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MicroRNAs(miRNA) are noncoding RNAs of about 19-23 nucleotides that are crucial for many biological processes.
Members of the microRNA-148/152(miR-148/152) family, which include microRNA-148a(miR-148a), microRNA-148b
(miR-148b), and microRNA-152(miR-152), are expressed differently in tumor and nontumor tissues and are involved
in the genesis and development of disease. Furthermore, members of the miR-148/152 family are important in the
growth and development of normal tissues. Members of the miR-148/152 family regulate target genes and are
regulated by methylation of CPG islands. In this review, we report recent studies on the expression of members of
the miR-148/152 family, methylation of CPG islands, and their target genes in different diseases, as well as in normal

MicroRNA biogenesis

MiRNAs are noncoding RNAs of about 19-23 nucleo-
tides. They are transcribed by RNA polymerase II into
pri-miRNAs. These are processed by RNAse III Drosha
into 70 to 100-nucleotide pre-miRNAs [1]. Pre-miRNAs,
mediated by the RNAse III Dicer, generate double-
stranded RNAs approximately 22 nucleotides long [2].
These are miRNAs/miRNAs*, which are mature miRNA
guides and miRNA* complementary passenger strands.
One of the two strands is selected as a guide strand based
on thermodynamic properties; the complementary miRNA*
strand is usually degraded [3]. Moreover, miRNAs are post-
transcriptional regulators that bind by complementary
base-pairing to sequences in the 3’-Untranslated Regions
(3"-UTR)of target mRNAs, resulting in downregulation [4].
Growing evidence indicates that more and more miRNAs
play key roles in a wide variety of biological processes in-
cluding cell fate specification, proliferation, cell death, and
energy metabolism through altering the expression of tar-
gets by both downregulation [5] and upregulation [6].
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Structure of the miR-148/152 family

MiR-148a, miR-148b, and miR-152 are the three members
of the miR-148/152 family [7]. The pre-miR-148/152 fam-
ily members have a stem-loop structure (Figure 1) that is
processed into the mature members of the miR-148/152
family by a series of intranuclear and intracytoplasmic en-
zymes. Mature members of the miR-148/152 family are
21-22 nucleotides in length, with the same seed sequence
of approximately 6-7 nucleotides (Figure 2). The seed se-
quence is an important region for binding to target
mRNAs. MiR-148/152 family members are involved in
various biological processes through complementary bind-
ing between the seed sequence and the 3'-UTR of target
mRNAs. Numerous tumors and normal tissues express
the miR-148/152 family members differently during
growth, development, and tumorigenesis. Therefore, miR-
148/152 family members might be critical for these
processes.

Functions of miR-148/152 family members in
normal tissue

MiR-148/152 family members have aberrant expression
in normal tissue, especially in stem cells. Merkerova
et al. investigated miR-148a expression in hematopoietic
stem cells (HSCs) and found that miR-148a was de-
creased in HSCs [8]. MiR-148a was also downregulated
in mesenchymal stem cells compared to embryonic stem
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Figure 1 Stem-loop structure of pre-miR-148/152 family. (A) Pre-miR-148a. (B) Pre-miR-148b. (C) pre-miR-152.

cells and in osteodifferentiated multipotent mesenchy-
mal stromal cells compared to multipotent mesenchymal
stromal cells [9,10]. Schoolmeesters et al. reported that
miR-148b was upregulated in the osteogenesis of early
osteogenic differentiation of human mesenchymal stem
cells [11]. Zhang et al. identified miR-148a as a novel
myogenic miRNA that mediated myogenic differenti-
ation. Expression levels of miR-148a increased during
C2C12 myoblast differentiation [12]. In a study of mouse
adipogenesis, John et al. found that miR-148b expression
was increased [13]. In a study of hepatic injury and re-
jection after liver transplantation, Farid et al. found that
miR-148a expression was significantly reduced in liver
tissue with prolonged graft warm ischemia times. Con-
versely, serum levels were elevated in patients with liver
injury and this positively correlated with aminotransfer-
ase levels. These findings might provide early, sensitive
and specific biomarkers of liver injury [14]. In a study of

