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THE MICROBIOTA-GUT-BRAIN AXIS. 

A STUDY IN ZEBRAFISH (DANIO RERIO) 

 

Abstract 

The microbiota is essential in the host’s physiology, development, reproduction, 

immune system, nutrient metabolism, in brain chemistry and behavior. The gut 

microbiota plays a crucial role in the bidirectional gut–brain axis, a communication 

that integrates the gut and central nervous system (CNS) activities, and thus, the 

concept of microbiota–gut–brain axis is emerging where the microbes have 

considered as signaling components in the gut-brain axis. Animal studies reveals, 

in particular, that gut bacteria influence the brain-derived neurotrophic factor 

(BDNF) levels, and behavior specially after probiotic administration. How this 

alterations in brain chemistry are related to specific behavioral changes is unclear 

but it will likely be a focus of future research efforts.  Among these animal studies, 

to our knowledge, no studies on the microbiota–gut–brain axis in zebrafish (Danio 

rerio) have been carried out. We hypothesized that a continuous administration of an exogenous probiotic might also influence the host’s behavior and 
neurochemical gene expression. The purpose of this study was to determine 

whether probiotic strain can modulate gut commensal bacteria influencing  brain 

neurochemistry and behavior in zebrafish. Thus, we treated adult zebrafish for 28 

days with Lactobacillus rhamnosus, a probiotic strain which is one of the main 

components of the commensal microflora of human intestinal tract and it is widely 

used as a probiotic in mammals to adult male and female AB  wild tipe zebrafish. 

We established differences between treated with probiotic strain and control 
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group in shoaling behavior pattern, using a Video Tracker software; we quantified 

brain-derived neurotrophic factor (BDNF) gene expression by using RT-qPCR; we 

at last analyzed the microbiota profiles within two experimental groups by sing the 

culture-independent methods such as Denaturing Gradient Gel Electrophoresis 

(DGGE) and Next-Generation Sequencing (NGS). The probiotic treated group, 

compared to the control group, showed a statistically significant near two-fold 

increase in BDNF gene expression, different shoaling behavioural pattern and a 

shift in microbiota composition with a significant increase of Firmicutes and a 

reduction of Proteobacteria.  

The results of each approach may support the existence of a microbiota–gut–brain 

axis, in adult zebrafish and in line with numerous animal studies we can speculate 

that microbiota manipulation could influence behavior and brain expression of 

BDNF.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

“The manner in which the secretions of the alimentary canal and of certain other 

organs … are affected by strong emotions, is another excellent instance of the direct 

action of the sensorium on these organs, independently of the will or of any 

serviceable associated habit.”  

“The Expression of the Emotions in Man and Animals” (Charles Darwin, 1872) 

Microorganisms have long been recognised as fundamental to the cause and 

prevention of human disease, as demonstrated by the early work of Lister, Koch 

and overall, Louis Pasteur wrote: 

“The role of the infinitely small in nature is infinitely great” 

 

This is particularly true of the microbial communities present in the 

gastrointestinal tract (GIT) of mammals and other vertebrates, termed the gut 

microbiota, which has received significant interest over the last decade. There is an 

increasing understanding of the role of the gut microbiota in maintaining health 

through immunomodulation, protection, nutrition and metabolism, disease and 

behavior.  
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1.1  Microbiota–Gut–Brain axis and its Impact 

Vertebrates microbiota  is a dynamic co-existing microorganism ecosystem, which 

has evolved in a mutualistic relationship with its host. This micro-ecosystem plays 

several crucial roles serving the host  in development, facilitation and functionality 

of the innate and adaptative immune response by protecting it against invasive 

pathogens; in nutrition, metabolizing complex lipids and polysaccharides that 

otherwise would be inaccessible nutrients. It also neutralizes drugs and 

carcinogens, modulating intestinal motility; microbiota regulates the intestinal 

barrier homeostasis and it makes visceral perception possible (Cryan and Dinan, 

2012; Montiel-Castro et al., 2013; Wang et al., 2013; Clements et al., 2014). The gut 

microbiota has played a crucial role in the bidirectional gut–brain axis that 

integrates the gut and central nervous system (CNS) activities, and thus the 

concept of microbiota–gut–brain axis is emerging. The microbiota - gut - brain axis 

represent a bi-directional communication system, comprised of neural pathways, 

such as the enteric nervous system (ENS), vagus, sympathetic and spinal nerves, 

and humoral pathways, which include cytokines, hormones, and neuropeptides as 

signaling molecules. Recent studies from animal models, supports a role of 

microbes as signaling components in the gut-brain axis. This communication has a 

bottom-up or top-bottom pathways (Bercick et al., 2012). CNS can influence gut 

microbiome (the constituent genome, protein and metabolites of the microbiota)  

through neural and endocrine pathways in both direct and indirect manners. The 

autonomic nervous system (ANS) and hypothalamus–pituitary–adrenal (HPA) axis 

that liaise the CNS and viscera can modulate gut physiology such as motility, 

secretion and epithelial permeability as well as systemic hormones, which in turn 
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affects the niche environment for microbiota and also host-microbiome interaction 

at the mucosae (Cryan and Dinan, 2012). The bottom-up regulation of the CNS by 

microbiome can be achieved through neural, endocrine, metabolic and 

immunological mechanisms. The neural pathway is operational through the 

enteric nervous system (ENS), a main division of the ANS that governs the GI 

functions, and vagal afferent nerves (VAN) that convey sensory information from 

viscera to the CNS (Wang et al., 2013). Interesting reviews report the recognition 

that the gut microbiota influences several signaling pathways led to the suggestion 

of the concept of a microbiota–gut–brain (MGB) axis (Rhee et al., 2009; Cryan and 

Dinan, 2012; Forsythe et al., 2012). The proposal of a MGB axis suggests that 

through a dynamic alignment, microbiota inhabiting the intestinal lumen affects its host’s CNS activity (including vegetative and cognitive functions), and vice versa 
brain activity impacts microbiota development and composition. 

 

1.2 Danio rerio: the translational opportunity  

The zebrafish (Danio rerio; superorder Ostariophysi, order Cypriniformes) native 

to Southeast Asia is an omnivorous freshwater teleost fish indigenous to the inland 

waters of Pakistan, India, Bangladesh, Nepal and Burma (Engeszer et al., 2007). 

Over the last 40 years, the zebrafish has emerged as a pre-eminent vertebrate 

becoming a popular model organism for biomedical research (Figure 1.1). 

Historically, it was Dr George Streisinger at the University of Oregon who brought 

zebrafish into the laboratory setting in the late 1960s to develop the forward 
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genetic techniques that would ultimately establish zebrafish as a robust research 

model (Roeselers et al., 2011). 

It has multiple advantages in biomedicine research. Zebrafish is an in vivo model 

and a vertebrate species with common conserved cell types, organs, and 

physiological systems (e.g., stress endocrine axis), it has sufficient physiological 

complexity and high physiological homology to humans and other vertebrates, 

genetically tractable organism with fully sequenced genome and easily 

manipulated genetically. Zebrafish also has a fast and abundant reproduction (e.g., 

a single female lays several hundred eggs each week), rapid development (hatching in <3 days and becoming mature by day 90) from ‘transparent’ eggs and 
transparent embryos (enables monitoring organ development and manipulating it 

in vivo – e.g., by injecting drugs or genes) All factors that make it  easy of genetic 

and other experimental manipulations. High space/cost-efficiency and excellent 

potential for high-throughput screens. Various zebrafish strains are available with 

over 1000 transgenic and mutant zebrafish strains. As a lower vertebrate, it 

respects the 3R principles (replacement, refinement, reduction) of the Directive 

2010/63/EU of the European parliament and of the council (Kalueff et al., 2014; 

Stewart et al., 2014). 

Zebrafish being physiologically homologous to mammals, it possesses also all 

major neurotransmitters, including neurotransmitter receptors, transporters, and 

enzymes of synthesis and metabolism, similar to those observed in humans and 

rodents and it is a relatively complex vertebrate species (Kalueff et al.,  2014a).  

Zebrafish are currently used to study a wide range of neurobehavioral domains, 

including anxiety and sociality (Gerlai et al., 2009; Gerlai 2014). Rose et al. (2007), 
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described fish behavior as simple and stereotyped. Recent studies demonstrate a 

complex behavioral patterns in zebrafish (Gerlai, 2010; Gerlai, 2014;). For 

example, affective disorders, such as exposed to stimuli that evoke fear or anxiety, 

zebrafish display a range of clear-cut quantifiable behaviors, including markedly 

reduced exploration, increased scototaxis (dark preference), geotaxis 

(diving/bottom dwelling), thigmotaxis (preference of peripheral areas), freezing 

(immobility) and erratic movements (sudden bouts of high-velocity darting with  

rapid successive turns) (Kalueff et al., 2013; Cachat et al., 2010; Wong et al., 2010; 

Egan et al., 2009;). These behavioral phenotypes are strikingly analogous to those 

of both rodents and humans. Anxiety is currently one of the most common human 

brain disorders, affecting millions worldwide. Zebrafish display well-developed 

functional neuroendocrine systems, generally homologous to those established in 

mammals. Similar to humans, stress responses in zebrafish are mediated by 

cortisol activated by the cascade of hypothalamo-putuitary hormones and acting 

via glucocorticoid receptors.  
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Fig. 1.1 Utility of zebrafish in biomedical research in 2004–2013. The number of 

PubMed publications (pie diagram) was assessed in December 2013 for various 

model organisms, yielding more than 532 000 publications for mice, 361 000 for 

rats, 54 000 for dogs, 34 000 for fruit flies, 15 000 for zebrafish, and 13 000 for 

nematodes (Caenorhabditis elegans). Line diagram shows normalized (expressed 

as % of total) number of publications per respective species (note that zebrafish 

publications display the sharpest increase compared with other animal models. 

Bottom left shows zebrafish in the phylogenetic tree and bottom right shows the 

comparative analyses of zebrafish brain versus other model organisms; note 

generally similar brain characteristics in zebrafish and mammals, including 

humans. (Stewart et al., 2014) 

 

It should be interesting to follow the zebrafish research in a historical perspective. Kalueff et al. (2014) in a recent paper wrote that “The history of Science can be 
both encouraging and ironic. 110 years ago, Ivan Pavlov won the Nobel Prize for 

his groundbreaking study of the physiology of digestion. This line of research has 

later contributed to his theory of conditioned reflexes (Pavlovian conditioning), for 

which Pavlov remains one of the world's most renowned and influential 
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physiologists. Back then, all “serious”science was performed in dogs, prompting Pavlov to acknowledge “man's best friend” in his 1904 Nobel lecture. He further 
expressed his gratitude by commissioning the world's first Monument to the Dog 

in 1935. One can only imagine what would happen if someone told the fiery Pavlov that “primitive” rats and mice will replace his beloved dogs, becoming the 
neuroscience's most popular model organisms for decades. Perhaps, Pavlov would 

have been even more surprised to learn that zebrafish are widely used today to study conditioning and other related complex CNS phenomena” (Kalueff et al., 
2014). It is also interesting to know that the reciprocal impact of the 

gastrointestinal tract on brain function has been recognized since the middle of the 

nineteenth century just through work of Ivan Pavlov, Claude Bernard, William 

Beaumont, William James and Carl Lange (Dinan and Cryan 2012).  

“Translational” concept is becoming crucial in biomedicine. It links human 
disorders to animal models and biomarkers using the “bench to bedside” approach 
(Kalueff et al., 2014).  

Animal models, in fact, are revealing how host genes impact the microbiome and 

how the microbiome regulates host genetic programs.  Model systems are 

revealing roles for the microbiome and its modulation in host physiology ranging 

from mate selection  to skeletal biology (Kostic et al., 2013; Maradonna et al., 

2013) lipid metabolism (Wang et al. 2011; Semova et al. 2012) hepatic stress and 

immunity (Gioacchini et al., 2014) and others studies presented above in this work. 

Furthermore, increasingly, data are showing that the gut microbiome has played a 

crucial role in the bidirectional gut–brain axis that integrates the gut and central 

nervous system (CNS) activities, with psychotropic effects, controlling canonical 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639412/#B159
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639412/#B131
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aspects of CNS, immunity, neurochemistry and behavior in health and disease 

(Bercik and Collins, 2014; Wang et al., 2013; Dinan et al., 2013; Dinan and Cryan, 2013; Savignac et al., 2013; O’Manhony et al., 2014;). Furthermore, the main goal of 

laboratory animal models is to recapitulate the mechanistic features of human 

diseases and health and to allow the intervention methods that could modify these 

mechanismsin the desired direction. 

The zebrafish (Danio rerio) in this case, with its microbiota, still among the 

simplest vertebrate models, is emerging as a powerful model system for studying 

the complexities of host–microbiota interactions (Kostic et al., 2013).  

 

1.3 How zebrafish can influence the current understanding of host-

microbiota interaction and gut-brain axis 

The relationship between gut microbiota and host physiology is an interesting  

translational area of zebrafish digestive system research. There is a high degree of 

homology between zebrafish and mammals not only in the adaptive immune 

system, but also in the digestive system. Zebrafish have a pancreas, gall bladder, 

liver, and intestine. The cells of the intestinal epithelium include absorptive 

enterocytes, goblet cells, and enteroendocrine cells similar to mammals. A lot of 

study support that the zebrafish could be used as an experimentally malleable 

system for modeling host–microbiota interactions in humans and animals (Rawls 

et al. 2006;. He et al., 2013; Rawls et al., 2004, 2006; Kanther, 2010;  Semova et al., 

2012; Brugman et al., 2009). Zebrafish also has innate and adaptive immune 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639412/#B118
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639412/#B118
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040438/#B102
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040438/#B101
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040438/#B54
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639412/#B131
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639412/#B131
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systems similar to higher vertebrates and it is studied for host-bacterial 

interactions too (Trede et al., 2004). 

In the freshwater zebrafish (Danio rerio), an experimentally induced lack of microbiota arrests the development of the species’ gut at specific points of 

differentiation, an effect than can, nevertheless, be reversed by the introduction of 

bacteria (Bates et al., 2006). An experiment by Rawls and collaborators (2006), 

revealed differences between mammalian and teleost microbiota  where a 

reciprocal gut microbiota transplant was performed between GF zebrafish and 

mice (Rawls et al., 2006). The gut microbes of the zebrafish microbe-transplanted 

mice resembled the gut microbes of conventional mice, rather than that of the 

mouse gut microbe-transplanted zebrafish. Similarly, the gut microbes of 

conventional zebrafish resembled the gut microbes of mouse gut microbe-

transplanted zebrafish. These experiments demonstrate that the gut sculpts the 

community it has to work with into a predefined shape heavily influenced by the 

host. This comparative metagenomic profiling of zebrafish and mouse gut 

microbiota revealed that they share six bacterial divisions, including 

Proteobacteria, Firmicutes, Bacteroidetes, and in lower abundance, 

Verrucomicrobia, Actinobacteria and Planctomycetes divisions. The observations 

of Rawls et al. (2006), raise the question of what host factors perform this 

sculpting and suggest that zebrafish will be a very useful model system to identify 

such factors.  

Danio rerio, has had their microbiota scrutinized via either culture dependent or 

independent techniques (Table 1.1). Roeselers et al. (2011)  revealed a “core microbiome” among this species, dominated by γ-Proteobacteria and enriched 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639412/#B118
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with a diverse assemblage of Fusobacteria species. Striking similarities were 

observed between the microbiomes of domesticated and wild individuals, implying 

a role for host selection on microbiota, and to an extent validating the conclusions 

of previous laboratory studies.  γ-Proteobacteria and Fusobacteria classes were 

the most dominant constituents of the microbiota and were shared by all fish, 

despite the relatively large geographical and generational distances that separated 

them. The selective pressures of the zebrafish intestinal environment appear to 

favor a highly specific collection of microbes influenced by host anatomy, 

physiology, nutrient availability, and immunology (referred to as gut habitat 

effects) much more strongly than the effects of dietary differences or environment 

which may be expected to be important factors in mammals (Kostic et al., 2013). 

