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A B S T R A C T

We investigate the gravitational interaction of a Jovian-mass protoplanet with a gaseous disc

with aspect ratio and kinematic viscosity expected for the protoplanetary disc from which it

formed. Different disc surface density distributions are investigated. We focus on the tidal

interaction with the disc with the consequent gap formation and orbital migration of the

protoplanet. Non-linear two-dimensional hydrodynamic simulations are employed using

three independent numerical codes.

A principal result is that the direction of the orbital migration is always inwards and such

that the protoplanet reaches the central star in a near-circular orbit after a characteristic

viscous time-scale of ,104 initial orbital periods. This is found to be independent of whether

the protoplanet is allowed to accrete mass or not. Inward migration is helped by the

disappearance of the inner disc, and therefore the positive torque it would exert, because of

accretion on to the central star. Maximally accreting protoplanets reach about 4 Jovian

masses on reaching the neighbourhood of the central star. Our results indicate that a realistic

upper limit for the masses of closely orbiting giant planets is ,5 Jupiter masses, if they

originate in protoplanetary discs similar to the minimum-mass solar nebula. This is because

of the reduced accretion rates obtained for planets of increasing mass.

Assuming that some process such as termination of the inner disc through a magneto-

spheric cavity stops the migration, the range of masses estimated for a number of close

orbiting giant planets as well as their inward orbital migration can be accounted for by

consideration of disc–protoplanet interactions during the late stages of giant planet formation.

Key words: accretion, accretion discs – methods: numerical – planets and satellites: general

– Solar system: formation – planetary systems.

1 I N T RO D U C T I O N

The recent discovery of a number of extrasolar giant planets

orbiting around nearby solar-type stars has stimulated renewed

interest in the theory of planet formation. These planetary objects

have masses, mp, that are comparable to that of Jupiter �0:4 &

mp & 11 MJ�; orbital semimajor axes in the range 0:04 & a &

2:5 au; and orbital eccentricities in the range 0:0 & e & 0:67

(Marcy & Butler 1998 and references therein; Marcy, Cochran &

Mayor 2000). It should be noted that the detection technique of

measuring the Doppler shift induced by the host star’s orbital

reflex motion only allows the measurement of mp sin i, where i is

the inclination angle of the orbit plane to the line of sight.

It is generally believed that planets form out of the gas and dust

contained in the discs that are observed around young T Tauri stars

(Beckwith & Sargent 1996). This T Tauri disc phase of a star’s life

is thought to last for the order of 106–107 yr, after which the discs

appear to dissipate. In the standard theory, planet formation occurs

in a number of key stages. First, the dust grains, which are initially

well mixed with the gas in the disc, undergo coagulative growth

via binary collisions. Secondly, as the grains continue to grow they

begin to settle gravitationally towards the mid-plane of the proto-

stellar disc, forming a dense dust layer in the process. The

existence of this dense layer enhances the rate at which the solid

material may combine into larger bodies, leading eventually to the

formation of planetesimals. Thirdly, the planetesimals continue to

grow through collisions, possibly aided by a runaway accretion

process (e.g. Lissauer & Stewart 1993), ultimately forming

planetary-sized objects. These authors estimate that the time-

scale for this to occur at 5 au is 105–106 yr, although this would

require a high dust-to-gas ratio in a minimum-mass solar nebula.

However, there are many uncertainties in the processes involved,

and the effects of phenomena such as disc–planet interactions and

orbital migration considered in this paper have yet to be explored

in detail. The latter might decrease the time-scale by providing

increased mobility of protoplanets in the nebula.
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In the ‘critical core mass’ model of giant planet formation, the

formation proceeds through the build-up of a critical ,15-Mearth

solid core, beyond which mass rapid gas accretion occurs leading

to the formation of a gas giant planet. Because this process must

occur prior to the loss of the gas from the disc (i.e. within ,107 yr)

it is expected that the cores of gas giant planets should begin to

form beyond a radius of r , 4 au; the so-called ‘ice-condensation

radius’ or ‘snow-line’. Beyond this radius, the temperature in the

protostellar disc falls below the level that allows volatile materials

to condense out into the solid phase and form ice. The presence of

this additional solid material increases the rate at which solid

materials may coagulate into larger objects and thus shortens the

time required to form the solid cores that are thought to be the

precursors to gas giant planets.

If giant planets begin to form beyond radii of ,4 au from their

host stars, then orbital migration must have occurred in order to

explain the existence of the closely orbiting extrasolar giant

planets. A number of ideas about the causes of this orbital migra-

tion have appeared in the literature. The possibility that gravi-

tational scattering between a system of two or more planets can

lead to the formation of planets on smaller, eccentric orbits has

been suggested by Rasio & Ford (1996). These authors further

suggest that planets on eccentric orbits with small periastron

separations can circularize via tidal interaction with the central

star and thus form the observed short-period planets on circular

orbits. Murray et al. (1998) suggest that inward migration may

occur through gravitational interaction with a disc of planetesimals,

though migration over large distances by this process would

require a very massive planetesimal disc. In this paper, we explore

the idea that the required orbital migration occurs through the

gravitational interaction between an embedded protoplanet and

the protostellar disc out of which it forms. We believe that this

may offer the most plausible explanation for the migration of

extrasolar planets. Gaseous discs of the required mass are a

fundamental component of giant planet formation and they can

cause a single Jovian-mass planet to migrate over large distances.

Neither a very massive planetesimal disc nor remnant systems of

Jovian-mass planets need to be postulated (e.g. Lin & Ida 1997;

Marzari & Weidenschilling 1999).

The linearized response of a gaseous disc to the presence of an

embedded satellite has been investigated by a number of authors

(e.g. Goldreich & Tremaine 1978, 1979, 1980; Lin & Papaloizou

1979a,b, 1980, 1993; Papaloizou & Lin 1984; Artymowicz

1993a,b; Ward 1997 and references therein). The perturbation of

an accretion disc by a protoplanet leads to the excitation of spiral

density waves at Lindblad resonances, which carry with them an

associated angular momentum flux that is deposited in the disc at

the location where the waves are damped. The disc orbiting

beyond the position of the planet receives angular momentum

from the planet, whereas the inner disc loses angular momentum

to the planet. In the situation where the tidal torques are greater

than the internal viscous torques in the disc and the disc response

becomes non-linear, it is expected that an annular gap, or surface

density depression, may be formed in the vicinity of the planet

(Papaloizou & Lin 1984; Lin & Papaloizou 1993). This tidal

truncation of the protostellar nebula was investigated using non-

linear numerical simulations by Bryden et al. (1999), hereafter

BCLNP, and Kley (1999), in order to examine the effect of gap

formation on the mass-accretion rate by an embedded giant

protoplanet. The results of these studies indicate that, for physical

parameters typical of protostellar disc models, gap formation can

substantially reduce the accretion rate, leading to expected planet

masses in the range 1 , mp , 10 MJ; in close agreement with the

observed masses of the extrasolar planets.

The exchange of angular momentum between the planet and the

disc leads to the possibility of the planet undergoing orbital

migration if an imbalance exists between the torques exerted by

the inner and outer discs (Goldreich & Tremaine 1980). The

migration that results may be described by one of two different

formalisms, depending on whether the disc response is linear or

non-linear (with a gap forming).

Type I migration occurs when the disc response is linear and the

background surface density profile remains essentially unchanged

by the interaction. A natural tendency for the outer disc torques to

dominate the inner disc torques results in the inward migration of

the planet independently of the background disc flow and typically

results in rapid migration time-scales of 105 or 104 yr for a 1- or

10-Mearth planet, respectively, located at 5 au (Ward 1997). Type I

migration rates were recently used in the calculations of Tanaka &

Ida (1999), who examined the growth of Earth-mass protoplanets

by accretion of planetesimals during orbital migration. More

recently, Papaloizou & Larwood (2000) calculated the evolution

of a collection of protoplanetary cores, including the effects of

gas, using linear theory to prescribe the migration and eccentricity

damping rates.

Type II migration occurs when the disc response becomes non-

linear and a clear gap is formed around the vicinity of the planet.

In this case, provided that the planet mass is less than or

comparable to the local disc mass with which it interacts, the

migration occurs on the viscous evolution time-scale of the disc.

This process was investigated in detail by Lin & Papaloizou

(1986) and more recently by Trilling et al. (1998), who also

explored mechanisms for halting migration near the central star,

such as mass transfer from the planet to the star via Roche lobe

overflow. When the mass of the planet becomes larger than the

local disc mass, then the inertia of the planet becomes important in

determining the migration rate of the planet. This situation has

been investigated by Syer & Clarke (1995) and more recently by

Ivanov, Papaloizou & Polnarev (1999) in the context of satellite

black holes orbiting in active galactic nucleus (AGN) discs.