miR-148a 44 - ucagugcacuacagaacuuugu- 65

miR-148b 63 - ucagugcaucacagaacuuugu- 84

miR-152

Figure 2 Mature sequence of miR-148/152 family (The same
seed sequence are marked by red font).
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dendritic cells, which are important in linking the innate
and adaptive immune responses, Liu et al. demonstrated
that miR-148b/miR-152 family members were negative reg-
ulators of the innate response and the antigen-presenting
capacity of dendritic cells by targeting CaMKIlalpha. This
function might contribute to immune homeostasis and im-
mune regulation [15]. Manaster et al. showed that in pla-
cental tissue, both miR-148a and miR-152 were expressed
at relatively low levels compared with other healthy tissues.
In placental tissue, levels of human leukocyte antigen G
(HLA-G), a miR-148a and miR-152 target gene, were high
and therefore important for a healthy pregnancy [16].
Expression of miR-148/152 family members might be al-
tered by exposure to certain physical and chemical factors.
Palmieri et al. identified 16 upregulated and 2 downregulated
miRNAs in osteoblast-like cells line (MG-63) cultured with
Medpor, an alloplastic material used for craniofacial recon-
struction. In these conditions, the expression of miR-148b
and miR-152 were upregulated. These results might provide a
better understanding of the molecular mechanism of bone
regeneration and a model for comparing other materials
with similar clinical effects [17]. Wang et al. studied
miRNA expression profiles in brains of fetal mice with
prenatal ethanol exposure. MiR-152 was one of the
upregulated miRNAs [18]. Wu et al. demonstrated that
miR-148b was upregulated 1.53-fold in response to radi-
ation treatment in non-Hodgkin’s lymphoma (NHL). Fur-
ther research in Raji cells indicated that miR-148b sensitized
Raji cells to radiotherapy. These results demonstrated that
miR-148b increased the radiosensitivity of Raji cells and
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suggested that miR-148b was important in the response of
NHL to ionizing radiation [19] Wang et al. determined
miRNA expression profiles in the human lung fibroblasts
cell line WI-38 exposed to ionizing radiation (IR). They
identified four upregulated miRNAs including miR-152.
These results suggested that miRNAs are involved in the
regulation of IR-induced senescence. Therefore, targeting
these miRNAs might be a novel approach for modulating
the cellular response to radiation exposure [20].

MiR-148/152 family and disease: upregulation and
downregulation

Aberrant expression of MiR-148/152 family has been ob-
served in tumor [7,21] and nontumor [22] diseases. Many
studies have identified that MiR-148/152 family members
potentially acted as oncogenes and tumor suppressors.
Moreover, the growing evidence has demonstrated that
miR-148/152 family members also played important roles
in some nontumor diseases, such as IgA nephropathy
[22], type 1 diabetes [23], atherosclerotic lesions [24],
chronic fatigue syndrome/myalgic encephalomyelitis [25].

Upregulation of miR-148/152 family

MiR-148/152 family members are upregulated in many
diseases. Huang et al. reported that six miRNAs includ-
ing miR-148a were significantly upregulated in the
plasma of multiple myeloma (MM) and high levels of
miR-148a were related to shorter relapse-free survival
times [21]. Also in plasma, Cuk et al. noted that miR-
148b was significantly upregulated in breast cancer pa-
tients [26]. Moreover, Yuan et al. reported that miR-148a
was upregulated in hepatitis B cells associated with hepa-
tocellular carcinoma (HCC) [27]. Furthermore, Gokhale
et al. found miR-148a, as one of abnormal expressed
miRNAs, was overexpressed in the WNT signaling-
associated medulloblastomas [28]. Therefore, miR-148a
and miR-148b might be significant biomarkers in these
cancer patients and might provide an early easy detection
method.

