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The microenvironment controls invadosome plasticity
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ABSTRACT

Invadosomes are actin-based structures involved in extracellular

matrix degradation. Invadosomes is a term that includes podosomes

and invadopodia, which decorate normal and tumour cells,

respectively. They are mainly organised into dots or rosettes, and

podosomes and invadopodia are often compared and contrasted.

Various internal or external stimuli have been shown to induce their

formation and/or activity. In this Commentary, we address the impact

of the microenvironment and the role of matrix receptors on the

formation, and dynamic and degradative activities of invadosomes. In

particular, we highlight recent findings regarding the role of type I

collagen fibrils in inducing the formation of a new linear organisation

of invadosomes. We will also discuss invadosome plasticity more

generally and emphasise its physio-pathological relevance.
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Introduction

Remodelling and invasion of the extracellular matrix (ECM) by

cells are crucial in physiological and pathological conditions. Under

physiological conditions, ECM remodelling is necessary during

foetus implantation, embryogenesis, bone homeostasis and wound

repair. Moreover, cell invasion associated with the crossing of

anatomic barriers such as endothelial basement membrane is a basic

function of immune cells to respond to and prevent infection.

However, tumour cell invasion is instrumental in the formation of

metastases, the major cause of cancer-related death.

Invadosomes, including podosomes and invadopodia, are F-

actin-based structures that are capable to interact with and to degrade

the ECM. Although widely studied, the features that distinguish

invadopodia from podosomes are vague, but have stimulated

intense debates in the field. In order to accurately define their

respective intrinsic characteristics, parameters, such as the cellular

model, the microenvironment matrix as well as the cytokines it

contains, and thus the internal or external stimuli necessary for their

induction, need to be characterised.

The number of reports describing invadosomes, in a plethora of

situations, is increasing. Similarities between the different

structures of invadosomes have been described. Indeed, all

invadosome structures contain actin, matrix receptors and

proteases. Many studies have described the molecular

composition of invadosomes using different approaches

(Attanasio et al., 2011; Cervero et al., 2012). However, similar

to focal adhesions, invadosomes connect cells with the ECM

through contact foci consisting of large multiprotein complexes.

Thus, owing to the dynamic nature of this complex, identifying

the full molecular identity of these structures is challenging

(Artym et al., 2015; Beaty et al., 2013; Sharma et al., 2013;

Valenzuela-Iglesias et al., 2015). Currently, there is no study that

is able to define the invadosome proteome as accurately as has

been done for focal adhesions (Goicoechea et al., 2014; Robertson

et al., 2015). In addition, there are only few studies describing the

very existence and role of invadopodia in vivo. The main

objectives of this Commentary are to define the different

structures that have been described as invadosomes, to illustrate

invadosome plasticity as well as their physio-pathological

relevance and to identify the future avenues that need to be

explored in order to fully understand the complexity of the

invadosome biology.

General features of invadosomes

Normal and cancer cells interact physically with their

microenvironment through anchoring or adhesive molecular

structures that respond to different stimuli, such as mechanical or

chemical cues, by remodelling their shape and their ECM adhesion

capacity. Owing to the diversity of the ECM, cells need to

constantly adapt their adhesion capacity to the matrix

microenvironment. To attach to the ECM, cells form different

adhesion structures, such as focal adhesions or invadosomes. In this

Commentary, we will focus only on invadosomes, but it is worth

noting that focal adhesions have been recently described to also

promote matrix proteolysis in fibrosarcoma cells (Wang and

McNiven, 2012).

Invadosomes are microdomains that are formed at the ventral

surface of the cell (Artym et al., 2006; Guegan et al., 2008). The

basic unit of an invadosome corresponds to an F-actin core

surrounded by a ring of regulatory and adhesive molecules. The

F-actin-core is enriched in actin-regulating proteins, including

cortactin, neural Wiskott–Aldrich syndrome protein (N-WASP, also

known as WASL) and Arp2/3. The ring is composed of actin-

associated proteins that are also found in focal adhesions, such as

integrins, talin, vinculin and paxillin (Linder et al., 2011).

Invadosomes can be observed in different conformations, such as

aggregates (Fig. 1A), individual dots (Fig. 1B), rosettes (Fig. 1C) or

linear structures (Fig. 1D).

