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Abstract

Microbiota is just beginning to be recognized as an important player in carcinogenesis and the interplay among

microbes is greater than expected. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease for which

mortality closely parallels incidence. Early detection would provide the best opportunity to increase survival rates.

Specific well-studied oral, gastrointestinal, and intrapancreatic microbes and some kinds of hepatotropic viruses

and bactibilia may have potential etiological roles in pancreatic carcinogenesis, or modulating individual responses

to oncotherapy. Concrete mechanisms mainly involve perpetuating inflammation, regulating the immune system-

microbe-tumor axis, affecting metabolism, and altering the tumor microenvironment. The revolutionary technology

of omics has generated insight into cancer microbiomes. A better understanding of the microbiota in PDAC might

lead to the establishment of screening or early-stage diagnosis methods, implementation of cancer bacteriotherapy,

adjustment of therapeutic efficacy even alleviating the adverse effects, creating new opportunities and fostering

hope for desperate PDAC patients.
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Background
The ecological community of microorganisms is familiarly

known as the microbiota, and developing the discipline of

microbiology. The steady state, abundance, and diversity

of the microbiota are vital to health. Microbiome, meaning

the comprehensive genomic information encoded by the

microbiota and its ecosystem, products and host environ-

ment, has attracted substantial attention. However, most

researchers use “microbiota” and “microbiome” inter-

changeably. The human microbiota offer protection from

disease by supporting nutrition and hormonal homeosta-

sis, modulating inflammation, detoxifying compounds,

and providing bacterial metabolites that have metabolic

effects [1]. It develops throughout life after birth, and fac-

tors including extrinsic modulators and host intrinsic

factors may cause its wide microbial diversity [2]. Specific-

ally, extrinsic modulators include diet, antibiotics, drugs,

environmental stressors, exercise/lifestyle, gastric surgery.

Also, the microbial community presents with highly per-

sonalized and interindividual variability, which depends

on host specifics such as age, gender, genetics, hormones,

and bile acids [3]. Among these factors, host genotype and

diet seem to be the most important; furthermore, host

and microbial genotypes influence cancer susceptibility.

Notably, pancreatic acini can secret mediators that shape

the gut microbiota and immunity [4].

Microbiota resides on or within ~ 20% of human ma-

lignancies [5]. Recent studies of the impact of the micro-

biota on carcinogenesis highlighted its crucial roles in

gastrointestinal malignancies such as colorectal [6–11],

liver [12–16] and pancreatic cancer. Interestingly, the

host microbes may increase, decrease, or show no effect

on tumor susceptibility [17] and amplify or mitigate car-

cinogenesis. Pancreatic ductal adenocarcinoma (PDAC)

is a lethal and devastating malignancy, as 94% of patients
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succumb to the disease within 5 years of diagnosis.

Acknowledged nonhereditary conditions associated with

high PDAC risk include age (> 55 yo), chronic pancrea-

titis, diabetes, tobacco smoking, obesity, alcohol abuse,

dietary factors, and toxin exposure [18]. Radical surgery

still affords the only chance of cure for PDAC, and very

few treatments are currently available. Early detection

would provide the optimum opportunity to improve the

survival rate and quality of life in patients, but to date,

there are no well-recognized screening tools or bio-

markers at the population level.

Given the growing evidence suggesting that microbes are

related with PDAC susceptibility, initiation, progression

and can influence therapeutic efficacy, while the mecha-

nisms involved are still being deciphered, the role of the

microbiota in pancreatic carcinogenesis requires closer

attention. This article aims to review recent developments

and intriguing discoveries in pancreatic cancer microbiota

and microbiome research, to illustrate the underlying

mechanisms, and then, to discuss potentially relevant clin-

ical applications and promising future directions.

Specific microbiota associated with PDAC: the state of

the art

Diverse microbiota alterations exist in patients with

PDAC compared to healthy groups at several body sites,

including oral, GI, and pancreatic tissues [19]. To study

these microbiota, scientists serially collected clinical and

epidemiological data and examined various microbes in

oral mouthwash/swab, salivary, blood, stool, biopsy, and

tissue samples. Main detection methods include plasma

antibody analysis, 16S ribosomal RNA (16S rRNA) gene

sequencing, quantitative polymerase chain reaction

(qPCR), microarray and enzyme-linked immunosorbent

assay (ELISA). Many studies have found that the oral

microbiota, periodontal disease, and tooth loss play piv-

otal roles in pancreatic carcinogenesis. Epidemiological

studies demonstrate that Helicobacter pylori (H. pylori)

may be a risk factor for PDAC, and the potential onco-

genic role of hepatitis B virus (HBV) in pancreatic

tumorigenesis is supported by clinical observation,

although molecular evidence is scarce. Studies on the

intrapancreatic microbiota have also been performed.

The specific microbiota associated with PDAC are sum-

marized in Fig. 1. Above findings may provide a hypoth-

esis that PDAC may have some bacterial origins.

Oral microbiota, periodontal disease and tooth loss

Over 700 different microorganism species colonize the

human oral cavity, and the oral microbiota [20] remains

relatively stable in healthy population. However, most

oral microbes have not been cultured in a laboratory

Fig. 1 Specific Microbiota Associated with PDAC. P. gingivalis, Fusobacterium, N. elongata and S. mitis are keystone pathogens among oral

bacteria involved in carcinogenesis. H. pylori infection is associated with an increased risk of developing PDAC. The potential oncogenic

role of hepatotropic viruses, including HBV/HCV and TTV, in PDAC, although molecular evidence is scarce. Bactibilia, including Enterobacter

and Enterococcus spp., and gut microbes represented by E. coli ultimately lead to the development of PDAC. Abundant intratumoral

microbes were found in PDAC tissues compared with normal pancreas
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[21, 22], which limits research. Periodontitis is a chronic

oral inflammation of the gingiva and surrounding tissues

[23]. It is the most common infectious condition leading

to tooth loss and has been linked with various cancers of

the pancreas [24–30], colorectum [27] and other extra-

intestinal organs [31–35]. Poor oral health status, patho-

genic oral flora [36], periodontal disease [24, 25, 27, 37]

and tooth loss [37–39] are well-established independent

risk factors for PDAC.

Both in animal models and human subjects, micro-

biologist has verified the spread of oral microbes to

pancreas via translocation or dissemination [28, 40].

Moreover, there are parallels to be drawn between the

microbiota isolated from the pancreas and oral, espe-

cially in cases of pancreatitis [18, 41]. Researchers hold

the opinion that oral microbiota dysbiosis preceded the

development of PDAC rather than developing after

cancer [42]. According to the present literature,

Porphyromonas gingivalis (P. gingivalis), Fusobacterium,

Neisseria elongata (N. elongata) and Streptococcus mitis

(S. mitis) are keystone pathogens among the oral

bacteria involved in PDAC carcinogenesis. In the

foreseeable future, clinicians may utilize markers in

salivary or mouthwash samples for noninvasive, eco-

nomical screening.

P. gingivalis

P. gingivalis is a pathogenic bacterium that responsible

for chronic periodontitis. Through collecting prediagno-

sis oral wash samples from participants, Fan et al. [43]

characterized the composition of the oral microbiota in

samples from 361 people who developed PDAC and 371

healthy participants matched by age, sex, race, body

mass index, smoking status, alcohol use and diabetes.

This study suggested that P. gingivalis was correlated

with a 59% greater risk of developing PDAC and played

a role in its etiology. Higher levels of ATTC 53978 anti-

bodies against P. gingivalis in blood (> 200 ng/mL) were

found in 405 patients with PDAC than in healthy volun-

teers and were related with a 2-fold higher risk of devel-

oping PDAC based on a large European cohort [28],

which suggests that ATTC 53978 may serve as the best

indicator for aggressive periodontal disease and PDAC

susceptibility. The above conclusions are consistent with

extensive evidence such as the NHANES I [24] and III

data [27] and the Health Professionals Follow-up Study

[25]. Thus, P. gingivalis was the periodontal pathogen

most strongly associated with an elevated risk of PDAC.

P. gingivalis, Treponema denticola, and Tannerella

forsythia, commonly known as the red complex, are the

major periodontitis-causing pathogens; they secrete

peptidyl-arginine deiminase (PAD) enzymes and have

been extensively studied in patients with PDAC. High

mutation rates in the tumor suppressor gene p53 and

oncogene K-ras, particularly arginine mutations, known

as p53 Arg72Pro [44, 45] and K-ras codon 12 arginine

mutations [46–49], respectively, indicates poor prognosis

of PDAC patients. These oral bacteria that produce PAD

enzymes are capable of degrading arginine, which may

result in p53 and K-ras point mutations [50]. Scientists

have hypothesized that P. gingivalis plays a critical role

in initiating inflammation backed by the evidence that

individuals with periodontal disease manifest as elevated

markers of systemic inflammation and escaping the im-

mune response related to lipopolysaccharide (LPS) and

toll-like receptors (TLRs) [51–53].

Fusobacterium

Strains of Fusobacterium is an anaerobic, gram-negative

oral bacterium, which has been verified that could cause

periodontal diseases and should always be treated as a

pathogen [54]. However, some studies have drawn the

opposite conclusions. According to a case-control study

[43] and a large prospective cohort study [28], Fusobac-

teria was associated with reduced PDAC risk. Recent

studies revealed that Fusobacterium potentiates tumori-

genesis [55] and promotes chemoresistance in colorectal

cancer [56]. More specifically, Fusobacterium could in-

crease production of reactive oxygen species (ROS) and

inflammatory cytokines, and modulate the tumor

immune microenvironment and drive myeloid cell infil-

tration in intestinal tumors. Despite these conflicting

results, the paradoxical effects observed in different

tumors may provide evidence to unravel the potential

mechanisms.

N. elongata and S. mitis

N. elongata and S. mitis were found to be lower in saliva

specimens collected after PDAC diagnosis than in con-

trols in both the test cohort (10 pairs) and validation

dataset (28 pairs) of a retrospective study [36]. This find-

ing was partly supported by Michaud et al. [28], who

showed an inverse association of S. mitis antibodies with

pancreatic cancer (but did not measure N. elongata).