In IgA nephropathy, miR-148b, which potentially tar-
gets core 1 synthase, glycoprotein-N-acetylgalactosamine
3-beta-galactosyltransferase 1 (CLGALT1), was upregulated
[22]. Nielsen et al. found 12 upregulated human miRNAs,
including miR-152, in the serum of type 1 diabetes patients
relative to age-matched healthy controls [23]. Moreover,
monocytes are critical in atherosclerotic lesion formation,
and can be subdivided into classical and nonclassical sub-
sets [29]. Bidzhekov et al. studied miRNA expression pro-
files of atherosclerotic plaques and found that miR-99b
and miR-152 were co-expressed in plaque tissue and clas-
sical monocytes [24]. Taken together, these findings increase
our understanding of the importance of miR-148/152
family in nontumor diseases.
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Downregulation of miR-148/152 family

MiR-148/152 family members are decreased in various
tumor types, indicating that they have the potential to
act as tumor-suppressor miRNAs. Li et al. found miR-
148b was underexpressed in liver cancer stem cells
(LCSCs) [30]. In a study of hepatic cell lines, Zhao et al.
found that miR-148b was downregulated in the liver
cancer cell lines HepG2, MHCC97L, and MHCC97H
relative to the hepatic cell line L02 [31]. Moreover,
Huang et al. reported that miR-152 was downregulated
in HBV-related HCC tissues compared with adjacent
noncancerous hepatic tissues [32]. In view of the above,
we speculated that miR-148/152 family members were
downregulated in hepatocellular carcinoma. Further-
more, in hepatoblastoma, the expression of miR-148a
was demonstrated to be lower than that in hepatocellu-
lar carcinoma [33].

In gastrointestinal cancers, Chen et al. noted that miR-
148a and miR-152 were downregulated in cancer tissue
and cancer cell lines [7]. Furthermore, they also found
that low expression of miR-148a and miR-152 correlated
with increased tumor size and advanced pT stage [7].
Moreover, the study of Zheng et al. revealed that the low
expression of miR-148a was significantly associated with
lymph node metastasis in gastric cancer [5]. They fur-
ther found that Rho-associated, coiled-coil containing
protein kinase 1(ROCK1), which might be a target of
miR-148a, was involved in miR-148a-induced suppres-
sion of gastric cancer cell migration and invasion [5]. Es-
pecially, the studies of Song et al. showed that miR-148b was
downregulated in gastric cancer [34], colorectal cancer [35]
and suppressed cell growth by targeting cholecystokinin-2 re-
ceptor(CCK2R). These results highlighted that miR-148/152
family might play important roles in gastric cancer progres-
sion and would become a potential biomarker.

In a study of cholangiocarcinoma, DNA methyltransferase
1(DNMT1) was verified as a target for miR-148a and miR-
152 and the expression level of these miRNAs was de-
creased in cancer cells [36]. In pancreatic ductal
adenocarcinoma, Liffers et al. reported that miR-148a
exhibited significant downregulation compared with
normal pancreatic ductal cells and further investiga-
tion proved that miR-148a regulated cell survival
through targeting cell division cycle 25B(CDC25B)
[37]. Moreover, in an animal model of oral squamous
cell carcinoma, Yu et al. observed that expression of
miR-148b was downregulated among 12 miRNAs [38].