The intestinal microbiota dysbiosis in zebrafish with inflammatory bowel disease 

(IBD)-like colitis was characterized by an increased proportion 

of Proteobacteria and a decreased of Firmicutes. This condition is present at the 

same time in human gut microbiota associated with IBD and in chronic 

inflammatory diseases.  (He et al., 2013). There is also increasing evidence that 

dysbiosis modulates peripheral and central nervous system function, leading to 

alterations in brain signalling and behaviour (Bercik et al. 2011; Collins et al. 

2013;). Inflammatory bowel disease can be modeled in zebrafish also using a 

chemical called oxazolone, which induces intestinal inflammation (Brugman et al. 

2009). In zebrafish treated with the antibiotic vancomycin, Fusobacteria became 

the dominant phyla in the gut microbiota, and the inflammatory response 

observed in response to oxazolone was markedly decreased. Treatment with 

colistin sulfate increased γ-Proteobacteria in the gut microbiota, and these 
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zebrafish developed intestinal inflammation in response to oxazolone treatment. 

These results demonstrate that certain members of the microbiota, such as the γ-

Proteobacteria, may help drive intestinal inflammation in an experimental model 

of colitis and may increase propensity for inflammatory responses in the 

gastrointestinal tract. Animal studies in general, have demonstrated that the early 

phase of enteric infection is accompanied by anxiety-like behavior, which is 

mediated through vagal ascending pathways. Chronic infection alters gut function, 

including motility and visceral sensitivity, as well as feeding patterns, anxiety and 

depression-like behavior. (Bercik and Collins 2014). The high co-morbidity 

between stress-related psychiatric symptoms such as anxiety with gastrointestinal 

(GI) disorders including irritable bowel syndrome (IBS) and inflammatory bowel 

disorder (IBD) is further evidence of the importance of the gut-brain or brain-gut 

axis. Thus, modulation of the brain-gut axis is being seen as an attractive target for 

the development of novel treatments for a wide variety of disorders ranging from 

obesity, mood, and anxiety disorders to GI disorders such as IBS (Dinan and Cryan, 

2013). These studies, associated with those conducted on  zebrafish, revealed this 

widely used cyprinid fish, as a valuable vertebrate developmental model, 

interesting to study gut microbiota ontogenesis, host-microbiota and host-

pathogen interactions by a multidisciplinary approach to the study of both health 

and disease. In this regard, we can understand the bidirectional signaling between 

the microbiota, gut and brain, in zebrafish underlie potential and significant 

impacts on human and animal health, opening new research prospective and 

preventive and therapeutic opportunities.  

 



24 

 

Table 1.1 Studies evaluating the diversity of zebrafish associated microbial 

communities 

 

 

1.4 Probiotics manipulate the microbiota   

Probiotic studies are among the most commonly carried out to support a 

relationship between gut microbiota and brain and behavior and data is now 

emerging using different models to support the contention that a variety of other 

potential probiotics can exert psychotropic potential (Dinan and Cryan, 2013). Probiotics, from the Greek, meaning “for life”, are live organisms that, when 
ingested in adequate quantities, exert a health benefit on the host. They have been 

reported to have a widerange of effects in both human and animal studies (Cryan 

and Dinan, 2012). The first formal description of a probiotic was provided by Elie 

Metchnikoff in 1908, based on his observation that individuals who lived in a 

certain region of Bulgaria had a longer life span than those in other parts of the 

country, a fact that he related to the regular consumption of a fermented milk 

product. In 1912, in a special contribution to Cosmopolitan, Metchnikoff wrote  “In 

Study Organ Tecnique 
Phyla (in order of 

abundance) 

Semova et al., 

2012 
Hindgut 

16S/454 

Pyrosequencing 

Firmicutes, 

Proteobatceria, 

Bacteriodetes + minor 

phyla 

Roeselers et 

al., 2011 

Intestinal 

mucosa 

16S/454 

Pyrosequencing, Sanger 

sequence, TRFLP 

profiling 

Proteobacteria, 

Fusobacteria, 

Firmicutes, 

Actinobateria 

Cantas et al., 

2012 

Intestinal 

contents 

13 16S/Culture + Sanger 

Sequencing 

Gamma-

proteobacteria, beta-

proteobatceria, alpha-

proteobatceria, 

firmicutes 

Merrifield et 

al., 2013 
Hindgut 

16S/DGGE + Sanger 

sequencing 

(no order) 

Fusobacteria, 

Gammaproteobacteria 
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effect, we fight microbe with microbe…there seems hope that we shall in time be able 

to transform the entire intestinal flora from a harmful to an innocuous one…the 

beneficent effect of this transformation must be enormous” , (Bested et al., 2013).  

The idea of manipulating gut microbiota of fish developed as a consequence of the 

fact that potentially beneficial bacterial communities such as lactic acid bacteria 

(LAB) naturally constitute only a minor proportion of intestinal microbiota of fish 

or shellfish (Ringø et al., 2010). LAB are a group of Gram-positive rods and cocci 

that are non-sporing, lacking catalase and oxidase (cytochrome c), and are 

fermentative in Hugh–Leifson medium (Merrifield and Ringø, 2014). The group of 

LAB represents a large part of the microbiota of vertebrates  and their beneficial 

effects on the immune system, gastrointestinal tract, and reproduction,  have been 

widely reported. (Avella et al., 2012). In a recent study,  Lyte (2011) hypothesizes 

the ability of probiotics to synthesize neuroactive compounds and these probiotics 

have the potential to act as psychotropic agents. Furthermore the ability of certain 

probiotic bacteria, such as Lb. rhamnosus (JB-1), to influence emotional behavior in 

mice has been shown to be mediated via GABA receptors (Bravo et al., 2011). 

Certain strains of Lactobacillus and Bifidobacterium secrete gamma-aminobutyric 

acid (GABA). This is the main inhibitory neurotransmitter in the brain regulating 

many physiological and psychological processes, with dysfunction in the system 

implicated in anxiety and depression. Other essential neurotransmitters such as 

serotonin (5-HT), norepinephrine and dopamine (DA) are also produced by 

microbes. For example, certain Lactobacillus and Bifidobacterium species produce 

gamma-aminobutyric acid; Escherichia, Bacillus and Saccharomyces spp. produce 

noradrenaline; Candida, Streptococcus, Escherichia and Enterococcus spp. produce 
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5-HT; Bacillus produces DA; and Lactobacillus produces acetylcholine (Dinan et al., 

2014). Serotonin functions as a key neurotransmitter at both terminals of the gut-

brain axis and emerging data implicates the gut microbiota influence on 

tryptophan metabolism and the serotonergic system and therefore, on behavioral effects (O’Mahony et al., 2015). A recent studies have shown that fatty acid 
concentrations in the brain (including arachidonic acid and docosahexaenoic acid) 

are elevated in mice whose diets were supplemented with the Bifidobacterium 

breve strain NCIMB 702258. Arachadonic acid and docosahexaenoic acid are 

known to play important roles in neurodevelopmental processes, including 

neurogenesis, can alter neurotransmission and protect against oxidative stress. 

Moreover, their concentrations in the brain influence anxiety, depression and 

learning and memory. Further study present in different reviews showing that 

certain probiotic strains can modulate various aspects of brain function and 

behaviour, some of which are vagus dependent (Cryan and Dinan, 2012). 

Genetic, nutritional and environmental parameters  affect the abundance and 

diversity of gut microbiota in fish. The manipulation of fish gut microbiota will 

result in elevation of resistance against pathogens, growth enhancement, improved 

lipid metabolism, stimulation of immune response and better physiological status 

for the gut (Llewellyn et al.,2014). Thus, strategies for the manipulation of gut 

microbiota of fish toward beneficial communities are developing (e.g., lactic acid 

bacteria) (Ringø et al., 2014). Although the mechanisms by which probiotics exert 

their beneficial effects on the host are largely unknown, probiotic administration 

showed promising results on growth performance and health of teleost fish 

(Llewellyn et al., 2014). The zebrafish has become an important model for 
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assessing the gut microbiota of vertebrates (Rawls et al. 2004; 2006; Carnevali et 

al. 2013) and this model has also been used to assess the efficacy of potential 

probiotic colonization and GI microbial modulation. Two further studies have also 

verified that Lb. rhamnosus (strain IMC 501®) has good capacity to populate the GI 

tract of zebrafish at multiple life stages (Avella et al. 2012; Gioacchini et al. 2012). 

The administration of Lactobacillus strains in teleosts has shown varying degrees 

of success. Studies which have successfully modulated the GI microbiota of fish 

with Lactobacillus strains have demonstrated that these changes can often lead to 

the improvement of general animal welfare in terms of survival, immune status, 

growth performance and/or stress response (Dimitroglou et al. 2011). Probiotics 

benefit the host by improving either disease resistance, health status, growth 

performance, feed utilization, stress response, which is achieved at least in part via 

improving the hosts or the environmental microbial balance. 

The potential consequences of modulation of gut microbiota are here emphasized, 

considering overall the communication pathways between the gut microbiota and 

the brain. To our knowledge numerous putative studies were conducted on 

probiotics and, in general, on microbiota in zebrafish but no one was found to 

describe the demonstrable impact of modulation of microbiota on behavior and 

neurochemistry expression. We conclude by providing same prospective 

considering, zebrafish a potential animal model to understand this bidirectional 

communication, to continue to provide mechanistic insight and proof-of concept 

studies. This study could be translated in human and animal in future.  
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CHAPTER 2 

GENERAL METHODS 

 

2.1 Overview 

All housing, feeding  and behavioural experiments were carried out at the 

University of Napoli Federico II, Stabulario di pesci rettili ed anfibi, Department of 

Biology; Real time PCR was conducted in the laboratory of Genetic, Department of 

Biology University of Napoli Federico II; DGGE and NGS were conducted at 

Laboratories of the School of Biological Science, Plymouth University, UK. The 

general procedures and analytical techniques, which were used in the present 

study, are listed in this chapter. Further methods and techniques specific to 

individual experiments are described in their respective methodology sections in 

the relevant experimental chapters. All fishes were treated in accordance with the 

Directive of the European Parliament and of the Council on the Protection of 

Animals Used for Scientific Purposes (directive 2010/63/EU) and in agreement 

with the Bioethical Committee of University of Napoli Federico II. All experimental 

works involving fish were conducted in accordance with the Ethic Committee, 

under authorization with protocol number 47339-2013. 
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2.2 Experimental fish and husbandry 

 

During the present research project 72 zebrafish (Danio rerio) wild-tipe AB were 

used to conduct the experimental analysis, divided in three biological identical 

replicates.  

Adult 4–6-month-old male and female zebrafish (~ 30:70%) of heterozygous “wild type” strain were obtained from local commercial distributors (Carmar sas, 
Napoli) (photo 2.1). All fish were given at least 14 days to acclimate to the 

laboratory environment and housed in groups of 12 fish per 30-L tank. All tanks 

were filled with deionized water before introducing the fish. Fishes were fed two 

times daily with commercial food (SERA Vipagran®, Germany). The fish were fed 

the diets at 1.5%–2% of bodyweight per day automatically using Rondomatic 400 

(Grässlin, Germany). Two experimental groups were evaluated: a control group 

(CTRL), which was fed twice with a commercial diet only and a probiotic-treated 

group (PROBIO), which was fed twice the commercial diet and twice with the 

lyophilized probiotic strain Lactobacillus rhamnosus. The room and water 

temperatures were maintained at 25–27 °C. Illumination (1010 ± 88 lx) was 

provided by ceiling-mounted fluorescent light tubes on a 14-h cycle 
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(D:N=14h:10h) consistent with the standards of zebrafish care (Westerfield, 

2000). All fish used in this study were experimentally naïve. 

 

2.3 Probiotic administration 

The probiotic strain used was Lb. rhamnosus IMC 501, provided by Synbiotec s.r.l. 

at a final concentration of 106 colony-forming units/g (0,01 g/l) for 28 days. The 

fish were fed twice per day with the lyophilized probiotic strain Lactobacillus 

rhamnosus, automatically, using Rondomatic 400 feeder (Grässlin, Germany). 

(Figure 2.2) 

 

2.4 Water quality 

During the trials, water quality parameters such as temperature, oxygen and pH in 

the system were measured daily. The water temperature was maintained at a 

suitable temperature (25 – 27,5 °C) throughout the experiments with a 

thermostatically controlled chiller (Askoll, 50 Watt). The system pH was adjusted 

with sodium bicarbonate (NaHCO3) as necessary to maintain the level within the 

desired range (pH 6.5 - 7.5) and the dissolved oxygen levels were maintained 

above 80% with additional aeration provided by a side supply of compressed air. 

Water conducibility was 300-600 microsiemens. 

Total ammonia, nitrite and nitrate were measured weekly by using commercial 

kits and cuvettes for ammonia, nitrite and nitrate (Askoll Test, Italy). The following 
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levels of nitrogenous compounds were considered acceptable: NH3/NH4+ = 0 

mg/L; NO2- = <0.25 mg/L; NO3- = <0.25 mg/L  These levels were controlled three 

times/week with partial changes of water when necessary. 

 

2.5 Fish euthanasia and dissection 

Fishes were euthanized by immersion in overdose 500 mg/ L-1 of 3-aminobenzoic 

acid ethyl ester (MS-222) buffered to pH 7.4 (Sigma–Aldrich, USA) (Photo 2.2). To 

avoid possible external contamination while removing the intestine, the surface of 

each fish was cleaned using 70% Industrial Methylated Spirits (IMS). Under aseptic 

conditions, under a light source, fish were dissected, with sterilized micro surgical 

blade and forceps, where brain and the GI tract were entirely excised. Each tissue 

was replace into individual sterile 1.5 mL micro centrifuge tubes (MCT) with 1 ml 

of RNAlater® sterile solution (Life Technologies, USA) and stored at -80°C until 

use for analysis. (Fig 2.1) 

 

 

Figure 2.1 Representation of tissue storage at -80°C 
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Figure 2.3 Representation of the automatic feeder and probiotic administration 

 

 

 

 

Photo 2.1 Adult zebrafish ( Danio rerio) AB wild type strain used. 
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Photo. 2.2 Euthanasia by immersion in overdose 500 mg/ L-1 of 3-aminobenzoic 

acid ethyl ester [MS-222] buffered to pH 7.4 
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CHAPTER 3 

CAN PROBIOTICS MODULATE ZEBRAFISH BEHAVIOR? 

 

3.1  Abstract 

The zebrafish (Danio rerio) is a well known model organism in translational 

neuroscience and behavioural research. It is increasingly utilized in biomedical 

and psychopharmacological research aimed at modeling human brain disorders. 

Abnormal social behavior represents the core symptom of several 

neuropsychiatric and neurodevelopmental disorders. The zebrafish is a highly 

social species and has been proposed for modeling such disorders. Behavioral 

paradigms that can induce zebrafish social behavior are of importance. It has some 

advantages over other vertebrate species used in biomedical research that stem 

from its prolific nature, preference to form tightly packed groups (shoals), and the 

fact that it has been a preferred subject of geneticists for the past few decades 

(Gerlai, 2014). A growing body of data supports the hypothesis that probiotics can 

exert psychotropic effects. Recently, it has been demonstrated that in mice the 

probiotic Lactobacillus rhamnosus impacts behavior and produces neuroactive 

substances such as GABA and serotonin, which act on the brain-gut axis (Dinan et 

al., 2013). Here the putative link between the enteric microbiota and brain 

function was tested by analyzing the effects of L. rhamnosus on behavioural 

swimming pattern (movement in space and time) (Gerlai, 2014) in zebrafish. In 

this study probiotic fed group and control one shoal differently. These measures 

was determined by using a 2D video tracking  analysis and modeling tool. 
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3.2 Introduction 

 

Photo 3.1 Zebrafish Shoaling 

 

Shoaling is a typical group forming behavior often seen in cyprinids (Cyprinidae), a 

family of fish to which the zebrafish belongs. Shoaling can also be observed in a 

wide-variety of marine fish and other organisms as well (Brierley and Cox, 2010). 

