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ABSTRACT

While a growing body of evidence implicates regu-

latory miRNA modules in various aspects of human

disease and development, insights into specific

miRNA function remain limited. Here, we present an

innovative approach to elucidate tissue-specific

miRNA functions that goes beyond miRNA target pre-

diction and expression correlation. This approach is

based on a multi-level integration of corresponding

miRNA and mRNA gene expression levels, miRNA

target prediction, transcription factor target predic-

tion and mechanistic models of gene network regu-

lation. Predicted miRNA functions were either

validated experimentally or compared to published

data. The predicted miRNA functions are accessible

in the miRNA bodymap, an interactive online compen-

dium andmining tool of high-dimensional newly gene-

rated and published miRNA expression profiles.

The miRNA bodymap enables prioritization of can-

didate miRNAs based on their expression pattern or

functional annotation across tissue or disease sub-

group. The miRNA bodymap project provides

users with a single one-stop data-mining solution

and has great potential to become a community

resource.

INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNA mol-
ecules that function as indispensible regulators of an
increasing number of cellular processes (1–4). The exact
role of an individual miRNA strictly depends on its
spatiotemporal expression pattern and that of its targeted

genes. With >1000 mature human miRNA species re-
ported thus far, miRNAs form one of the largest classes
of gene regulators. While miRNA expression profiles have
been established for various normal and diseased tissues,
our understanding of specific miRNA function remains
limited. To accommodate this, several experimental pro-
cedures have been developed for high-throughput miRNA
target identification such as RIP-chip (5) and HITS-CLIP
(6). Unfortunately, these methods are technically challeng-
ing and are typically performed for only one or few
miRNAs, necessitating an up-front prioritization and se-
lection of candidate miRNAs. Alternatively, computer-
based miRNA target predictions can be used to gain
insights into miRNA function by probing annotated
gene sets for miRNA target enrichment (7,8). Of note,
miRNA target prediction algorithms are prone to a high
degree of false positives and completely ignore the tissue-
or disease-specific nature of miRNA–target interactions.
Here, we present an innovative and sensitive method

and accompanying resource to elucidate tissue-specific
miRNA function by combining matching miRNA and
mRNA expression data with miRNA target prediction
and mechanistic models of gene network regulation.
Inferred miRNA functions, based on different data sets,
can be queried through the ‘miRNA bodymap’, a web tool
available at www.mirnabodymap.org. To complement
the functional predictions, we implemented an in-depth
literature knowledge mining tool with result context high-
lighting to retrieve experimentally validated miRNA func-
tions. In addition, the miRNA bodymap contains
high-quality RT–qPCR miRNA expression profiles for
more than 750 human, mouse and rat samples, belonging
to different tissue and disease types, which can be
examined through a built-in miRNA expression analysis
pipeline.
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MATERIALS AND METHODS

miRNA and mRNA expression data

RNA samples from 39 normal human tissues were ob-
tained from Ambion and Biochain. Reverse transcription
for 704 miRNAs, 18 small RNA controls and U6 was per-
formed using stem–loop primers (Applied Biosystems) in
single-plex reactions containing 45 ng of total RNA.
qPCR reactions were performed in quadruplicate on a
7900 HT system (Applied Biosystems). Whole-genome
stem–loop RT–qPCR miRNA expression data for over
700 additional samples were gathered from the literature.
miRNA expression data were normalized according to the
global mean normalization strategy (9). MiRNA expres-
sion data can be obtained from the miRNA bodymap web
tool (www.miRNAbodymap.org). Microarray mRNA ex-
pression data were taken from GEO (GSE16558,
GSE5846, GSE21713 and GSE1133).

Gene set enrichment analysis

For each individual data set, Spearman’s rank rho values
were calculated for each mRNA–miRNA combination
using normalized mRNA and miRNA expression values.
mRNA–miRNA combinations with less than 10 pair-wise
observations were excluded from the analysis. For each
miRNA, mRNAs were ranked according to their correl-
ation coefficient and ranked gene lists were used as input
for GSEA. The following gene set collections were taken
from the Molecular Signatures Database (MSigDB v3.0):
chemical and genetic perturbations, gene ontology mo-
lecular function and gene ontology biological process.
Gene sets significantly enriched among the positive and
negative correlating mRNAs were selected based on the
GSEA FDR value (FDR< 0.05). All analyses were per-
formed using the R Bioconductor statistical programming
platform (version 2.11).