Furthermore, the expression of miR-148/152 family
members is low not only in digestive system, but also in
genital system tumors. Zhou et al. observed that the ex-
pression of miR-152 was decreased in ovarian cancer tis-
sue and ovarian cancer cell lines, but miR-148a
expression was decreased only in cancer cell lines [39].
Hiroki et al. noted that reduced miR-152 expression
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correlated significantly with poor overall survival and
disease-free survival in endometrial serous adenocarcin-
omas [40]. On the other hand, MiR-148a was also
downregulated in hormone-refractory prostate cancer
cells (PC3 and DU145) and overexpression of miR-148a
could inhibite cell growth, cell migration, invasion by
targeting Mitogen- and stress-activated kinase 1 (MSK1)
[41]. In cancer-associated fibroblasts, Aprelikova et al.
showed that miR-148a was downregulated compared
with matched normal tissue fibroblasts established from
patients with endometrial cancer and wingless-type
MMTYV integration site family, member 10B (WNT10B)
was a direct target of miR-148a [42]. In some nontumor
diseases, such as chronic fatigue syndrome/myalgic en-
cephalomyelitis (CFS/ME), miR-152 was significantly de-
creased in NK cells of CFS/ME patients compared with
nonfatigued controls [25].

In summary, studies of miR-148/152 family members
showed that their expression levels decreased in HCC,
LCSC, gastrointestinal cancers, cholangiocarcinoma,
pancreatic ductal adenocarcinoma, oral squamous cell
carcinoma, ovarian cancer, endometrial serous adenocar-
cinoma and prostate cancer. MiR-148/152 family mem-
bers might be tumor-suppressive miRNAs in these
tumors.

MiR-148/152 family and methylation

DNA methylation of miR-148/152 family member genes
was found in many tumors types. Interaction has been
observed between DNA methylation and miR-148/152
family members through one of their target genes:
DNMT1I. Zhu et al. demonstrated that, in gastric cancer,
miR-148a was inactivated by hypermethylation of DNA
in the promoter region of its gene; this was mediated
through DNMT1 overexpression. Silencing of miR-148a
reduces its suppression of DNMT1 in gastric cancer, and
this might result in overexpression of DNMT1, promoting
DNA hypermethylation [43]. Hanoun et al. found that
hypermethylation of the DNA region encoding miR-148a
was responsible for its low expression in pancreatic ductal
adenocarcinoma samples and in preneoplastic pancreatic
intraepithelial neoplasia lesions [44]. Lujambio et al. used
a pharmacological approach with a DNA demethylating
agent to show that miR-148a, miR-34b/c, and miR-9
underwent specific hypermethylation-associated silencing
in cancer cells compared with normal tissues. Most im-
portant, they found that DNA methylation-associated si-
lencing of tumor suppressor miRNAs might contribute to
the development of human cancer metastasis [45].
Stumpel et al. identified 11 miRNAs, including miR-152,
that were downregulated in t(4;11)-positive infant acute
lymphoblastic leukemiaas a consequence of CpG
hypermethylation. Futher study showed that both mye-
loid/lymphoid or mixed-lineage leukemia(MLL) and
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DNMT1 were potential targeted genes of miR-152 and
the high degree of methylation of the miR-152 CpG island
was strongly correlated with poor clinical outcome [46].
Based on these two studies, we hypothesize that methyla-
tion of CpG islands in miR-148/152 family member genes
might induce particular biological behaviors of cancer.
Pavicic et al. studied inherited, familial carcinoma, includ-
ing colorectal, gastric and endometrial carcinomas, and
found increased DNA methylation of miR-148a and 152
in tumor tissues compared with normal tissues. In par-
ticular, hypermethylation at miR-148a and miR-152 genes
was associated with microsatellite-unstable tumors. This
study highlighted the importance of epigenetic DNA
methylation of miRNA genes in hereditary cancers [47].
In another breast cancer study, Xu et al. found that
DNMT1 was overexpressed and this overexpression was
responsible for hypermethylation of miR-148a and miR-152
promoters. As an miR-148a/152 target, DNMT1 was in-
versely related to the expression levels of miR-148a/152.
This study revealed that a novel miR-148a/152-DNMT1
regulatory circuit might exist in breast cancer [48].

Therefore, methylation of miR-148/152 family member
genes might occur at CpG islands, reducing expression of
miR-148/152 family members. Expression of DNMT]I,
which is an important gene for DNA methylation and is a
target gene of miR-148/152 family members, is inversely
restricted to the expression level of miR-148a/152. This
might result in overexpression of DNMT1, promoting
DNA methylation. A novel miR-148a/152-DNMT1 regu-
latory circuit might exist in tumors.