Shoaling is best defined as aggregation behavior that leads to conspecifics being 

distributed in the given area of space or “body of water”, closer to each other than 
what would be expected in case of stochastic distribution (Photo 3.1). A lot is 

known about the adaptive function of shoaling. Forming groups among multiple 

individuals has been shown for example, to reduce the risk of predation confusing 

predators by the movement of several individuals and thus cannot focus on a 

single target. Many eyes and other sensory organs in the shoal may be able to 

detect an approaching predator sooner and more efficiently. Shoaling may also 

facilitate finding food and may make it easier to find and stay close to potential 

mates. However, it is notable that the function of shoaling may vary across species 

as it may be dependent upon the specific evolutionary past and ecological 

characteristics of the abiotic and biotic environment of the given species. For 
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example, shoaling has been found to enhance (and not reduce) predation risk in 

some marine fish. Yet in other species, specific environmental constraints, e.g. 

oxygen depletion in the middle of large swarms of krills or shoals of sardines, may 

also influence shoaling behavior while in other species such factors may play no 

role (Brierley and Cox, 2010). Whatever the actual adaptive function of shoaling 

may be in zebrafish, it has been observed both in nature (Engeszer et al., 2007) and 

in the laboratory (Buske and Gerlai, 2011 and Saverino and Gerlai, 2008) as one of 

the most robust and consistent behavioral features of this species (Gerlai, 2014). 

Probiotic studies are among the most commonly carried out to support a 

relationship between gut microbiota and brain and behavior. The impact of 

Lactobacillus rhamnosus on behavior is also evaluated in mice. Animals fed Lb. 

rhamnosus demonstrated reduced anxiety on a variety of behavioral measures. The 

study provided compelling evidence to indicate that the vagus mediates the 

behavioral effects of Lb. rhamnosus. A growing body of data is emerging using 

different models to support the contention that a variety of other potential 

probiotics can exert psychotropic potential (Dinan and Cryan, 2013). To our 

knowledge this is the first study focused on the correlation among dietary 

supplementation of probiotics and behavioral pattern changing in zebrafish. This 

study is focused on zebrafish shoaling behavior with the aim to compare the main 

differences  between the group fed with the probiotic strain, Lactobacillus 

rhamnosus and the control one as described in general chapters 2.2 and 2.3. 

3.2.1 Automated behavioral analyses  

Zebrafish prefer to swim in shoals and the disruption of this group-forming 

behavior by various environmental, pharmacological, or genetic factors can be 
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easily assessed by using video tracking tools. This “part of aggregation behavior” 
has an oscillating dynamic, and this behavior can be quantified manually or using 

automated video-tracking systems, assessing several endpoints, including the 

average inter-fish distance; shoal area size; proximity (time each member of the 

shoal spent within a specified distance from each other); nearest and farthest 

neighbor distances; time spent in shoal; time spent away from shoal; number of 

animals leaving the shoal and polarization (reflecting the uniformity of heading) 

(Kalueff et al., 2013). Behavioral phenotypes are the most complex product of CNS 

activity, and the availability of reliable video tracking techniques markedly 

empowers neurobehavioral analyses in zebrafish (Stewart et al., 2014). Video-

tracking has been broadly applied to fish research including zebrafish focusing on 

swimming mechanics and detection of multiple subjects in shoaling studies 

(Cachat 2010). For example, both commercial and custom-made video tracking 

systems are used to assess larval and adult zebrafish behavior. Such automated 

observations are particularly suitable for measuring loco-motor responses (e.g., 

distance traveled or speed/velocity, turning, etc.) These software systems often 

have modular structure and are standardized, user-friendly, and coupled with 

thoughtfully designed hardware. Although not inexpensive, these packages are 

also validated by multiple international users, and typically come with regular 

upgrades and technical support, which becomes especially useful from a practical 

point of view. Offering a free alternative, the custom-made tracking systems are 

also available from different laboratories worldwide and can be useful for various 

specific neurophenotyping tasks and experimental set-ups in zebrafish. (Stewart et 

al., 2014). Same reports have either applied 2D (one camera) video-tracking 

methods to assess fish stress-related behaviors or used 3D (two cameras) video-
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tracking as well as high sampling rate to characterize fish swimming, including 

assessment of zebrafish neurotoxic phenotype (Cachat 2010).  Gerlai, (2014) 

dimonstred that three-dimensional presentation of the shoal stimulus is not really 

required to evaluate shoaling response, making sufficient zebrafish images moving 

back and forth on a 2D flat surface (the computer monitor). 

 

3.3 Materials And Methods 

3.3.1 Animals and housing 

Adult 4–6 month-old male and female zebrafish (~ 30:70%) of heterozygous (AB) “wild type” short-fin strain were obtained from local commercial distributors 

(Carmar sas, Napoli). The AB strain is frequently used in behavioral neuroscience 

(Nowicki et al., 2014). All fish were given at least 10 days to acclimate to the 

laboratory environment and housed in groups of 12 fish per 30-L tank. All tanks 

were filled with deionized water before introducing the fish. The fish were fed at 

1.5%–2% of bodyweight per day automatically. Two experimental groups were 

evaluated: a control group (CTRL), which was fed twice per day with a commercial 

diet (SERA Vipagran®, Germany) and a probiotic-treated group (PROBIO), which 

was fed twice per day the commercial diet and twice per day with the lyophilized 

probiotic at a final concentration of 106 colony-forming units/g for 28 days. The 

probiotic strain used was L. rhamnosus IMC 501, (provided by Synbiotec s.r.l. 

Camerino, Italy) The room and water temperatures were maintained at 25–27 °C. 

Illumination (1010 ± 88 lx) was provided by ceiling-mounted fluoreshent light 

tubes on a 14-h cycle  consistent with the standards of zebrafish care (Westerfield 

javascript:void(0);
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M., 2000). All fish used in this study were experimentally naïve. The experiment 

was performed in biological duplicates.  

3.3.2 Apparatus and behavioral testing 

Two identical experimental setups were run in parallel (Figure 3.4). Twelwe 

zebrafish were evaluated for each tank. Fish swimming behavior was video-

recorded between 14:00 and 15:00 h on the first day of probiotic treatment (T0) 

and successively at 7 days intervals (T1-T4). Recording was performed next the 

tanks with a Nikon D7000 camera for 6 min, acquaried and analysed with 2D video 

tracking analysis and modeling tool (Tracker, California, USA) built on the Open 

Source Physics (OSP) Java framework (www.cabrillo.edu/~dbrown/tracker/) 

(Figure 3.2). This software allows to analyze a video clip or an image in order to 

determine multiple variables. The program is designed to be used in physics 

experiments in order to easily estimate the acceleration and velocity and distance 

of a certain object. In line with Gerlai (2014), the video the tracking data were used 

to determine following behavioral measure: Average Distance (AD); Distance 

Variance (DV); Nearest Distance (ND); Occupied Area (or Shoal size area) (OA) 

and Water column position (CP). In particular AD represents the Inter-

individual distance and it defines and calculates the average of all distances 

between a focal fish and its shoal members. Each focal fish within a shoal thus will 

get an inter-individual distance value and this value is calculated for any given 

moment of time sampled. The disadvantage of this measure, however, is that it is 

dependent upon the size of the shoal, i.e. the number of individuals that make up 

the shoal. The larger the number of such individuals and larger the inter-individual 

distance value will be. ND calculates the nearest distance of each single fish from 

http://www.cabrillo.edu/~dbrown/tracker/
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its neighbor. Thus again, each fish of the shoal will receive a nearest neighbor 

distance (Gerlai, 2014). Contrary to AD, ND is independent from shoal size. DV or 

the variability of inter-individual distance is the variance of the distances between 

the focal fish and all of its shoal members. Thus again, each focal fish gets a 

variance of inter-individual distance value for any given moment of time. Notably, 

this variability represents the relative position of the given focal fish within a 

shoal. The mean of variances of inter-individual distances when calculated for the 

entire shoal represents the homogeneity of the distribution of fish within that 

shoal. The less uniformly the shoal members are distributed the larger the 

variance will be. It is important to note that the inter-individual distance takes the 

position of every fish in the shoal into account and thus it is the most informative 

measure of shoal cohesion. OA is an additional measure in this study and it 

calculates the occupied area of all animals in a temporal unit on a two-dimensional 

plane. CP is another measure added in this study (after the differences showed by 

two group. It represents  the water column position and indicates the preference of 

animals to occupy the upper or the lower (part) half of the tank. It was estimated 

as the % number of animals that stay in the lower part of the tank during the 

period of observation.  

For AD, DV and ND measurement each fish was tracked on six randomly selected  

20 frame (2fps) intervals of each video. For OA and CP analysis it was used ImageJ 

1.49 software (National Institute of Mental Health, Bethesda, Maryland, USA) to 

select the areas occupied and the side of water column preferred by each fish in all 

video collected (Figure 3.3). Ten images were randomly selected from each video. 
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ImageJ is a public domain Java image processing program inspired by NIH Image 

for the Macintosh (http://imagej.nih.gov/ij/docs/intro.html). 

 

 

 

Figure 3.2 representative illustration of the typical set up of the shoaling test (left) 

and application of video tracking tool (Tracker) (right), to quantify zebrafish 

behavior. 

 

 

 

Figure 3.3  illustrates ImageJ softwere used to select the areas occupied and the 

side of water column  preferred by each fish in all video collected. 

 

 

http://imagej.nih.gov/ij/docs/intro.html
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Figure 3.4 Screenshots of a video recordeding at different time of 

experimentation: a, PROBIO T0; a1, CTRL T0; b, c, d and e represent respectively 

T1, T2, T3 and T4 of experimental observation, left tank is PROBIO group and right 

tank is CTRL group.   

 

3.3.3  Statistical  Analysis  

Results are reported as means ± SE. Two-way ANOVA with Sidak’s post-hoc test 

was used to evaluate the significance of the effect of the probiotic treatment, using 

GraphPad Prism version 6.00 for Windows (GraphPad Software, La Jolla California 

USA, www.graphpad.com). 
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3.4  Results 

Using the above measures of shoal cohesion we have discovered that zebrafish fed 

with probiotics shoal differently by the second week (T2) until the end of 

administration (T4) (Fig. 3.5 and 3.6) 

In particular the AD is not significant different between two groups. The inter-

individual distance value increased in both CTRL and PROBIO from the second 

week until the end of experiment (Two-way ANOVA, p<0.001).  

Noteworthy is the DV that changes from the second week of treatment with a 

significant difference between the two groups. The probiotic treated group was 

more uniform and showed a bigger and costant homogeneity of the distribution of 

fish within the shoal throughout the whole period of treatment. The ND displayed 

significant dependence from both treatment (two-way ANOVA, p<0.05) and time 

(two-way ANOVA, p<0.01). However, despite the tendency of ND to be lower in the CTRL group, a significant difference was evident at T4 only (Sidak’s post-hoc test, 

p<0.05). The area occupied or shoal size area (AO) was significantly affected by 

both tretment (p<0.01) and time (p<0.01). Except that at T1, the probiotic treated 

group displayed a larger AO then control group particulary evident during the third and fourth week, when we can see significant differences (Sidak’s post-hoc 

test, p<0.01). About the water column preference (CP) the two fish groups showed 

from the second week a completely different behavioral pattern in term of 

preferences of location in the water column; this result is correlated with area 

occupied. From T2 the position for the control group changed completely and 

fishes spent most of the time in the upper side of the tank while the probiotic 
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treated group preferred the medium/deeper part of the tank occupying most of 

area of tank. 

 

 

 

Figure 3.5 AD, DV and ND measurement at different time of experimental 

observation obtained with Tracker software and analysed statistically. DV The ND 

displayed significant dependence from both treatment (two-way ANOVA, p<0.05) 

and time (two-way ANOVA, p<0.01) and at T4 Sidak’s post-hoc test, p<0.05 
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Figure 3.6 OA (up) and CP (down) measurement at different time of experimental 

observation obtained with ImageJ software and analysed statistically Two-way ANOVA, p<0.001 and (Sidak’s post-hoc test, p<0.01). 

 

3.5  Discussion and Conclusion 

Video-tracking of zebrafish yields objective analysis of behavioral endpoints and 

therefore provides researchers with an important tool for the investigation of 

behavior in this animal model. Furthermore, such standardization promotes 

reproducibility in experimental design, strengthening the investigator’s ability to 
draw valid conclusions from zebrafish study data and results. Research on the 
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molecular biology and genomics of probiotics has focused on the interaction of gut 

microbiota with the immune system, brain development, potential as an anticancer 

agent and potential as a biotherapeutic agent in many diseases. In a study rats fed 

Lb. rhamnosus demonstrated reduced anxiety based on a variety of behavioral 

measures. The study provided compelling evidence to indicate that the vagus 

mediates the behavioral effects of Lb. rhamnosus (Dinan and Cryan 2013). Here in 

our study probiotic fed group and control one shoal differently from the second 

week until the end of observation. In particular the lower value of distance 

variance (DV) in the probiotic treated group, meaning more homogeneity of the 

distribution of fish within that shoal (Gerlai et al.,2014), suggest us a different 

signal in the shoal behavior. With regard to the nearest distance (ND), the fishes in 

control group swam closer together then probiotic treated group. In this case the 

shoal pattern may be associated to more anxiety/fear that causes the shoal to “tighten” (the fish swim closer together) (Kalueff et al.,2013b). The larger occupied 
shoal area (OA) by probiotic treated group suggests an increased exploration area  

with a preference in the middle/deeper part of the water column of the tank. In 

contrast, the control group showed a reduced shoaling area occupying most of 

time to the top of the tank. This different behavior might be explained with an 

increasing of attention or possibly alert in the probiotic treated group. Blaser and 

Goldsteinholm (2012) supposed that aerial predation provides selective pressure 

on defensive behavior in zebrafish, making avoidance of the water surface more 

adaptive than seeking cover near the bottom.  Further study will be needed to 

determine the mechanisms as well as the ontogeny of this behavioral differences. A 

lot of individual study on zebrafish were performed and individual differences in 

activity were found in zebrafish behavior (Tran and Gerlai, 2013) and although 
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there is currently a relatively small group of highly trained zebrafish 

neuroscientists and pathologists, the field is expanding rapidly (Kalueff et al., 

2014). Testing grouped zebrafish produces more homogeneous data and preserves 

their behavioral repertoire, but requires more laborious or sophisticated data 

acquisition and analysis. Such conditions may favor the study of more complex 

behaviors such as those involved in sophisticated cognitive and social interactions 

that are often challenging to investigate in rodents (Pagnussat et al., 2013).  