In invadosome aggregates, the rings link the invadosome cores

(Fig. 1A). The ring contains a combination of two subsets of

unbranched actin filaments that contain myosin and appear to be the

basis for actomyosin contractility, either at individual invadosomes

(i.e. the lateral fibres) or between invadosome cores (the connecting

cables) (Linder and Wiesner, 2015; Luxenburg et al., 2007; van den

Dries et al., 2013) (Fig. 1A). In invadosomes that form individual

dots, the ring is present in normal cells such as endothelial cells

(Moreau et al., 2003), but not easily observed in cancer cells

(Fig. 1B). Rosette arrangement has been observed in various cell
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models, such as osteoclasts, endothelial cells or Src-transformed

fibroblasts (Destaing et al., 2003; Seals et al., 2005; Varon et al.,

2006a). These rosettes can be considered as a condensation and

reorganisation of the basic invadosome units (Fig. 1C). A linear

organisation for invadosomes has been observed in cells that were

seeded onto type I collagen fibrils (Fig. 1D) (Juin et al., 2012).

Invadosome size, their number per cell and their half-life are highly

variable and depend on the cell type and its microenvironment

(Artym et al., 2011; Destaing et al., 2003; Gimona et al., 2008;

Linder, 2007; Schoumacher et al., 2010).

Invadosomes have the dual capacity to interact with and degrade

the ECM using matrix metalloproteinases (MMPs), such as MT1-

MMP (also known as MMP14), MMP2 and/or MMP9 (Linder,

2007). Invadosomes in cancer cells have been shown to be more

efficient in degrading the matrix than in untransformed cells

(Linder, 2007; Murphy and Courtneidge, 2011). Although this is

clearly of interest, it is, however, difficult to quantify and compare

the matrix-degradation capacity of cancer cells with that of other

invadosome-containing cells, such as osteoclasts or macrophages.

In fact, osteoclasts have an impressive ability to degrade bone, and

macrophages can easily degrade ECM in order to cross anatomical

barriers.

As previously described for focal adhesions (Shemesh et al.,

2005), invadosomes also act as matrix mechanosensors (Destaing

et al., 2011). Indeed, invadosomes can sense and respond to a

modulation of ECM stiffness (Alexander et al., 2008; Collin et al.,

2008, 2006; Destaing et al., 2011; Juin et al., 2013; van den Dries

et al., 2014). Moreover, using an innovative microscopy technique,

Labernadie et al. have demonstrated that human macrophage

invadosomes are able to generate a protrusion force that increases

with the stiffness of the ECM (Labernadie et al., 2014, 2010).

Induction of invadosome formation

In addition to their occurrence in both normal and cancer cells,

invadosomes can be separated in two classes based on whether they

are constitutively present in cells or are inducible. In

myelomonocytic cell types, such as macrophages, dendritic cells,

neutrophils and osteoclasts, invadosomes arise spontaneously upon

cell adhesion (Linder et al., 2000; Saltel et al., 2006). However,

in these cell types, differentiation and adhesion stimuli are

prerequisites for the formation of invadosomes. For example,

monocytes are unable to form invadosomes spontaneously and have

to be stimulated with macrophage-colony-stimulating factor (M-

CSF) to induce their formation.

Some non-hematopoietic cells, including endothelial cells, can

also form invadosomes upon appropriate stimulation, such as

expression of a constitutively active form of Cdc42 (Moreau et al.,

2003), upon c-Src activation or following treatment with phorbol

esters or sodium fluoride (Goicoechea et al., 2014; Kaverina et al.,

2003; Tatin et al., 2010, 2006), as well as after treatment with

various cytokines, such as transforming growth factor β (TGF-β),

vascular endothelial growth factor (VEGF) and tumour necrosis

factor α (TNFα, also known as TNF) (Osiak et al., 2005; Varon

et al., 2006b). Similarly, cancer cells can exhibit either constitutive

or inducible invadosomes (Saltel et al., 2011). Indeed, not all cancer

cell lines show constitutive invadosomes, and invadosome

formation can be stimulated by various stimuli, such as treatment

with TGF-β or epidermal growth factor (EGF) (Mader et al., 2011;

Mandal et al., 2008).

Recently, we have shown that type I collagen fibrils are a potent

inducer of a new type of invadosomes, which we termed linear

invadosomes (Fig. 1D). These linear invadosomes are formed along

type I collagen fibrils and are found in both normal and transformed

cells (Di Martino et al., 2015; Juin et al., 2012; Juin et al., 2014;

Schachtner et al., 2013). Linear invadosomes present markers that

are common to all invadosomes, such as the actin-binding proteins

N-WASP and cortactin (Artym et al., 2006), the scaffold protein

tyrosine kinase substrate 5 (Tks5, also known as SH3PXD2A)

(Blouw et al., 2015) and the Rho GTPase Cdc42 (Di Martino et al.,

2014). Linear invadosomes, in contrast to invadosomes that are

F-actin F-actin
F-actin

Collagen I

z

- Tumour cells

- Cdc42-tranformed cells

- Endothelial cells

- Endothelial cells

- Src-transformed cells

- Osteoclasts

- Tumour cells

- Untransformed cells
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x–y

- Macrophages

- Osteoclasts

D

Fig. 1. Different organisations of invadosomes. Schematic representation of the different invadosome organisations in z and x–y directions (top), together

with a representative confocal microscopy image (bottom). (A) Invadosomes organised in aggregates. (B) Invadosomes organised in dots. (C)

Invadosomes organised in a rosette. (D) Linear invadosomes formed along type I collagen fibrils. F-actin is shown in red, and type I collagen fibrils in grey

(D). Scale bars: 10 μm.