Farrel et al. [36] found that the combination of N. elon-

gata and S. mitis biomarkers yielded 96.4% sensitivity

and 82.1% specificity in distinguishing patients with

PDAC from healthy subjects.

Others

The levels of the genera Corynebacterium and Aggregati-

bacter are present in lower concentrations in PDAC pa-

tients than healthy population, while Bacteroides and

Granulicatella adiacens are more frequent in PDAC sal-

ivary RNA samples [36]. However, another study indi-

cated that Aggregatibacter actinomycetemcomitans was

linked with a higher risk of PDAC [43]. In addition,

Leptotrichia is considered a protective microbe that
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dose-dependently decreases the risk of PDAC. Further-

more, a higher ratio of Leptotrichia to Porphyromonas in

saliva can be observed in PDAC patients [57].

GI microbiota, hepatotropic viruses, and bactibilia

The gut microbiota is a complex and delicate ecosystem

of a hundred trillion microbes and the largest microbial

community in the human body, protecting bodies from

infection, aiding digestion, and regulating gut hormone

secretion [58] and the immune system. Disturbances in

the gut microbiota could lead to pathology, especially

diseases related to metabolism and autoimmunity.

Recently, several studies have also shed light on the role

of microbiota in carcinogenesis. Among the best stud-

ied are the relationships of the gut microbiota to

colorectal cancer. Intestinal bacteria are necessary for

the breakdown of hydrolytic enzymes secreted by the

pancreas; on the other hand, the antibacterial activity of

pancreatic juice may protect the pancreas from retro-

grade infections and contribute to the uniqueness of

the intestinal flora. However, gut microbes can reach

the pancreas through the circulatory system or the bil-

iary/pancreatic duct (transductal transmission) [59, 60],

which may lay the foundation of their potential

etiological roles in pancreatic cancer. Depletion of the

gut microbiota via oral antibiotics restrained tumor

growth and metastatic burden in PDAC mice models,

activating antineoplastic immunity in tumor environ-

ment simultaneously [61], suggesting that such combi-

nations merit subsequent exploration. Apart from the

GI microbiota, represented by H. pylori, numerous

studies have revealed important associations of HBV

and bactibilia with an increased risk of PDAC.

H. pylori

Researchers are only beginning to explore how H. pylori

as an engender of PDAC and its role in manipulating

the host immune response. Most studies to date, includ-

ing case-control studies [62–64], prospective cohort

studies [65, 66], and meta-analyses [67–69], have con-

firmed that H. pylori infection is related with increased

PDAC risk. However, some studies have found no

relationship between the two [70–73], and several

studies have even drawn the opposite conclusion [74,

75]. One of the difficulties for untangling these incon-

sistent and paradoxical associations is how to exclude

confounding factors.

Using the H. pylori IgG antibody level in blood serum

from PDAC patients and healthy controls, scientists found

that the H. pylori IgG level was higher in PDAC. H. pylori

strains that express Cytotoxin-associated gene A (Cag-A)

is associated with gastric inflammation and ulceration and

promotes malignant transformation in gastric cancer [76,

77]. Case studies of H. pylori antibody-positive in PDAC

revealed complicated results related to Cag-A status, and

we believe that H. pylori and Cag-A predominance in

PDAC microbiota studies. One study [78] proposed that

factors including ABO blood type may also participate in

this intricate process, while a recent meta-analysis re-

vealed a modestly significant increased risk of Cag-A-

negative H. pylori strain [67–69, 73] with positively corre-

lated factors, including non-O blood type [64, 78] and

smoking status [63, 65] in PDAC.

H. pylori causes gastric lesions via directly impairing

the gastric mucosa, and its DNA can be detected in in-

fected antrum and corpus stomach tissues. However, the

expression of H. pylori DNA cannot be detected in pan-

creatic juice or tissues by PCR in chronic pancreatitis

and PDAC [79], which may suggest that H. pylori cannot

trigger pancreatic carcinogenesis directly. Possible indir-

ect mechanisms include inflammation and immune

escape. Exposure to carcinogenic nitrosamines is also an

underlying mechanism [78]. More specifically, nitrosa-

mine levels are lower in patients with duodenal ulcers

than gastric ulcers that characterized by low acidity,

which may explain the positive association of PDAC risk

with gastric ulcers but not duodenal ulcers [66, 80].

HBV and Hepatitis C Virus (HCV)

HBV and HCV are hepatotropic viruses that lead to

hepatitis and hepatocellular carcinoma (HCC). However,

HBV/HCV infection is not restricted to the liver; these

viruses can be detected in extrahepatic tissues, including

the pancreas [81–87], which may play a role in the

carcinogenesis or development of extrahepatic malignan-

cies [88–91], including PDAC [85, 86, 89, 91, 92]. Specif-

ically, investigators detected HBsAg and HBcAg in the

cytoplasm of pancreatic acinar cells [82], and individuals

with chronic HBV infection are accompanied by elevated

serum and urinary levels of pancreatic enzymes partly

[93, 94]. HBsAg was also observed in pancreatic juice

among patients with HBV infection [95] and was associ-

ated with the development of chronic pancreatitis [81–

83, 85], which suggests that HBV-related pancreatitis

might be a precursor of PDAC [85]. Clinical observa-

tions concerning impaired pancreatic exocrine function

in patients with chronic HBV infection support this

hypothesis. The positive correlation of PDAC risk with

HBV infection, especially for long-lasting persistent

infection, chronic/inactive HBsAg carriers and occult

infection is supported by unanimous conclusions drawn

from meta-analyses [96–104]. Most prominently, HBV is

capable of replicating apart from infecting in the tumor

and nontumorous pancreatic tissues of PDAC patients

[85]. According to the REVEAL-HBV study [105], the

association between HBV and PDAC was found in

patients with higher viral DNA loads (HBV DNA > 300

copies/mL). The integration of HBV DNA to pancreatic
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tissue and pancreatic metastases to the liver in patients

with HBV infection have been confirmed [83]. Wei et al.