Overall this study represents the first video tracking shoaling analysis of adult 

zebrafish group treated with a probiotic strain such as Lb. rhamnosus.  This study 

has shown how a probiotic strain can modulate the behavior of zebrafish in term of 

shoaling. Therefore it provides a basis for further studies on the gut-brain axis in 

Danio rerio.  Although human behavior will never be similar to fish responses (and 

vice versa), the evolutionarily conserved nature of complex CNS traits suggests 

that many human and zebrafish phenotypes share common genetic and 

physiological factors, representing an exciting emerging field for further 

translational studies in neuroscience (Stewart et al., 2014). The same concept is 

valid for other vertebrates. Taken together, these results confirm zebrafish as a 

valid, reliable, and efficacious model for basic translational research to understand 

with further studies the microbiota-gut-brain axis.  
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CHAPTER 4 

CULTURE-INDEPENDENT METHODS FOR MICROBIOTA EVALUATION 

IN ZEBRAFISH (DANIO RERIO) TREATED WITH L. RHAMNOSUS AND 

CONTROL GROUP: DENATURING GRADIENT GEL ELECTROPHORESIS 

(DGGE) AND NEXT-GENERATION SEQUENCING (NGS) 

 

4.1 Abstract 

Methods of measuring bacterial communities are rapidly improving. The earliest 

and most traditional technique is the culture-dependent method. In recent 

decades, microbiologists have developed new culture-independent techniques to 

obtain a better representation of bacterial communities present in host organisms, 

for example denaturing gradient gel electrophoresis (DGGE) and temperature 

gradient gel electrophoresis (TGGE) (Sevellac et al., 2014), PCR-random amplified 

polymorphic DNA (RAPD) (Spanggaard et al., 2000), fluorescence in situ 

hybridization (FISH) (Huber et al., 2004) and clone libraries (Kim et al., 2007). 

These approaches are useful in that they offer new opportunities for detection and 

identification of the microbiota, leading to a broader understanding of the 

microbial composition in the gastrointestinal tract (GIT) of fish. In contrast few 

studies have applied Next-Generation Sequencing (NGS) methods to investigate 

the microbiome of vertebrates in their natural environment and in freshwater 

fishes in particularly (Sevellec et al., 2014). The capability of high through-put 

sequencing of 16S rRNA gene sequences by means of Next Generation Sequencing 

(NGS) technologies has been pivotal in facilitating the discovery of gut microbiota 

biodiversity. The Ion Torrent PGM instrument represents a recently 

commercialized bench-top NGS platform and is marketed as being less costly and 
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with a faster turnaround as compared to other NGS techniques such as the 454 and 

Illumina platforms (Milani et al., 2013).  Therefore, the aim of this study was to 

gain a better overall understanding about differences in the GIT microbiota 

between a group of zebrafish (Danio rerio) treated with L. rhamnosus IMC 501 and 

control groups by using DGGE and NGS technologies. Here we use the Ion Torrent 

PGM (Personal Genome Machine) technology to allow a more complete description 

of complex bacterial communities and biodiversity of the zebrafish (Danio rerio) 

gut. The average of observed taxonomical units (OTUs) detectable in the probiotic 

group increased compared with control group, therefore this study indicates that 

dietary supplementation of Lb. rhamnosus modulates intestinal microbial 

communities of zebrafish. Feeding zebrafish probiotic Lb. rhamnosus showed a 

significant increase of Firmicutes phylum and, although not significant, a reduction 

of Proteobacteria the greather microbiota present in dysbiosis, supporting the 

antagonistic activity role of this probiotic strain. 

 

4.2  Introduction 

Vertebrate species host a considerable bacterial diversity, which may influence 

their development, physiology, immune system and nutrition. The relationships 

between bacteria and their hosts consists in four types. The first two types are 

commensal bacteria, which may either have beneficial or neutral effects on the 

host. The second type has a symbiotic obligatory relationship with the host, thus 

allowing a mutual benefit between symbiotic bacteria and host. The third type is 

opportunistic bacteria, which are facultative pathogenic bacteria that may become 
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actively pathogenic when the host immune system is impaired and unable to fight 

off infection. The fourth type of relationship pertains to pathogenic bacteria which 

are responsible for infectious diseases (Sevellec et al., 2014). The group of Lactic 

acid bacteria (LAB) represents a large part of the microbiota of vertebrates and 

their beneficial effects on the immune system, gastrointestinal tract and 

reproduction, have been widely reported. Lactobacillus rhamnosus, is one of the 

main LAB components of the commensal microflora of human intestinal tract and 

it is widely used as a probiotic in mammals (Avella et al., 2012). A number of 

recent studies have evidenced the positive role of Lb. rhamnosus on zebrafish 

gamete quality, spawning rates, oocyte growth and maturation, larval 

development, fecundity, backbone calcification and the expression of genes which 

regulate growth, development and immunity (Table 4.1) (Carnevali et al., 2014a). 
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Tab. 4.1: Parameters investigated of administration of Lb. rhamnosus on zebrafish 

 

Genera abbreviations: B. = Bacillus, Lb. = Lactobacillus. 

Parameters investigated: DR = disease resistance, GM = gut microbiota (inclusive of GI probiont 

recovery), F= fecundity/gonadal development/spawning rates etc.,  

GP = growth performance,  

IR =immunological/haematological response, 

PA = pathogen antagonism 

(Carnevali et al., 2014 10 Probiotic Applications in Temperate and Warm Water Fish Species.) 

 

 

The intestinal microbial communities and their metabolites play an integral role in 

the ontogeny of teleosts. (Cerf-Bensussan and Gaboriau-Routhiau, 2010; Merrifield 

et al., 2010; Sekirov et al., 2010; Llewellyn et al., 2014). Intestinal microbial 

communities consist of allochthonous (digesta-associated, transient) and 

autochthonous (mucosa-associated, indigenous) microbiota (Ringø and Birkbeck, 

1999; Ringø et al., 2003).  The microbiota play important roles such as assembling 

of the gut-associated lymphoid tissue (GALT), it helps the immune system, 

influences the integrity of the intestinal mucosal barrier, modulates proliferation 

and differentiation of its epithelial lineages, regulates angiogenesis, modifies the 

Potential probiont 
Parameters 

investigated 

Lb. rhamnosus IMC 501 F 

Lb. rhamnosus IMC 501 F 

Lb. rhamnosus IMC 501 F 

Lb. rhamnosus IMC 501 GM , F 

Lb. rhamnosus IMC 501 GM , F 

Lb. rhamnosus IMC 501 F 

Lb. rhamnosus IMC 501 F 

Lb. rhamnosus IMC 501 GP 

Lb. rhamnosus IMC 501 and Lb. casei F, GH, GM, IR 

37 commensal or probiotic Gram-positive and Gram-

negative bacteria often used as probiotic strains in the food 

industry and/or aquaculture 

DR, IR 

Lactobacilli (multiple species) DR, GM, PA 

B. coagulans DR, IR, PA 
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activity of the enteric nervous system and plays a key role in extracting and 

processing nutrients consumed in the diet (Rawls et al., 2004). The mechanisms by 

which the mammalian gut microbial community influences host biology remain 

almost, despite these important effects, entirely unknown. Deciphering the 

pathways through which microbial signals operate promises to provide new 

chemical entities and host targets for enforcing health, and perhaps treating 

diseases affecting both the intestine and extra-intestinal tissues. The zebrafish, has 

several unique features that make it an attractive model organism for analyzing 

these pathways (Rawls et al., 2004). 

Here we sought to determine whether gut microbiota composition varies between 

zebrafish treated with  dietary supplementation of Lb. rhamnosus  and a control 

group. We used the DGGE analysis at first and Next Generation Sequencing with 

Ion Torrent PGM profiles to assess individual variation in gut microbial 

communities.  

 

4.3 Materials and Methods for DGGE  

4.3.1 Animal Housing 

The experiment was conducted as described under section 2.2 in Stabulario of fish 

anphybians and reptiles a of the University of Napoli Federico II and water quality 

was monitored accordingly the section described in 2.3 
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4.3.2 Experimental fish and feeding 

24 (twelve PROBIO and twelve CTRL) of 72 zebrafish (Danio rerio) were randomly 

selected, in this experiment. All fishes was carefully acclimatized and feeded as 

described under the section 2.2 and 2.3. In particular four zebrafish treated and 

four zebrafish control for each experimentation were euthanized and dissected as 

described in 2.4 of general methods. 

4.3.3 DNA extraction 

DNA was extracted from the zebrafish (Danio rerio) gut samples using a 

combination of QIAamp® Stool Mini Kit (QUIAGEN, West Sussex, UK) with minor 

modifications to the manufacturer's instructions, as described in Appendix 1. and 

phenol-chloroform method. Gut samples were prepared in a sterilized Eppendorf 

tube, and DNA extracted by the following five phases: 

1. Lysis: 60-80 mg of samples were macerate with sterile macerators and mixed with 500 μl of fresh lysozyme solution (50mg/ml TE buffer). 
Then, the samples were incubated at 37 ºC for 30 minutes. 700 μl of buffer 
ASL was added and mixed for 1 minute. The mixture was placed on a hot 

plate at 90 ºC for 10 minutes and vortexed for 5 seconds with centrifugation 

for 1 min at 14000 rcf. 

2. Inhibitor removal: Half an inhibitor tablet was added to 800 μl of 
the supernatant and vortexed for 1 min immediately, then, centrifuged for 3 

min at 14000 rcf. All of supernatant was pipette into a new Eppendorf tube. 

The supernatant was centrifuged for other 3 minutes.  
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3. Protein removal: 400μl of the supernatant was mixed with 20 μl of proteinase K and 400μl of buffer AL was added and mixed for 15 seconds, 
then incubated at 70ºC for one hour.  

4. Phenol Chloroform Clean-up: The entire samples were poured into 

a 15 ml falcon tubes carefully, and added an equal volume of ice cold Tris-

buffered phenol solution. The samples were mixed by hand and left on ice 

for 10 minutes. An equal volume of chloroform/isoamyl alcohol (24:1) was 

added and mixed, then centrifuged for 5 minutes at 6000 rcf. The aqueous 

layer was pipette off carefully and placed in new 1.5 ml Eppendorf tube. 

5. Precipitation: 400 µl of ice-cold isopropanol was added. The 

samples were vortexed and placed in -20 °C freezer for overnight. Then, 

samples were centrifuged at 14000 rcf for 30 minutes at 4 °C. The 

supernatant were pipette carefully and discarded. 500 µl of 70% molecular 

grade ethanol was added slowly, and discarded. The addition of 70% 

ethanol was repeated and discarded again. The pellets were dried for 5 

minutes maximum. Finally, the DNA extracted was resuspended overnight 

at 4 °C by adding 30 µl of molecular grade water. The concentration of DNA 

and purity were determined using a Nanodrop-100 Spectrophotometer. 

4.3.4  16S rRNA amplification, Polymerase Chain Reaction (PCR)  

PCR was conducted to amplify the V3 region of the 16S rRNA gene using PCR with the forward primer P3 with a GC clamp on its 5’-end (5'-CGC CCG CCG CGC GCG 

GCG GGC GGG GCG GGG GCA CGG GGG GCC TAC GGG AGG CAG CAG-3') and the 

reverse primer P2 (5'- ATTACCGCGGCTGCTGG-3') (Muyzer et al., 1993). Each 
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single PCR reaction consisted of 25 μl ReadyMixTM Taq PCR Reaction Mix with 
MgCl2 (Sigma-Aldrich Company Ltd., Gillingham, England), 1 μl each of primer P2 and P3 (50 pmol/μl Eurofins MWG Operon, Ebersberg, Germany), 1 μl of DNA 
template and sterile, molecular grade water to adjust the final volume of the reaction to 50 μl. Touchdown thermal cycling was conducted using a GeneAmp® 
PCR System 9700 (Perkin-Elmer, CA, USA), under the following conditions: 94 °C 

for 10 min, then 30 cycles starting at 94 °C for 1 min, 65 °C for 2 min, 72 °C for 3 

min as described by Muyzer et al. (1993). The annealing temperature decreased by 

1 °C every second cycle until 55 °C and then remained at 55 °C for the remaining 

cycles. In order to check the purity and molecular weight characteristics of PCR products, PCR products (6 μL) were loaded onto a 1.5% agarose gel (Lonza, 
Rockland ME, USA), made with 1x Tris-acetate-EDTA (TAE) buffer prestained with 4 μL of SYBR® Safe™ DNA Gel Stain (Life TechnologiesTM UK) per 100 mL of 

agarose (Fisher Scientific) and run with 1x TAE buffer in a Pharmacia electrophoresis tank at 90 volts for 60 min. Five μL of Hyper Ladder IV (Bioline) 
was run alongside the PCR products to assess the size of DNA products. Viewing of 

agarose gels was achieved under UV light using a Bio-Rad universal hood 11 (Bio-

Rad laboratories, Italy). 18 positive PCR products samples (9 belonging to PROBIO 

and 9 to CTRL) were chosen for DGGE and stored at 4 °C until use (Fig 4.1 ).  
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Fig. 4.1 Touchdown thermal cycling PCR of DNA samples extraction (1-24). Eighteen 

samples positive were chosen (9 PROBIO in the upper line and 9 CTRL down ). 

 

4.3.5 Denaturing gradient gel electrophoresis (DGGE) 

The resulting 18 PCR products were used to obtain DNA fingerprints of the 

bacterial community present in the gut by DGGE using a Bio-Rad DGGE system (DCode™ System, Italy). DGGE was carried out by loading 15 μL of PCR products 
onto 10% acrylamide gels with a denaturing gradient of 40 - 60% (where the 

denaturants were 5.6M urea (Sigma, UK) and 40% formamide (Sigma, UK). 

Made using the following stock solutions; an 80% denaturant polyacrylamide 

solution consisted of 25 mL of 40% acrylamide mix (high purity acrylamide), 2mL 

of 50x TAE buffer (pH 8.3), 32 mL of molecular grade formamide (Sigma, UK), 34 g 

of 5.6M ultrapure urea (Sigma, UK) and volume of MilliQ H2O yielding a total 

volume of 100 mL. Stock 0% denaturant polyacrylamide solution consisted of 25 

mL of 40% acrylamide mix (high purity acrylamide), 2mL of 50x TAE buffer (pH 

8.3) and 73 mL of MilliQ H2O. One-hundred and fifty μL of 10% ammonium 
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persulphate (APS, electrophoresis grade, Sigma, UK) and 17.5 mL of 

Tetramethylethylindiamine (TEMED) were added to the high and low denaturant 

solutions. Twenty one mL of each acrylamide solution was added to separate 30 

mL syringes and these were mounted onto a Bio-Rad gradient delivery system 

(model 475, Bio-Rad laboratories). The major steps of DGGE are presented in 

Figure 4.2. This was then used to pour the gel between gel plates and the gel was 

left to polymerize for two hours. Additionally, PCR products from L.rhamnosus 

pure colonies were loaded to the gel as a reference species to aid probiotic 

identification. The gel was run at 65 V for 17h at 60 °C in 1 x TAE buffer. Viewing of 

the DGGE bands was accomplished after SYBR® gold staining. Briefly, the gel was incubated for 20 min at room temperature in 200 mL tank buffer containing 20 μL of 10000x SYBR® gold nucleic acid gel stain (Invitrogen™, UK) with shaking on an 
IKAO VIBRAX VXR basic shaking platform at 100 rpm/ min. The gel was scanned in 

a Bio-Rad universal hood 11 (Bio-Rad Laboratories, Italy) and optimized for 

analyses by enhancing contrast and greyscale. 

4.3.6  Excision of DGGE bands,  for sequence analysis 

After DGGE, bands (or ‘operational taxonomic units’, OTU) of interest (those 
showing clear and consistent specialization either to intestinal regions or dietary 

treatments, or those clearly unaffected) were excised from the gel using sterile 

pipette tips and DNA was eluted overnight at 4 °C in 1.5 mL Tube containing 20 μL 
Molecular Grade Water (Photo 4.1) 



58 

 

 
 

Photo 4.1 Excision of DGGE bands (or ‘operational taxonomic units’, OTU), 

for sequence analysis 

 

 

4.3.7  16S rRNA amplification of excised DGGE bands 

 From the eluate, 5 μL was used as the template for reamplification using the 
forward primers P1 (5-CCTACGGGAGGCAGCAG-3; essentially P3 without the GC clamp at its 5’ end) and the reverse primer P2 under the same conditions as 
previously described (Section 4.2). Six μL was loaded onto a pre-stained agarose 

gel (1.5%) to check the PCR product size.  