1760

COMMENTARY Journal of Cell Science (2016) 129, 1759-1768 doi:10.1242/jcs.182329

Jo
u
rn
a
l
o
f
C
e
ll
S
c
ie
n
c
e



organised into individual dots, do not contain ring proteins, such as

talin, vinculin, paxillin or integrins (Juin et al., 2012). We have

demonstrated that linear invadosomes that are induced by type I

collagen fibrils depend on discoidin domain receptor 1 (DDR1). In

addition to representing a new organisation of invadosomes, linear

invadosomes provide evidence for a structural link between

invadosomes because they are seen both in normal and cancer

cells. All invadosomes, regardless of whether they occur in

aggregates, dots, rosettes or the linear conformation, have the

same ECM-degrading function and common markers, such as F-

actin, Tks5, MMPs and the RhoGTPase Cdc42, suggesting that they

are all variations of the same functional entity. Therefore, the main

differences observed between different invadosomes might be due

to the varying cell models in which they are found, but, above all,

could arise from the way in which invadosome structures are

induced in these cells. Regardless of these variations, adhesion to

the ECM, which is mediated by ECM receptors, is a prerequisite for

invadosome formation. In the next section, we discuss the various

ECM receptors that have been implicated in invadosome formation.

Effects of receptors and ECM on invadosomes

The repertoire of cell surface receptors involved in invadosome

formation varies and is modulated depending on the nature of the

ECM components that are encountered by the cell; these include

laminin and type IV collagen of the basement membrane, or

fibronectin, tenascin, hyaluronic acid and type I collagen of the

interstitial ECM. Type I collagen is the major element of connective

tissue and is highly abundant, particularly in tissues, such as bone,

dermis or tendon. Moreover, type I collagen is overexpressed

(Ramaswamy et al., 2003) and often drastically remodelled in

cancer (Conklin et al., 2011; Levental et al., 2009). However, not

much is known about the receptors that are present at invadosome

structures, mainly owing to the fact that most of the invadosome

studies have been carried out in non-physiological matrices. In

contrast to focal adhesions, in which integrins are the major ECM

receptors, a number of receptors, including integrins, CD44 and

discoidin domain receptors (DDRs), have been shown to bind to the

matrix at invadosomes. This variability reflects the ability of

invadosome to form in a variety of cells that are exposed to different

matrices.

Integrins

Integrins are the most studied ECM receptors. This receptor family

is clustered into 18 α-subunits and eight β-subunits that are able to

form 24 heterodimers that interact with specific matrix components,

such as collagens, laminins, fibronectin and vitronectin (Barczyk

et al., 2010; Humphries et al., 2006). Integrins are usually observed

in invadosomes in normal cells. For example, the integrin αvβ3 had

been detected in the ring surrounding the invadosome cores in

osteoclasts (Pfaff and Jurdic, 2001; Zambonin-Zallone et al., 1989).

Moreover, ablation of β1, β2 and β3 integrins was necessary to

inhibit invadosome formation in osteoclasts (Schmidt et al., 2011).

In addition, a crucial role for β2 integrins in invadosome formation

and dynamics has been demonstrated in dendritic cells, smooth

muscle cells and macrophages (Duong and Rodan, 2000; Gawden-

Bone et al., 2014; Kaverina et al., 2003). β1 integrin is necessary for

invadosome formation in Src-transformed fibroblasts and in

endothelial cells (Destaing et al., 2010; Poincloux et al., 2011;

Seano et al., 2014). However, the situation is less clear in cancer

cells where the integrin-containing ring is not systematically

detectable. This could depend on the specific model, the

invadosome maturation steps and the matrix context (Beaty and

Condeelis, 2014; Branch et al., 2012). Here, other adhesion

molecules that interact with integrins, such as vinculin or paxillin,

can be used to visualise the invadosome ring (Pfaff and Jurdic,

2001). Furthermore, depending on the cancer cell type and the

matrix context, these adhesion factors can be found either at the

invadosome ring (Chan et al., 2009; Mueller et al., 1999), or within

the invadosome core (Beaty et al., 2013). Most studies of cancer

cells point to β1 integrins as the relevant ECM receptor. However,

owing to the high number of possible integrin combinations, other

integrins could also be important for invadosome formation,

depending on the ECM context and the integrin repertoire of the

specific cell. For example the laminin-interacting β4 integrin is

found at the basis of the actin core in invadosome-like structures in

epithelial cells (Spinardi et al., 2004).