[106] discovered that HBV infection in PDAC patients in-

creased the rate of synchronous liver metastasis and this

kind of status could be regarded as an independent prog-

nostic factor. However, some studies have drawn conflict-

ing conclusions concerning the association between the

presence of HBV, HCV and PDAC [105, 107, 108].

The pancreas and liver share similar features in early

embryological and fetal growth and have some common

regulatory pathways in PDAC and HCC [109]. Possible

mechanisms of HBV or HCV contribution to carcinogen-

esis include inducing inflammation [85] and modifying

tissue viscoelasticity [110], DNA integration in infected

cells that delays host immune system clearance of HBV/

HCV-containing cells [96], modulating the PI3K/AKT

signaling pathway via the HBV X protein (HBX) [86].

Another key finding is that exposure to HBV signifi-

cantly increased PDAC risk when concomitant with

diabetes [85, 96, 97], high frequency of HBV/HCV infec-

tion was reported in patients with diabetes [111], and

this connection was supported by strong expression of

HBsAg and HBcAg in islet cells at histological level [85].

However, pancreatic cancer cells have low levels of HBV

replication, so molecular proofs about the potential role

of HBV in PDAC remain limited [85, 87]. Nonetheless,

available literature supports the potential etiologic and

oncogenic role of HBV infection in PDAC. Should such

findings be confirmed, they may bring new insights into

the etiology and therapeutics of PDAC, and remind

clinicians to prevent the reactivation of HBV during

chemotherapy in patients with HBV infection.

Others

Bile is a sterile hepatobiliary solution rich in lipid, and

microbial colonization in the bile fluid is defined as

bactibilia. In a study based on PDAC patients, Maekawa

et al. [112] investigated the presence of bacteria in bile

samples via genetic sequence analysis, and the result

suggested that Enterobacter and Enterococcus spp. were

the major microbes. Antibody levels against Enterococcus

faecalis capsular polysaccharide (CPS) were increased in

serum of PDAC and chronic pancreatitis patients com-

pared with normal subjects, which may indicate that

infection with E. faecalis is involved in the progression

of pancreatitis-associated PDAC. Escherichia coli (E. coli)

is the well-known gut microbe, though outnumbered in

the gut approximately one thousand to one by other spe-

cies. Serra et al. found that pancreas head carcinoma

(PHC) is strongly and positively correlated with bactibi-

lia while E. coli and Pseudomonas spp. were the most

common microorganisms and were negatively correlated

with PHC [113]. Transfusion-transmitted virus (TTV) is

considered hepatotropic and a possible cause of acute

hepatitis. However, it has also been identified in the pan-

creas. Clinicians reported a case with both pancreatic

cancer and TTV infection [114], which indicates a need

for further research.

Intrapancreatic microbiota

The pancreas was traditionally considered a sterile organ,

and it has long been hold that most microbes cannot sur-

vive in pancreatic juice, which contains numerous prote-

ases and is highly alkaline [112]. Nevertheless, compared

with normal pancreatic tissue, a 1000-fold increase of bac-

teria in intrapancreatic was identified in PDAC patients

using 16S rRNA fluorescent probes and qPCR [60, 115].

The mean relative proportions of some taxa differed

among PDAC, pancreatic benign neoplasm and healthy

cohort [116]. Moreover, compared with the intestinal

microflora, some bacteria showed a differential increase in

the pancreas of PDAC patients. Microbiota analysis using

a larger cohort will be needed to make a definitive conclu-

sion regarding the significantly distinctions in microbiome

characteristics between benign and malignant pancreatic

disease respectively, which may lead to the establishment

of prediction markers in early diagnosis, treatment efficacy

or prognosis in PDAC.

Gemcitabine has been used for advanced pancreatic can-

cer and was helpful in some patients, but most showed

drug resistance resulting in treatment failure. Geller et al.

[117] detected the presence of Gammaproteobacteria in

PDAC tissue specimens with gemcitabine resistance and

postulated that this type of bacteria could potentially

modulate tumor sensitivity to gemcitabine. Pushalkar et al.

[60] investigated the role of the intratumoral microbiota in

PDAC progression and immunotherapy response modula-

tion. Through a longitudinal analysis between age-matched

KC (p48Cre; LSL-KrasG12D) and wild-type mice, certain bac-

terial populations were found to be enriched in KC mice,

with the most abundant species being Bifidobacterium

pseudolongum. These studies highlighted the significance of

the intratumoral microbiota in altering the cancer natural

history.