4.3.8  Purification of the PCR products and sequence analysis 

The PCR products were cleaned using a QIAquick PCR Purification Kit (Qiagen), 

according to the manufacturer’s instructions and PCR yields (the concentration 
and purity of DNA) were checked using a Nanodrop® 1000 spectrophotometer. 

Protein purity (A260/A280) and humic acid purity (A260/ A230) were checked. 
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The PCR products were sequenced by GATC Biotech Ltd. (Germany) and 

sequenced by GATC laboratories (GATC-biotech laboratories, Germany). 

Nucleotide sequences  were then submitted to a BLAST search in GenBank 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) to retrieve the closest known alignment 

identities for the partial 16 S rRNA sequences. (Figure 4.3) 

 

 

Fig. 4.2 Schematic representation of the principle steps of the denaturation gradient gel 

electrophoresis (DGGE) process. 
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Fig. 4.3 BLAST searching in GenBank screenshot 

 

 

4.3.9  Statistical analysis 

Data was transformed where necessary and statistical analysis was carried out 

using a One-Way ANOVA Minitab v.16 statistical software (Minitab, Plymouth, UK). Tukey’s Multiple Comparison test was used to determine significant differences 
between means and significance was accepted at the P < 0.05 level. Primer V6 

(Clarke and Gorley, 2006) was used to calculate species richness, evenness and 

diversity of the PCR-DGGE fingerprints according to the following formulae: 

Margalef's species richness: d = (S − 1)/log(N); and Shannons diversity 

index: H′ = − Σ(pi(lnpi)). Where N = total number of individuals (total intensity 

units),S = number of observed taxonomical units (presumed species) and pi = the 

proportion of the total number of individuals in the ith species. 

http://www.sciencedirect.com/science/article/pii/S004484860900948X#bib16
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4.4  Materials and Methods for Ion Torrent PGM technology NGS 

4.4.1  Samples 

With regard to the facility conditions, experimental fishes and DNA extraction the 

same conditions apply as described in 4.3.1, 4.3.2 and 4.3.3. PROBIO and CTRL 

DNA extraction were analyzed as follow 

4.4.2  16S rRNA Gene Amplification 

Partial 16S rRNA gene sequences were amplified from extracted DNA using primer 

pair  27F  (5'-AGA GTT TGA TCM TGG CTC AG-3'),  338RI  (5'-GCW GCC TCC CGT 

AGG AGT-3') and 338RII  (5'-GCW GCC ACC CGT AGG TGT -3') (Roeselers et al 

2011). which targets the V1-V2  region of the 16S rRNA gene sequences. The PCR 

conditions used were 7 min at 95°C, 10 Cycles of 30 sec at 94 °C, 30 sec at 63 ° C, 

30 sec at 72 °C and 25 Cycles of  30sec at 94°C, 30 sec at 53 °C and 30sec at 72 °C 

followed by 10 min at 72 °C. Amplification was carried out by using a Verity 

Thermocycler (Applied Biosystems). The integrity of the PCR amplicons was 

analyzed by electrophoresis  

4.4.3  Ion Torrent PGM Sequencing of 16S rRNA Gene-based Amplicons 

Twenty PCR products derived from amplification of specific 16S rRNA gene 

hypervariable regions were purified by electrophoretic separation on an 1.5% 

agarose gel and the use of QIAquick PCR Purification Kit (Qiagen) in order to 

remove primer dimers. Libraries for sequencing were prepared using the Ion Plus 

Fragment Library Kit (Life Technologies) and quantified using the Ion Library 

Quantitation Kit (Life Technologies). A proportion of the amplicon libraries were 
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also run on the Agilent 2100 Bioanalyzer using the High Sensitivity DNA Kit 

(Agilent Technologies) in order to confirm adapter ligation and average size of 

each library.  Libraries for each run were diluted to 26pM and pooled, then 

emulsion PCR was carried out using the Ion PGM Template OT2 400 Template Kit (Life Technologies) according to the manufacturer’s instructions. Sequencing of 
the amplicon libraries was carried out on a 318 chip using the Ion Torrent PGM 

system and employing the Ion Sequencing 400 kit (Life Technologies) according to the supplier’s instructions. After sequencing, the individual sequence reads were 
filtered by the PGM software to remove low quality and polyclonal sequences. 

Sequences matching the PGM A and P1 adapters were also automatically trimmed. 

All PGM quality-approved, trimmed and filtered data were exported as FASTQ files. 

4.4.4  Sequence-based Microbiota Analysis  

The FASTQ files were converted to FASTA format and processed using QIIME 

(Quantitative Insights Into Microbial Ecology). Quality control retained sequences 

with a length between 250 and 400 bp, mean sequence quality score >25, with 

truncation of a sequence at the first base if a low quality rolling 10 bp window was 

found. Presence of homopolymers >6 bp, and sequences with mismatched primers 

were omitted. In order to calculate downstream diversity measures (alpha and 

beta diversity indices, Unifrac analysis), 16S rRNA Operational Taxonomic Units 

(OTUs) were defined at >97% sequence homology. All reads were classified to the 

lowest possible taxonomic rank using QIIME and a reference dataset from the 

Ribosomal Database Project. OTUs were assigned using uclust. The hierarchical 

clustering based on population profiles of most common and abundant taxa was 

performed using UPGMA clustering (Unweighted Pair Group Method with 
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Arithmetic mean, also known as average linkage) on the distance matrix of OTU 

abundance. 

4.4.5  Statistical Analysis 

Ecological metrics for richness (Chao 1) and diversity (Shannon) were calculated 

in accordance with the bioinformatics of Plymouth University, UK, using Mothur 

Microbial community profiles generated from amplicon sequence data were 

compared using Quantitative Insights into Microbial Ecology (QIIME) v1.8.0 using 

total read counts for all assembled OTU sequences as input. Taxonomy of intestinal 

bacterial communities data are presented as means ± standard error of the mean. 

Statistical analysis was performed using the two-tailed t test.  A p value of less than 

0.05 was considered significant. 

 

 

 

4.5  Results 

4.5.1.  DGGE analysis of gut bacterial community  

Figure 4.4 shows the PCR–DGGE bacterial profiles from the gut of zebrafish. Many 

different bands are shown in the DGGE image and the gel bands which are called 

operative taxonomy units (OTU) in each sample.  
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The similarity of bacterial population within and between the treatments were 

measured by nonmetric multidimensional scaling (MDS) and cluster analyses of 

DGGE fingerprints as shown in Figure 4.5. The half matrix similarity showed in 

Table 4.2.  

The both analyses of gut bacteria populations showed more similarity within 

samples from same treatments than those from other groups. The half matrix 

similarity of gut DGGE fingerprints is shown in Table 2 indicates the average 

similarity within the control ad treatment: 70.54% in the 1st probiotics treated 

group (P1), 68.70% in the respective control group (C1); 65.95% in the 2nd 

probiotic treated group (P2) and 51.43% in the respective control group (C2); 

82.52% in the 3rd probiotic treated group (P3) and 74.90% in the respective 

control group (C3). The average DNA bands detectable in the probiotic group 

increased compared with control group, being 16.88% and 14.77% respectively 

(Fig 4.6), but it was not significant.  However significant differences was observd in  

P3 (probiotic group) compared with the control group C3 (Table 4.3). 
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Figure 4.4 DGGE fingerprints of whole intestine of treated and control group of zebrafish. 

Numbers are represents the bands or operative taxonomy unite (OTU) in each sample 

which refers to richness in the samples. 
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Table 4.2 The half matrix similarity of bacterial population of DGGE fingerprints of gut showing the similarities between the replicates 

treatment. 

Group P11 P12 P13 C11 C12 C13 P21 P22 P23 C21 C22 C23 P31 P32 P33 C31 C32 C33 

P11 100                  

P12 78.57 100                 

P13 70.97 62.07 100                

C11 59.26 72.00 64.29 100               

C12 75.86 66.67 60.00 76.92 100              

C13 60.61 70.97 58.82 66.67 62.50 100             

P21 64.29 76.92 55.17 64.00 59.26 70.97 100            

P22 64.29 53.85 55.17 64.00 66.67 64.52 53.85 100           

P23 51.85 64.00 50.00 75.00 61.54 66.67 64.00 80.00 100          

C21 66.67 58.06 64.71 53.33 62.50 77.78 64.52 64.52 60.00 100         

C22 70.59 56.25 74.29 58.06 60.61 70.27 62.50 68.75 58.06 86.49 100        

C23 34.78 57.14 41.67 60.00 45.45 46.15 66.67 47.62 60.00 30.77 37.04 100       

P31 57.14 66.67 55.56 50.00 52.94 68.42 66.67 60.61 56.25 63.16 66.67 50.00 100      

P32 60.00 63.16 58.54 59.46 61.54 74.42 57.89 68.42 64.86 69.77 72.73 42.42 80.00 100     

P33 55.00 57.89 63.41 64.86 61.54 83.72 57.89 63.16 64.86 74.42 72.73 36.36 75.56 92.00 100    

C31 64.52 48.28 43.75 50.00 66.67 64.71 62.07 62.07 50.00 70.59 68.57 33.33 66.67 68.29 73.17 100   

C32 50.00 53.85 48.28 72.00 74.07 64.52 53.85 61.54 64.00 58.06 56.25 57.14 54.55 63.16 68.42 75.86 100  

C33 60.00 64.29 58.06 59.26 62.07 72.73 71.43 64.29 66.67 72.73 70.59 43.48 68.57 75.00 75.00 77.42 71.43 100 

     Note: C = control, P = probiotic 1-3 refers to replicate number in each case, (n=18)
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Figure 4.5: (A) Cluster analysis (B) non-metric multidimensional scaling (MDS) analysis 

based on the PCR-DGGE DNA fingerprints showing percentage and relative similarity of 

bacterial communities between control and treatment groups in zebrafish gut. 
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Fig. 4.6 DNA bands average 

 

 

Table 4.3 Band numbers of bacterial community based on the PCR-DGGE DNA 

fingerprinting and similarity within treatments. 

Treatment Band number Similarity 

P1 14.66±1.52 b 70.54±8.26 a 

C1 14.66±3.05 b 68.70±7.42 a 

P2 12.66±0.57 b 65.95±13.18 a 

C2 15.00±6.08 ab 51.43±30.52 a 

P3 23.33±2.88 a 82.52±8.50 a 

C3 14.66±1.52 b 74.90±3.11 a 

P value 0.018 0.268 

a,b Means with the different superscript in the same column are significantly different (P<0.05). 

Results are mean values from three replications ± standard deviations. 
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Diversity analysis of gut microflora showed in table 4.4. The Shannon index and 

Margalef index indicate respectively the diversity, and richness of gut microflora of 

animals. (Hill et al., 2003) These indexes were used to display the microbial 

population diversity and richness in the gut, data showed in Table 4.4. The 

diversity index of bacterial community based on the PCR-DGGE DNA fingerprinting 

indicated that: at probiotic group had greater Shannon index and Margalef index 

than control group. However, no significant differences in Shannon index, but good 

significant in the Margalef index was observed in zebrafish fed with probiotics ( L. 

rhamnosus).  

 

Table 4.4: Diversity index of bacterial community in gut based on the PCR-DGGE DNA 

fingerprinting. 

Treatment Shannon index1 Margalef index2 

P1 2.68±0.10 a 5.08±0.37 ab 

C1 2.67±0.20 a 5.07±0.73 ab 

P2 2.53±0.04 a 4.59±0.14 b 

C2 2.63±0.48 a 5.12±1.52 ab 

P3 3.14±0.12 a 7.08±0.64 a 

C3 2.68±0.10 a 5.08±0.37 ab 

P value 0.085 0.026 

 
Results are mean values from three replications ± standard deviations. 
a,b Means with the same superscript in the same column are not significantly different (P<0.05). 
1 Shannon diversity index: H‟ = -SUM(pi٭Log(pi)).  
2 Margalef species richness: d = (S -1) ⁄ log (N). (S: Total species, N: Total individuals) 
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A number of 25 bands were excised from the PCR-DGGE gel and were subjected to 

sequence and BLAST analysis (Tab 4.5), after purification as recommended by 

GATC company around (20-80 ng/µl).  

 

Table 4.5: Summary of the 16S rRNA gene sequence analysis results generated from 

bands excised from DGGE gel of zebrafish gut samples. 

Band 

Number 

NCBI 

Accession 

number 

Max. 

Identity 

NCBI BLAST   matches 

1 NR_025533.1 97% Cetobacterium somerae strain WAL 14325  

2 NR_114236.1 96% Shewanella algae strain NBRC 103173  

3 NR_117686.1 98% Klebsiella pneumoniae strain DSM 30104  

4 NR_025533.1 93% Cetobacterium somerae strain WAL 14325  

9 KC010472.1 94% Uncultured bacterium  

10 GU430248.1 83% Streptococcus sp. 

11 KJ804042.1 85% Streptococcus sp. K-72-13-7 

12 LK392937.1 94% Uncultured bacterium  

13 NR_024951.1 97% Pseudomonas thivervalensis strain SBK26  

18 JN866573.1 97% Uncultured bacterium   

19 KF256027.1 99% Uncultured bacterium  

21 JQ815676.1 95% Uncultured bacterium  

22 KF256014.1 100% Uncultured bacterium  

23 NR_029216.1 97% Propionigenium modestum strain Gra Succ 2 

25 NR_026243.1 97% Propionigenium maris strain 10succ1  

 

Twenty-five bands or OTUs were excised from the PCR-DGGE gel and all bands 

were sequenced but unfortunately only 15 samples were returned and subjected 

to BLAST analysis and the others were below the required standard and 

sequencing data was zero. The results of the trial sequence analysis shown in Table 

4.4. The most family BLAST results in zebrafish gut were related to Cetobacterium  

spp., Shewanella spp., Klebsiella spp., Streptococcus spp., Pseudomonas spp., 

Propionigenium spp. strains.  Otherwise, the sequences of the band numbers 9, 12, 

18, 19, 21 and 22 were related to uncultured bacteria. In particular were isolated 

http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_219878394
http://www.ncbi.nlm.nih.gov/nucleotide/631253038?report=genbank&log$=nucltop&blast_rank=7&RID=8KWMGXGE01R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631253038
http://www.ncbi.nlm.nih.gov/nucleotide/645320493?report=genbank&log$=nucltop&blast_rank=1&RID=8KY9TS8301R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_645320493
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_219878394
http://www.ncbi.nlm.nih.gov/nucleotide/529406714?report=genbank&log$=nucltop&blast_rank=3&RID=8KYTFFU101R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_529406714
http://www.ncbi.nlm.nih.gov/nucleotide/285203350?report=genbank&log$=nucltop&blast_rank=2&RID=8KYM83YE01R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_285203350
http://www.ncbi.nlm.nih.gov/nucleotide/696147919?report=genbank&log$=nucltop&blast_rank=2&RID=8KYF92U801R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_696147919
http://www.ncbi.nlm.nih.gov/nucleotide/675817722?report=genbank&log$=nucltop&blast_rank=1&RID=8KZ3K45W01R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_675817722
http://www.ncbi.nlm.nih.gov/nucleotide/219857363?report=genbank&log$=nucltop&blast_rank=1&RID=8KYW0WVP01R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_219857363
http://www.ncbi.nlm.nih.gov/nucleotide/358364629?report=genbank&log$=nucltop&blast_rank=1&RID=8KY22V8501R
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NCBI_GI=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=8KY22V8501R&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&DISPLAY_SORT=3&HSP_SORT=3&CONFIG_DESCR=2,3,4,5,6,7,8#alnHdr_358364629
http://www.ncbi.nlm.nih.gov/nucleotide/532529247?report=genbank&log$=nucltop&blast_rank=3&RID=8KZ7VDF6015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_675817722
http://www.ncbi.nlm.nih.gov/nucleotide/383478779?report=genbank&log$=nucltop&blast_rank=1&RID=8KTC2F4S014
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NCBI_GI=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=8KTC2F4S014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&DISPLAY_SORT=3&HSP_SORT=3&CONFIG_DESCR=2,3,4,5,6,7,8#alnHdr_383478779
http://www.ncbi.nlm.nih.gov/nucleotide/532529234?report=genbank&log$=nucltop&blast_rank=6&RID=8M11M2T5015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_675817722
http://www.ncbi.nlm.nih.gov/nucleotide/265678908?report=genbank&log$=nucltop&blast_rank=2&RID=8KZNBXTR014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_265678908
http://www.ncbi.nlm.nih.gov/nucleotide/219846651?report=genbank&log$=nucltop&blast_rank=10&RID=8M0PV22C014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_219846651
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Cetobacterium somerae, (band n. 1 and 4) 66,6% of PROBIO samples and 88,8% of 

CTRL samples; Shewanella algae (band n. 2) was isolated in all PROBIO and CTRL 

samples; Klebsiella pneumonia (band n. 3) in 55,5% of PROBIO group and 66,6 % of 

related CTRL; Streptococcus sp. (band n. 11)  66,6% of PROBIO group and 22,2% of 

CTRL one. 

