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We study the micromechanics of collagen-I gel with the goal of bridging the gap between theory and experiment

in the study of biopolymer networks. Three-dimensional images of fluorescently labeled collagen are obtained

by confocal microscopy, and the network geometry is extracted using a 3D network skeletonization algorithm.

Each fiber is modeled as an elastic beam that resists stretching and bending, and each crosslink is modeled

as torsional spring. The stress–strain curves of networks at three different densities are compared with rheology

measurements. The model shows good agreement with experiment,confirming that strain stiffening of collagen can

be explained entirely by geometric realignment of the network, as opposed to entropic stiffening of individual fibers.

The model also suggests that at small strains, crosslink deformation is the main contributer to network stiffness,

whereas at large strains, fiber stretching dominates. As this modeling effort uses networks with realistic geometries,

this analysis can ultimately serve as a tool for understanding how the mechanics of fibers and crosslinks at the

microscopic level produce the macroscopic properties of the network. © 2010 Wiley Periodicals, Inc. Complexity

16: 22–28, 2011
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1. INTRODUCTION

C
ollagen is the most abundant animal protein [1] and

its mechanics have been studied in great detail [2]. It

takes on many morphologies, including skin, tendons,

Correspondence to: Andrew M. Stein, Modeling and Sim-

ulation Group, Novartis Institute for BioMedical Research,

Cambridge, MA 02139 (e-mail: astein@ima.umn.edu)

ligaments, individual fibers, and gels. Of particular interest is

the mechanics of collagen-I gels, shown in Figure 1(a). These 

gels provide a relatively simple structure that can be nonin-

vasively observed by confocal microscopy [3, 4] and used as a

scaffold for growing artificial tissues [5] and as a 3D environ-

ment for studying cell motility [6] and tumor invasion [7,8]. A

critical first step in understanding these systems is to develop

a model for the collagen gel alone. In this article, we give a suc-

cessful theoretical model of the micromechanics of realistic

networks.
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FIGURE 1

A typical gel (1.2 mg/mL, 25.6 μm×25.6 μm×25.6 μm). (a) Maximal

intensity projection along the axis that is perpendicular to the focal

plane of the microscope. (b) Projection of 3D network extracted by

FIRE. (c) Reduced network, where elements that do not contribute to

the network stiffness have been removed for improved computational

efficiency. (d) Deformation after 50% tension. (e) Deformation after 50%

shear. (f) Comparison of the stress–strain response between the model

and experiment.

Collagen-I gels belong to a class of materials known as

biopolymers. Other examples include actin, found in the

cytoskeleton, and fibrin, a component of blood clots. Com-

mon mechanical features of biopolymers are negative nor-

mal stresses under shear [9], significant contraction and

alignment as the gel is axially stretched [10, 11], and strain

stiffening by 2–3 orders of magnitude at large strains, as

shown in Figure 1(f). The cause of this strain stiffening is

not well understood. Storm et al. [12] attributed strain stiff-

ening in all biopolymer networks exclusively to the pulling

out of entropic modes of individual filaments. Their calcu-

lation required the assumption that deformations are affine.

On the other hand, Heussinger et al. [13, 14] showed how

one could deconstruct the network deformation into a set

of nonaffine floppy modes. They concluded that accounting

for the nonaffinity was necessary in describing the elastic

properties of the network. They hypothesize that the non-

linearity comes from a transition from a bending regime to

a stretching regime. Onck and coworkers [15, 16] have pro-

posed the alternative hypothesis that strain stiffening is due

to the rearrangement of the fibers as the network is strained.

Resolving this debate has been difficult as almost all theo-

retical analysis has been on artificially generated networks in

2D. Whether such artificially generated networks can be used

to accurately describe real biopolymer gels has not yet been

confirmed. In particular, key results of the above theories

rest on assumptions on how the crosslink spacing scales with

density. Although a direct relationship has been obtained in

two dimensions for random stick networks [17, 18], in three

dimensions, the scaling relationship will also depend on how

the gel polymerizes. Although the nature of collagen polymer-

ization is currently the subject of active research [19], it is still

not well understood. Moreover, the few examples of quanti-

tative comparisons to experiment in the literature [12, 20, 21]

are not able to quantitatively fit the full stress–strain response

of the gel at varying densities using a single set of parameters.

The goal of this research is to develop a model for colla-

gen gel based on three-dimensional images of fluorescently

labeled collagen gels at different densities. The images are

obtained by confocal microscopy [Figure 1(a)], and the net-

work geometry is extracted using a custom FIbeR Extraction

(FIRE) algorithm [Figure 1(b)] [3]. The gel is modeled as a ran-

dom network of crosslinked fibers, as described below, and

the stress–strain response is compared with that measured by

an AR-G2 rheometer. Good agreement between model and

experiment is obtained by fitting a single parameter, that is,

the crosslink stiffness.

2. EXPERIMENT

The experiments were defined in more detail previously [3].

Briefly, we labeled bovine collagen type I with the fluores-

cent molecule TAMRA. Collagen solution at final concentra-

tions of 0.5, 1.0, and 1.5 mg/mL were prepared, and a Leica

SP5 resonant confocal microscope with a 63X 1.2-NA water

immersion objective was used to image the collagen sam-

ples. Four networks at each density were extracted using the

FIRE skeletonization algorithm [3], as shown in Figure 1(b).

After applying FIRE, the collagen density was re-estimated in

two different ways: by counting the number of bright pixels

in the image and by the product of the average fiber cross-

sectional area (A = 2800 nm with an assumed radius of 30 nm

[3, 22]) and total fiber length in the extracted networks. The

re-estimated densities of the three networks were 0.5, 1.2,

and 1.4 mg/mL. The final step before simulation is to remove

dangling portions of the network that do not contribute to its

stiffness [Figure 1(c)]. The shear response of the gel was mea-

sured using an AR-G2 rheometer with a 4◦, 40-mm cone-plate

© 2010 Wiley Periodicals, Inc.
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geometry with a 109-μm gap. Approximately 1.2 mL of colla-

gen solution was pipetted onto the 37◦C preheated bottom

plate of the rheometer, and the cone was lowered onto the

sample. A solvent trap was used to prevent the sample from

drying during the measurement.

3. MODEL

In the model for the collagen gel, each fiber is treated as an

elastic beam that resists stretching and bending and each

crosslink is treated as a torsional spring, making it more stiff

than a freely rotating pin joint but less stiff than a welded

joint of fixed angle. The stretching modulus of an individual

fiber is given by Ks = EA, where E is the Young’s modulus and

A is the cross-sectional area. The Young’s modulus of a fiber

in aqueous conditions has been estimated to be between 30

and 800 MPa [23–25], and we use a modulus of 50 MPa, which

fits the data well and is also close to the value chosen by

Stylianopoulous and Barocas (i.e., 79 MPa) to fit their model

[21]. It has been shown that a single fiber will stiffen by a factor

of 2–4 when strained [25]. We choose here to use a constant

E both to reduce the number of parameters in the model and

to see if geometric reorientation of the network is enough to

explain strain stiffening. Stylianopoulos and Barocas [21] also

explored the bilinear and exponential constitutive relations

for the individual fibers and observed only minor effects on

the macroscopic network behavior. The radius of each fiber

is r = 30 nm [3, 22]. The bending modulus of the fiber is

given by Kb = EI = 32 pN-μm2, where I = πr4/4 [26]. No

crosslinking agent has been added to the gel, and very little

is known about the nature of the naturally formed collagen

crosslinks. We find that we can fit all the data by setting the

torsional spring stiffness to Kx = 300 pN-μm. To compare Kb

to Kx , we consider Kb/lc, where the mean crosslink spacing is

given by lc ∼ 2μm [3]. Thus, we find that Kx ∼ 20Kb/lc. One

possible reason for an increase in stiffness at the crosslinks

could be an increase in fiber radius near the crosslinks by a

factor of 2, as bending stiffness scales by r4. However, much is

still unknown about the internal structural of the fibrils and

the interfiril and intrafibril bonding mechanics, and there-

fore, there is necessarily no reason to expect Kx and Kb/lc to

be equivalent.

We assume that in the undeformed state of the network,

there are no internal stresses. Thus, the fibers have an innate

curvature and the crosslinks have an equilibrium angle equal

to that in their initial configuration. We ignore entropic con-

tributions to the fiber mechanics. While the geometric per-

sistence length of these fibers has been measured to be

20 μm [3], the thermal persistence length is much longer

lp = Kb/kT ∼ 1 cm. Furthermore, in the case that the strain

stiffening is dominated by thermal compliance, one would

expect to see a decrease in the yield strain with increasing

concentration [27]. Collagen gels, however, have been shown

to have a constant yield strain of about 60% for a wide range

of concentrations [28]. The total energy in the network for a

given configuration is given below.

U =

Ns
∑

i=1

Ks

Li

(�Li)2

2
+

Nb
∑

i=1

Kb

Li

(

�θ i
b

)2

2
+

Nx
∑

k=1

Kx

(

�θ i
x

)2

2
(1)

Here Na is the number of elements of type a ∈ {s, b, x}, which

denotes stretching, bending, and crosslink, Li is the length of

stretching element, θ i
b

and θ i
x are the bending and crosslink

angles, respectively, and � indicates the difference between

the deformed and undeformed state.

To calculate the stress–strain relationship of our model

network, we performed a series of 18 incremental strain steps

by imposing a small deformation on one face, F1, while hold-

ing the opposite face, F0, fixed. We impose two types of

deformations: tension [Figure 1(d)] and shear [Figure 1(e)].

In a tensile deformation, we allow the vertices on F0 and F1 to

move freely in directions perpendicular to the imposed strain

to allow for perpendicular contraction, which is seen to occur

in these experiments [28, 29]. In experiments of this type, the

distance between F0 and F1 is on the order of centimeters, and

the simulated network represents a small region near the cen-

ter of a sample. In shear, we do not allow the boundary nodes

on F0 and F1 to move freely. We compare the shear results to

cone-plate rheometer experiments, where the shear faces are

bound to the rheometer. Here, the distance between F0 and F1

is 109 μm, and the simulated network is one fourth the length

of the experimental sample between the boundaries. In both

deformations, all other nodes, including those on the four

remaining faces of the network, are free to move. The mini-

mum energy state of the network at an imposed strain U (ǫij)

is found using a conjugate gradient method developed by

Hager and Zhang [30]. The stress required to hold the network

in its current configuration is given by σij(ǫij) = (dU/dǫij)/A,

where A denotes the area of F0.

4. RESULTS

The results are averaged over four extracted networks and

over all six shear deformations ǫij |i �=j in the sheared network

and all three principal tensile directions ǫii in the stretched

network. The stress–strain relationship for a single gel is

shown in Figure 1(f), and the results for all gels are summa-

r ized in Figure 2. Below ∼5% strain amplitude, the mater ial 

deforms primarily in an elastic fashion, but above ∼5%, the

material deforms irreversibly. Although the gel can recover

some of its initial material properties given sufficient time

to relax, it never completely recovers. In Figure 3(a), we plot 

the small strain modulus from the samples by calculating the

slope of the stress–strain curve at small strains (0.2–2%). In

Figure 3(b), we compare the previously reported tensile mod-

ulus of large samples that are centimeters in length [28] to

the simulation. Here, in both simulation and experiment, the

large strain modulus is computed by fitting lines to the stress–

strain curve in the regime of 20–40% strain. At small strains,

24 C O M P L E X I T Y © 2010 Wiley Periodicals, Inc.
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FIGURE 2

Stress–strain sweeps of the gel, from 0.5 to 100% strain. In the artwork,

E denotes experiment, W denotes the elastic beam model, S denotes

the spring model where we set Kx = Kb = 0, and the number denotes

the collagen density in mg/mL. (a) Unscaled results. Note the good

agreement between model and data at small and large strains. (b)

