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Pair cascades from millisecond pulsars (MSPs) may be a primary source of Galactic electrons and

positrons that contribute to the increase in positron flux above 10 GeV as observed by PAMELA

and AMS−02. The Fermi Large Area Telescope (LAT) has increased the number of detected γ-ray

MSPs tremendously. Light curve modelling furthermore favours abundant pair production in MSP

magnetospheres, so that models of primary cosmic-ray positrons from pulsars should include

the contribution from the larger numbers of MSPs and their potentially higher positron output

per source. We model the contribution of Galactic MSPs to the terrestrial cosmic-ray electron /

positron flux by using a population synthesis code to predict the source properties of present-

day MSPs. We simulate pair spectra assuming an offset-dipole magnetic field which boosts pair

creation rates. We also consider positrons and electrons that have additionally been accelerated to

very high energies in the strong intrabinary shocks in black widow (BW) and redback (RB) binary

systems. We transport these particles to Earth by calculating their diffusion and the radiative

energy losses they suffer in the Galaxy using a model. Our model particle flux increases for non-

zero offsets of the magnetic polar caps. We find that pair cascades from MSP magnetospheres

contribute only modestly around a few tens of GeV to the measured fluxes. BW and RB fluxes

may reach a few tens of percent of the observed flux up to a few TeV. Future observations should

constrain the source properties in this case.
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The millisecond pulsar contribution to the rising positron fraction Christo Venter

1. Introduction

We now have firm evidence that the cosmic-ray positron fraction (PF) φ(e+)/[φ(e+)+φ(e−)],

with φ the flux, is an increasing function of energy above ∼ 10 GeV, based on measurements by

PAMELA [1, 2], Fermi Large Area Telescope (LAT; [3]), and the Alpha Magnetic Spectrometer

(AMS−02; [4, 5, 6]). Recent AMS−02 data extended the PF up to 500 GeV, indicating a levelling

off of this fraction with energy, as well as being consistent with isotropy. If the PF is attributed

solely to secondary positrons, produced during inelastic collisions between cosmic-ray nuclei and

intergalactic hydrogen, this PF is expected to smoothly decrease with energy within the standard

framework of cosmic-ray transport (e.g., [7]). The fact that the measured PF rises with energy

may therefore point to nearby sources of primary positrons, either from dark matter annihilation

(e.g., [8]), or of astrophysical origin. The latter class of sources may include supernovae (e.g.,[9]),

pulsar wind nebulae (e.g., [10]), young or mature pulsars (e.g., [11, 12]), and millisecond pulsars

(MSPs; [13]). In this paper, we investigate the cosmic-ray flux contribution of the latter source

class.

MSPs are ancient pulsars that have been spun up to short rotational periods P by accretion from

a binary companion [14]. The majority of MSPs were thought to lie below the pair creation death

lines assuming dipole magnetic fields [15], i.e., being ‘pair-starved’ [16]. However, detection of

narrow, double-peaked γ-ray light curves trailing the radio peaks, very similar to those of younger

pulsars, indicated the existence of narrow accelerator gaps in the MSP magnetospheres, requiring

large numbers of electron-positron pairs to screen the electric field parallel to the magnetic field

outside these gaps [17]. Distortions of the surface magnetic field, either in the form of higher

multipoles (e.g., [18]) or offset polar caps (PCs; [19, 20]), may increase pair production in MSPs.

MSPs furthermore produce electron-positron pairs with much higher energies than young pulsars

due to their relatively low magnetic fields, so that the MSP pair spectra extend to several TeV [20].

Additionally, there has recently been a major increase in number of detected MSPs, many of them

being nearby and relatively bright. MSPs are thus very promising potential sources of cosmic rays.

In this paper we consider two MSP populations that may contribute to the terrestrial cosmic-ray

flux. The first is a Galactic MSP population for which we obtain source properties via population

synthesis modelling [21] (Section 2.1). The second population involves MSPs with binary compan-

ions. Shocks may form during collision of the the pulsar wind and the companion wind [22, 23],

possibly accelerating the pairs escaping from the MSP magnetosphere to even higher energies. We

therefore also consider black widow (BW) and redback (RB) systems as sources of cosmic rays

(Section 2.2). The number of BWs and RBs has dramatically increased via Fermi observations.