4.5.2  NGS analysis of gut bacterial community  

At NGS analysis alpha diversity metrics, which describe the richness and/or 

evenness of taxa in a single sample, (QIIME, )  was at first evaluated. By default, 

QIIME calculates three metrics: Chao1 (chao1), Observed OTUs (previously known 

as Observed Species), and Phylogenetic Diversity (Phylogenetic tree). In addition, 

in the alpha parameters we added the Shannon Index (shannon) to the list of alpha 

diversity measures that we calculated here. The comparison of OTUs derived from 

zebrafish intestines revealed that the Chao1 richness and Shannon–Weaver 

diversity estimates of the intestinal microbiotas from PROBIO and CTRL zebrafish 

were not statistically different, indicating that Probiotic treatment with Lb. 

Rhamnosus have not particular influence on the overall richness or diversity of the 

zebrafish gut bacterial community. 

In addition to alpha (or within-sample) diversity, community ecologists are often 

interested in computing beta (or the between-sample) diversity between all pairs 

of samples in their study. Beta diversity represents the explicit comparison of 

microbial (or other) communities based on their composition. Beta diversity 

metrics thus assess the differences between microbial communities. The 

fundamental output of these comparisons is a square, hollow matrix where a 
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“distance” or dissimilarity is calculated between every pair of community samples, 
reflecting the dissimilarity between those samples. (QIIME, ). The data in this 

distance matrix can be visualized with Principal Coordinates Analysis (PCoA). 

Here, we have calculated beta diversity between intestinal bacterial communities 

sampled and we analyzed our 16S rRNA gene sequence data sets using the default 

beta diversity metrics of weighted and unweighted UniFrac, which are 

phylogenetic measures used extensively in recent microbial community 

sequencing projects (Caporaso et al., 2011). 

To further understand and to compare the composition of the gut microbiotas in 

zebrafish PROBIO and CTRL one, we subjected these 16S rRNA gene sequences to 

Principal Coordinates Analysis (PCoA). PCoA plots derived from both unweighted 

(an assessment of community composition) and weighted (an assessment of 

community structure which measures the distance between communities based on 

their phylogenetic lineages) algorithms (Lozupone et al., 2005). PCoA is a 

technique that helps to extract and visualize a few highly-informative components 

of variation from complex, multidimensional data. This is a transformation that 

maps the samples present in the distance matrix to a new set of orthogonal axes 

such that a maximum amount of variation is explained by the first principal 

coordinate, the second largest amount of variation is explained by the second 

principal coordinate, etc. The principal coordinates can be plotted in two or three 

dimensions to provide an intuitive visualization of differences between samples 

(http://qiime.org/tutorials)  (Fig 4.7 and 4.8). 

http://qiime.org/tutorials
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Fig. 4.7 The unweighted Unifrac distances, is an assessment of community composition 

(OTUs presence/absence). PCoA plot shows the spatial distribution of samples of the 

groups (control samples are red and the probiotic treated samples are colored blue).  
 

 

 

 

Fig. 4.8 Weighted Unifrac distances (OTUs abundance and weight branches) shows the 

similarity between phylogenetic lineages of  bacteria communities between PROBIO (blue 

colored) and CTRL group (red colored); this measure also shows the degree of similarity 

inter-PROBIO group, clustering closer togheter. 
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All distances were computed according to the Bray-Curtis similarity index. Bray-

Curtis dissimilarity demonstrated that 16S rRNA profiles from the the majority of 

CTRL groups clustered together. Four of the PROBIO samples clustered closer to 

CTRL whereas the other remaining part of probio samples formed independent 

groups. Also, five of the PROBIO samples clustered far from all each other formed 

independent groups. CTRL  groups were closer than those PROBIO. 

The alpha and beta diversity analysis indicated that these samples were not 

significantly different from others in their respective group. The unweighted an 

weighted two-dimensional PCoA showed that PROBIO zebrafish samples clustered 

together with CTRL zebrafish group establishing a similarity in composition and 

structure of these gut bacterial communities. 

 

4.5.3 OTUs Comparison of probiotic treated group (PROBIO) and control (CTRL) 

Here to provide perspective on the observed relationships between gut microbiota 

from two different zebrafish group investigated, we compared the taxonomy of 

intestinal bacterial communities in PROBIO and CTRL zebrafish.  
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Fig. 4.9 Percentage of OTUs observed (Bar stack plots). Main differences in Phyla 

of  bacteria within the guts of CTRL and PROBIO zebrafish  group treated with 

Lb rhamnosus per 28 days. 

 

 

 

Tab 4.6 Main representative absolute composition of OTUs analyzed per Phyla of bacteria 

within the guts of CTRL and PROBIO zebrafish  group treated with Lb rhamnosus per 28 

days. Absolute values are calculated as Mean ± SD (standard deviation) 
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PHYLA CTRL  PROBIO  

 Mean  ± SD Mean  ± SD 

Fusobacteria  3743   ± 1976 3363   ± 2367 

Proteobacteria  850,7  ± 1187,8 495,5  ± 666,8 

Firmicutes  20,2    ± 30,4 158,0  ± 193 

Bacteroidetes  0,00    ± 0,00 4,3      ± 9,1 

Actinobacteria 91,7    ± 249,2 0,18    ± 0,4 

Cyanobacteria 48,1    ± 75,4 10,6    ± 4,6 
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Fig. 4.10 Percentage of OTUs observed (Bar stack plots). Main differences in Genera of 

bacteria within the guts of CTRL and PROBIO zebrafish  group treated with Lb rhamnosus 

per 28 days.  

Tab 4.7 Main representative absolute composition of OTUs analyzed per Genera of 

bacteria within the guts of CTRL and PROBIO zebrafish  group treated with Lb rhamnosus 

per 28 days. Absolute values are calculated as Mean ± SD (standard deviation) 

GENERA CTRL    PROBIO 

 Mean ± SD    Mean ± SD 

Bacillus 3,0        4,8 3,1 4,6 

Lactobacillus 74,8      150,2 458,8 806,8 

Leuconostoc 11,9      5,5 12,4 8,2 

Streptococcus 4,7        9,9 161,5 202,3 

Cetobacterium 3742     1975,7 3363,5 2367,2 

Plesiomonas 22,5      40,7 3,6 3,2 

Pseudomonas 7           5,9 62,9 139,2 

Vibrio 372,6    1172,7 0,9 1,3 

Mycobacterium 28,2      89,3 0,04 0,09 

Staphylococcus 0,01      0,03 2,7 8,5 

Enterococcus 8,2        26 0,01 0,03 

Pediococcus 0,01      0,03 2,95 9,2 

Acinetobacter 3,1        9,6 12,8 40,6 

Flavobacterium 12,2      33,8 43,1 91,1 

Others 579       847,1 1350 2022,6 
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Total OTUs retrieved from PROBIO and CTRL zebrafish were binned into six main 

phyla respectively (Figure 4.9 and Tab 4.6).  Fusobacteria ribotypes dominated 

both groups, accounting for 75,83% (CTRL) and 61,18% (PROBIO) of the OTUs 

retrieved. Ribotypes representing Proteobacteria, Firmicutes, and Cyanobacteria 

were present in both groups with relative abundances (Figure 4.9). In order of 

abundance the CTRL group showed: Fusobacteria (75,83%), Proteobacteria 

(17,24%), Firmicutes (4,10%), Actinobacteria (1,86%) , and Bacteroidetes 

(0,00%). In PROBIO group, fed with Lb rhamnosus IMC 501 administration: 

Fusobacteria (61,18%), Firmicutes (28,75 %), Proteobacteria (9,01%),  

Bacteroidetes (0,78%) and Actinobacteria (0,00%). 

Three bacterial class, Proteobacteria and Fusobacteria and Firmicutes appeared 

consistently in the gut microbiotas of zebrafish analyzed in this study. 

Proteobacteria and Fusobacteria classes as common members of the gut 

microbiota in adult zebrafish. Members of these bacterial classes are especially 

well adapted to conditions in the fish intestine or their surrounding aquatic 

environment (Rawls et al., 2011).  

The group treated with probiotic showed at genus level, the significant abundance 

of  Firmicutes genera (28,75 %), (Cetobacterium, Streptococcus, Lactobacillus ) 

compared to control group (4,10%) (Tab 4.6 and 4.7); in PROBIO group although 

not significant the aboundance of Lactobacillus (8,3%) is representative of the 

dietary administration of  Lb rhamnosus. All Proteobacteria, instead, (Vibrio, 

Aeromonas, Pseudomonas, Plesiomonas ) decreased. In agreement with Roeselers et 
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al. (2011), Proteobacteria  were detected in the intestines of each fish in our 

analysis.  Although not significant, in the CTRL we found 17.84% of Proteobacteria 

clones  compared with PROBIO group that showed lower percentage of 3.31%.  

Our phylogenetic analysis revealed a diverse set of Fusobacteria sequences 

isolated from the intestines of zebrafish, most of which were related to 

Cetobacterium somerae. The difference among two group was not significant 

(Figure 4.10 and Tab 4.7 ).  
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4.6  Discussion 

The zebrafish gut microbiota is numerically dominated at all stages of the zebrafish 

life cycle by members of the bacterial phylum Proteobacteria, Firmicutes and 

Fusobacteria also prevalent during larval and adult stages respectively. (Roeselers 

et al., 2011) In this study DGGE analyses, revealed that dietary Lb. Rhamnosus 

administration increased the number of OTUs. At DGGE,  the average DNA bands of 

OTUs detectable in the fed probiotic group were increased compared with control 

group, being 16.88 and 14.77 respectively. In addition to the abundance of taxa, it 

is also recognised that the microbial community ecology contributes to the 

function of the GIT, potentially supporting positive adaptation to changing 

conditions, and therefore measures of microbial community ecology are also useful 

indicators of microbial community modulations (Nayak, 2010). 

We use the PCR-DGGE as a first step of detection of  bacterial community. These 

method, although reliable for the analysis of the microbiota, is limited by the 

resolution of band detection with complex bacterial communities and microbes of 

low abundance may easily be missed (Sevellac et al., 2014). In contrast NGS 

showed although limits in the detection of species, showed greater sensitivity. 

The DGGE, at 16S rRNA gene sequence analysis results generated from bands 

excised from DGGE gel of zebrafish gut samples we found Cetobacterium somerae, 

in PROBIO and in CTRL samples. This data is completely in line with Roeselers et 

al. (2013),  where they found it constantly in wild and domesticated zebrafish. 

Cetobacterium somerae has been shown to be indigenous to the digestive tract of 

multiple freshwater fish species. C. somerae (ex Bacteroides type A) is a non-spore-
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forming, rod-shaped, microaerotolerant, vitamin B12 (cobalamin) producing 

Fusobacterium that has been shown to be indigenous to the digestive tract of 

multiple freshwater fish species that do not require dietary supplements of 

vitamin B12 (Sugita et al., 1991). C. somerae was not detected in the digestive tract 

of two freshwater fish species which show deficiency symptoms when fed vitamin 

B12-depleted diets suggesting that C. somerae may be involved in determining the 

vitamin B12 requirements of freshwater fish (Roeselers et al., 2011).  The isolation 

of Streptococcus sp. in 66,6% of PROBIO OTUs group and 22,2% of CTRL one is in 

line with a study reported by Gioacchini et al.,(2014) where the abundance of 

Streptococcus spp. in zebrafish fed Lb. Rhamnosus was clearly stimulated by 

probiotic administration. It is interesting the isolation of Klebsiella pneumonia in of 

PROBIO and in related CTRL DNA samples, To our knowledge, this report 

comprises the first study  on isolation of this bacterium in zebrafish. Microbial 

studies revealed that Klebsiella pneumoniae isolated from N. japonicus is the most 

common pathogen causing ulcers and fin erosions, it cause fin and tail disease in 

Rainbow trout. Klebsiella species were also isolated from gills and intestine of 

Tilapia zilli from creeks around Port Harcourt, Nigeria, from African catfish, from 

skin mucus of eel fish, Anguilla Anguilla (Diana et al., 2012).  

One notable exception was the isolation of Shewanella algae in all samples 

(PROBIO and CTRL). The genus Shewanella is currently composed of more than 50 

species that inhabit a range of marine environs and ecosystems. (Janda et al., 

2014). Shewanella spp. is Gram-negative bacteria, saprophytes and widely 

distributed worldwide. It belongs to the microflora of the marine environment but 

it habits  all forms of water and soil, but it has also been isolated from diverse 
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sources including dairy products, oil, and carcasses. (Vignier et al., 2013). At 

present, it is unclear exactly how many Shewanella species are truly occasional 

human pathogens. Recent advanced study in the taxonomy and phylogenetic 

relatedness of members of this genus, show that most human infections are caused 

by a single species, S. algae. (Janda et al., 2014). The pathogenicity of these species 

remains unclear, partly because they are found in polymicrobial infections, but 

there is now enough evidence to conclude that some Shewanella spp. are 

pathogenic for humans. Shewanella infections are sometimes acquired after 

exposure to seawater. The most common clinical manifestations seem to be otitis, 

soft tissue infection, bacteremia, and hepatobiliary infection. Some argue than S. 

algae could be more virulent species. (Janda et al., 2014; Vignier et al., 2013).  Here 

we report the isolation of Shewanella algae in all healthy zebrafish. To our 

knoledge this is the first report of isolation of this strain specie in freshwater fish 

considering that isolates such as  Shewanella putrefaciens or Shewanella spp. and 

other pathogen bacteria are commonly seen in ornamental diseased fish (Rose et 

al., 2013) well as in lake whitefish (Coregonus clupeaformis) (Sevellec et al., 2014) 

and them are also common in caught and domesticated zebrafish. Most of the 

clinical isolates found in literature are Shewanella putrefaciens, but recent data 

suggest that many of these isolates should be classified as the genetically distinct 

species Shewanella algae, a more virulent species. This misclassification is largely 

caused by the use of conventional systems that are unable to identify S. algae. As 

has been suggested elsewhere, some of the S. putrefaciens infections reported 

during recent years were probably caused by S. algae (Vignier et al., 2013). The 

presence of Shewanella algae in all our samples might suggest zebrafish as a 

possible reservoir of this pathogen. This finding has a double meaning for both 
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public health considering the serious bacterial infections in human, both for 

further study of this infection in an animal model as Danio rerio, for human and 

animal health.  This finding is important to pay more attention to animal handling 

by researchers, technicians and all people in contact with fishes in the facility. A 

routine environmental and microbiological monitoring program should be applied 

in the major fish or aquatic animals facility to well understand the epidemiology of 

Shawanella algae. 