When the curves are scaled by ρ2.68, relatively good data collapse is

achieved. We denote lines of slope m = 1 and m = 3 to guide the

eye. At large strains, scaling breaks down and the low-density curves

overtake the high-density curves, because at large strains, stiffness

scales linearly with density. Thus, this rescaling mainly serves as a

visualization tool and does not represent a true data collapse.

the stress–strain response is linear, as expected, and at larger

shear strains, the stress–strain response stiffens considerably.

In Figure 3(a), we show that the small strain modulus scales

by σ12 ∼ ρ2.68ǫ12, where ρ is the collagen density. At this time,

it is not possible to verify the power law scaling in the model

as only densities of 0.5, 1.2, and 1.4 were observed. The flu-

orescent labeling of the network changes the polymerization

properties of the network, causing it to clump at higher densi-

ties. We use this scaling relationship to collapse the curves in

Figure 2(b). The close agreement between model and exper-

iment indicates that strain stiffening due to the geometric

rearrangement of the collagen fibers is enough to explain the

strain stiffening seen in experiments.

At large strains (∼50% in tension and ∼200% in shear),

the stress–strain curve of the model becomes linear again,

although with a much steeper slope. In Figure 3(b), we com-

pare the large strain tensile behavior of the model to the

experiments of Roeder et al. [28]. Although our model under-

estimates their experimental measurement by a factor of 2.5,

we find this to be reasonable as the two experiments used dif-

ferent collagen protocols. In particular, different buffers were

used. In Figure 2, we also explore the case where Kx = Kb = 0,

such that we have only a network of springs connected at

freely rotating pin joints. At low strains, the network can be

deformed without exerting any stress, but at strains higher

FIGURE 3

(a) The small strain shear modulus is compared with the cone–plate

rheometer experiments, and a scaling law of G ′ ∼ ρ2.68 is observed

for the experiment. (b) The large strain tensile modulus is from the

model and from the experiments of Roeder et al. [28]. Results differ by

a factor of 2.5, which is reasonable as the two experimental protocols

were different [28].
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FIGURE 4

Average negative normal stresses for the 1.2 mg/ml gel in response to

shear.

than 25%, we see that this simplification adequately describes

the gel.

A topic of investigation explored by many is the validity of

the assumption that these networks deform affinely [14, 15].

For brevity, we only state that the deformations are highly

nonaffine at small strains where the majority of the energy

is stored in bending rather than stretching. This is best seen

in Figure 2. Affine deformations have the property that the

majority of the energy stored in the network is in stretching

the fibers, but here, fiber stretching makes no contribution to

the network stiffness until strains are greater than 10%.

In response to shear stress, the simulated networks also

exhibited negative normal stresses that grow quadratically

with strain (Figure 4), as observed in the experiments of

Janmey et al. [9]. We also examined the perpendicular con-

traction of the gel in response to axial strain in comparison

with the experiments of Vader et al. [11] and Roeder et al.

[4], as shown in Figure 5. The perpendicular strain was taken

to be the perpendicular displacement divided by the origi-

nal perpendicular distance from the origin averaged over all

the nodes. Here, the model does not match the experiments

well. In particular, in both experiments, the z-compression is

significantly greater than the y-compression. By contrast, in

the simulation, the z- and y-compression are almost overlap-

ping. Furthermore, both experiments exhibited considerably

more perpendicular compression than seen in the simula-

tion. One possible explanation is that the geometry of the

experiments done here (sheared cone-plate rheometer) is

considerably different from that in the other experiments

(stretched disk and stretched 3D I-beam). Another possi-

bility is that the FIRE network extraction algorithm over-

estimates the number of crosslinks of the network. It may

also be that some of the crosslinks in the network slip, thus

allowing the network to further compress in response to

axial tension. To give the same strain-stiffening behavior, this

would require stiffer crosslinks. Further exploration, how-

ever, was beyond the scope of this article. Despite the lack of

quantitative agreement, we note that nonlinearly increasing

perpendicular strain is qualitatively similar to that observed

in Vader et al. [11].