Evaluation of miRNA target prediction databases

One-way ANOVA was used to analyze the impact of the
miRNA target prediction algorithm on protein down-
regulation. Two-by-two comparisons of individual predic-
tion algorithms were performed by Tukey’s ‘honest
significant difference’ method to identify significant
differences.

miRNA and transcription factor target enrichment

For each miRNA, predicted targets were derived from the
MIRDB database (10,11) and enrichment of these targets
in the different gene sets was calculated using Fisher’s
exact test. Fisher’s exact P-values were multiple testing
corrected using the Benjamini–Hochberg algorithm.
Gene sets that are enriched among the mRNAs that nega-
tively correlate with an miRNA and that are enriched for
targets of that miRNA were assigned to the multiple com-
ponent targeting model. To determine the enrichment of
transcription factor targets in the different gene sets, we
used the transcription factor targets gene set collection
from the MSigDB v3.0. Enrichments were calculated
using Fisher’s exact test, and P-values were corrected for
multiple testing using the Benjamini–Hochberg algorithm.

Gene sets that are enriched among the mRNAs that posi-
tively correlate with an miRNA and that are enriched for
targets of a transcription factor that is a predicted target
of that miRNA (according to MIRDB) were assigned to
the transcription factor targeting model.

30-UTR luciferase reporter assays

To evaluate miR-29a binding to the MYCN 30-UTR,
74-bp oligonucleotides spanning the predicted 30-UTR
miRNA binding site flanked by XhoI and NotI restriction
sites were cloned into psicheck2 (Promega) as described
previously (12). Oligonucleotides with a mutated binding
site were used as control. DLD1Dicerhypo cells were
seeded at a density of 10 000 cells per well in an opaque
96-well plate. Twenty-four hours after seeding, cells were
co-transfected with a miR-29a pre-miR (Ambion) or nega-
tive control pre-miR (Ambion) in combination with the
30-UTR construct using DharmaFECT Duo (Dharmacon).
Forty-eight hours after transfection, luciferase reporter
gene activity was measured using the Dual-Glo
Luciferase Assay System (Promega) and a FLUOstar
OPTIMA microplate reader (BMG LABTECH).

pre-miR-29a transfection

SK-N-BE(2c) neurobblastoma cells were cultured in RPMI
(Invitrogen) supplemented with 10% fetal calf serum and
transfected with a miR-29a pre-miR (Ambion) or negative
control pre-miR (Ambion) as described previously (13).
Cells were harvested 48 h after transfection and RNA
was isolated using the miRNeasy mini kit (Qiagen) ac-
cording to the manufacturer’s instructions. Total RNA
was reverse transcribed using the iScript cDNA synthesis
kit (BioRad). MYCN mRNA expression was detected
using quantitative PCR and SYBRGreen detection chem-
istry (Roche) on a Lightcycler 480 (Roche). MYCN ex-
pression data were normalized to the expression of stable
reference genes (Alu-sx, HPRT1, SDHA and UBC) using
qbasePLUS software (www.biogazelle.com).

RESULTS

Functional miRNA annotation

To determine tissue or disease-specific miRNA functions,
matching miRNA and mRNA expression levels were ana-
lyzed using rank correlation coefficients. Matching
genome-wide mRNA and miRNA expression data were
obtained from the literature or newly generated. In total,
244 human samples belonging to 4 different data sets
(normal adult tissues, neuroblastoma tumors, myeloma
tumors and NCI60 cancer cell lines) were included in the
analysis. For each miRNA, mRNAs were ranked accord-
ing to their correlation coefficient and functional gene sets,
enriched among the positively or negatively correlated
mRNAs, were identified using gene set enrichment analysis
(GSEA) (14). We next integrated the GSEA results with
miRNA target prediction, transcription factor target pre-
diction and mechanistic models of gene network regula-
tion. These models represent specific interaction schemes
between an miRNA and a gene set (or pathway), and form
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the basis of the mechanism underlying a particular
miRNA—gene set association. We hypothesized that a sig-
nificant miRNA—gene set association is more likely to be
functional if there is mechanistic evidence that links the
association between an miRNA and a gene set to one of
five proposed models (Figure 1). According to these models,
negative miRNA—gene set associations can occur if the
gene set is enriched for targets of the miRNA (multi-
component targeting), if the miRNA targets a key signal-
ing molecule in the pathway represented by the gene set
(component targeting) or if the miRNA negatively regu-
lates a transcriptional activator that has its targets
enriched in the gene set (transcription factor targeting)
(Figure 1A). Similarly, positive miRNA–gene set associ-
ations can occur if the miRNA negatively regulates a tran-
scriptional repressor with its targets enriched in the gene
set (transcription factor targeting), if the miRNA targets
a negative regulator of a pathway or if the miRNA and
the genes in the gene set share a common transcriptional
activator or repressor (Figure 1B).