The NGS analysis supports the major presence of phyla, Fusobacteria  

Proteobacteria Firmicutes and Cyanobacteria with predominance of Fusobacteria 

in both PROBIO and CTRL in line with DGGE analysis.  In order of abundance in 

CTRL group: Fusobacteria (75,83%), Proteobacteria (17,24%), Firmicutes (4,10%), 

Actinobacteria 1,86% , and Bacteroidetes (0,00%). In PROBIO group, treated with 

Lb rhamnosus:  Fusobacteria (61,18%),  Firmicutes (28,75 %), Proteobacteria 

(9,01%),  Bacteroidetes (0,78%) and Actinobacteria (0,00%). 

The isolation of Streptococcus in 2,94% of  PROBIO group and in 0,09 % of CTRL is 

statistically significant (p value=0.02). This result confirms the DGGE analysis and 

with the study reported by Gioacchini et al.,(2014) where the abundance of a strain 

of Streptococcus in zebrafish fed Lb. rhamnosus was clearly stimulated by probiotic 

administration. It belongs to lactic acid bacteria (LAB) group including 

Lactobacillus. 

The zebrafish gut microbiota, like that of humans and other mammals, are 

dominated by the bacterial phyla Proteobacteria, Firmicutes, and Bacteroidetes 

(Rawls et al., 2004; Rawls et al., 2006; Roeselers et al., 2011; Semova et al., 2012; 
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Cantas et al., 2011). However, the impact of diet on the zebrafish gut microbiota, 

and their relationship to the microbiota in the surrounding aqueous environment, 

is unknown. In line with these researches, our study identified members of the 

Proteobacteria and Fusobacteria and Bacteroidetes phyla as common prevalent 

members of the gut microbiota in adult zebrafish. 

Gastro intestinal tract (GIT) and feces can serve as an enrichment site for 

pathogenic bacteria such as Aeromonas, Pseudomonas and Vibrio species, belonging 

to Proteobacteria phylum. The use of probiotics with antagonistic activity may be 

used to reduce or inhibit pathogens activities (Balcázar et al., 2008). In this study, 

feeding zebrafish probiotic Lb rhamnosus showed a reduction of this genera 

supporting the antagonistic activity role of this probiotic strain. The intestinal 

microbiota dysbiosis in zebrafish with inflammatory bowel disease (IBD)-like 

colitis was characterized by an increased proportion of Proteobacteria and a 

decreased of Firmicutes (Lactobacillus, Streptococcus group), which were 

significantly correlated with enterocolitis severity. At the same time  other 

researchers have documented changes in the human gut microbiota associated 

with IBD, especially a dramatically reduced diversity in the phylum Firmicutes and 

concomitant increase in Proteobacteria  (He et al., 2013). There is also now 

increasing evidence that dysbiosis modulates peripheral and central nervous 

system function, leading to alterations in brain signalling and behaviour (Bercik et 

al. 2011; Collins et al. 2013;). The composition of the zebrafish gut microbiota can 

have direct impacts on disease pathogenesis. Inflammatory bowel disease can be 

modeled in zebrafish also using a chemical called oxazolone, which induces 

intestinal inflammation (Brugman et al. 2009). In zebrafish treated with the 
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antibiotic vancomycin, Fusobacteria became the dominant phyla in the gut 

microbiota, and the inflammatory response observed in response to oxazolone was markedly decreased. Treatment with colistin sulfate increased γ-Proteobacteria in 

the gut microbiota, and these zebrafish developed intestinal inflammation in 

response to oxazolone treatment. These results demonstrate that certain members 

of the microbiota, such as the γ-Proteobacteria, may help drive intestinal 

inflammation in an experimental model of colitis. Proteobacteria have been 

observed in human chronic inflammatory diseases. This study in zebrafish 

suggests that members of the Proteobacteria may increase propensity for 

inflammatory responses in the gastrointestinal tract. Different studies have also 

shown an increase of some opportunistic pathogenic Proteobacteria and a 

decreased proportion of Firmicutes phylum (He et al., 2013). In our study indeed 

we assisted to a significant increase of Firmicutes ( p=0,038),  The zebrafish 

digestive tract is similar to that of mammals in its development, organization and 

function. Zebrafish are well suited for studying host-bacterial interactions as they 

have innate and adaptive immune systems similar to higher vertebrates (Trade et 

al., 2004)  

The relationship between (gut microbiota) and host physiology is an interesting  

translational area of zebrafish digestive system research. A study tested the ability 

of anaerobic bacteria derived from the human intestine to colonize the zebrafish 

gut, suggesting that the zebrafish could be used as an experimentally malleable 

system for modeling host–microbiota interactions in humans.  

Although not significant differences exist between PROBIO and CTRL group, in this 

study, feeding zebrafish probiotic Lb rhamnosus showed a reduction of 
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Proteobacteria genera the greather microbiota present in dysbiosis, supporting the 

antagonistic activity role of this probiotic strain. Here we demonstrated a 

significant increase of Firmicutes Phyla, These results underscore the need to 

identify the selective pressures governing microbial community within the 

intestinal habitat and the benefit of dietary supplementation of probiotics such as 

Lb rhamnosus or other strains. This information could semplify the development of 

safe and effective methods for manipulating gut microbiota composition to 

promote the health of humans and other animals.  
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CHAPTER 5 

EXPRESSION OF BDNF MRNA IN ZEBRAFISH TREATED WITH A 

PROBIOTIC STRAIN, LACTOBACILLUS RHAMNOSUS 

 

5.1 Abstract  

Several researches on human and animal models have been evaluated to assess the 

role of microbiota on brain function, providing how this microcosmic word can 

influence brain chemistry and behaviour.  Neurotrophic factors are included in the 

big brain chemistry. Alterations of gut microbiota has been associated with stress 

and decreased brain neurotrophic factor expression in the CNS. The BDNF gene 

expression in zebrafish has been documented in many tissues and organs.  

The purpose of this study was to determine whether probiotic strain Lactocabillus 

rhamnosus influences brain neurochemistry in zebrafish. Brain-derived 

neurotrophic factor (BDNF) mRNA expression was evaluated in  zebrafish, for the 

first time, with dietary  administration for 28 days of this probiotic strain. The 

probiotic treated group showed a statistically significant near two-fold increase in 

BDNF expression compared to the control group. Furthermore, we assessed also 

the BDNF localization by immunohistochemistry. BDNF seems distributed in all 

regions of the brain, without any remarkable differeces compared to control group. 
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5.2 Introduction 

Progresses has already been made in understanding the bi-directional crosstalk 

governing the gut-brain axis. Accordingly, not only the brain can affects gut 

functions, but the gut can also induces changes in the central nervous system (CNS) (O’Sullivan et al., 2011). Although there is now compelling evidence for a 
link between the enteric microbiota and brain function, we are only just beginning 

to realize the physiological impact of the microbiota on this process (Al-Asmakh et 

al., 2012). 

CNS can influence gut microbiome through neural and endocrine pathways in both 

direct and indirect manners. The autonomic nervous system (ANS) and 

hypothalamus–pituitary–adrenal (HPA) axis that liaise the CNS and viscera can 

modulate gut physiology such as motility, secretion and epithelial permeability as 

well as systemic hormones, which in turn affect the niche environment for 

microbiota and also host-microbiome interaction at the mucosae (Cryan and 

Dinan, 2012). Microbiota is also implicated in the alteration of neurotrophic 

factors, which constitute of an extensive and heterogeneous class of proteins 

which play roles in controlling neuronal function and maintaining cellular integrity  (O’Sullivan et al., 2011). Particularly, neurotrophins constitute a family of 
structurally related proteins required for the development and function of the 

vertebrate nervous system where they regulate survival, differentiation and 

synaptic plasticity of specific neuronal populations. members of the family are 

brain derived neurotrophic fact (BDNF),  Nerve Growth Factor (NGF), 

Neurotrophin-3 (NT-3), Neurotrophin 4 (NT-4) and the fish specific Neurotrophin 

6 (NT-6). 
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 Brain-derived neurotrophic factor (BDNF) is a neurotrophin of particular interest 

to neuroscientists, due to its clearly defined impact on several aspects of brain 

function and potential relevance to brain diseases. Furthermore, evolutionary 

studies have demonstrated that among all neurotorphins, BDNF is the most well 

conserved throughout vertebrates evolution (Tettamanti et al., 2009; Lanave et al., 

2007).  The BDNF protein contains a domain shared by all neurotrophins 

characterized by six strictly conserved cysteine residues, fundamental for the 

correct folding of the molecule. This feature, together with the high percentage of 

amino acid identity shown by vertebrate BDNF, indicates that this factor reached 

an optimally functioning structure very early in vertebrate evolution, thus 

hindering further variations (Götz et al., 1992), due to an increased selective 

pressure on the coding region. While all neurotrophins bind to the common p75 

receptor, the binding to three distinct Trk tyrosine kinase receptors mediates the 

specificity in the activity of these neurotrophic polypeptides (Chao, 2003; 

Reichardt, 2006). BDNF acts on neurons of the central and peripheral nervous 

system (Levi-Montalcini and Calissano, 1979; Leibrock et al., 1989). In mammals, 

BDNF has been extensively studied. BDNF is highly expressed in the mammalian 

hippocampus and plays a major role in synaptic transmission (Berninger et al., 

1999) and plasticity (Thoenen, 1995). BDNF activating its intracellular signalling 

pathways through binding to the tropomyosin-related kinase (Trk) receptor TrkB 

has a relevant function in memory, learning and in the development of the nervous 

system (for review, see Chao et al., 2003). 

Changes in the expression and/or function of BDNF may be relevant to a range of 

human psychiatric disorder conditions, such as drug addiction, (Bolanos and 



89 

 

Nestler, 2004), depression (Duman, 2002), schizophrenia (Weickert et al., 2003) 

and bipolar disorder (Thome et al., 1998). Alteration in BDNF also including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic 
lateral sclerosis (Adachi N, 2014; Frade and Lopez-Sanchez, 2010; Ventriglia M, 

2013). Several studies have reported reduced brain-derived neurotrophic factor 

(BDNF) levels in the brain and in the serum and plasma of patients with 

psychosocially stressed. Stress and the biological systems involved in the stress 

response have been suggested to play a role in BDNF changes. High levels of both 

glucocorticoid hormones and pro-inflammatory cytokines, two key players in the 

response to stress, have been associated with decreased BDNF levels in first-

episode psychosis patients (Mondelli et al., 2011). In teleostean models, data 

already available in literature report the expression of BDNF in the developing 

brain of zebrafish (De Felice et al., 2014) and in the adult brain of different 

teleostean species (D'Angelo et al., 2014; Vissio et al., 2008). BDNF has also been 

observed in other organs and tissues of adult and developing zebrafish (Germanà 

et al., 2010). 

Several researches on human and animal models have been evaluated to assess the 

role of microbiota on brain function, providing how this microcosmic world can 

influence brain chemistry and behaviour.  Neurotrophic factors such as BDNF are 

included in the big brain chemistry. Alterations of gut microbiota has been 

associated with stress and decreased brain neurotrophic factor expression in the 

CNS.  

Bercick et al., (2011) demonstrated that administration of oral antimicrobials to 

SPF mice transiently altered the composition of the microbiota and increased 
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exploratory behaviour and hippocampal expression of BDNF. The proliferation of 

the Bifidobacteria and Lactobacilli strains in the large intestine have anxiolytic and 

mnemonic effects in rodents (Bravo et al., 2011) and humans (Cryan and Dinan, 2012). O’Sullivan et al.,(2011) have shown that treatment with B. breve 6330 
increased levels of BDNF total mRNA in rats Bravo et al., (2011) demonstrated 

antidepressant and anxiolytic-like properties of a probiotic Lactobacillus 

rhamnosus in mice. Evidence for an involvement of the vagus nerve and the central 

gamma-aminobutyric acid (GABA) system in the modulation of emotional behavior 

by these bacteria was also provided. Strains of Lactobacillus and Bifidobacterium 

secrete gamma-aminobutyric acid (GABA). This is the main inhibitory 

neurotransmitter in the brain regulating many physiological and psychological 

processes, with dysfunction in the system implicated in anxiety and depression. 

The changes in behaviour and GABA receptor expression following Lb. rhamnousus 

treatment were also in keeping with studies of GABA B1b-deficient animals, 

indicating an important role for this subunit in the development of cognitive 

processes, including those relevant to fear (Forsythe and Kunze, 2012). 

To our knowledge no study on zebrafish has so far been conducted to describe the 

impact of probiotics on neurobiological consequences. In the present investigation, 

we administrated the probiotic strain Lactobacillus rhamnosus to zebrafish to 

assess whether also in zebrafish L. rhamnosus has effects on the levels of mRNA 

BDNF in the CNS.  
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5.3 Materials and methods 

5.3.1 Animals and husbandry 

Adult 4–6-month-old male and female zebrafish (Danio rerio) (~ 30:70%) of heterozygous “wild type” strain were obtained from local commercial distributors 
(Carmar sas, Napoli). All fishes were given at least 14 days to acclimate to the 

laboratory environment and housed in groups of 12 fishes per 30-L tank. All tanks 

were filled with deionized water before introducing the fishes. Fishes were fed two 

times daily with commercial food (SERA Vipagran®, Germany). The fishes were 

fed the diets at 1.5%–2% of bodyweight per day automatically using Rondomatic 

400 (Grässlin, Germany). The room and water temperatures were maintained at 

25–27 °C. Illumination (1010 ± 88 lx) was provided by ceiling-mounted fluorescent 

light tubes on a 14-h cycle (D:N=14h:10h) consistent with the standards of 

zebrafish care (Westerfield M., 2000). All fishes used in this study were 

experimentally naïve. Two experimental groups were evaluated: a control group 

(CTRL) (n. 16 animals) and a probiotic-treated group (PROBIO) (n. 16 animals). 

5.3.2 Probiotic administration 

The control group (CTRL), was fed twice per day with a commercial diet only and a 

probiotic-treated group (PROBIO), was fed twice per day the commercial diet and 

twice with the lyophilized probiotic strain L. rhamnosus IMC 501, provided by 

Synbiotec s.r.l. (Camerino, Italy) at a final concentration of 106 colony-forming 

units/g (0,01 g/l) for 28 days (as reported in general chapter at 2.3). Both groups 

are constituted by animals randomly chosen from two different biological 

replicates.  
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5.3.3  RT-qPCR analysis of BDNF 

Fishes were euthanized by immersion in overdose 500 mg/ L-1 of 3-aminobenzoic 

acid ethyl ester [MS-222] buffered to pH 7.4 (Sigma–Aldrich, USA). After death, 

fishes were dissected under a light source and with sterilized micro surgical blade 

and forceps, brain was entirely excised and replaced into sterile 1.5 mL micro 

centrifuge tubes (MCT) with 1 ml of RNAlater® sterile solution (Life Technologies, 

USA) and stored at -80°C until use for analysis. The total RNA was extracted using 

the Ambion Pure Link® RNA Mini Kit  (Life Technologies, Carlsbad CA, USA). 

Briefly, brain samples were thawed on ice, weighed, and macerated in lysis buffer containing β-mercaptoethanol. The RNA was applied to a silica filter, washed three 

times and eluted. DNase treatment was performed using Ambion Pure Link® 

DNase Set (Life Technologies, Carlsbad CA, USA). Isolated RNA was quantified on 

Nanodrop® ND-2000 UV-Vis Spectrophotometer (Thermo Scientific, Wilmington, 

NC, USA) and analysed for quality using the Agilent 2100 Electrophoresis 

Bioanalyzer Nano- Chip (Agilent, Stockport, UK) according to the associated 

protocol. All of the RNA samples had an RNA integrity number (RIN) greater than 

8. Total RNA was reverse transcribed to cDNA, using the SuperScript®  VILO™ 
cDNA Synthesis Kit and an oligo dT primer. BDNF and β-actin primers (Tab. 5.1) 

were used to amplify 30 ng of the first strand cDNA. The reactions were conducted 

in technical triplicates and biological duplicates with Power SYBR® Green Master 

mix (Applied Biosystems) following manufacturing instructions. The reactions 

were run in the 7500 ABI Thermal Cycler (Applied Biosystems) using the following 

thermal cycle: 50°C, 2 min; 95°C, 10 min; 40 cycles of 95°C, 15 sec and 60°C, 1 min. 