We calculate the source spectra originating in the MSP magnetospheres (Section 3.1) and reac-

celerated in binary shocks (for the BWs and RBs; Section 3.2). We next transport these spectra

through the Galaxy to Earth (Section 4) to assess the MSP contribution to the terrestrial cosmic-ray

spectrum (Section 5). Our conclusions follow in Section 6. More details may be found in [24].

2. Source populations

2.1 Galactic synthesis model for the present-day MSP population

We follow [21] to predict the present-day distribution of MSPs (see also [25, 24]). The Galaxy
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is seeded with MSPs (some aged up to 12 Gyr assuming a constant birth rate of 4.5×10−4 MSPs

per century), which are then evolved in the Galactic potential from their birth location to the present

time. We assume that MSPs are “born” on the spin-up line, and their surface magnetic field Bs does

not decay with time. We assume a power-law distribution for Bs and adopt a spin-down power of

the form (e.g., [26])

Lsd ∼
2 µ2 Ω4

3c3

(

1+ sin2 α
)

, (2.1)

where µ is the magnetic dipole moment, Ω is the rotational angular velocity, c is the speed of light,

and α is the magnetic inclination angle relative to the pulsar’s rotational axis. We constrain the

synthesis model parameters by fitting the model output to data from 12 radio surveys as well as

from Fermi LAT. This simulation predicts the location as well as P and Ṗ (time derivative of P) of

∼50 000 Galactic MSPs, which we use as discrete sources of electrons and positrons.

2.2 MSPs in binary systems – the BW / RB component

About 80% of known MSPs are in binary systems. A subset of these, the BWs and RBs,

may contain strong intrabinary shocks that can further accelerate the pairs. BWs are close binary

systems with orbital periods of hours, containing a rotation-powered MSP and a compact com-

panion having very low mass of ∼ 0.01−0.05M⊙ . The companion stars in BWs undergo intense

heating of their atmospheres by the MSP wind, which drives a stellar wind and rapid mass loss

from the star. A shock will form in the pulsar wind at the pressure balance point of the two winds

and particle acceleration may occur in these shocks [22, 23]. RBs are similar systems, except that

the companions have somewhat higher masses of ∼ 0.1− 0.4M⊙ [27]. The MSPs in both types

of system are typically energetic, with Lsd ∼ 1034 − 1035 ergs−1. Recent radio searches of Fermi

unidentified γ-ray point sources [28] have discovered many new BWs and RBs, with a total of 26

known systems at the present time. By considering only the 24 publicly announced BWs and RBs

here, our predictions will be a lower limit to the cosmic-ray flux contribution by binary MSPs.

3. Source spectra

3.1 Injection spectra of particles from the Galactic MSP population

We calculate the spectra of pairs leaving the MSP magnetosphere using a code that follows the

development of a PC electron-positron pair cascade in the magnetosphere [20]. A fraction of the

curvature radiation photons emitted by primary particles ejected from the stellar surface undergo

magnetic pair attenuation [29]. This produces a first-generation pair spectrum which then radiates

synchrotron radiation (SR) photons that produce further generations of pairs. The total cascade

multiplicity (average number of pairs spawned by each primary lepton) is a strong function of P

and Bs. The sweepback of magnetic field lines near the light cylinder (where the corotation speed

equals the speed of light) as well as asymmetric currents within the neutron star may cause the

magnetic PCs to be offset from the dipole axis. We adopt a distorted magnetic field structure [20]

that leads to enhanced local electric fields, boosting pair formation even for pulsars below the usual

pair death line. We consider PC offset parameter values ε = (0,0.2,0.6) and use a grid in P and Bs

to calculate the source spectrum for each source in the present-day MSP population (Section 2.1)
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via interpolation. From our simulations we find that about ∼ 1% of Lsd is tapped to generate the

pairs. We neglect any further losses of the pair energy before injection into the interstellar medium,

since MSPs are not surrounded by nebulae that can degrade the particle energy before escape.