In order to integrate miRNA target predictions in the
mechanistic models, we first made a rational selection of
one single miRNA target prediction database. To this end,

we used publically available mass spectrometry protein
expression data from eight miRNA perturbation experi-
ments (15,16) and evaluated seven widely used miRNA
target databases for their ability to predict protein down-
regulation. We found that the targets in the MIRDB
database showed the highest fold downregulation in the
experimental data sets (Figure 2A and B) suggesting that
MIRDB predicts targets that are primarily downregulated
upon overexpression of the miRNA. Fold downregula-
tion observed for MIRDB targets was significantly
higher compared to targets predicted by PITA, RNA22,
MICROCOSM, TARGETSCAN and DIANA (P< 0.001).
Furthermore, MIRDB showed the lowest number of false
positive predictions (Figure 2C). Combining individual
databases did not give better results that those obtained
by MIRDB alone (Figure 2D) suggesting that, according
to our selection procedure, MIRDB predictions are best
suited for accurate assessment of miRNA target enrich-
ment in the studied gene sets. MIRDB predictions were
then used to calculate miRNA target enrichments in the
gene sets in order to identify those negative miRNA–gene
set associations that adhere to the multi-component tar-
geting model. To identify miRNA–gene set associations
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Figure 1. Mechanistic models of miRNA-directed gene expression regulation. Positive and negative miRNA–gene set associations, originating from
positive and negative correlations between the miRNA and the genes in the gene set—can be explained by one of five proposed models of
miRNA-directed gene regulation. The schematic models represent simplified pathways or signaling cascades with receptors (R), pathway components
(C) and transcriptional targets (T). Coding genes negatively correlated to the miRNA are indicated in red, and genes positively correlated to the
miRNA are indicated in blue. We define three models for negative miRNA–gene set associations, described as ‘multi-component targeting’, ‘com-
ponent targeting’ and ‘transcription factor targeting’—and three models for positive miRNA–gene set associations, described as ‘transcription factor
targeting’, ‘targeting of a negative regulator’ and ‘common transcriptional regulator’.
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that follow the mechanistic model of transcription factor
targeting, we searched for gene sets that are enriched
for transcription factor targets and used MIRDB to
predict whether the transcription factor is a target of the
miRNA.

Validation of predicted miRNA functions

To support the predicted miRNA functions and their as-
signment to one of the proposed models of gene regula-
tion, we first compared our findings to experimentally
validated miRNA functions. For each of the five proposed
models, representative examples were found in the litera-
ture (Supplementary Figure S1), underscoring the rele-
vance of the models and the power of the miRNA
bodymap functional annotation pipeline. To further assess
the accuracy of the pipeline, we compared functional

predictions for miRNAs from the miR-17–92 cluster to
a set of experimentally derived miR-17–92 functions. To
this end, we used a recently published protein expres-
sion data set from a miR-17–92 perturbation experiment
in neuroblastoma cells as our benchmark (13). Measured
proteins (n=3249) were ranked according to their fold
change and GSEA revealed 94 gene sets enriched among
the downregulated proteins. We then compared these ex-
perimentally derived gene sets to gene sets predicted to be
negatively associated with miR-17–92 in the neuroblast-
oma tumor data set. In total, 78 out of 94 experimentally
validated gene sets were predicted suggesting that the pre-
dicted miRNA functions show a good concordance with
experimentally derived functions. Another 201 gene sets
were predicted that were not identified in the benchmark
data set. Interestingly, the most significant gene sets
[GSEA false discovery rate (FDR)=0], according to the
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Figure 2. Evaluation of miRNA target prediction algorithms. (A) Fold downregulation (log2) of predicted targets, according to seven different
prediction algorithms, in eight miRNA perturbation experiments. Each bar represents the mean fold change of protein expression �SEM. The
highest downregulation was observed for targets predicted by MIRDB. Fold downregulation of targets predicted by MIRDB was significantly higher
compared to DIANA, MICROCOSM, TARGETSCAN, RNA22 and PITA (P< 0.001). (B) Cumulative distribution of protein fold change for
predicted targets from seven different prediction algorithms. MIRDB predictions contain the highest fraction of downregulated proteins. For
visualization purposes, the limits of the X-axis were set at �1 and 1. Distribution of protein fold changes for targets predicted by MIRDB was
significantly different compared to DIANA, MICROCOSM, TARGETSCAN, RNA22 and PITA (Kolmogorov–Smirnov, P< 0.001). (C) Fold
enrichment of predicted targets for different cutoffs of protein downregulation relative to the background (defined as those proteins with a log2
protein fold change >0). Within the group of proteins that are downregulated at least 2-fold (log2 fold change less than �1), MIRDB predicts 12
times more targets than in the background set. (D) Fold downregulation (log2) of miRNA targets predicted by a combination of databases or by
MIRDB alone.
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annotation pipeline, were more frequently present in the
benchmark data set as compared to the least significant
gene sets suggesting that predicted gene sets can be further
prioritized based on the GSEA FDR value, greatly en-
hancing prediction specificity. Furthermore, the most sig-
nificant gene sets (GSEA FDR=0) were found to be
largely independent of the sample size of the data set
(Supplementary Figure S2).