Once human pancreatic cells infected with H. pylori, it

could colonize the pancreas and may associate with the ma-

lignant potential of adenocarcinoma [118]. A preclinical

study [119] put forward that direct H. pylori colonization in

pancreatic cancer cells, which was associated with activa-

tion of molecular pathways controlling PDAC growth and

progression. However, different Helicobacter subspecies

were identified in the pancreas and gastroduodenal tissues.

Besides, Fusobacterium colonization in PDAC patients was

identified as an independent prognostic factor for signifi-

cantly shorter survival [120], in contrast to the

phenomenon that oral Fusobacterium was associated with

decreased pancreatic cancer risk.
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Potential mechanisms of microbiota roles in
carcinogenesis

Although the emerging preclinical data strongly sup-

port that the microbiota can influence tumor progres-

sion and therapeutic responses systemically through

several pathways, including inflammation, immunity,

metabolism, hormonal homeostasis, etc. [121], the mo-

lecular basis of this regulation is still being elucidated.

In this section, we discuss the association between rep-

resentative microbiota and PDAC as revealed in current

studies. We primarily focus on exploring (i) how mi-

crobes, especially bacteria, influence carcinogenesis by

perpetuating cancer-associated inflammation; (ii) the

dual effect of promoting immune suppression or activa-

tion then engendering the protumorigenic effect or

modulating immunotherapeutic response; (iii) the close

relationship of microbes to metabolic regulation; and

(iv) the microbiota as a component of the PDAC tumor

microenvironment (Fig. 2). Other reported mechanisms

including bacteria-virus interaction for carcinogenesis.

A significant synergistic effect between microbiota

composition and PDAC risk factors was also empha-

sized in current studies.

Persistent inflammation or infection: a central facilitator

Inflammation is a protective or defensive response process

of tissues to harmful stimuli including pathogens, involv-

ing blood vessels, immune cells, and molecular mediators.

Despite there are several proposed mechanisms in

microbiota-related pancreatic carcinogenesis, inflamma-

tion is a central facilitator [121]. Inflammatory conditions

represented by chronic pancreatitis is a well-recognized

risk factor for PDAC development, which significantly ele-

vates the incidence rate of PDAC than healthy populations

[122]. Chronic inflammation is known to participate emi-

nently in pancreas tumorigenesis, but it is uncertain the

specific causation of local inflammation. Chronic infec-

tions are the main factor inducing inflammation and can-

cer. Although a growing number of scientific studies

suggest an underlying infectious component of pancreatic

cancer etiology [43, 85, 87, 107, 108, 121, 123]. To date,

Fig. 2 Summary of Possible Mechanisms by Which Microbiota Affect PDAC. 1) Persistent inflammation or infections acts as a central facilitator.

Microbes activate inflammatory responses and ultimately lead to molecular alterations and neoplastic transformation. 2) Modulation of immune

therapy in PDAC: promoting immune activation or suppression. Gut bacteria activate specific immune cells and increase their antitumor effects.

Besides, the enrichment of specific strains of gut and intrapancreatic bacteria induces a tolerogenic immunosuppressive microenvironment that

favors cancer progression and resistance to immunotherapies. Here, we cite an example of microorganisms within PDAC to exemplify the

concrete mechanism involving TLRs, MyD88, TRIF, NF-κB and MAPK. 3) The gut microbiota serves as a critical regulator of metabolism in

PDAC carcinogenesis, and obesity-associated dysbiosis is a representative pattern. 4) The microbiota is a component of the PDAC tumor

microenvironment and may interact with PSCs. 5) The development of virus-associated cancers and provide a model of bacteria-virus

interaction for carcinogenesis
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no infectious origins have been established as carcinogenic

for PDAC.

The microbiota, especially gram-negative bacteria,

seems to be intricately linked to cancer-related inflam-

mation status [113]. The main mediator between in-

flammation and cancer is the oxidative stress imbalance

caused by inflammation in normal tissue and main-

tained by microenvironmental inflammation in malig-

nancies. Specifically, microbes activate inflammatory

responses, increase the recruitment of proinflammatory

cells and secretion of cytokines, enhance exposure to

oxidative stress, alter energy dynamics, and damage

DNA, ultimately leading to molecular alterations and

neoplastic transformation that promote tumor growth,

invasion, and metastasis. Moreover, inflammation can

induce the generation of angiogenetic factors and dir-

ectly accelerate the survival of cancer cells by increas-

ing oxygen and nutrient supply to tumor tissues.

Besides the effects of proinflammatory cytokines, sev-

eral molecular alterations such as oncogene mutations,

inactivation of tumor suppressor genes, loss of hetero-

zygosity, chromosomal and microsatellite instability, are

also participate in inflammation-mediated carcinogenesis.

Not all chronic inflammation, even if systemic, can

promote carcinogenesis. The formation of solid tumors

is strongly related to tumor-intrinsic inflammation sus-

tained by the protumorigenic microenvironment [124].

The cells inside the microenvironment control tumor

growth by producing autocrine, paracrine and endocrine

mediators [125]. Here, we propose a mechanistic frame-

work in which microbes exert an indirect impact on

tumor progression and the microenvironment [18], a

direct impact on tumor initiation, and interactions with

other known risk factors in pancreatic carcinogenesis.