Both type I and type II migration may be important at different

stages of the planet-formation process. In particular, it is possible

that solid cores undergo type I migration before gas accretion,

leading to giant planet formation at radii smaller than 4 au (Papaloi-

zou & Terquem 1999) and possibly in situ close to the central star.

Extrasolar giant planets, however, are observed to orbit over a

wide range of radii, some of which must have been contained

within the original gas disc prior to its dissipation. Accordingly, in

this paper we shall focus on the situation where a giant planet is

assumed to have formed at some radius in the disc and investigate

the subsequent type II migration that occurs as a consequence of

disc–protoplanet interaction.

We employ three independent Eulerian hydrodynamic codes to

examine the non-linear evolution of a combined star, disc, and

embedded protoplanet system. The main questions that we wish to

address are as follows.

(i) What is the time-scale for an initially embedded giant

protoplanet to migrate into the close vicinity of its host star?

(ii) How much mass is the planet able to accrete from the disc

during this time and how does the mass evolution of the planet

affect its orbital migration rate?

(iii) Does the tidal interaction between the disc and planet cause

the growth of orbital eccentricity during the migration?

Migration of protoplanets 19
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The physical parameters upon which we focus in this paper are

appropriate to a 1-MJ protoplanet embedded in a minimum-mass

solar nebula model containing ,2 MJ within 5 au (i.e. the initial

orbital radius of the protoplanet). We find that the protoplanet

migrates in towards the host star approximately on the viscous

evolution time of the disc, independently of the details of the

initial conditions of the simulations, or the numerical code used.

For a planet initially located at a radius of 5 au, this translates into

a time of ,105 yr for the disc parameters that we employ. This

time is substantially shorter than the expected lifetimes of

protoplanetary discs, and indicates that orbital migration is an

important factor during the formation epoch of all planetary

systems.

Assuming maximal accretion, the estimated final masses of the

planets as they approach their host stars are found to be in the

range 2:7 & mp & 4:87 MJ; depending on the details of the calcu-

lation. These values fit in well with the observed mass range of the

extrasolar planets.

The orbits of the planets in all calculations were found to

remain essentially circular. Thus the observed eccentricities of the

extrasolar planets are not reproduced by our current models. These

might be produced if the disc had a lower viscosity resulting in

wider and deeper gaps than obtained here or by the perturbing

presence of additional planets in the system. These issues will be

the subject of a future investigation.

This paper is organized as follows. In Section 2 we present a

more quantitative discussion of gap formation and orbital

migration. In Section 3 we present a brief discussion of proto-

stellar disc models and our choice of disc parameters. This is

followed by a discussion of the equations of motion, boundary and

initial conditions, physical parameters and treatment of the proto-

planet in Section 4. We then go on to describe the hydrodynamic

codes that we use in Section 5. The results of the calculations are

described in Section 6. There, we discuss in detail the results of

one calculation (our standard run) and then examine how the

results depend on: (1) the presence or absence of an initial gap in

the vicinity of the planet; (2) whether the planet is accreting or

non-accreting; (3) the numerical resolution; and (4) the code used

to perform the calculation. We also present the results of one very

long time-scale evolution calculation and investigate the effects of

changing the initial density profile. Finally, in Section 7 we

discuss the broader implications of our results and draw our

conclusions.

2 O R B I TA L M I G R AT I O N A N D G A P

F O R M AT I O N

The tidal interaction between an accretion disc and an embedded

protoplanet leads to the exchange of angular momentum between

them. The non-axisymmetric surface density perturbation of the

more slowly rotating disc exterior to the orbital radius of the planet

produces a negative gravitational torque acting on the planet.

Similarly, the more rapidly rotating inner disc exerts a positive

torque. Any imbalance between these inner and outer torques will

lead to the orbital migration of the planet (Goldreich & Tremaine

1980).

By Newton’s third law, the planet exerts oppositely directed

torques on the inner and outer disc material. An annular gap may

be formed locally in the disc if the magnitudes of these torques

exceed the internal viscous torques (Papaloizou & Lin 1984). The

presence or absence of a gap determines whether the migration is

of type II or I, respectively (Ward 1997).

2.1 Type I migration

Type I migration occurs when the response of the disc to tidal

forcing by an embedded planet is linear. Then, no gap is formed and

the background surface density profile is approximately unchanged.

The presence of a planet orbiting in a gaseous disc leads to the

excitation of trailing spiral density waves at the Lindblad

resonances in the disc (Goldreich & Tremaine 1979). These

density waves carry with them an associated angular momentum

flux, which is deposited locally in the disc at the location where

the waves damp. The gravitational coupling between the trailing

wave pattern and the planet leads to a torque acting on the planet.

A natural imbalance between the torques acting on the outer

and inner discs arises because the locations of the outer Lindblad

resonances tend to be closer to the planet’s position than the inner

ones, leading to a net inward migration of the planet. This sense of

migration is insensitive to details of the background disc flow (e.g.

Ward 1997).

The differential torque induced by the Lindblad resonances may

be written as (Ward 1997)

DT .

c1

2

� �

q2Sr2
p�rpV�2

r

H

� �3

; �1�

where q is the planet-to-central-star mass ratio, mp=Mp; S is the

surface density of the disc material, rp is the planet orbital radius,

V is the Keplerian angular velocity, H/r is the disc aspect ratio,

and c1 accounts for the torque imbalance between the two sides of

the disc and is expected to scale as ,�H=r�: The corresponding

radial velocity of migration of the planet is given by

drp

dt
, 2c1q

Sr2
p

Mp

 !

�rpV�
r

H

� �3

: �2�

This equation predicts that the radial migration will occur at a

higher rate for a more massive planet and remains valid until the

disc response becomes non-linear and a gap begins to form. A

sufficient condition for non-linearity through shock formation is

(e.g. Korycansky & Papaloizou 1996)

q .
H

r

� �3

: �3�

This corresponds to a planet of mass ,30 Mearth in a protostellar

disc with a typically expected aspect ratio H=r , 0:05 (see

Papaloizou & Terquem 1999 and references therein). Accordingly

we expect, as is confirmed by the simulations presented here, that

type I migration applies to protoplanets of substantially smaller

mass than we consider in this paper.

2.2 Type II migration

When the disc response becomes non-linear a gap forms, inside

which the planet orbits. The conditions for a gap to form have

been discussed by Papaloizou & Lin (1984), Lin & Papaloizou

(1985, 1993) and BCLNP. These are the thermal or shock

formation conditions given by equation (3) and the condition that

tidal torques exceed viscous torques, which may be written

q .
40

R
�4�

where R � r2V=n is the Reynolds number and n is the kinematic

viscosity.

When there is a gap and the planet mass is less than or

20 R. P. Nelson et al.
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comparable to the local disc mass with which it gravitationally

interacts, the migration rate of the planet is controlled by the

viscous evolution of the disc, since the planet then behaves as a

representative particle in the disc. In this case the migration rate is

given by the radial drift velocity of the gas due to viscous

evolution, which for a steady-state disc is given by

drp

dt
,

3n

2rp

: �5�

This leads to a migration time of

tmig ,

2r2
p

3n
: �6�

When the mass of the planet is larger than the characteristic disc

mass with which it tidally interacts, the inertia of the planet becomes

important in slowing down the orbital evolution. The inertia of the

planet acts as a dam against the viscous evolution of the disc and can

lead to a substantial change in the disc structure in the vicinity of the

planet. The coupled disc–planet evolution in this case has been

considered by Syer & Clarke (1995) and more recently by Ivanov

et al. (1999). Using a simple analytical model, Ivanov et al. (1999)

estimate the migration time of a massive planet to be

tmig �
1

10

Md0

mp

� �1=5
mp

_M
�7�

for a disc with constant n , where Ṁ is the mass-accretion rate

through the disc and Md0 is the characteristic unperturbed disc mass

that would be contained within the orbital radius. We can write
_M � Md0=tn�rp�; where tn�rp� � 2r2

p=�3n� is the viscous evolution

time of the disc at a distance rp and Md0 � pr2
pS; leading to

tmig �
2

3n

1

10p4S4

� �1=5

m4=5
p r2=5

p : �8�

If we write tmig , rp�drp=dt�21; then we obtain the following

relation for the migration rate:

drp

dt
,

3n

2
�10p4S4

�1=5m24=5
p r3=5

p : �9�

We note that strictly speaking, equation (9) should be interpreted

as giving the average migration rate of a planet that begins its

migration at rp and migrates all the way into the central star, rather

than giving the local migration speed. We see that as the mass of

the planet increases, or its orbital radius decreases, the rate of

migration should slow down. The latter effect arises because the

planet interacts with a smaller amount of disc mass at smaller

radii. This analysis also predicts that a protoplanet with mass

substantially larger than Md0 should not increase its mass signifi-

cantly before migrating to the centre of the disc. This together

with the reduction of the accretion rate with increasing protoplanet

mass (BCLNP and work presented here) suggests that the

protoplanet mass should also be limited at about Md0.

If we consider the interaction of a Jupiter-mass planet initially

at 5 au with a minimum-mass solar nebula disc model containing

,2 Jupiter masses within 5 au, we see that the migration rate

should initially occur at the viscous evolution rate of the disc

given by equation (5) since mp , Md0: However, if the planet

accretes mass and/or migrates inwards, then mp eventually

becomes larger than Md0, such that equation (9) may apply.

Thus, the parameter regime that we consider in this paper is

expected to be transitional between those governed by equations

(5) and (9).

3 P ROTO S T E L L A R D I S C M O D E L S

Models of protostellar discs considered as viscous accretion discs

have been constructed by a number of authors (e.g. Bell et al.

1997; Papaloizou, Terquem & Nelson 1999). An important issue is

the nature of the effective viscosity. Usually the ‘a ’ prescription

of Shakura & Sunyaev (1973), n � aH2V; is adopted. The most

likely source of the turbulence required to produce the effective

viscosity is magnetohydrodynamic (MHD) instabilities (Balbus &

Hawley 1991, 1998). Simulations have shown that values of a in

the range 1023–1022 may be produced. However, it is unclear that

adequate ionization exists for the mechanism to work throughout

the disc, and in some cases MHD instabilities may exist only in a

surface layer ionized by cosmic rays (Gammie 1996).

Assuming that MHD instabilities do work throughout the disc

and produce values of a in the above range, disc models with

properties similar to that of a minimum-mass solar nebula are

produced at a time ,105–106 yr after formation (Papaloizou et al.

1999). These typically have H=r , 0:04–0:05 so that the kine-

matic viscosity n , 1025 at 5 au when expressed in our dimen-

sionless units that are discussed in Section 4.4.

Although there are uncertainties as to how a solid core of

sufficient mass accumulates for rapid gas accretion to begin, in

order to understand the distribution of the orbital parameters of

extrasolar planets, it is reasonable to pose the question as to how a

Jupiter-mass protoplanet evolves as a result of interaction with the

protostellar disc immediately post-formation.

Accordingly, we shall consider the interaction of a Jupiter-mass

protoplanet with a disc containing two Jupiter masses interior to

the initial protoplanet orbit and with a constant n � 1025 in

dimensionless units discussed in Section 4.4. We consider cases

where the initial disc surface density is uniform and where it

depends on radius.

4 T H E P H Y S I C A L M O D E L

4.1 Equations of motion

The vertical thickness H of an accretion disc, which is in a state of

near-Keplerian rotation, is small in comparison with the distance r

from the centre, i.e. H=r ! 1: It is therefore convenient to average

the equations of motion and work with vertically averaged

quantities only, the assumption being that there is zero vertical

motion. The problem is thus reduced to a two-dimensional one.

We shall work with cylindrical coordinates (r, f , z), with the

origin located at the position of the central star. The velocity in our

two-dimensional disc is denoted by v � �vr; vf, 0), where vr is the

radial velocity and vf is the azimuthal velocity. We denote

the angular velocity of the disc material by V � vf=r; where the

rotation axis is assumed to be coincident with the vertical axis

of the coordinate system. The vertically integrated continuity

equation is given by

S

t
� 7·�Sv� � 0: �10�

The components of the momentum equation are

�Svr�

t
� 7·�Svrv� �

Sv2
f

r
2

P

r
2 S

F

r
� f r; �11�

�Svf�

t
� 7·�Svfv� � 2

Svrvf

r
2

1

r

P

f
2

S

r

F

f
� f f: �12�
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Here S denotes the surface density

S �

�

∞

2∞

r dz;

with r being the density, P the vertically integrated pressure, and

fr and ff the viscous force per unit area acting in the r and f
directions, respectively. The gravitational potential, F, is given by

F � 2
GMp

r
2

Gmp
�����������������������������������������������������

r2 � r2
p 2 2rrp cos�f 2 fp�

q

�
Gmp

r3
p

r · rp � G

�

S

dm�r 0�

r 03
r · r

0; �13�

where Mp and mp are the masses of the central star and the

protoplanet, respectively, and rp and fp are the radial and

azimuthal coordinates of the protoplanet. The third and fourth

terms in equation (13) account for the fact that the coordinate

system based on the central star is accelerated by the combined

effects of the protoplanetary companion and by the gravitational

force due to the disc, respectively, with the integration in equation

(13) being performed over the surface of the disc.

In our models the protoplanet evolves under the gravitational

attraction of the central star and the protostellar disc. The latter

interaction is expected to cause the protoplanet to undergo orbital

evolution. The equation of motion of the protoplanet may be

written as

d2
rp

dt2
� 2

G�Mp � mp�

r3
p

rp 2 7Fd; �14�

where the gravitational potential of the disc is given by

Fd � 2G

�

S

S�r 0�

jr 0 2 rpj
dr

0 � G

�

S

dm�r 0�

r 03
r · r

0: �15�

Here the integrations are performed over the disc surface, and the

second term is the indirect term arising from the fact that the

coordinate system is accelerated by the disc gravity – note that

the part of the indirect term due to the planet itself is already

included in equation (14).

4.2 Equation of state

For computational simplicity we adopt a locally isothermal

equation of state. The vertically integrated pressure is related to

the surface density through the expression

P � c2
sS; �16�

where the local isothermal sound speed is given by

cs �
H

r
vK;

where vK �
���������������

GMp=r
p

denotes the Keplerian velocity of the

unperturbed disc. The disc aspect ratio, H=r; is assumed to be an

input parameter that defines the Mach number of the disc model

being considered. The calculations presented in this paper for the

most part adopted H=r � 0:04: Some calculations denoted by Ri

adopted H=r � 0:05; see Table 1.

4.3 Viscosity

In this present work, we assume that protostellar discs have an

anomalous effective viscosity, most probably arising from MHD

turbulence (see discussion in Section 3). Here we make the

assumption that this effective viscosity can be modelled by simply

replacing the molecular kinematic viscosity coefficient in the

Navier–Stokes equations by a turbulent viscosity coefficient

denoted by n.

The components of the viscous force per unit area may then be

written as

f r �
1

r

�rtrr�

r
�

1

r

trf

f
2

tff
r

; �17�

f f �
1

r

�rtfr�

r
�

1

r

tff
f

�
trf

r
; �18�

where the components of the viscous stress tensor used in the

above expressions are

trr � 2hDrr 2
2
3
h7·v; �19�

tff � 2hDff 2
2
3
h7·v;

trf � tfr � 2hDrf;

where

Drr �
vr

r
;Dff �

1

r

vf

f
�

vr

r
; �20�

Drf �
1

2
r



r

vf

r

� �

�
1

r

vr

f

� �

;

and h � Sn is the vertically integrated dynamical viscosity

coefficient. In the work presented in this paper we use a constant

value for n � 1025 expressed in the dimensionless units discussed

in Section 4.4.

Table 1. The first column gives the run label (Ni nirvana, Fi

fargo, Ri rh2d), the second column gives the number of grid
cells used and the third column indicates whether the planet
accretes from the disc. The fourth column indicates whether the
calculation started with an initial gap in the disc. The fifth
column gives the estimated migration time (in units of 104

P0)
and the sixth column provides an estimate of the final mass of
the planet. Note that the estimated times are given at different
evolutionary times of the models.

Run Resolution Accretion Initial tmig mfinal

Nr � Nf on ? Gap ? �104P0 (minit)

N1 50 � 147 Yes No 1.77 4.8
N2 50 � 147 No No 1.07 1.0
N3 80 � 235 Yes No 1.00 3.2
N4 80 � 235 No No 1.20 1.0
N5 130 � 384 Yes No 0.84 2.7
N6 130 � 384 No No 1.0 1.0
N7 80 � 235 Yes Yes 0.94 3.03
N8 80 � 235 No Yes 1.07 1.0

F1 50 � 148 Yes No 1.99 4.77
F2 50 � 148 No No 1.75 1.0
F3 80 � 236 Yes No 1.08 3.85
F4 80 � 236 No No 1.33 1.0
F5 130 � 384 Yes No 0.85 3.27
F6 70 � 180 Yes Yes 2.03 4.87

R1 128 � 128 (No) Gap 1.45 1.0
R2 128 � 128 Yes Gap 1.48 4.63
R3 128 � 288 Yes Gap 1.36 4.10
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4.4 Dimensionless units

For reasons of computational simplicity, we use dimensionless

units for our numerical calculations. The unit of mass is taken to

be the sum of the mass of the central star Mp and the initial mass

of the protoplanet mp, and the unit of length is taken to be the

initial orbital radius of the protoplanet a0. We set the gravitational

constant G � 1: The unit of time then becomes

t0 �

��������������������������

a3
0

G�Mp � mp�

s

:

When discussing the results of the calculations in subsequent

sections, we will use the initial orbital period of the planet as the

unit of time, given by P0 � 2pt0:

4.5 Gas accretion by the protoplanet

The details of gas accretion from the protoplanetary nebula by a

protoplanet are complex and not fully understood. For a Jupiter-

mass planet, material entering the Roche lobe of the planet is

expected to form a circumplanetary disc through which material

will accrete on to the surface of the protoplanet. The rate of gas

flow through this disc depends on its local properties. The rate at

which material may accrete on to the surface of the protoplanet

without it undergoing expansion is determined by the Kelvin–

Helmholtz time-scale since the protoplanetary envelope is

optically thick. Detailed modelling of these processes is beyond

the scope of this paper, and properly requires three-dimensional

calculation. Instead, we adopt a simple treatment of the accretion

of gas by the protoplanet.

Following Kley (1999), the accretion of gas by the protoplanet

is modelled by removing a fraction of the material that resides

within a distance of 1
2
Rr from the protoplanet at each time-step,

and a different fraction from within 1
4
Rr; where Rr is the Roche

radius of the planet given by

Rr � rp

mp

3Mp

� �1=3

: �21�

The fraction of gas removed at each time-step determines the local

accretion time-scale on to the protoplanet, tacc, which in our

calculations is taken to be tacc � 3t0 within 1
2

Rr and tacc � 1:5t0
within 1

4
Rr: This accretion rate is large and is almost maximal

(Kley 1999) in the sense that it approaches inflow into the Roche

lobe at the sound speed.

We also perform simulations in which the accretion rate is

set to zero. In this case a lobe filling atmosphere develops such

that material that approaches the protoplanet is forced by its

pressure either to return or to cross the gap. Thus, our

calculations span the range of possible accretion-rate behaviour

on to the protoplanet.

The disc gas that the protoplanet accretes has an associated

specific angular momentum, which, if different from the specific

angular momentum of the protoplanet, will cause its orbit to

evolve. We include the effects of this ‘advected angular momen-

tum’ on the protoplanet’s orbit by calculating the momentum of

the accreted material in Cartesian coordinates. This momentum is

added to the protoplanet so that its velocities in the x and y

Cartesian coordinate directions are updated according to the

amount of mass and momentum that it accretes at each time-step.

4.6 Initial conditions

The disc models used for all simulations using the codes nirvana

and fargo were of uniform surface density initially, had a value of

n � 1025 throughout and a constant value of H=r � 0:04: The

value of S was chosen such that there exists the equivalent of 2

Jupiter masses in the disc interior to the orbital radius of the

protoplanet, initially. In our dimensionless units this gives S �

6 � 1024: The initial mass ratio between the protoplanet and the

central star was taken to be q � mp=Mp � 1023; corresponding to

a Jupiter-mass planet orbiting about a solar-mass star. The proto-

planet was started on a circular orbit of radius r � 1: The inner

radius of the disc is located at r � 0:4 and the outer radius is

located at r � 2:5:
Simulations with rh2d were carried out using identical initial

conditions to those described in Kley (1999). The aspect ratio of

the disc was H=r � 0:05: The initial density profile was of the

form S�r� / r21=2 and in all cases an initial annular gap was

imposed. The inner disc radius is located at r � 0:25 and the outer

radius is at r � 4:0: The total initial disc mass was 1022 M(. In

comparison, the initial models for nirvana and fargo have a

mass 1.45 times larger. Hence, the surface density of the models

with rh2d at r � 1 is about three times lower.

4.7 Boundary conditions

An outflow boundary condition is used at the inner boundary for

all calculations presented here, since material in a viscous

accretion disc will naturally flow on to the central star.

The outer boundary condition is more problematic, since ideally

we would like to have a closed outer boundary. We work in a

coordinate system that is based on the central star and not on the

centre of mass. The natural tendency for material at the outer edge

of the disc is to orbit about the centre of mass and not the central

star. Adopting the usual closed boundary condition of vr � 0 and

vf �
���������������

GMp=r
p

will result in a mismatch between the disc

material just interior to the outer boundary and that imposed at the

boundary itself. Calculations using this condition do indeed show

the resulting excitation of waves at the outer edge of the disc, even

for the case of a non-accreting planet on a fixed circular orbit.

In order to alleviate this problem, the boundary condition that

we adopt in the nirvana calculations assumes that material at the

outer edge of the disc is in circular, Keplerian orbit about the

centre of mass of the star-plus-planet system. Since we work in a

coordinate system based on the central star, this requires us to

calculate the correct values of vr and vf at each time-step and

apply them to the outer boundary. One consequence of this is that

the outer boundary is no longer closed, but can allow the inflow

and outflow of material since the radial velocity is no longer zero.

This effect is small, however, and appears to have a negligible

effect on our simulation results. Simulations of a non-accreting

planet on a fixed circular orbit using this boundary condition show

no signs of wave excitation at the outer edge of the disc. When the

planet is able to accrete gas from the disc and to migrate orbitally,

this boundary condition again results in some wave excitation at

the outer edge, but with a much reduced amplitude. This arises

because the centre-of-mass position changes with time as the

planet grows in mass and changes its orbit, and these changes are

fed into the outer boundary condition instantaneously. The disc

material interior to the outer boundary, on the other hand, will

adjust to the centre-of-mass evolution on a longer time-scale, so

Migration of protoplanets 23

q 2000 RAS, MNRAS 318, 18–36

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
1
8
/1

/1
8
/1

1
4
2
4
9
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



that this boundary condition also produces a small but noticeable

mismatch between the boundary and the outer disc material.

The calculations performed using fargo and rh2d all used a

closed outer boundary condition such that vr � 0: The strong

similarities in the results of the calculations performed with

nirvana and fargo indicate that the details of the outer boundary

have a negligible effect on our results. This is because, as tests

have shown, the protoplanet primarily interacts with material that

is close to its immediate vicinity.

5 T H E H Y D RO DY NA M I C C O D E S

In order to establish the reliability of the numerical results, the

equations of motion, equations (10)–(12) have been solved using

three different Eulerian hydrodynamic codes, nirvana, fargo

and rh2d. In each case the equations are solved using a finite-

difference scheme on a discretized computational domain

containing Nr � Nf grid cells. Each scheme is described briefly

below.

5.1 nirvana

nirvana is a three-dimensional MHD code that has been

described in depth elsewhere (Ziegler & Yorke 1997). For the

simulations presented here, the magnetic field is set to zero such

that the code becomes purely hydrodynamic. We work in two

dimensions and use cylindrical (r, f ) coordinates. Viscous terms

have been added as described by Kley (1998). The computational

domain is subdivided into Nr � Nf zones, where the grid spacing

in both coordinate directions is uniform.

For the calculations that are presented in this paper, three

different levels of resolution have been used. The low-resolution

runs use Nr � 50 and Nf � 147; the mid-resolution runs use

Nr � 80 and Nf � 235; and the high-resolution runs use Nr �

130 and Nf � 384: The numerical method is based on a spatially

second-order accurate, explicit method that computes the advec-

tion using the second-order monotonic transport algorithm (Van

Leer 1977), leading to the global conservation of mass and angular

momentum. The evolution of the planet orbit is computed using a

standard leapfrog integrator. nirvana has been applied to a

number of different problems, including that of an accreting

protoplanet embedded in a protostellar disc. It was found to give

results that are very similar to those obtained with other finite-

difference codes including rh2d (e.g. Kley 1999).

5.2 fargo

This is an alternative Eulerian zeus-like code, based on the fargo

fast advection method (Masset 2000). The main difference

between nirvana and this code is that in fargo the time-step is

not limited by the classical Courant–Friedrichs–(CFL) condition,

which results in a very small time-step owing to the fast orbital

motion at the inner boundary, but it is limited by a CFL condition

based on the residual velocity with respect to the average orbital

motion. This leads to a substantially larger time-step and hence

faster computation. Also, the fargo procedure leads to a smaller

numerical diffusivity because a larger time-step size requires one

to perform fewer advection substeps during the calculations. Since

the time-step in the fargo simulations can be quite large,

especially in the low-resolution case, a fourth-order Runge–Kutta

scheme was used to integrate the equations of motion of the

protoplanet.

Since this work represents the first application of the fargo

advection algorithm, it has been widely tested against nirvana by

running strictly similar simulations (identical physical and

numerical parameters). The good agreement between both

codes, along with the low numerical diffusivity of fargo, has

validated fargo as a very useful tool for studying the embedded

protoplanet problem. Since it is much faster than nirvana, it has

been used to calculate the very long-term behaviour of an

accreting protoplanet (see run F6 later).

5.3 rh2d

To obtain results using a third method we have employed the code

rh2d (Kley 1989). This has been used previously in studies of

disc–protoplanet interaction (Kley 1998, 1999). It is a two-

dimensional radiation hydrodynamics code. For the simulations

presented here the radiation module is switched off and all parts

are solved explicitly. The code is based on the second-order Van

Leer (1977) advection algorithm and uses a staggered grid, with

logarithmic spacing (a constant enlargement ratio of neighbouring

grid cells) in radius and which is uniform in azimuth. As in fargo,

a fourth-order Runge–Kutta scheme was used to integrate the

protoplanet orbit. This code has already been found to give results

similar to nirvana for protoplanet problems (Kley 1998). Accord-

ingly, we here use rh2d to study the orbital evolution of an

embedded planet under slightly different conditions from those

adopted in the case of the other two numerical methods.

6 N U M E R I C A L C A L C U L AT I O N S

The main results of the numerical calculations are presented in

Table 1. Of particular significance are the migration times, tmig,

which are listed in the fifth column of Table 1 in units of 104P0,

and the estimated final masses of the planets, mfinal, which are

listed in the sixth column in units of the original planet mass minit.

The values of tmig were obtained by measuring the rate of

change of the planet’s semi-major axis at the end of the simulation

and extrapolating forward in time, assuming that this rate remains

constant. Thus tmig gives an estimate of the time required for the

planet to migrate all the way to the central star. The values of mfinal

were obtained by measuring the accretion rate at the end of the

simulation and extrapolating forward for a time tmig. Thus mfinal

provides an estimate of the mass the planet will attain on

migrating all the way to the central star. It should be noted that

while these values provide reasonable estimates of the true

migration times and accreted masses, the assumption of there

being a constant migration or accretion rate is not strictly correct

since these will tend to decrease as the planet mass continues to

grow and it migrates inwards. This point is illustrated by the fact

that calculations N7 and F6, whilst being run with essentially the

same physical parameters, produce different final estimates for the

migration time and final planetary mass. This difference arises

because calculation F6 was run for a much longer time than N7.

The only difference between runs Ni and Fi �i [ �1; 5�� is the

code used to perform the calculations, with the Ni runs being

performed with nirvana and the Fi runs with fargo. The

evolution equations of the system and the initial conditions are

identical. Their results agree reasonably well, except for the low-

resolution non-accreting case, but, as we shall see below, the low

resolution we used for these runs is probably too coarse to give

trustworthy results. From both the mid-resolution (N3 and F3) and
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high-resolution (N5 and F5) runs, we can see that fargo gives

slightly higher accretion rates (and consistently longer migration

times, since the inertia of the planet increases and, less

importantly, most of the accreted material comes from the outer

disc with a larger specific angular momentum). This higher

accretion rate arises because fargo has a smaller numerical

diffusivity along the direction of orbital motion (Masset 2000).

Associated with this is a more strongly peaked density profile

around the planet.

For the purposes of illustrating the main results of our

simulations, we will now describe the results for one individual

case. Following this we will compare the results of simulations in

which the disc either did or did not have a tidally induced gap in

which the planet orbits at the start of the calculation. We will then

go on to compare the migration rate of a planet that accretes gas

from the disc at a maximal rate to that of a non-accreting

protoplanet. We then look at the effect of changing the initial

surface density profile and disc aspect ratio. Following this, we

compare the results obtained with nirvana and fargo, and study

the effects of changing the numerical resolution.

6.1 An illustrative case

The evolution of the protoplanet embedded in the disc for

calculation N3 is shown in Fig. 1, where grey-scale plots showing

the surface density variation in the disc are presented, and the

position of the planet is indicated by the small white circle (which

has a radius equal to the Roche radius of the planet). Initially at

time t � 0 the disc surface density was unperturbed, but as the

calculation proceeds the tidal force resulting from the planet

strongly perturbs the disc, leading to the formation of trailing

spiral shock waves. In particular an m � 2 spiral wave pattern may

be observed. The transfer of angular momentum between the disc

and the protoplanet leads to the formation of an annular gap, or

surface density depression, in the vicinity of the planet’s orbit,

which is cleared after about 200 orbits for a Jupiter-mass planet.

As the disc–planet system evolves, the inner disc is lost from

the system since viscous evolution causes it to drain through the

open inner boundary. The tidal interaction between the disc and

protoplanet leads to the disc interior to rp exerting positive torques

on the protoplanet, and the disc exterior to rp exerting negative

torques on it. The loss of the inner disc leads to a reduction of the

positive torque, so that the torque arising from the outer disc

becomes dominant. Consequently, the planet undergoes inward

orbital migration as its angular momentum is removed by the

outer disc. In the final panel of Fig. 1, which corresponds to a time

of t � 527P0; it may be observed that the semimajor axis of the

planet’s orbit is ,80 per cent of its original value, and that most of

the inner disc has disappeared. As the calculation proceeds beyond

this point the planet continues to spiral in towards the central star.

The evolution of the torques acting on the protoplanet during

the first 300 orbits is shown in Fig. 2, indicating the dominant

Figure 1. This figure shows the evolution of a protoplanet embedded in a protostellar disc for calculation N3. The relative surface density of disc material is

represented by the grey-scale. The white circle represents the position of the protoplanet. The disc is initially unperturbed at time t � 0:
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contribution to the orbital migration. Here, the torque per unit mass

acting on the protoplanet due to the disc exterior to the orbital radius

of the protoplanet rp (dotted line), interior to, or at, rp (dot-dashed

line), and the indirect term in the gravitational force (dashed line)

are plotted against time. Also plotted is the effective torque per unit

mass that arises from the accretion of material whose specific

angular momentum differs from that of the orbit (solid line). The

first thing to note is that the accretion of gas from the disc has a

negligible effect on the orbital evolution. Once the gap has formed,

the effective torque arising from accretion is only ,3 per cent of the

torque resulting from the outer disc. Secondly, we note that the

torque arising from the outer disc material is consistently larger than

that resulting from the inner disc material. The loss of the inner disc

through the open inner boundary causes this disparity in the torques

to grow, and ensures that the migration is always directed inwards.

The contribution that the disc gravity makes to the indirect term is

found to have a negligible effect on the orbital evolution.

The evolution of the orbital radius of the protoplanet is shown

by the solid line in the first panel of Fig. 3, and that of the planet

mass is shown by the solid line in the second panel. The evolution

of the protoplanet undergoes a more rapid phase early on as the

planet loses angular momentum to the disc material during the

gap-opening phase, leading to a faster period of orbital migration.

This phase of evolution lasts for a few hundred orbits until the gap

is opened, and also results in a very large mass accretion rate that

almost doubles the mass of the protoplanet within t � 300P0:
Once the gap has been cleared, the evolution slows down and the

planet spirals in towards the star at an almost constant rate while

accreting gas from the disc at an almost steady accretion rate. The

migration rate is seen to slow down slightly as the calculation

proceeds, since the increase in mass of the planet increases its

inertia. The calculation was initiated with Md0 , 2mp; but as the

planet migrates and accretes from the disc we arrive at a situation

where mp $ Md0 (see discussion in Section 2.2). The orbital

Figure 2. This figure shows the torques (per unit mass) acting on the protoplanet during the early stages of its evolution, in run N3. The torque arising from

the disc exterior to the planet orbital radius rp is shown by the dotted line, owing to the disc interior to or at rp is shown by the dot-dashed line, and that arising

from the disc’s contribution to the indirect term of the gravitational potential is shown by the dashed line. The effective torque resulting from the accretion of

disc gas is shown by the solid line.

Figure 3. The first panel shows the evolution of the planet orbital radius for calculation N3 (solid line) and N7 (dotted line). The second panel shows the

increase in mass as the protoplanets accrete gas from the disc for the same calculations, with the same line styles as described above.
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evolution of a massive planet orbiting in a disc that contains a

smaller mass than the planet within a characteristic radius rp has

been studied by Ivanov et al. (1999). In this physical regime the

evolution is controlled by the viscous evolution of the disc and the

inertia of the planet, with a more massive planet migrating more

slowly, as described in Section 2.2. We can test whether equation

(9) agrees with our numerical calculations by examining the

changes in planet mass, orbital radius, migration rate, and disc

surface density at two different times, t1 and t2, during the

calculation. If we allow for the reduction of the surface density in

the outer disc owing to accretion on to the planet, and by mass

flow through the gap and through the inner boundary, then we

obtain the following expression relating the migration rates ṙp(t):

_rp�t1�

_rp�t2�
�

mp�t2�S�t1�

mp�t1�S�t2�

� �4=5
rp�t1�

rp�t2�

� �3=5

�22�

for a disc with a constant value of n . Comparing the migration

rates in the numerical calculation at t1 � 1000P0 and t2 �

2000P0; we find reasonable agreement between the prediction of

equation (22) and the numerical results. The measured ratio of the

migration rates gives _rp�t1�=_rp�t2� . 1:5; whereas that predicted

by equation (22) gives a value _rp�t1�=_rp�t2� . 1:4 with S taken as

the azimuthally averaged value at the location of the 2:1 outer

Lindblad resonance.

The accretion rate decreases as the protoplanet mass increases

because the disc is tidally truncated more effectively by a more

massive planet (e.g. BCLNP). After a time of t , 2400P0; the

protoplanet has migrated to a radius of r , 0:6 and has accreted

,1.3 times its original mass. By extrapolating the migration and

accretion rates forward in time, it is estimated that the planet

will spiral into the central star after t , 1:0 � 104P0; by which

time it will have reached a mass mfinal , 3:2 times its original

mass.

We note that the planet remains in an almost circular orbit

throughout its evolution, and shows no sign of eccentricity

growth, since the gap region still contains sufficient corotating

material to damp the eccentricity growth caused by the outer

Lindblad resonances (Goldreich & Tremaine 1980; Artymowicz

1993a,b).

The viscous evolution time of the disc is given by equation (6).

At a radius of r � 1; this corresponds to an evolution time of

,104
P0, which is very similar to what is observed for the

migration time of the protoplanets in all of our simulations.

This confirms the idea described in Section 2.2 and in Lin &

Papaloizou (1986) that giant protoplanets undergoing tidal inter-

action with a protostellar disc should migrate in a time controlled

by the viscous evolution time of the disc when the interaction is

sufficiently non-linear to open up a gap, and when the mass of the

planet is less than or comparable to the disc mass with which it

gravitationally interacts.

6.2 The effects of an initial gap

In addition to performing calculations in which the initial disc was

unperturbed, we also performed calculations in which the initial

disc contained a tidally induced gap around the vicinity of the

planet. Here, we will concentrate on the calculations labelled as

N3 and N7 in Table 1.

The calculation labelled as N3 is for an accreting protoplanet

embedded in an initially unperturbed disc, and was described in

detail in Section 6.1. The calculation labelled as N7 in Table 1 is

for an accreting protoplanet initially embedded in a disc that has a

tidally induced gap at time t � 0: This initial condition was

obtained by running a calculation with a non-accreting planet on a

fixed circular orbit for t , 300P0; until a clear gap was formed

and the surface density in the gap region became steady. A

reflecting inner boundary condition was employed during this

phase in order to conserve the disc mass. The results of this

calculation were then used as the initial conditions of calculation

N7, but with an accreting protoplanet that was able to undergo

orbital evolution, and with an open inner boundary condition.

The evolution of the orbital radius of the planet in calculation

N7 is shown by the dotted line in the first panel of Fig. 3, and the

evolution of the mass of the planet is shown by the dotted line in

the second panel. In the case of the calculation N3, in which the

planet is initially embedded in an unperturbed disc and must clear

material in order to form a gap, the clearing of that material leads

to a period of more rapid migration. At the same time, this larger

migration rate is slowed by the rapid accretion of gas, when the

planet is deeply embedded, which leads almost to a doubling of

the planet mass and inertia within a few hundred orbits. In the case

of calculation N7, the planet initially resides within a gap, and so

does not have to clear much material away from its vicinity during

the early stages of its orbital evolution. It does, however, have an

early period of more rapid accretion since it absorbs the material

that is initially within its Roche lobe that accumulated there during

the formation of the gap. This initially large accretion rate is

augmented by the fact that an accreting planet helps to reduce the

surface density of material in the gap region by accreting some of

it. The similarity of the migration rates for the calculations N3 and

N7 during the first 1000P0 indicates that the effects of opening the

gap for an initially fully embedded planet are almost entirely

counterbalanced by the planet mass growth and accretion of

material with a higher specific angular momentum, with this latter

effect being almost negligible after ,100P0 (as shown in Fig. 2).

Looking at the later stages of the evolution in the first panel of

Fig. 3, we notice that although the planet in calculation N3

migrates slightly faster to begin with, the planet in calculation N7

eventually migrates at a higher rate since its mass and inertia are

smaller, with the orbital radii crossing over at t , 1500P0: The

expected migration time-scale in calculation N7 is tmig , 0:94 �

104P0; with the final mass estimate being mfinal , 3:03; indicating

that the presence or absence of an initial gap has only a relatively

small effect on the final results.

6.3 Comparison of the evolution of an accreting and

non-accreting protoplanet

Calculations were performed for both accreting and non-accreting

planets. In this section we will compare the results of calculations

N3 and N4 in order to ascertain the effects of accretion on the

evolution of the protoplanet. These calculations were both

initiated with unperturbed disc models. For the accreting proto-

planets, the accretion rate adopted is such that the e-folding time

for the protoplanet to accrete mass within a distance of half of its

Roche radius is given by tacc � 3P0=�2p�: This is a dynamical

time-scale so the situation corresponds essentially to a maximally

accreting protoplanet (Kley 1999).

The case of a non-accreting planet corresponds to the situation

where the protoplanet has a lobe filling gaseous envelope in

hydrostatic equilibrium with Kelvin–Helmholtz time longer than

the migration time. Then the planet can accrete little mass during

the migration stage. Such a situation may occur if the envelope is
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built up while maintaining a low luminosity emitted from the

central parts of the protoplanet.

Calculation N3 was discussed in some detail in Section 6.1.

Fig. 4 shows the evolution of the orbital separations for

calculations N3 (solid line) and N4 (dotted line). It is apparent

that the non-accreting planet (N4) undergoes a significantly more

rapid phase of migration as the initial gap is cleared during the

first few hundred orbits, since the planet has to transfer a

substantial amount of angular momentum to the disc gas in order

to clear the gap. The rapid accretion of mass (and some angular

momentum) by the accreting planet (N3) helps to counteract the

initial inward torques that arise when the gap is being cleared of

material, as described in Section 6.2.

As the calculations proceed, the migration rates in both cases

slow down when the gap has been cleared of material. The planet

then migrates inwards on approximately the viscous evolution

time-scale of the outer disc. Some additional slowing down of the

migration rates occurs because the protoplanets interact with a

smaller amount of disc mass as they migrate inwards.

As the evolution time approaches t � 2000P0; it is apparent that

the migration rate of the non-accreting planet is actually slower

than that of the accreting planet, even though the accretion of

material has increased the inertia of the accreting planet. The

reason for this unexpected behaviour is that the non-accreting

planet undergoes Roche lobe overflow. As material accumulates

on to the non-accreting planet, the Roche lobe eventually becomes

filled with a hydrostatic atmosphere and no additional material

may enter it. The continued flow of material from the outer disc

on to the protoplanet then leads to circulation around it and Roche

lobe overflow, such that material flows towards the central star.

This material contains too much angular momentum to flow

through the inner boundary directly, and instead fuels the inner

disc. This inner disc then exerts a positive torque on the planet and

reduces the rate at which it is able to migrate towards the central

star. This process provides an efficient method of allowing

material to flow across tidally induced gaps in accretion discs, and

thus for the outer disc to feed material into the inner disc, which

can continue to accrete on to the central star. This process will be

the subject of a more detailed future study.

6.4 A long-term evolution run

The run F6 is a low/mid-resolution run aimed at computing the

long-term behaviour of the accretion/migration process. As

indicated in Table 1, Nr � 70 and Nf � 180: Contrary to the

other fargo and nirvana runs, the inner boundary is located at

r � 0:25 instead of r � 0:4; and the radial grid spacing is in

geometric rather than uniform progression. Since we want to deal

with the long-term behaviour of the protoplanet, we allow it to get

close to the primary, which is why we take a smaller inner

boundary radius. Furthermore, we want to track the accretion rate

as accurately as possible. Taking the non-uniform radial grid

spacing ensures that the cells all have the same shape and that the

accretion algorithm will not be biased accordingly. For this run we

first clear the gap with the inner boundary open by evolving the

system with the protoplanet orbit circular and fixed for 400

periods. Then we start the accretion/migration process. Time t � 0

is then taken.

In this run, unlike the others, the frame is centred on the centre

of mass of the system composed of the primary and the

protoplanet. This is not an inertial frame, since that would need

to be centred on the centre of mass of the primary, protoplanet and

disc. However, the indirect term arising from the acceleration of

this frame is much smaller than the indirect term in the case of a

frame centred on the primary. Furthermore, the material in the

outer disc tends to orbit around the centre of mass of the primary

and protoplanet (since the disc itself is not self-gravitating), so one

can work with a rigid outer boundary and impose there a fixed

Keplerian velocity, with no radial motion, which avoids inflow

and outflow at that boundary. On the other hand, the material in

the inner disc tends to orbit around the primary, so there is a

mismatch there between the grid boundary and the gas orbits,

which leads to a ‘vacuum-cleaner’ effect which drains the inner

disc faster than a frame centred on the primary would. However,

tests have shown that the flux of mass at the inner boundary is at

most 10–20 per cent larger as a result of this effect.

We present in Fig. 5 the evolution of the protoplanet–primary

separation as a function of time. In Fig. 6 we show the total mass

of the protoplanet as a function of time, and in Table 1 we give the

Figure 4. This figure shows the evolution of the orbital radius for the accreting protoplanet in run N3 (solid line) and for the non-accreting protoplanet in run

N4 (dotted line).
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estimated migration time and final masses. These rates have been

extrapolated from the time derivatives of the mass and orbital

radius at time t � 7500: This corresponds roughly to the time at

which the inner disc is lost. The fact that these results are in

relatively good agreement with the previous ones, even though the

extrapolation is performed after many more orbits in the case of

run F6, shows that the assumption that the migration and accretion

rates reach constant values is a reasonable approximation, even

though the curves show some residual deviation from linearity.

We show in Fig. 7 a sequence of four surface density plots at

times t � 0; 300, 3000 and 7000. As a consequence of the

migration the gap radius decreases with time. We note as well the

depletion of the inner disc (the viscous time-scale at r � 0:7 is

tvisc � 7:8 � 103 orbits, and is even smaller at smaller radii).

Fig. 8 shows the flow around the protoplanet at the end of the

run. Even though the inner disc is strongly depleted, some Roche

lobe overflow into it is indicated. The mean profile of the gap

surface density at different times is displayed in Fig. 9. The gap

deepens as the protoplanet mass increases with time. The

depletion of the inner disc is also apparent.

The mass lost through the inner boundary as a function of time

is plotted in Fig. 10. From the comparison of Figs 6 and 10, one

can see that the mass overflow flux and the mass-accretion rate on

to the planet have the same order of magnitude (the mass overflow

flux is of the same order of magnitude as the mass outflow through

the inner boundary since the mass lost at the inner boundary is

bigger than the inner disc mass; in a totally stationary case, these

two rates would be strictly equal).

The value of the ratio of the mass-flow rate through the gap to

the accretion rate ,1/3.5 obtained here is somewhat higher than

that obtained from the simulation R2 where this ratio was about

1/7. However, the magnitude of the accretion rate is smaller here

since the planet mass is larger. Also, the surface density profiles

and disc aspect ratios are different in these simulations. Given the

Figure 5. This diagram shows the distance between the protoplanet and the primary as a function of time in run F6. At t � 0 the gap is already cleared (it was

cleared during 400 fixed circular orbits).

Figure 6. This figure shows the temporal behaviour of the protoplanet mass as a function of time in run F6. We notice that the curve slope (i.e. the accretion

rate) is not very peaked at t � 0 since the gap was already present. The mass unit is 1 Jupiter mass.
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differing physical situations when the accretion rates were

measured, we consider the agreement to be satisfactory.

6.5 Runs with an initial surface density profile using rh2d

The code rh2d has already been tested against nirvana (Kley

1998) and found to give very similar results so we shall not give

results of additional tests here. Instead, we present runs Ri

�i � 1; 2; 3�; which use different initial conditions incorporating a

surface density profile that is not constant, as outlined at the end

of Section 4.6, and a slightly higher value of the disc aspect ratio

H=r � 0:05: Also, it should be noted that these calculations are

initiated with a gap already in existence around the position of the

protoplanet.

The main results concerning the mass accretion by the proto-

planet are displayed in Fig. 11. The lower panel shows the

evolution of the protoplanet mass and the mass lost through the

inner boundary for the models R2 and R3, which have maximal

accretion. These models have the same physical set-up but

different numerical resolutions. Note that only the mass added to

the planet during the evolution is displayed. The total planet mass

is obtained by adding 1 MJ to the quoted values, i.e. at the end of

the run R2 at t < 3300 the planet has reached about 2 MJ. This

value is smaller than that obtained by the other codes (see for

example run F6), which is a result of the surface density near the

planet being a factor of about 3 smaller in these runs. Also shown

in the lower panel is the mass lost through the inner boundary

(dotted and dashed-dotted lines), which is assumed to have been

accreted by the star. The mass of the planet initially rises more

slowly, because of the initial gap imposed. Only after the full

development of the quasi-stationary flow (at t < 300� does the

mass-accumulation rate on to the planet become larger than the

mass-loss rate through the inner boundary. This is demonstrated in

the top panel where the mass-accretion rates in units of MJ=P0 on

to the planet and star are shown. After the mass contained initially

within r � 0:25 and 0.4, Md0 � 0:37 MJ, is consumed (primarily

by the star), the mass-accretion rate on to the star settles to the

very small constant value _Mlost � 2:86 � 1025 MJ=P0; which may

be identified with the rate of mass overflow across the gap. Near

the end of the computation at t � 3000; this rate is about 6.5 times

lower than the mass-accretion rate by the planet, which is in rather

good agreement with the results quoted in Kley (1999) but

somewhat lower than the rates obtained with fargo as outlined

above.

In Fig. 12 the evolution of the distance of the planet from the

star is shown for all models R1–R3. Again, due to the smaller

mass contained in the physical domain the orbital decay rate is

smaller than in the previous models (Ni and Fi). In the comparison

model labelled ‘constant mass’ (R1, dotted line) the mass of the

planet remained constant but mass was nevertheless removed from

the Roche lobe in the manner described in Section 4.5 (also see

Figure 7. Time-sequence of the surface density for run F6. The outer boundary is at 2.5 and does not appear on the plots. The circle around the protoplanet in

each case has a radius equal to the Roche radius.
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Kley 1999). This model has a smaller decay rate than the complete

models (R2 solid line, and R3, light dashed line), in which the

accreted mass is added to the planet mass. All the models show

initially a fluctuation in rp(t), which indicates an eccentricity

growth to less than about 0.02, which damps out later. For the

high-resolution model (R3, light dashed line) the radial evolution

closely follows the low-resolution model, and the migration rate

seems to be marginally lower. This is consistent with the results

obtained with nirvana and fargo, which indicate that lower-

resolution runs have larger accretion rates and slower decay rates

(see Figs 15 and 16).

The diamonds in Fig. 12 represent the analytical approximation

according to Ivanov et al. (1999) as given in equation (9) with an

arbitrary normalization factor, which can be adjusted to match the

numerically obtained data. For simplicity here the maximum of

the azimuthally averaged surface density S(r) outside the planet

was taken for model R2 as the value for the surface density in

equation (9). Clearly, the formula gives an excellent approxima-

tion to the actual evolution of the radius of the planet.

6.6 Comparison between nirvana and fargo

In this section, we present the results of calculations that were

performed with both nirvana and fargo in order to check that

the results that we have presented are reproducible when using

independent numerical codes. The calculations that we will

compare are N3 performed using nirvana and F3 performed

using fargo. As described in Table 1, these calculations are for an

accreting Jupiter-mass planet initially embedded in an unperturbed

disc model. For comparison purposes, the orbital evolution of the

protoplanet is plotted in the first panel of Fig. 13, with calculation

N3 being represented by the solid line and F3 being represented

by the dotted line. Similarly, the evolution of the protoplanet mass

is presented in the second panel of this figure with the same line

styles being used to represent the calculations. It is apparent that

the results are very closely matched in terms of the orbital

evolution rate and reasonably well matched in terms of the mass-

accretion rates. We clearly see the trend, also seen in the results

given in Table 1, that the fargo algorithm gives higher accretion

rates and hence slightly slower migration. This may be related to

the fact that the distribution of matter close to the protoplanet is

subject to less numerical diffusion and so has less azimuthal

elongation in fargo.

Figure 8. Details of the flow in the neighbourhood of the protoplanet near

the end of the run F6 �t � 7000P0�: The velocity field is represented in the

frame corotating with the planet. We clearly see the gap, the wakes of the

protoplanet in the inner and outer discs, the extremities of the horseshoe

orbits in the gap, the two X-points in the velocity field, which correspond

to the Lagrange points L1 and L2. The circle is centred on the protoplanet

and has a radius equal to the Roche radius of the protoplanet. Because the

actual potential felt by the disc material is smoothed, the X-points lie

slightly inside this circle. One can see that the density peak around the

planet is not elongated along the orbit, as usually observed in fixed frame

normal advection scheme runs. Because of the geometric grid spacing, all

the cells have the same shape and are ‘as square as possible’, i.e.

log�rout=rin� . Nr log�1 � 2p=Nf�:

Figure 9. Disc surface density profile at different times for run F6 �t � 0: solid line, t � 690: dotted line, t � 1830: dashed line and t � 3550: dot-dashed

line). These plots represent the azimuthal average of the surface density, and hence take the protoplanet wake into account. The residual surface density,

which would be obtained by omitting the wakes, would be much smaller.
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6.7 Numerical resolution

6.7.1 Non-accreting planets

In this section, we present the results of calculations that were

performed using different resolutions. We first concentrate on

comparing three calculations in which the orbital evolution of a

non-accreting planet was studied, namely calculations N2, N4,

and N6.