In addition to functional miRNA annotation, the
miRNA bodymap enables the detection of regulators of
miRNA expression. Such regulators are identified by
looking for positive associations between an miRNA
and a gene set representing targets of a transcription factor
(i.e. the miRNA and the genes in the gene set share a
common transcriptional activator, Figure 1). To test this
assumption, we searched for miRNAs that were positively
correlated to a gene set containing MYC target genes
(SCHUHMACHER_MYC_TARGETS_UP) in the neuro-
blastoma data set and selected only the most significant as-
sociations (GSEA FDR=0). The selected miRNAs, 38 in
total, were compared to a set of 18 MYC/MYCN-
activated miRNAs, previously validated in neuroblastoma
(17). In total, 16 out of 18 miRNAs were identified sug-
gesting high concordance between predicted and validated
interactions.

To further assess the validity of our approach, we
evaluated inferred miRNA annotations for tissue-specific
miRNAs and hypothesized that a tissue-specific miRNA
should play a role in pathways relevant for that tissue. In
the normal tissues data set, we searched for miRNAs that
are highly expressed in tissues of the lymphatic system
compared to all other tissues in that data set. The expres-
sion of five lymphatic system-specific miRNAs (miR-
142-3p, miR-150, miR-15, miR-146a and miR-150*) is
visualized in a ranked expression map (Figure 3A). The
most significant gene sets (GSEA FDR=0, gene ontol-
ogy biological process gene set collection) for each of
these miRNAs are primarily annotated to processes
such as immune response and immune cell activation
(Figure 3B). Furthermore, we found miR-142-3p and
miR-155 to be associated with the NF-kB pathway, a sig-
naling cascade involved in immune response. Next, we
selected tissue-specific gene sets, such as ‘heart develop-
ment’, ‘brain development’, muscle development and
‘digestion’ from the gene ontology biological process
gene set collection and identified miRNAs that are pre-
dicted to be positively associated with those gene sets in
the normal tissues data set. miRNAs annotated to ‘brain
development’ showed the highest expression in brain
while miRNAs annotated to ‘heart development’ showed
the highest expression in cardiovascular tissues, skeletal
muscle and mononuclear blood cells (Figure 3C and D).
Similarly, miRNAs annotated to muscle develop-
ment showed the highest expression in skeletal muscle
and miRNAs annotated to ‘digestion’ had the highest
expression in tissues from the gastro-intestinal tract
(Figure 3E and F). Together, these results support the
relation between tissue-specific expression and function
and lend further credibility to the predicted miRNA
functions.

Identifying miRNA-directed transcription factor regulation

MiRNAs have been shown to act as key components in
transcription factor signaling networks, either through co-
operation with a transcription factor in the process of gene
expression regulation (18) or through direct regulation of
the transcription factor itself (19). Using the miRNA
bodymap annotation pipeline, we searched for miRNAs
regulating the MYCN transcription factor in neuroblast-
oma. To identify miRNAs regulating MYCN, we
searched for miRNAs that negatively correlate to a gene
set containing MYC targets (SCHUHMACHER_MYC_
TARGETS_UP) with a GSEA FDR value=0 and that
are predicted to target MYCN according to MIRDB pre-
dictions. We identified a single miRNA (miR-29a) that
could meet these criteria. To evaluate whether miR-29a
directly targets the MYCN 30-UTR, we established a
30-UTR luciferase reporter vector containing the predicted
miR-29a binding site downstream of the luciferase gene
and evaluated luciferase activity in the presence of a miR-
29a pre-miR or negative control pre-miR. Luciferase activity
significantly decreased in the presence of miR-29a
compared to the negative control pre-miR (Student’s
t-test, P< 0.01) (Figure 4A) suggesting that MYCN is a
target of miR-29a. Mutation of the miR-29a binding site
resulted in a partial but significant rescue of luciferase ac-
tivity (Figure 4A). Furthermore, overexpression of miR-
29a in MYCN amplified SK-N-BE(2c) cells resulted in a
40% decrease of MYCN expression levels (Figure 4B).