CD44

The hyaluronan receptor CD44 is found in a large number of cells,

such as fibroblasts, epithelial cells and endothelial cells. It is also

used as a cancer stem cell marker and is involved in cancer cell

invasion (Hiraga et al., 2013; Jaggupilli and Elkord, 2012). CD44

not only interacts with hyaluronic acid, but also with collagen,

osteopontin and MMPs. CD44, in addition to integrins, has been

observed in invadosomes and shown to be involved in their

formation. CD44 has been found at the basal part of invadosome

cores in osteoclasts and macrophages (Chabadel et al., 2007;

Chellaiah and Ma, 2013; Van Goethem et al., 2011), whereas

integrins are found at the ventral part of the invadosome ring in these

cells. The spatial separation of CD44 and integrins suggests that

they could have different roles within the same invadosome

structure, with integrins ensuring its adhesion function and CD44

being involved in degradation activity (Chabadel et al., 2007).

In other examples, such as in some cancer cells, CD44 localises

to the basal part of invadosome core and is important for

their formation (Grass et al., 2013; Lagarrigue et al., 2010;

Vikesaa et al., 2006).

DDRs

DDRs are a ubiquitously expressed family of receptors known to

interact with fibrillar collagens, in particular type I collagen. The

DDR family is composed of two members, DDR1 and DDR2.

Unlike integrins and CD44, DDRs are receptor tyrosine kinases.

DDRs are considered to be collagen sensors and are involved in

different cellular processes, such as cell differentiation, adhesion,

migration and invasion (Leitinger, 2014). DDR1 and DDR2 are also

deregulated in various cancers, such as breast and lung cancers

(Valiathan et al., 2012). Independently of its collagen-binding

activity, DDR1 has been shown to suppress actomyosin contractility

at cell–cell contacts during collective cell migration (Hidalgo-

Carcedo et al., 2011). DDR2 activation by collagen regulates the

stability of SNAIL1 (also known as SNAI1) by stimulating ERK2

(also known as MAPK1) activity and so facilitates breast cancer

metastasis (Zhang et al., 2013). As mentioned above, we have

discovered that type I collagen fibrils are powerful and

physiological inducers of linear invadosomes in various cell

types, including cancer cells that have no constitutive

invadosomes (Juin et al., 2012). Interestingly, neither β1 integrin

nor CD44 are necessary for linear invadosome formation (Juin et al.,

2012), which depends on collagen-dependent activation of DDR1

(Juin et al., 2014) (Fig. 2).

It should be noted, however, that it is possible that other receptor

families, such as the syndecans, might also be involved in

invadosome formation (Aga et al., 2008). Several studies have
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demonstrated that there is crosstalk between integrins and CD44,

and between integrins and DDR1 (Fujisaki et al., 1999; Xu et al.,

2012). In fact, a combination of these different receptor types

might be necessary to regulate the formation and the functions of

invadosomes.

As integrins are clearly not the only means to form invadosomes,

it is important to decipher the invadosome–adhesome in the context

of a complex and physiological matrix.

Invadosome plasticity

As some of the invadosome components are common to the

different types of invadosomes that have been described, the

existence of a common precursor has been suggested (Boateng and

Huttenlocher, 2012; Gimona et al., 2008; Linder, 2009; Linder

et al., 2011). Here, we wish to raise the possibility that, in reality,

this apparent variability in fact represents the ability of a common

invadosome precursor to adapt to its microenvironment, for

example to modulate its morphology according to the substrate it

encounters, such as taking on a linear shape along a type I

collagen fibril. It is worth noting that invadosome structures were

initially classified based solely on their appearance and

independently of the respective ECM substrate present or

regardless of which stimuli were involved in their formation

(such as active Cdc42, TGF-β stimulation, Src activation, etc.).

Indeed, type I collagen can induce either de novo formation or a

reorganisation of pre-existing invadosomes (Juin et al., 2012).