The melting curve stage was: 95°C, 15 sec; 60°C, 1 min; 95°C, 30 sec; 60°C, 15 sec. 
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The Real-Time PCR Miner online tool (Zhao and Fernald, 2005) was used to 

calculate the PCR efficiency (E) and optimal threshold cycle (CT) for each well. The 

mean relative expression ratio (Rn) and standard error of the BDNF transcript was 

calculated using the actin gene as the endogenous control applying the formula 

Rn = R0 BDNF /R0 actin = (1+E target ) –CT BDNF /(1+E control ) -CT actin. 

 

Tab.5.1 β-actin and BDNF primers used for RT-qPCR 

Danio rerio gene Primer Sequences β-actin forward CACAGATCATGTTCGAGACC β-actin reverse GGTCAGGATCTTCATCAGGT 

BDNF forward ATAGTAACGAACAGGATGG 

BDNF reverse GCTCAGTCATGGGAGTCC 

 

5.3.4 Statistical Analysis 

Data are presented as means ± standard error of the mean. Statistical analysis was 

performed using the two-tailed t test. A p value of less than 0.05 was considered 

significant. 

5.3.5 Immunohistochemistry 

4 adult zebrafish (male and female) heads were fixed by immersion in Bouin's fluid 

for 24 h at room temperature (RT), dehydrated in ethanol series and embedded in 

paraffin wax. Transverse 5–7 μm thick sections were cut. Microtomical sections 
were serially stained by luxol fast blue, cresyl violet, and immunocytochemistry. 

After dewaxing in xylene and rehydration, slides were washed in PBS and then 
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placed in target retrieval solution (Citric buffer pH 7.4) brought to boil using 

microwave, and then gently boiled for 10 min at 10% power, then left in the 

solution to cool for 30 min. Sections were washed with PBS and treated with 3% 

H2O2 (20 min), washed with phosphate buffered saline solution (PBS) pH 7.4 and 

incubated in a humid chamber for 24 h at 4 °C with anti-NGF (sc-549, Santa Cruz 

Biotechnology, Santa Cruz, CA) diluted at 1:300 with PBS containing 0.2% TritonX-

100, 0.1% bovine serum albumin, and 4% normal goat serum (NGS) (cod. S1000, 

VECTOR Lab, Burlingame, CA). After incubation, the sections were washed in PBS 

and incubated with EnVision for 30 min at RT. The sections were washed and the 

immunoreactive sites obtained were visualized using a fresh solution of 10 mg of 

3,3′-diaminobenzidine tetrahydrochloride (DAB) (cod. D5905, Sigma-Aldrich) in 

15 ml of a 0.5 M Tris buffer, pH 7.6, containing 1.5 ml of 0.03% H2O2. Slides were 

observed and analyzed by Nikon Eclipse 90i. The digital raw images were 

optimized for image resolution, contrast, evenness of illumination, and background 

by using Adobe Photoshop CS5 (Adobe Systems, San Jose, CA). 

 

5.4 Results  

5.4.1 RT-qPCR 

The results for BDNF expression level measured in PROBIO and CTRL group are 

showed in Fig. 5.1. The PROBIO group had a statistically significant near two-fold 

increase in BDNF expression compared to the CTRL group. 
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Fig. 5.1. BDNF brain expression in L. rhamnosus treated group (PROBIO) and controls. 

Bars represent standard error. rER, relative expression ratio. 

 

 

5.4.2 Immunohistochemistry 

The anatomical nomenclature used for the description of BDNF immunoreactivity follows that from “neuroanatomy of the zebrafish brain” atlas by Wullimann 
(1996). Cells displaying immunoreactivity to BDNF were observed in all encephalic 

regions, although with different pattern of distribution. Immunoreactivity has been 

observed either in fibers and in cytoplasm of neurons. Grouped BDNF positive 

small neurons were seen in the dorsal and ventral zones of telencephalon, and 

some positive cells were also recognized along the ventricle. Sparse positive 

neurons were seen in the preoptic area of diencephalon, and in some thalamic 

nuclei, in the dorsal hypothalamus (Fig a) and hypothalamic inferior lobe mainly in 

neurons localized in the caudal zone of periventricular hypothalamus. In the 
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mesencephalon, positive small neurons were observed thorughout the layers of in 

the optic tect and in numerous fibers of the longitudinal tori (Fig. b). Strong 

positivity to BDNF was detected in the cerebellum, in recognizable Purkinje cells of 

either the valvula and body (Fig c,d). Finally, immunoreactivity was seen in the 

medulla oblongata, in large neurons of anterior and intermediate reticular 

formation.   

 

 

Fig 5.2 IHC: a. Immunoreacitivity in numerous fibers and some small neurons of dorsal 

hypothalamus. b. Positivity to BDNF in fibers of the longitudinal tori. c. Positivity in the 

citoplasm of neurons of Purkinje and in the molecular layer of cerebellum body. d. High 

magnification of rectagle shown in c. Scale bars: a-c= 100 µm; bd= 50 µm. 
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5.5 Discussion and Conclusion 

It is known that gut microbiota impacts various aspects of host physiology 

including modulation of gut–brain communication. Here we provide evidence, 

using qPCR, that Lactobacillus rhamnosus dietary administration in zebrafish 

increased the transcription of BDNF mRNA in brain, without distinguishing 

between the pro - and mature BDNF forms. The results are consistent with those 

reported in mammals (O'Sullivan et al., 2011). Furthermore, the neuroanatomical 

localization of BDNF protein seems to confirm observations carried out in previous 

studies (Gatta et al., manuscript in preparation). The specificity of the antibody as 

already been tested in Western blot experiments (Gatta et al., manuscript in 

preparation), demonstrating that BDNF antiserum identifies three bands of ~14 

kD ~26kD and ~39 kD, suggesting that the antibody recognizes pro and mature 

BDNF forms. The wide distribution of BDNF in the brain of adult zebrafish 

underlye the key role of this molecule in the maintenance of the nervous system. 

Given the increased expression of BDNF at mRNA levels, it is arguable that 

probiotics do have positive effects on brain, by regulating the synthesis of BDNF.  

A number of studies has demonstrated that gut bacteria influence BDNF levels. 

How this alterations in brain chemistry are related to specific behavioral changes 

is unclear (Forsythe and Kunze, 2012). So, what is the relationship between gut 

bacteria and the brain for human and animal health? Explication in understanding 

of the microbiome–gut– brain axis comes from studies of how distinct microbial 

stimuli activate the vagus and the nature of the signals transmitted to the brain 

that lead to differential changes in the neurochemistry of the brain (Forsythe and 

Kunze, 2014). Heart, lungs, pancreas, liver, stomach, and intestines send 
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information to the brain, via sensory fibers, by the vagus nerve (Browning et al., 

2003). This communication of visceral signals from the vagus to brain, and 

particularly to neural circuitry associated with mood and anxiety, suggests the role 

of this nerve in the direct communication between gut bacteria and the CNS. Gut 

bacteria can influence memory, mood, and cognition and are clinically and 

therapeutically relevant to a range of disorders (Galland, 2014). Evidences from 

animal model studies show that gut microorganisms can activate the vagus nerve 

and that such activation plays a critical role in mediating effects on the brain 

chemistry and, subsequently, may have effects on behavior (Forsythe and Kunze, 

2014). 

The study reports, for the first time, the effects of oral administration of the 

probiotic Lactobacillus rhamnosus 501 IMC on BDNF brain expression in adult 

zebrafish. The results showed  that the intestinal microbiota can influence CNS in 

terms of neurotrophins expression.  

Clarification of the precise pathway of communication underlying the microbiota–
gut–brain axis in zebrafish will require vast interdisciplinary efforts  because our 

results suggest that the pathway may involve production of neuroactive 

substances modulating the microbiota. Sheding light on the mechanisms 

underlying the central effects of gut bacteria, overall the neurotrophic effects of 

probiotics strain, is important because it may lead to the discovery of alternative 

pathways and substrates to treat brain disorders that do not always respond to 

prescribed drugs, or when used adjunctively with conventional medications. 

Finally, understanding this microbiota-gut-brain axis may have important 

implications for the development of microbial or nutrition based therapeutic 
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strategies for mood disorders.  This first investigations on zebrafish lays the 

foundation for advancements in knowledge of the microbiota–gut–brain axis, 

compelling evidence for the link between gut bacteria and brain function in this popular “striped” animal model.  
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CHAPTER 6 

FINAL DISCUSSION 

 

The results of this study may provide the evidence for a microbiota–gut–brain axis 

which influences brain biochemistry and modulates behavior in adult zebrafish. This is supported by several lines of evidence. First, the “perturbation” of the 
microbiota, feeding zebrafish with  the probiotic strain  L. rhamnosus IMC 501, 

apported change in shoaling behavior, increased significantly brain BDNF 

expression and, although not highly significant it leads to shifts in gut microbial 

populations. Modulation of central neurotrophin expression,  thus, may play a role 

in the induction of behavior changes in animal models (Bercik et al., 2011). 

This study  highlights that using probiotic strain, intestinal commensals may play a 

critical role in behavior and central neurotrophin expression. These bacteria may 

be capable of producing and delivering neuroactive substances which act on the 

brain-gut axis. 

Analysis of recent studies reveals that gut bacteria influence BDNF levels, 

particularly in the hippocampus. How this alterations in brain chemistry are 

related to specific behavioral changes is unclear (Forsythe and Kunze, 2012), but  

it will likely be a focus of future research efforts. 

In the hippocampus, BDNF is associated with memory and learning, but recent 

evidence indicates that increases in hippocampal BDNF are associated with 

anxiolytic and antidepressant behavior. The increase in hippocampal BDNF seen in 

mice is therefore consistent with their gregarious behavior. The amygdala is also 
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associated with memory and mood disorders and this studies have shown that 

BDNF expression is increased in the amygdala during fear learning.  Amygdala 

hyperactivity  has also been implicated in depression and anxiety and lower levels 

of BDNF in the amygdala mice are therefore consistent with the observed increase 

in exploratory behavior. (Bercik et al., 2011). Von Trotha et al., (2014) observed 

that  homologous structures to the mammalian amygdala and hippocampus are 

respectively contained in the medial (Dm) and the lateral (Dl) domains of the adult 

zebrafish pallium. This finding showed Dm as a territory that shares 

developmental origin, gene expression and neuronal connections with the 

mammalian basolateral amygdale (BLA). Like the mammalian BLA, Dm is activated 

both upon acute administration of the rewarding drug amphetamine and following 

conditioning during drug-seeking behavior. These results suggest an evolutionary 

conserved function of the amygdala in the processing of positive emotions and 

induction of motivated behavior in zebrafish (Von Trotha et al., 2014), and 

provides that further studies on behavior and neurochemical this cyprinidae might 

be required to understand the microbiota-gut-brain communication axis better. 

Elucidating the mechanisms underlying the central effects of gut bacteria is 

important because it may lead to the discovery of alternative pathways and 

substrates to treat brain disorders that do not always respond to prescribed drugs.  

In this study, Firmicutes phyla increased significantly at the expense of 

representatives of the the Proteobacteria fractions in PROBIO group. Feeding 

zebrafish probiotic Lb rhamnosus, althought not significan showed a reduction of 

Proteobacteria genera abundance, supporting the antagonistic activity role of this 

probiotic strain. A higher proportion of Proteobacteria and a lower amount of 



102 

 

Firmicutes (Lactobacillus group), which were significantly correlated with 

enterocolitis severity, characterized the intestinal microbiota dysbiosis in 

zebrafish with inflammatory bowel disease (IBD) -like colitis.  At the same time  

different researchers showed evidence of  changes in the human gut microbiota 

associated with IBD, particularly a dramatic decrease of diversity in the phylum 

Firmicutes and a related increase in Proteobacteria (He et al., 2013). The zebrafish 

digestive tract is similar to that of mammals in its development, organization and 

function. Zebrafish are well suited for studying host-bacterial interactions as they 

have innate and adaptive immune systems similar to higher vertebrates (Trade et 

al., 2004) Hi level of proteobacteria is also associated, in zebrafish, with 

inflammatory bowel disease (IBD)-like colitis. At the same time  other researchers 

have documented changes in the human gut microbiota associated with IBD, 

especially a dramatically reduced diversity in the phylum Firmicutes and 

concomitant increase in Proteobacteria  (He et al., 2013). Alterations in diet can 

lead to marked shifts in gut microbial populations. In this study zebrafish  fed a 

diet containing Lb rhamnosus (PROBIO group) were found to have a greater 

diversity of gut bacteria than those receiving commercial food only (CTRL group). 

In this study we may speculate that a significantly increased of Firmicutes phyla at 

the expense of Proteobacteria, in PROBIO group, should be the reader key of 

abundance of BDNF in zebrafish. Furthermore, zebrafish receiving Lb rhamnosus 

exhibited different shoaling behavior in response to the video tracker test. While 

no causal relationship was established, this study provides early support for the 

suggestion that, in addition to any direct effects of dietary components, diet-

induced changes in bacterial diversity and neurotrophin factors, may influence 

behavior. 
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In this research, a correlation between microbiota modulation and behavioral 

effects is supported by the demonstration that two groups of zebrafis showed 

different behavioral patterns in terms of distance variance (DV), nearest distance 

(ND), the shoaling size area occupied (OA) and water column position (CP). Here 

we speculate the hypothesis that whether the behavioral changes might be 

attributed to specific alterations in the microbiota after administration of Lb 

rhamnosus. 

More recently it was demonstrated that long-term (28- day) oral administration of 

a Lb. rhamnosus strain (JB1) could alter the normal behavior of adult balb/c mice. 

Chronic treatment with the bacteria reduced anxiety-like behavior as assessed in 

an elevated plus maze and decreased the time spent immobile in a forced swim 

test. Overall, changes induced with this strain of L. rhamnosus were indicative of 

reduced anxiety and decreased depression-like behavior (Forsythe and Kunze, 

2012). This study is in line with our own work proposed here.  

Thus,  in answer to the question” what the relationship between gut bacteria and 

the brain means for human and animal health”, we could show that a lot of 
interesting studies support that the composition of the gut microbiota may be 

associated with psychiatric conditions, as it has been proposed in case of 

schizophrenia (Dinan et al 2014) anxiety and depression and obesity  (Forsythe 

and Kunze, 2012) . 

This study on zebrafish is at the very early stages of understanding the complex 

communication systems of the microbiota-gut-brain axis. The interest in this 

mechanisms will provide us with new understanding of the symbiotic relationship 
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between the gut microbiota and their host, in humans animals or fish. In 

conclusion using different techniques such as video-tracking software, q-RT PCR 

and NGS we are understanding the ways in which the microbiota influences the 

brain. It is becoming increasingly apparent that behaviour, neurophysiology and 

neurochemistry can be affected in many ways through modulation of the gut 

microbiota. This communication mechanisms will be crucially important for the 

development of any microbiota-based and microbiota specific therapeutic 

strategies for CNS diseases. We may assert that this form of interkingdom 

signaling, based on bidirectional neurochemical interactions between the host's 

neurophysiological system and the microbiota should be also robust in zebrafish, 

consolidating it an interesting animal model, one of main character in the theatre 

of this translational momentum. 

Future studies will also help us to identify the potential for microbial-based 

therapeutic strategies that may aid in the treatment of mood disorders, stress, for 

human and animal health. 
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