3.2 Injection spectra of particles accelerated in intrabinary shocks of BWs and RBs

Pairs escaping from the pulsar magnetosphere may be further accelerated in the intrabinary

shock that originates between the pulsar and companion winds in BW and RB systems. The maxi-

mum particle energy will be determined by a balance between the minimum acceleration timescale,

set by the particle diffusion (which we assume to be Bohm diffusion), and the SR loss timescale.

This yields maximum particle energies in the TeV range [22]. We assume that the shock-accelerated

spectrum will be an exponentially cut off power law with a spectral index of −2. We normalize

this spectrum by requiring conservation of mass and energy (or equivalently, current and lumi-

nosity). We assume a maximum shock efficiency ηp,max (conversion efficiency of Lsd to particle

acceleration) of 10% and 30%.

4. Galactic transport of injected leptons

In order to transport the injected particles from the MSPs to Earth, we have to make some

assumptions regarding the average Galactic background photon and magnetic field energy densi-

ties. We approximate the interstellar radiation field using three blackbody components: optical,

infrared (IR), and cosmic microwave background (CMB). We use two sets of energy densities,

associated with the Galactic Disc and the Galactic Halo [30]. For the Disc, we assume Uopt =

UIR = 0.4 eV cm−3 and UCMB = 0.23 eV cm−3, while for the Halo we use Uopt = 0.8 eV cm−3,

UIR = 0.05 eV cm−3, and UCMB = 0.23 eV cm−3. For the average Galactic magnetic field strength

that determines the SR loss rate we use values of BSR ∼ 1−3 µG ([31]; hereafter D10). We use a

Fokker-Planck-type equation that includes spatial diffusion and energy losses:

∂ne

∂ t
= ∇ · (K ·∇ne)−

∂

∂E

(

Ėtotalne

)

+S, (4.1)

with ne the lepton density (per energy interval). Furthermore, K denotes the diffusion tensor and

Ėtotal the total energy losses (we use SR and inverse Compton (IC) losses, the latter involving the

full Klein-Nishina cross section), while S is the source term. Since MSPs are quite old (ages of

∼ 1010 yr), and have very small Ṗ values, we assume a steady-state scenario and invoke spherical

symmetry. We assume that the diffusion coefficient is spatially independent so that K becomes a

scalar function of energy only:

κ(E) = κ0

(

E

Enorm

)αD

. (4.2)

We use typical values of αD = 0.3 or 0.6, Enorm = 1 GeV, and κ0 = 0.1 kpc2Myr−1 ≈ 3×1028 cm2s−1

(e.g., [7]). For S, we consider N ∼ 5×104 Galactic MSPs from the population synthesis code (Sec-

tion 2.1), and N = 24 for the BW / RB case (Section 2.2). For the ith pulsar in our synthesis popu-

lation, we assign a pair spectrum Qi(P,Bs,ε ,E), as calculated in Section 3.1 for the corresponding

simulated values of P, Bs, and ε . We model this as

S =
N

∑
i

Qi(P,Bs,E)δ (r− r0,i). (4.3)
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Figure 1: Total MSP contribution to the leptonic cosmic-ray spectrum at Earth, for κ0 = 0.1 kpc2 Myr−1,

ηp,max = 0.1, Beff = 3.6 µG, and Uopt = 0.4 eV cm−3. Electron spectra appear at the top and positron spectra

at the bottom. The contribution from the synthesis component to the positron spectrum is (marginally)

visible at ∼ 30 GeV (for ε = 0.6), and that of the BWs and RBs at ∼ 1 TeV. Dashed and solid lines indicate

curves for αD = 0.3 and αD = 0.6, respectively. The cool colours (purple, blue, and cyan) indicate spectra

for ε = 0.0,0.2, and 0.6. Green indicates the “background” (non-MSP) electrons and positrons predicted by

GALPROP.