The most significant mechanistic pathways, whether ex-

trinsic or intrinsic, between inflammation and cancer,

may depend on tumor type, or perhaps both are essen-

tial [125]. The latter could be exemplified by two factors

-- pancreatitis and K-ras gene mutations that frequently

found in PDAC, and both are imperative to cause pan-

creatic intraepithelial neoplasia (PanIN) and invasive

carcinoma in animal model [126]. That is, the mutual

and combined effect of pancreatitis and RAS-RAF acti-

vation pathway [127] can induce PDAC carcinogenesis.

It is important to note that the inflammatory reac-

tion is accompanied with the immune response, but

the immune response is not necessarily to inflamma-

tion. Systemic inflammation, caused by the release of

pro-inflammatory cytokines and activation of the innate

immune system, might, therefore, be the accelerator and

ultimate factor contributing to the development of PDAC.

The interplay between the microbiota and obesity induces

low-grade systemic inflammation and promotes tumor de-

velopment. It has been shown that high fat/high energy

diets could facilitate absorption of bacterial LPS in our

guts and leading to systemic inflammation through the

specific host response of TLR4 [58, 128]. Above studies

support that microbes may affect pathogenesis or carcino-

genesis at distant sites through systemic effects within the

human body, which is more pervasively influential than

our imagination.

Modulation of immune therapy in PDAC: promoting

immune activation or suppression

All risk factors are contributing to PDAC act in part via the

immune response. Preliminary findings in mice and human

revealed that the intestinal or intratumoral microbes can

affect responses to chemotherapy via immunity and seems

to influence cancer drug function. Cutting-edge immuno-

therapy treatment is associated with gut microbes, and mi-

crobes play a key role in innate and adaptive immune

responses, maintaining the delicate balance. Also, the com-

position of the gut microbiome has enabled stratification of

patients into responders and non-responders, thereby

allowing the use of microbiota composition as a predictive

biomarker of response to immunotherapy. Fecal microbiota

transplant and microbe-based pills are ready for testing to

determine whether they can beneficially reshape the gut

microbiota of non-responders. However, a complex inter-

play exists among the gut microbiota, immune cells, and

pancreas in pancreatic carcinogenesis, and how microbes

interact with immunotherapeutics and their precise mecha-

nisms, including which microbes modulate which immune

cells, remain unsolved. In general, the relationship between

microbes and immunity in PDAC carcinogenesis could be

described as dual action: cancer immunity can be boosted

by the microbiota, or the microbiota can exert a protumori-

genic effect.

Cancer immunity boosted by the microbiota

Some cancer treatments rely on activating the immune sys-

tem via the gut microbiota [129, 130]. The efficacy of ther-

apies, including alkylating agents, immune checkpoint

blockers and adoptive T-cell transfer (ACT), depends on im-

munity closely related to gut microbiota [131]. Zitvogel

[132, 133] found that the chemotherapy drug cyclophospha-

mide damages the intestinal mucus layer, allowing some gut

bacteria enter the lymph nodes and spleen, then specific im-

mune cells being activated. In addition, cyclophosphamide

lost its anticancer effects in mice when raised without mi-

crobes in guts or given antibiotics. Another study showed

similar finding with oxaliplatin and cisplatin and found

that the scarce of gut microbes compromises the effi-

cacy of CpG- and anti-IL-10-based antitumor response

due to ineffective priming of tumor-infiltrating myeloid

cells and a consequent lack of ROS-dependent apop-

tosis and TNF-dependent necrosis [129].
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Scientists are examining how the gut microbiota interplay

with immunotherapies response and how these interactions

are administrated. Following the observation that only

20~40% of patients respond to immunotherapy, Zitvogel

made further efforts to explore whether gut bacteria might

influence the response to anti-CTLA-4 and anti-PD-1.

Their work found that microbe-free mice failed to respond

to one such drug, and mouse response improved when

given Bacteroides fragilis [134]. Sivan et al. [135] reported

that Bifidobacterium increased cancer immunotherapy re-

sponse in mice, which suggested that microbes, especially

gut bacteria, might be activating the immune response by

stimulating enterocytes to generate certain message mole-

cules or provide signals to immune cells that help to super-

charge their tumor-fighting efforts. Similar latest studies

[136, 137] have linked favorable immunotherapy responses

in melanoma patients to specific gut microbes.

Routy and colleagues [138] reported that changes in

the gut microbiota composition following antibiotic

usage decreased responses to immunotherapy in patients

with lung, bladder, and kidney cancer. In contrast, when

using antibiotics specific to certain gut bacteria in an

HCC mouse model, the proportion of NK T cells in the

liver increased, leading to tumor shrinkage [15]. In

PDAC, the combination of antibiotics and PD-1 block-

ade showed that a synergistic antitumoral effect associ-

ated with T-cell activation. These confounding results

suggest that each cancer type may induce a distinct pro-

file of alterations in gut and tumor microbiota compos-

ition that may either attenuate or facilitate the function

of immune checkpoint inhibitors.

Cancer immunity thwarted by the microbiota

The protumorigenic effect of the gut microbiota appears

linked with its capacity to exert influence on immune re-

sponse through the tumor microenvironment (TME),

making it more tolerant toward cancer. Immune toler-

ance mechanisms have been implicated as the main bar-

rier to effective antitumor immunotherapy. Pushalkar

[60] showed that specific microbes in the gut and intra-

pancreatic serve as helpers in the establishment of im-

munosuppressive PDAC tumor microenvironment in

spontaneous murine models, enhancing cancer progres-

sion and resistance to immunotherapies. Bacterial abla-

tion in models showed antitumor effects and can be

reversed or abrogated by the transfer of feces from

PDAC-bearing KPC mice, but no difference was found

when the transfer came from non-PDAC controls. These

experimental data thus provide compelling preclinical

evidence for gut microbiota modulation, and the tumor

microbiota could sensitize the immune-refractory cancer

and convert it into a more responsive one. Because bac-

terial ablation upregulated PD-1 expression, a clinical

trial of antibiotic synergism with checkpoint-based im-

munotherapy is beginning, using antibiotics and pem-

brolizumab prior to resection in patients with locally

advanced PDAC. These ideas have started to spread and

create new possibilities for clear therapeutic applications

of microbiota science.

Mechanistically, microorganisms in PDAC differen-

tially activate selective TLRs in monocytes and then pro-

duce immune tolerance. TLRs, representing the most

acknowledged family of pattern-recognition receptors

(PRRs), are a group of pathogen-associated molecular

pattern receptors and undertake a certain role in im-

mune response to microbial infection and accelerate

tumorigenesis via innate and adaptive immune suppres-

sion in PDAC. PRRs reside in most immune cells and

can bind a range of microbe-associated molecular pat-

terns (MAMPs, such as LPS), as well as byproducts of

dead cells and sterile inflammation called DAMPs

(damage-associated molecular patterns) [139]. After

binding, the TLRs-DAMPs complex recruit MyD88 or

TRIF adaptor molecules as signal transducers to activate

signal pathways such as NF-κB and MAPK. The procar-

cinogenic effects of TLRs can be reversed by inhibiting

NF-κB or MAPK pathway [140]. Miller et al. found that

TLR4 and TLR7 showed up-regulated expression in the

PDAC microenvironment [140, 141], and TLR signaling,

such as TLR4/MyD88 [140, 142, 143], plays an import-

ant role in pancreatic tumors. Further, animal studies

demonstrated that the activation of TLRs could provoke

pancreatitis and synergize with K-ras to significantly pro-

motes pancreatic carcinogenesis [140, 141, 144–146].

Gut microbiota ablation with antibiotics does affect the

immune phenotype in the TME, that is, immunogenic re-

programming or reshaping, and then suppress tumor

growth by inducing antitumorigenic T-cell activation,

boosting immune surveillance and improving sensitivity to

immunotherapy in malignances [147]. The immunogenic

reprogramming of TME in a murine model manifests a de-

crease in myeloid-derived suppressor cells (MDSCs), an in-

crease in M1 macrophage polarization, facilitating the T

helper 1 (Th1) differentiation of CD4+ T cells and the acti-

vation of CD8+ T cells. All changes favor antitumor effi-

cacy. A balance exists between pro- and antitumor T cells

in tumor microenvironment. The Th1-type cytokine

interferon-γ exhibits antitumorigenic effects, whereas the T

helper 2 (Th2)-type cytokines interleukin (IL) 4, IL5, and

IL10 and Th17 cells play a protumorigenic role. Specifically,

after gut microbiota depletion in a pancreatic cancer mur-

ine model, interferon-γ producing Tcells Th1 manifest with

a significant increase and a corresponding decrease in

IL17a and IL10-producing T cells [61]. This result is in ac-

cordance with the previous conclusion, and a high Th1/

Th2 ratio in TME relates with improved survival in PDAC

patients [148].
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The immunologic mechanisms that underlie variable

responses to systemic therapy upon changes in the

microbiota were elucidated in other studies. Certain

miRNAs are key regulators of the innate and adaptive

immune response [52, 149, 150], and these immune-re-

lated miRNAs are secreted by cells and then travel to

the pancreatic tissue to alter gene expression. They can

modulate host responses to pathogens, and vice versa,

pathogens also regulate miRNA expression.

Metabolism regulation: a close association

Apparently, microbes act as a critical regulator in metab-

olism regulation. The effect of metabolites produced by

gut microbiota on intestinal and systemic homeostasis

has been verified by a substantial amount of studies

[151]. Microbial metabolites do play important roles in

diverse biologic and pathologic processes, including

translation, gene regulation, stress resistance, and cell

proliferation, differentiation, apoptosis, tumor develop-

ment and aggressiveness, which were illustrated in colo-

rectal [152–155], breast cancer [156]. As a risk factor for

various diseases, obesity do result in severe social and

psychological consequences, and obesity-linked gut

microbiota dysbiosis exerts influence on obesity-related

cancer [157, 158], including PDAC. Lower bacterial di-

versity and altered expression of bacterial genes are

regarded as principle factors in the pathogenesis of obes-

ity [159]. Although studies about obesity, the gut micro-

biota, and PDAC are rare, mechanisms have been

formulated in other studies, including that abnormal mi-

crobial metabolism contributes to the production of

pro-carcinogenic metabolites. DIO (diet-induced obesity)

alters the gut microbiota by increasing generation of

deoxycholic acid (DCA), a gut bacterial metabolite

known to cause DNA damage [160]. The possibility that

metabolites generated by gut microbes link dysbiosis to

PDAC progression via metabolite-sensing receptors act-

ing in pancreatic cells or other cells, merits further ex-

periment and exploration [161].