5. SUMMARY AND DISCUSSION

In summary, we have presented a microstructural model

of a 3D biopolymer gel using a network geometry that is

based on the true network architecture. It differs from pre-

vious work in that we use realistic network architectures that

have been extracted using the FIRE algorithm. We specifi-

cally focus on the mechanics of collagen-I networks, but we

emphasize that this modeling approach is generalizable to

other biopolymer networks. The model has three parame-

ters: {E , r, Kx}. The fiber radius and tensile modulus can be

measured experimentally, and the model uses realistic para-

meters. The crosslink torsional spring constant must be fit to

the data and we used Kx ∼ 20Kb/lc. Fitting this single parame-

ter gives the right strain-stiffening behavior for networks at

three different densities at strains that vary from 0.5 to 50%.

This result lends support to the hypothesis put forward by

Onck et al. [15] that strain stiffening in polymer networks and

particularly collagen-I gels is governed by rearrangement of

the gel. Here, we note that the strain-stiffening mechanisms

for collagen are likely different than for other gels. Because of

its long persistence length (1 cm) fibers, the effects of entropic

stiffening in these gels is known to be minimal. Therefore,

the entropic stiffening hypothesis [31] is not applicable here.

However, for other biopolymer gels such as actin, where the

FIGURE 5

Perpendicular strains for the 1.2 mg/mL gel in response to tension when

compared with the experiments from Vader et al. [11] and Roeder

et al. [4].

26 C O M P L E X I T Y © 2010 Wiley Periodicals, Inc.
DOI 10.1002/cplx



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

persistence length of the filaments is in the order of the mesh

size, entropic stiffening of individual fibers is more likely to

be an important component that contributes to strain stiff-

ening. The stiffening in fibrin clots may depend not only on

geometric rearrangements but also on the unfolding of the

fibrin protein [32].

Another finding of the model is that at shear strains greater

than 25%, the stiffness of the gel is governed almost entirely

by stretching of the fibers. This result is relevant for collagen

because cells embedded in these gels are seen to produce

deformations of this order of magnitude [33]. In modeling

large systems of this type where the strains are large, it may

be sufficient to treat each fiber as a spring rather than an

elastic beam to reduce the computation time. This work also

demonstrates that an understand of the crosslink mechanics

in these systems is critical to understand their mechanical

properties, as has been seen previously [34]. In much of the

theoretical work that has been done on random stick net-

works, the crosslinks are treated either as freely rotating pin

joints or welded joints of fixed angle [14, 15, 27]. Although

these are sensible simplifying assumptions in develop-

ing a theory, they are not adequate for describing actual

networks.

The mechanical properties of an individual fiber depends

on the fiber microstructure and ranges from relatively linear

elastic behavior even at large strains [24] to moderate stiffen-

ing [35]. Here, we note that the simulated large strain modulus

underestimated the actual large strain modulus by a factor of

two. This difference could potentially be explained by a stiff-

ening of the individual fibers by a factor of two at large strains,

but confirmation would require additional experiments mea-

suring the stress–strain properties of individual fibers in these

collagen gels.

We note that this model has been designed to capture the

intermediate time scale behavior of the network (minutes to

hours), where the network behaves as an elastic solid. The

viscous modulus is known to be a factor of 10 less than the

elastic modulus within the range of 0.1–100 Hz [36, 37], but

at even faster time scales, the viscosity of the fluid will play

a critical role. At slower time scales, the assumption that the

crosslinks remain relatively fixed [36] breaks down as plastic

deformation and creep occur. This simplified model provides

a starting point in the development of a more complete model

of collagen gel. Ultimately, a more sophisticated approach,

such as that taken by Rodney et al. [38] will be necessary to

capture the full dynamic behavior of the gel, where crosslinks

are allowed to slip and break.
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