Here, r0,i are the source positions. For a system of infinite extent, Equation (4.1) is solved by the

following Green’s function (e.g., [31]):

G(r,r0,E,E0) =
Θ(E0 −E)

Ėtotal (πλ )3/2
exp

(

−
|r− r0|

2

λ

)

, (4.4)

with E0 the particle energy at the source, and the square of the propagation scale is given by

λ (E,E0)≡ 4

∫ E0

E

κ(E ′)

Ėtotal(E ′)
dE ′, (4.5)

and Θ(E0 −E) the Heaviside function which ensures that λ > 0. The lepton flux is given by

φe(r,E) =
c

4π

∫∫∫∫

G(r,r0,E,E0)SdE0d3r0. (4.6)

5. Results

Figure 1 indicates the “background” secondary electron and positron fluxes predicted by GAL-

PROP1 [32] for standard parameters, as well as data from PAMELA [2], Fermi [3], and AMS−02 [5].

We show our MSP synthesis spectral contribution (maximal but negligible contribution around

1http://galprop.stanford.edu/webrun/
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Figure 2: Measured [2, 3, 6] and predicted PF (including “background” contributions from GALPROP in

green and the synthesis plus BW / RB contributions in purple, blue, and cyan, indicating ε = (0.0,0.2,0.6).

Here, κ0 = 0.1 kpc2 Myr−1, ηp,max = 0.1, Beff = 3.6 µG, and Uopt = 0.4 eV cm−3. Dashed and solid lines

are for αD = 0.3 and αD = 0.6.

30 GeV) plus BW / RB spectral contribution (we assume equal numbers of positrons and electrons)

for dipole offsets of ε = (0.0,0.2,0.6), αD = (0.3,0.6), and (Beff,Uopt) = (3.6 µG, 0.4 eV cm−3).

Here, Beff includes the SR and Thomson-limit (non-optical) IC losses which are ∝ E2. We set

κ0 = 0.1 kpc2 Myr−1 and ηp,max = 0.1. The BW / RB contribution becomes higher for a larger

ηp,max, and all components are higher for lower values of κ0 or αD (due to particle pile-up). The

shape of the background model can strongly influence the total lepton spectrum. Figure 2 shows

the measured PF (e.g., [6]) as well as the GALPROP and synthesis plus BW / RB contributions, for

κ0 = 0.1 kpc2 Myr−1 and ηp,max = 0.1. The largest contribution is found ∼ 100 GeV when ε = 0.6

and B = 3.6 µG. The highest PF (above 1 TeV) occurs for the lowest values of κ0 and αD and

highest ηp,max. The BW / RB component makes a significant contribution at a few hundred GeV.

Some parameter combinations are excluded by the data, e.g., κ0 = 0.01 kpc2 Myr−1, ηp,max = 0.3,

and ε = 0.6, depending on the background model.

6. Conclusion

We carefully assessed the contribution of MSPs to the cosmic-ray lepton spectra at Earth

using a population synthesis code and a pair cascade code to calculate realistic source spectra. We

also considered the contribution of binary BW / RB systems, which may further accelerate pairs

escaping from the MSP magnetospheres in intrabinary shocks. The predicted MSP particle flux

increases for non-zero magnetic field offset parameters ε . This is expected, since larger ε leads to

an increase in the acceleration potential for some regions in magnetic azimuthal phase, implying

an enhancement in both the number of particles as well as their maximum energy. The MSPs from

6
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the synthesis model make only a modest contribution to the terrestrial cosmic-ray flux at a few

tens of GeV, after which this spectral component cuts off. Increased magnetic and soft photon

energy densities lead to increased particle energy losses in the Galaxy, and vice versa. The PF

is somewhat enhanced above ∼ 10 GeV by this component. The BW / RB component, however,

contributes more substantially above several hundred GeV. For some parameter combinations, this

component may even exceed the measured positron spectrum, and may violate the PF at high

energies, depending on the background model. Alternative sources of primary positrons such as

young, nearby pulsars or supernova remnants should also contribute to the cosmic-ray electron

and positron flux. Future observations and modeling should continue to constrain the properties

of these source classes, as well as improve our understanding of Galactic structure and particles

within our Galaxy.
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