MiR-148/152 family members and target genes

In different cellular contexts, one miRNA perhaps can
regulate diverse pathways and cause various phenotypes
depending on the availability of a certain population of
mRNA targets [49]. MiR-148/152 family members have
many different targets and whether they are important
to function depends on their specific target mRNAs
[36,50]. MiRNA targets are predicted mainly by three
computational algorithms: TargetScan [51], PicTar [52]
and miRBase targets [53]. Moreover, microRNA arrays,
real-time PCR, luciferase reporter assays and western
blots are the main methods for investigating miRNA tar-
gets. To validate the targets of miR-148/152 family
members, the following two criteria must be met: firstly,
the expression of their target gene correlates inversely
with miR-148/152 family members. Secondly, they have
miR-148/152 family members binding sites with comple-
mentary sequences, which can directly bind to miR-148/152
family members. Luciferase reporter assay would be needed.
The luciferase constructs with a target 3'UTR are specific-
ally responsive to miR-148/152 family members. Inversely,
deletion or mutation of the miR-148/152 family members
binding sites from the 3"UTR abolishes the miR-148/152
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family members regulation [49]. The targets are summarized
in Table 1.

DNMT1, which is a DNA methyltransferase enzyme, medi-
ate the transfer of methyl groups from S-adenosylmethionine
to the 5 position of cytosine bases in the dinucleotide se-
quence CpG [63]. DNMT1 is important in tumorigenesis.
Studies have shown that DNMT1 is abnormally expressed
in many tumor types [64,65], and their regulation by
miR-148/152 family members has been reported in a
number of human diseases including systemic lupus
erythematosus [55], cholangiocarcinoma [36], hepato-
cellular carcinoma [32], acute lymphoblastic leukemia
[46] and endometrial cancer [62]. These might indicate
that miR-148/152 and DNMT1 would be a significant
pair in the induction and progression of human dis-
eases. Furthermore, an interaction between DNMT1
and miR-148a/152 was found in breast cancer. This

Table 1 Targets of miR-148/152 family in various tissues/cells
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study revealed that a novel miR-148a/152-DNMT1
regulatory circuit might exist in breast cancer [48].

PTEN is a phosphatase that catalyzes the conversion of
the lipid second messenger PtdIns(3,4,5)P3 to phos-
phatidylinositol ~ (4,5)-bisphosphate [PtdIns(4,5)P2] [66].
PTEN mutations occur frequently in a variety of human
cancers, such as endometrial carcinoma [67], glioblastoma
multiforme [68], skin [69] and prostate cancers [70]. PTEN,
as a target gene, has been reported to be regulated by a var-
iety of miRNAs, such as miRNA-21 [71], miRNA-22 [72]
and miRNA-26a [73]. In miR-148/152 family members,
only miR-148a was reported [27]. Further investigation
would be needed.

CCKBR, also called CCK2R, has proliferative effects
on various cancer, such as gastric, colorectal, pancreatic
and small cell lung cancer through gastrin [74-77]. It is
confirmed as a target gene of miR-148b by our research

