
ar
X

iv
:1

40
1.

08
68

v3
  [

m
at

h.
A

G
]  

26
 J

an
 2

01
7

THE MILNOR FIBRATION OF A HYPERPLANE ARRANGEMENT: FROM
MODULAR RESONANCE TO ALGEBRAIC MONODROMY

STEFAN PAPADIMA1 AND ALEXANDER I. SUCIU2

Abstract. A central question in arrangement theory is to determine whether the char-
acteristic polynomial∆q of the algebraic monodromy acting on the homology group
HqpFpAq,Cq of the Milnor fiber of a complex hyperplane arrangementA is determined
by the intersection latticeLpAq. Under simple combinatorial conditions, we show that
the multiplicities of the factors of∆1 corresponding to certain eigenvalues of order a
power of a primep are equal to the Aomoto–Betti numbersβppAq, which in turn are ex-
tracted fromLpAq. WhenA defines an arrangement of projective lines with only double
and triple points, this leads to a combinatorial formula forthe algebraic monodromy. To
obtain these results, we relate nets on the underlying matroid of A to resonance varieties
in positive characteristic. Using modular invariants of nets, we find a new realizability
obstruction (overC) for matroids, and we estimate the number of essential components
in the first complex resonance variety ofA. