n doubles, new spectral comronents appear midway
between the previous cnes.
iii) A smooth interpolation of the last new components shifted down
(logarithmically) by a universal 8.2 db defines the interpola-
tion of these new components.

To corclude this discussion, the Bénard flow experimeatal spectrum is in

complete agreement with this process, with a measured shift of 8.3 db,
which equivalently is an experimental determination of o to two signifi-

cant figures.
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