miR-148/152 family ~ Expression Biological function Targets Tissues/cells References
miR-148a PXR Human liver [54]
miR-148a Upregulation DNA hypomethylation DNMT1 CD4+ T cells of Systemic lupus [55]
erythematosus
miR-148a Tumor growth CAND1 Human prostate cancer [50]
miR-148a Apoptosis Bcl-2 Colorectal cancer [56]
miR-148a Downregualtion  Cell proliferation p27 Gastric cancer [57]
miR-148a HLA-C HIV-1 infected individuals [58]
miR-148a ACVR1 Hela cell [59]
miR-148a, miR-152 Downregualtion  Immune rejection HLA-G Placenta tissue [16]
miR-148a Downregualtion WNT108 Cancer-associated fibroblasts [42]
miR-148a Cell proliferation,cycle progression,  PTEN Hepatocellular carcinoma [27]
migration
miR-148a Cellgrowth, migration,invasion MSK1 Prostate cancer cells [41]
miR-148a Downregualtion  Cell growth CDC258B Human pancreatic ductal [37]
adenocarcinoma
miR-148a Downregulation  Cell invasion and metastasis ROCK1 Gastric cancer [5]
miR-148b Downregulation  Cell proliferation CCKBR Gastric cancer [34]
miR-148b Downregulation  Cell proliferation CCK2R Colorectal cancer [35]
miR-148a, miR-152 Downregulation CCKBR?* Gastrointestinal cancer 7]
miR-148a, miR-152 Downregualtion  Cell proliferation DNMT-1 Malignant cholangiocytes [36]
miR-148b Upregulation Glycosylation of IgA1 CI1GALT1 IgA nephropathy [22]
miR-148a, miR-152 Downregualtion  Cell proliferation, colony formation, IGF-IR, IRS1 Breast cancer [48]
tumor angiogenesis

miR-148a, miR-152 Downregualtion DNMT1 HBV-related hepatocellular carcinoma  [32]
miR-152 DNMT1?, MLL?  Acute lymphoblastic leukemia [46]
miR-152 NK cell-mediated cytolysis HLA-G? Human trophoblast cell line (JEG-3) [60]
miR-148/152 family CaMKllalpha TLR-triggered dendritic cells [15]
miR-152 Cell motility and adhesion CSF-1 Ovarian cancer cell [61]
miR-152 Cell growth DNMTT, Rictor ~ Endometrial cancer [62]

*Question mark presents target gene to be further validated.
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group in recent years [34,35]. The follow-up studies are
proceeding in our group.

Genes such as PXR, CAND1, HLA-C, ACVRI, IGF-IR
and IRS1 represent targets of miR-148/152 family mem-
bers and changes in the expression of these miRNAs are
associated with cell motility or(and) cell growth. PXR is a
major transcription factor regulating the inducible expres-
sion of a variety of transporters and drug-metabolizing en-
zymes. Takagi et al. revealed that miR-148a could
recognize the miR-148a recognition sequence of PXR
mRNA by reporter assay. The PXR protein level was de-
creased by the overexpression of miR-148a, whereas it was
increased by inhibition of miR-148a in human liver [54].
Murata et al. determined that miR-148a reduced the ex-
pression of CAND1 by binding to the 3'-UTR of CAND1
mRNA and promoted the growth of human prostate can-
cer [50]. In the study of HLA-C, which associated with
HIV, Kulkarni et al. confirmed HLA-C was a target
gene of miR-148a. ACVRI, which was correlated with
endothelial-to-mesenchymal transition in endothelial
cells, was verified a target gene of miR-148a [59]. In
breast cancer, Xu et al. revealed that miR-148a and
miR-152 acted as tumor suppressors by targeting IGF-IR
and IRS1, which mediate key mechanisms of tumor
growth and progression [48]. Furthermore, Bcl-2 [56], p27
[57], CSF-1 [61] and Rictor [62] were also demonstrated
to be targets of miR-148/152 family members.

Conclusions

Members of the miR-148/152 family including miR-148a,
miR-148b and miR-152, have been found to have different
roles in various tissues such as tumor, nontumor and nor-
mal tissues. Whether upregulated or downregulated in tis-
sues, the miR-148/152 family is involved in regulating
target genes, such as genes for proliferation, differentiation
and apoptosis. MiR-148/152 family members are regulated
by methylation of their CpG islands. A novel miR-148a
/152-DNMT1 regulatory circuit might exist. In conclu-
sion, although great progress has been made in recent
years, the molecular mechanisms of miR-148/152 family
members and their function in different tissues remain un-
clear and should be investigated in future studies.
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