Therefore, depending on the means of stimulation, the same cell is

able to organise its actin cytoskeleton into different forms of

invadosomes, such as either classical dot-like or linear

invadosomes (Fig. 3). Indeed, NIH-3T3 fibroblasts that do not

present classical invadosomes under basal conditions (Fig. 3B)

form (1) dots when Cdc42 is activated (Di Martino et al., 2014)

(Fig. 3C), (2) rosettes when the Src oncogene is active (Fig. 3D),

and (3) linear invadosomes in response to type I collagen fibres

(Juin et al., 2012) (Fig. 3B–D). Furthermore, cells react differently

to the substrate depending on its stiffness (Collin et al., 2006; Juin

et al., 2012; Labernadie et al., 2014). For instance, a recent study

has demonstrated that cells from the metastatic breast cancer line

MDA-MB 231 preferentially form integrin-dependent actin dots

on a high density of fibrillar collagen, which corresponds to

compressed and fixed collagen I (Artym et al., 2015). Several

other studies have demonstrated that cells preferentially form

linear actin structures on fibrillar collagen I (Monteiro et al., 2013;

Schachtner et al., 2013). Based on these findings, we propose that

the resulting invadosome architecture might depend less on the

particular cell type than on the experimental setting used for their

observation. Invadosome plasticity has already been reported in

certain cell types, such as osteoclasts, cancer cells, macrophages

and endothelial cells (Destaing et al., 2003; Juin et al., 2012; Van

Goethem et al., 2010). Osteoclasts are large monocyte-derived

cells that can exhibit two different actin cytoskeleton organisations

according to the differentiation state of the cell and the substrate

(Saltel et al., 2008). Here, invadosome organisation changes

during differentiation; initially, osteoclasts exhibit aggregates of

invadosomes, before invadosome rosettes emerge from these

aggregates during differentiation. At the end of differentiation, the

invadosome rosettes expand to the cell periphery, fuse to each

other and form a stable structure (Destaing et al., 2003). Moreover,

when osteoclasts are seeded on mineralised matrices, the

invadosome rosette is reorganised into a structure named the

sealing zone that appears larger and denser, and that is dependent

of the bone substrate (Saltel et al., 2004). In another example,

depending on whether they are cultivated on two-dimensional

(2D) or three-dimensional (3D) substrates, macrophages are able

to extensively modify their overall cell shape, together with a total

reorganisation of the actin cytoskeleton. Consequently, the number

and the morphology of their invadosomes are strikingly different

in 2D and 3D environments (Cougoule et al., 2010; Van Goethem

et al., 2010). ECM matrix stiffness can also result in an increase in

the number, size, stability and activity of invadosome structures

(Alexander et al., 2008; Juin et al., 2013). Furthermore, a recent

study has demonstrated that invadosomes are preferentially formed

under the nucleus and that nucleus stiffness favours invadosome

formation (Revach et al., 2015). These data suggest that

invadosomes are also capable of sensing intracellular stiffness,

such as that of a stiff organelle.

Moreover, different invadosomes organisation can be observed

at a given time in a same cell. Indeed, in some cases, we

observed some intermediate structures between linear and rosette

organisation (F.S., unpublished data). These different examples

Type I collagen DDR1 Tks5 Merge

Type I collagen MergeTks5F-actinB

C

Type I collagen fibrils

DDR1

Tks5

A

Key

Fig. 2. Composition and organisation of linear invadosomes. (A) Schematic representation of a cell seeded into type I collagen fibrils. (B) Confocal

microscopy images of MDA-MB-231 cells illustrate the molecular organisation of linear invadosomes, F-actin (in red) and Tks5 (in green) colocalise along type I

collagen fibrils (in grey). (C) Linear invadosomes with different stainings, DDR1 (in red) and Tks5 (in green) colocalise along the collagen fibrils (in grey). Scale

bars: 5 μm.
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demonstrate that invadosomes are plastic structures that are highly

adaptable to the matrix microenvironment.

Invadosomes in vivo – the beginning!

Since their discovery, invadosomes have been widely and mostly

studied in vitro. It is only recently that work has aimed to provide

evidence for their existence and functions in vivo. Identifying

invadosomes in vivo in their natural environment is, however,

challenging, mostly because the existing intravital imaging

technologies are still suboptimal, especially in terms of the

resolution available to simultaneously follow several molecular

markers. Moreover, potent biochemical tools to demonstrate their

relevance in vivo are still lacking. Thanks to the development of new

microscope techniques, such as intravital multiphoton microscopy,

it is now becoming possible to observe a cell within its surrounding

matrix in vivo (Condeelis and Segall, 2003; Sahai et al., 2005; Wolf

et al., 2003). Consequently, invadosomes are now being studied in

different animal models, such as zebrafish, chicken, worm, frog and

mouse, as well as within the context of both physiological and

pathological processes (see Table 1). Below, we discuss the major

recent findings that highlight the in vivo relevance of invadosomes.