Oncogenic K-ras accompanied by activation down-

stream effectors is insufficient in the formation process

of invasive PDAC. Environmental or extrinsic factors in-

cluding inflammation, metabolic, nutritional, or add-

itional genetic mutations are also required. Changes in

the gut microbiota are one of the factors “upstream” of

K-ras linked with obesity that can enhance or modulate

downstream signals [161]. Proofs in other cancer models

have confirmed that dysbiosis induced by high-fat diet

accelerated K-ras-driven intestinal tumorigenesis [128].

Surprisingly, microbiota within tumors could confer

gemcitabine resistance in patients with PDAC. Cytidine

deaminase (CDD) is an enzyme responsible for main-

taining the cellular pyrimidine pool, which is involved in

nucleic acid metabolism. Notably, certain microbes that

frequently express CDD are capable of converting gem-

citabine (2′,2′-difluorodeoxycytidine) into its inactive

metabolite 2′,2′-difluorodeoxyuridine. Here are some

examples: Geller and colleagues [117] used murine

model and 113 human tissue samples of PDAC, showing

that the presence of intratumoral Gammaproteobacteria

class was responsible for inducing resistance to gemcita-

bine and that this effect was abolished by the use of anti-

biotics. When injected CDD-expressing Escherichia coli

into the tumor-bearing mice, the researchers found that

gemcitabine efficacy was dramatically impaired [162]. In

addition, PDAC cells cultured with the medium that

contaminated with Mycoplasma hyorhinis were com-

pletely resistant to gemcitabine.

In the tumor microenvironment: further investigation

needed

As previously mentioned, the microbes present within

tumors located at mucosal can gradually become the

composition of the tumor microenvironment in GI ma-

lignancies and affect malignant biological behavior. The

TME is composed of stroma, neutrophils, macrophages,

mast cells, MDSCs, dendritic cells, and natural killer

cells, as well as adaptive immune cells (T and B lympho-

cytes) [125]. The reason that current treatments target-

ing PDAC cells have largely failed is that the influence of

the stroma on tumor progression has been ignored.

Cancer biologists focus on the cancer-cell-intrinsic

mechanisms and noncancerous cells within the tumor

microenvironment [163, 164] that mediate pancreatic

cancer chemoresistance. Pancreatic stellate cells (PSCs)

could produce the tumor stroma and play a lead role in

the PDAC environment [165]. Meanwhile, microbes are

a component of the PDAC tumor microenvironment

[129]. Given the effect of activated PSCs on the develop-

ment of PDAC microenvironment and subsequent

tumor progression, and no published research to date

has considered whether bacterial infections in the

pancreas or other sites play a role in the activation of

PSCs [166], it will be instructive and meaningful to con-

duct related studies.

Conclusion
Microbiota research provides opportunities to better re-

veal the underlying mechanisms and identify bio-

markers for predicting subsequent PDAC risk and

prognosis. Previous results indicate that PDAC is asso-

ciated with microbes that can potentially modulate

tumor sensitivity to therapeutic agents, which is highly

beneficial to improve treatment efficacy of this fatal dis-

ease via proper manipulation. Novel probiotics could

be developed and used in combination with chemo and

immuno-therapy, which may hold great promise for

PDAC patients. Disputes exist in the microbiota field,
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as the microbiota is influenced by many known factors

associated with PDAC risks, such as diabetes, smoking,

obesity and dietary intake, and these factors impact the

immune system, humoral response, and inflammation

and may contribute to opportunistic infections [18,

122, 167, 168]. Collectively, it’s a pivotal time for figur-

ing out whether the microbiota acts as a mediator of

other stimuli that favoring cancer initiation and pro-

gression or itself instigates this cascade [36, 42].

To apply the microbiome in the future, we could

monitor the shifts in taxon dominance during PDAC

progression and develop methods targeting the cancer-

associated microbiome to improve the efficacy of ther-

apy. In particular, the debut of intestinal metagenomics

and immunogenomics will help scientists achieve the

additional breakthroughs in the application of the

microbiota to immune therapy. However, prudent and

appropriate clinical trials related to the microbiota must

be performed for suitable periods (representative clinical

trials of microbiota-linked for cancer are listed in Table 1).

Changing the composition of microbiota might make indi-

viduals more likely to suffer from other health problems.

In summary, depicting a distinct microbial landscape of

PDAC is imperative, and novel approaches or strict stan-

dards are required to actively change the status quo of this

field. These efforts should generate exciting clinical appli-

cations, such as development of companion diagnostics or

prediction of therapeutic response, or better yet, establish-

ing personalized medicine for each patient based on re-

spective microbiome of themselves.
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