The evolution of the planet orbit radius for these

calculations is presented in Fig. 14, with calculation N2

being represented by the dotted line, calculation N4 by the

solid line, and calculation N6 by the dashed line. The

agreement between N2 and the other calculations appears to

be the worst, which is to be expected since this is the lowest-

resolution simulation that we performed and this is probably

too low fully to resolve small-scale structures in the vicinity of

the planet. The two calculations N4 and N6, on the other

hand, show extremely good agreement in their orbital migra-

tion rates later, though there is a small offset in the orbital

radius at any given time due to calculation N6 experiencing

more rapid migration during the gap-clearing stage of the

calculation.

Figure 10. Mass lost at the inner boundary as a function of time in run F6. At t � 0 this mass is not zero since the run was begun with a non-accreting

protoplanet on a fixed circular orbit with an open inner boundary in order to generate an initial gap.
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Figure 11. Mass evolution for models R2 and R3. The lower panel shows

the evolution of the mass of the planet and the mass lost from the disc

(accreted by the star). The top panel shows the corresponding accretion

rates in units of MJ=P0: Dark solid and dotted lines refer to model R2,

while the lighter dashed and dashed-dotted lines refer to the higher

resolution model R3.
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Figure 12. Radial evolution for models Ri. The lower panel shows the

evolution of the semimajor axes of the planet for three different models.

Solid black line R2, dotted grey line the non-accreting model R1, and

dashed light-grey line the high-resolution model R3. The top panel shows

the corresponding derivative ṙp in units of a0=P0 versus time. The

diamonds represent the analytical approximation according to Ivanov et al.

(1999) as given in equation (9) for model R2.
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This increased rate of orbital migration for the higher-resolution

calculation during the gap-clearing stage probably arises because

of its ability to resolve density waves with higher azimuthal

mode numbers that are located close to the planet when it is

embedded. Once the gap has been cleared, however, these non-

axisymmetric structures do not provide a significant contribution

to the tidal torque acting on the planet, so that the migration

rates then become approximately equal. The close agreement

between the migration rates of calculations N4 and N6 indicates

that our calculations have essentially reached convergence in their

results.

6.7.2 Accreting planets

The calculations for accreting planets initially embedded in

unperturbed accretion discs that were performed with different

resolutions are shown in Figs 15 and 16. The first panel in Fig. 15

shows the orbital radius as a function of time for the calculations

N1 (dotted line), N3 (solid line), and N5 (dashed line). The second

panel shows the evolution of the planet mass, with the same line

styles as described for the first panel.

Fig. 16 gives the corresponding results for the runs F1, F3 and

F5. It is apparent that the lower-resolution runs have a larger

accretion rate. This leads to smaller migration rates because the

protoplanets have larger masses. None the less, the migration

times obtained for these runs all indicate an orbital decay time of

tmig , 104P0; as indicated in Table 1. This is in agreement with

the idea that the orbits of giant planets will evolve on the viscous

diffusion time of the protostellar disc. The results of nirvana and

fargo are in good agreement with respect to migration rates and

final planetary masses. The predicted final planetary masses in the

calculations N3 and N5 are 3.2 and 2.7 MJ, while for the

calculations F3 and F5 they are 3.85 and 3.25 MJ, respectively.

Figure 13. The first panel shows the evolution of the planet orbital radius, with calculation N3 being represented by the solid line and F3 by the dotted line.

The second panel shows the increase in mass as the planet accretes gas from the disc, with the same line styles representing the two calculations.

Figure 14. This figure shows the evolution of the orbital radius for the calculations N2 (dotted line), N4 (solid line), and N6 (dashed line). The resolution for

each calculation is described in Table 1.
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These agree well with the estimated masses of a number of the

recently discovered closely orbiting extrasolar giant planets

(Marcy & Butler 1998; Marcy et al. 2000).

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have studied the interaction of a protoplanet of

1 MJ initially with a gaseous disc whose aspect ratio and kinematic

viscosity are those expected for a minimum-mass solar nebula.

This characteristically had 2 MJ interior to the initial circular orbit

radius of the protoplanet. The problem was studied with three

independent hydrodynamic codes, nirvana, fargo and rh2d.

These were found to give consistent results when compared.

fargo had the additional advantage that, on account of the fast

advection scheme employed, the evolution could be followed for a

much longer time.

A general result of the simulations was that the direction of

the orbital migration was always inwards and such that the

protoplanet reached the central star in a near-circular orbit after a

time of ,104 initial orbital periods, which is characteristically the

viscous time-scale at the initial orbital radius. This was found to

be independent of whether the protoplanet was allowed to accrete

mass or not, and of the surface density profile in the disc. The

tendency to migrate inwards was assisted by the disappearance of

the inner disc through accretion on to the central star. When the

protoplanet was allowed to accrete at a near-maximal rate, the

mass was found to increase to about 4 MJ as it reached the central

star. Because of deep gap formation and lower accretion rates for

the larger masses (also see BCLNP) it is difficult to exceed this

mass in the kind of simulations presented here. An additional

calculation has been performed with an initial planet mass of 3 MJ,

but the results are not described here in detail. This calculation

resulted in a similar migration time of ,104P0, and an estimated

final mass for the protoplanet of 4.8 MJ, indicating the difficulty of

forming giant planets with masses greater than about 5 MJ before

they have migrated to the centre. It would appear that the masses

estimated for a number of close orbiting giant planets (Marcy &

Figure 15. The first panel shows the evolution of the orbital radius for the calculations N1 (dotted line), N3 (solid line), and N5 (dashed line). The evolution

of the planet mass is shown in the second panel, with the line styles being the same as above. The resolution for each calculation is described in Table 1.

Figure 16. Same as Fig. 15 for fargo results F1 (dotted line), F3 (solid line) and F5 (dashed line).
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Butler 1998; Marcy et al. 2000) as well as their inward orbital

migration can be explained by the operation of the processes

considered here during the late stages of giant planet formation.

Several important issues, however, remain to be resolved. The

inward migration time is shorter than previously estimated time-

scales ,106 yr for the formation of a Jovian-mass protoplanet (e.g.

Bodenheimer & Pollack 1986; Pollack et al. 1996; Papaloizou &

Terquem 1999). This suggests that the planet-formation process

may be speeded up by the earlier merger of cores undergoing type

I migration, and/or there may be regions in the disc where the

viscosity is very small, thus halting type II migration, perhaps as a

result of inadequate ionization for MHD instabilities to operate.

Additional planets embedded in the disc alter the density structure

and consequently the torque balance, which may result in a halting

of the migration process (Kley 2000). Many-body processes such

as gravitational scattering of protoplanets may also operate to

move them to different orbital locations in the disc (e.g.

Weidenschilling & Marzari 1996).

An additional possibility is that in some cases giant planet

formation occurs at substantially larger distances from the host

star than have hitherto been given serious consideration. For

example, a planet forming at a radius ,20 au will have a migra-

tion time of *106 yr, which is now within the estimated range of

lifetimes of protostellar discs around T Tauri stars (i.e. 106–

107 yr). It is possible that inward migration of these protoplanets

may simply be halted by the eventual dissipation of the disc at the

end of the T Tauri stage. The final orbital positions of these

planets will then be determined by the initial radius at which the

planets were formed and the age at which the T Tauri phase ends.

In this scenario, planets that initially start to form closer in

towards the central star (e.g. at 5 au) will migrate inwards and will

become ‘hot Jupiters’, whereas those planets that form further

away stand a much greater chance of being at intermediate

distances from their host stars when orbital migration is halted by

the disappearance of the disc. While there is no direct evidence

that the extrasolar planets were formed at these larger radii, recent

measurements of the abundance of noble gases in Jupiter’s

atmosphere indicate that it may have formed under low-

temperature conditions that would have existed beyond 30 au in

the protosolar nebula (Owen et al. 1999).

Another issue is that type II migration in a viscous disc as

considered here tends to cause Jovian-mass protoplanets to merge

with their central star on a short time-scale compared with the

lifetime of protostellar discs. Thus a process for halting the

migration is required. This may occur through the termination of

the inner disc due to a magnetospheric cavity (Lin, Bodenheimer

& Richardson 1996).

The calculations presented here make a number of important

assumptions that may have some bearing on the final results

obtained. By using a locally isothermal equation of state, we

tacitly assume that any heat generated by the spiral shock waves is

immediately radiated from the system. This may not be an

accurate description of the thermodynamics, and if radiative

processes operate on a time-scale that is longer than the orbital

time-scale, then some thickening of the disc may result. In

addition, we assume that the turbulent viscosity can be simply

modelled using the Navier–Stokes equation, when in reality it

should arise naturally from MHD instabilities. These and other

assumptions can only be addressed by performing global simula-

tions that include radiative and MHD processes in three dimen-

sions. We hope in the near future to be able to address some of

these outstanding issues.
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