In different animal cell models, ‘invadosome-like protrusions’

have been observed in cells crossing the basement membrane. For

instance, one study has investigated the epithelial cell invasion

within the developing intestine of zebrafish with a mutation in the

myosin heavy chain 11 (mlt), which constitutively activates this

protein, leading to a disrupted intestinal architecture (Seiler et al.,

2012). Using time-lapse imaging, the authors showed that epithelial

cells have actin-rich protrusions that are enriched in cortactin and

Tks5. They also observed a weak expression of MT1-MMP at the

basal area of the cell (Seiler et al., 2012). Thus, cells can

successfully cross the basement membrane, most likely through a

combination of a proteolytic activity and mechanical forces. The

interaction between invasive cells and the basement membrane has

also been studied in Caenorhabditis elegans (Hagedorn et al.,

2013); here, actin-rich protrusions that breached the basement

membrane were observed in the anchor cell, a single cell in the

embryonic gonad that establishes the fate of the vulval precursor

cells. However, even if these structures are somewhat similar to

invadosomes with regard to their composition and structure, thus

far, there is no evidence for their proteolytic activity. It should be

noted though that, in a previous study, the same group had shown

that a mutation of the FOS-1 gene, which encodes for the MMP

ZMP-1, reduces the invasiveness of the anchor cell, suggesting that

a proteolytic activity is indeed involved (Sherwood et al., 2005).

After breach of the basement membrane, the invadosome-like

protrusions of the anchor cell disappeared. In this system, a single

large protrusion was sufficient for invasion, which is mediated

here by membrane displacement (Hagedorn et al., 2013).

Taken together, these results might point to a new mechanism of

invasion through basement membrane, which could combine

protease activity and mechanical forces (Morrissey and Sherwood,

2015). Future work will be needed to determine whether these

particular protrusions are indeed similar to the invadosomes

described in vitro.

In vitro, after cytokine treatment, human umbilical vein

endothelial cells are able to form invadosome rosettes that have

been correlated with a degradative activity (Osiak et al., 2005; Tatin

et al., 2006; Varon et al., 2006a). Using an ex vivo angiogenesis

model, rosette structures that colocalised with cortactin in

endothelial cells have been observed; these structures were

associated with a decrease in laminin staining underneath,

suggesting a degradation activity (Rottiers et al., 2009). More

recently, similar invadosome rosettes have been identified in mouse

angiogenic endothelium in response to VEGF-A treatment (Seano

et al., 2014). Furthermore, the rosettes proved to be necessary for

blood vessel branching and pathological angiogenesis. Moreover,

integrin α6β1 was found to be required for the rosette formation and
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Fig. 3. Invadosome plasticity. (A) 2D and 3D confocal images representing a simple gelatin matrix in green (upper panel) and a mixed gelatin and collagen

matrix (lower panel). Gelatin is in green and collagen is in red. (B) Wild-type (WT) NIH-3T3cells seeded on gelatin exhibit only stress fibres (upper panel) without

any associated gelatin degradation (as seen by the grey colour in the inset), but when seeded on collagen form linear invadosomes (lower panel) that are

associated with gelatin degradation (dark ‘holes’ in the bottom insets). (C) NIH-3T3 cells transfected with an active form of Cdc42 (Cdc42-V12) seeded on gelatin

form active invadosomes that are organised in dots (upper panel and inset); the gelatin degradation pattern corresponds to the morphology of the invadosomes

dots. Linear invadosomes are formed when the same cells are seeded on a collagen fibrils (lower panel); at this point, the gelatin degradation pattern appears

linear (bottom inset). (D) NIH-3T3 cells constitutively expressing an active form of Src form invadosomes rosettes when seeded on gelatin (upper panel) with a

corresponding degradation pattern. Linear invadosomes are induced when cells are seeded on collagen matrix (lower panel), and the gelatin degradation pattern

follows the linear organisation. White asterisks show linear invadosomes on type I collagen. Actin is in red, Tks5 in green, nuclei in blue and gelatin in grey. Scale

bars: 10 μm.
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stabilisation. Although these structures expressed MT1-MMP, as

shown in vitro, their ability to degrade the basement membrane

in vivo remains unclear (Seano et al., 2014).

With regard to invasion of tumour cells into the matrix,

protrusions adjacent to collagen fibres, macrophages and blood

vessels have been found in a recent study (Gligorijevic et al., 2014).

Here, the inhibition of MMPs with the drug GM6001 or a

knockdown of Tks5, which colocalises to these invadosome-like

structures, prevented their formation. The Tks5-containing

protrusions were able to degrade type I collagen fibres as

observed by immunofluorescence of primary tumour

cryosections. In demonstrating the potential relevance of these

protrusive structures in vivo (Gligorijevic et al., 2014), that study

thus paves the way for future research efforts in identifying the

relevance of invadosomal structures for tumour cell invasion,

especially in the context of a disruption of the basement membrane.