Analyzing custom gene sets using the miRNA bodymap
functional annotation pipeline

Predicted miRNA functions available in the miRNA
bodymap are based on three different gene set collections:
gene ontology biological process, gene ontology molecular
function and chemical and genetic perturbations. On top
of that, the miRNA bodymap allows users to perform
GSEA with custom gene sets obtained from the literature
or derived from their own perturbation or profiling experi-
ments. Based on the KEGG pathway database (20), we
established a gene set representing the p53-signaling
pathway and a gene set representing the B-cell receptor
signaling pathway and searched for miRNA associations
in the NCI60 data set and normal adult tissues data set,
respectively. Five miRNAs were highly associated with in-
creased p53 pathway activity (GSEA FDR=0) including
miR-34a, miR-373 and miR-141. All three miRNAs have
previously been shown to function downstream of p53
(21–23). MiRNAs associated with B-cell receptor signal-
ing were, among others, miR-150 (GSEA FDR=0),
miR-155 (GSEA FDR=0) and different members of
the miR-17–92 cluster (GSEA FDR=0), all of which
were shown to play important roles in B-cell development
(24), B-cell receptor activation (25) or lymphoproliferative
disease (26).

DISCUSSION

Elucidating tissue-specific miRNA functions has become
one of the major challenges in miRNA research. While
miRNA target prediction databases provide insights into
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Figure 3. Tissue-specific miRNA expression and function. (A) Ranked expression map for five lymphatic system-specific miRNAs (columns) in 39
normal tissues (rows). Each sample is represented by a square, color-coded according to different body organ systems and ranked according to the
expression of the respective miRNAs. Samples with the highest expression are ranked on top. (B) Gene sets are from the Gene Ontology Biological
Process gene set collection that are positively (red) and negatively (blue) associated with the lymphatic system-specific miRNAs. Only the most
significant gene sets are shown. (C–F) Relative expression of miRNAs positively associated with the Gene Ontology Biological Process gene sets
‘heart development’, ‘brain development’, ‘digestion’ and ‘muscle development’ in the different body organ systems. Organ systems are ranked
according to miRNA expression.
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putative miRNA target genes, they ignore the tissue- and
context-specific nature of an miRNA–target interaction.
To overcome this issue, we designed a functional
miRNA annotation pipeline based on the integration of
miRNA target prediction with matching miRNA and
mRNA expression data. In addition, we introduced differ-
ent interaction schemes representing the mechanistic
relation between the miRNA and the genes within the
pathway that is predicted to be regulated by the
miRNA. We hereby hypothesized that the probability of
obtaining a valid functional miRNA prediction increases
when there is a mechanistic basis that supports it. This
mechanistic basis can be a predicted interaction between
the miRNA and a transcription factor within the pathway
or an overrepresentation of miRNA targets in the
pathway. MiRNA targets were predicted using the
MIRDB algorithm that we identified to correlate best
with protein expression data sets from miRNA perturb-
ation experiments. Of note, this analysis is not compre-
hensive but provides an indication which miRNA target
prediction algorithm produces the least false positive pre-
dictions. Ideally, high-throughput reporter assays should
be performed for all (or a significant subset of) predicted
miRNA targets in order to comprehensively assess the
accuracy of miRNA target prediction databases.
Functional miRNA predictions for four different data
sets are available through the miRNA bodymap web
tool and can be queried based on the underlying inter-
action schemes. In addition, the miRNA bodymap web
tool contains an miRNA expression analysis pipeline
that enables identification of differentially expressed
miRNAs between tissues or disease groups, tissue- or
disease-specific miRNAs and stably expressed miRNAs
for miRNA expression normalization. Combining tissue-
or disease-specific miRNA expression patterns with func-
tional miRNA predictions allows prioritization of

candidate miRNAs and hypothesis generation for
further research. The miRNA bodymap web tool
enables researchers to upload additional data sets of
matching mRNA and miRNA expression data to
populate the database with additional functional
miRNA predictions. In this way, miRNA functions that
are predicted in multiple independent data sets can be
further prioritized, making the miRNA bodymap a com-
munity resource for functional miRNA research. A
manual describing the entire functionality of the miRNA
bodymap web tool is available on the website.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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