Moreover, the role of the tumour microenvironment during

metastasis has been described, in particular the role of macrophages.

For instance, the presence of macrophages during intravasation has

been shown to enhance the entry of tumour cells into the blood

vessels (Roussos et al., 2011), and, furthermore, a paracrine

signalling feedback between macrophages and tumour cells has

been identified (Wyckoff et al., 2007). In addition, a further study

has highlighted that the contact between macrophages and cancer

cells increases the intravasation of MDA-MB-231 cells by

enhancing the formation of invadosomes, both in vitro and in vivo

(Roh-Johnson et al., 2014). However, another study from the same

group suggests that tumour cell intravasation can be mostly

attributed to macrophage-induced vascular permeability (Harney

et al., 2015). Nevertheless, invadosome-like protrusions have been

shown to facilitate tumour cell extravasation prior to metastatic

growth in the chick chorioallantoic membrane model (Leong et al.,

2014). Future work will be needed to determine whether circulating

tumour cells exploit protrusive and degradative invadosomes to help

them breach through the physical barriers that are imposed by

basement membrane barriers.

In order to be able to confirm any observations of ‘invadosome-

like’ protrusions in vivo, the minimal set of markers that is required

to validate the existence of these invasion structures in a cell needs to

be agreed on by the community (Di Martino et al., 2014). Ideally, a

minimum of two independent components or features should be

used to assess the presence of invadosomal structures in vivo.

Moreover, recent discussions in the field have led to the consensus

that visualising invadosomal structures at high-resolution would

help in validating the physiological relevance of these structures,

and/or their composition in vivo. For this purpose, access to and

use of the newly emerging super-resolution imaging techniques

will be instrumental. Importantly, recent developments in intravital

correlative microscopy technologies, which, for instance, allow

combining of dynamic intravital imaging of sub-cellular structures

with the high-resolution capability of volume electronic

microscopy, could help define the ultrastructure and thus the

cytoskeletal components of invasive protrusions in order to study

their subcellular composition in physiological and complex ECM

(Karreman et al., 2014, 2016). We recently noticed that single

tumour cells at the invasive front of the same tumour can exhibit

protrusions with distinct morphological and ultrastructural features,

which supports the idea that tumour invasion, whether it relies on

the invadosome or not, is highly plastic (Karreman et al., 2016).

These and other recent technological breakthroughs hopefully will

help to validate the in vivo existence of invadosomes (Ellenbroek

and van Rheenen, 2014).

Conclusions and perspectives

As outlined here, we propose that invadosomes should not be

considered as a number of varying distinct types of structures, but

rather that they are instead a single entity that is able to adapt to the

cellular microenvironment. Indeed, for a given invadosome, its

Table 1. Overview of the studies describing invadosome-like structures in vivo

Animal

model Cell type Markers Microscopy Microenvironment Reference

Zebrafish Intestinal epithelial cells F-actin, Cortactin, Src,

MMP14a

Time-lapse

microscopy

Basement membrane Seiler et al.

(2012)

Nematode Anchor cell F-actin, PI(4,5)P2, Rac Time-lapse

microscopy

Basement membrane Hagedorn et al.

(2013)

Anchor cell F-actin, PI(4,5)P2,

Cofilin

Confocal

microscopy

Basement membrane Hagedorn et al.

(2014)

Xenopus Rohon–Beard neuron

growth cones

Cortactin and NCAM Structure

illumination

microscopy (SIM)

n.d. Santiago-Medina

et al. (2015)

Chicken Cancer cells F-actin, Cortactin, Tks4,

Tks5, MT1-MMP

Multiphoton

intravital imaging,

Confocal

Chorioallantoic

membrane (CAM)

Leong et al.

(2014)

Guinea pig Lymphocyte and basophil None Electron microscopy Vessel Carman et al.

(2007)

Mouse/Rat Rat mammary

adenocarcinoma cells

(MTLn3)

N-WASP, Cortactin,

Actin and Collagen

degradation

Multiphoton

Intravital Imaging,

Confocal

Type I collagen Gligorijevic et al.

(2012)

Mouse Breast cancer cell line

(MDA-MB-231)

Cortactin, Tks5 and

Collagen degradation

Multiphoton

Intravital Imaging,

Confocal

Type I collagen Gligorijevic et al.

(2014)

Endothelial cells F-actin, Integrin α6,

cortactin

Confocal

microscopy

Basement membrane Seano et al.

(2014)

Smooth muscle cells Tks5 and Cortactin Electron microscopy n.d. Quintavalle et al.

(2010)

Osteoclast None Electron microscopy Bone matrix Masarachia et al.

(1998)

n.d., not determined.
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shape and molecular composition result from a combination of the

different conditions encountered by the cell at a specific moment

and at a specific location. Such a plasticity is, of course, necessary

for a cell to be able to invade different types of tissues and matrices,

and as shown in Fig. 3, cells from the same cell type can form all the

different invadosome types previously described. Until recently,

mainly owing to the matrix element for the study of invadosomes,

only two main invadosomes shapes had been described, dots

(separated or organized in aggregates) or rosettes. In the past few

years, we demonstrated another type of organisation, the linear

organisation of invadosomes along type I collagen fibrils.

Potentially, all cells are able to form invadosomes and degrade

the ECM. Indeed, under physiological conditions, this property is

an integral part of the function of some cells, at least at some stages

during development. In pathological scenarios, such as during

carcinogenesis, tumour cells can use this capacity to migrate and

invade surrounding tissues as schematically outlined in Fig. 4. For

example, tumour cells could use invadosomes to degrade the

basement membrane surrounding the primary tumour to invade the

connective tissue and to penetrate into the lymphatic or blood

vessels, which corresponds to the intravasation phase (Fig. 4).

Alternatively, cancer cells could form dot-like or linear

invadosomes. Invadosomes could also have a role in neo-

angiogenesis. In this context, endothelial cells could form

invadosome rosettes to degrade the endothelium basement

membrane, as well as potentially linear invadosomes to help the

tip cell to invade the connective tissue (Fig. 4). Interestingly, tumour

or endothelial cells have been shown to form invadosomes in vitro,

and several studies describe such invadosome conformation in vivo

(Gligorijevic et al., 2014; Seano et al., 2014).

Taken together, the studies discussed here suggest that an

invasive capacity is a common property of all cells, but which is

repressed in most cells in normal tissues. For example, under

quiescent conditions, endothelial cells are unable to form

invadosomes; however, following stress and/or a modification of

their microenvironment, the very same cells form invadosomes.

However, several important questions remain, including what are

the minimal stimuli necessary and sufficient for inducing

invadosome formation? Are degradation-efficient invadosomes

indeed present and required in vivo, and if so what is their

morphology (i.e. do they form dots, linear structures, rosettes, any

others or all of these)? The plasticity of invadosomes is evident.

1
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6

3

1

2

Blood or lymphatic vessel

Primary tumour

Type I 

collagen fibrils

Basement 

membrane (BM)

?

Normal

epithelial

cells

BM

Endothelial cells

Tumour cells

BAE

F-actin
Cortactin

BAE

F-actin
Tks5

MDA-MB-231

F-actin
Tks5

F-actin
Tks5

Zoom Zoom

Zoom Zoom

MDA-MB-231

Invadosome dots Linear invadosomes

Invadosome rosette Linear invadosome

Fig. 4. Possible roles of invadosomes

in vivo. The schematic representation

in the centre of the figure illustrates the

different steps of tumour cell invasion

(blue) that have been associated with

the presence of invadosomes (as

shown by black numbers: 1, basal

membrane degradation by tumour cell;

2, tumour cell protrusion; 3, potential

linear invadosome formation into the

stroma; 4, basal membrane degradation

of the blood vessel; 5, tumour cell

extravasation; 6, dissemination of

tumour cell in the blood; and as shown

by red numbers: 1, basal membrane

degradation by endothelial cells; 2,

endothelial cell protrusion; 3, potential

linear invadosome formation in tip cell

during neoangiogenesis). Endothelial

cells are represented in red. Steps 1 to 3

(in red) refer to neo-angiogenesis steps

with possible roles for invadosomes;

invadosome rosettes or linear

invadosomes might promote initiation

and elongation of a new blood vessel,

respectively. The upper panels show

actin organisation of tumour cells that

have been seeded onto either gelatin

(left) or type I collagen (right). The

confocal images in the lower panel are

endothelial cells that have been seeded

onto gelatin or type I collagen and form

invadosome rosettes or linear

invadosomes, respectively. F-actin is in

red and Tks5 in green. Scale bars: 5 μm.
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However, it is likely that the adaptation of a cell to its

microenvironment complicates the identification of invadosomes

in vivo. We thus should not search for a structure with only one

specific feature, but for a multifaceted structure.
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Intégrée Oncologie) and Ligue Contre le Cancer. V.M. and F.S. are supported by

funding from Equipe Labellisée, Ligue Contre le Cancer 2016. J.G.G. and F.S. are

supported by Institut National du Cancer (INCa, PLBIO 2015) J.G.G. is supported by

funding from the Institut National du Cancer, Ligue Contre le Cancer, Institut National
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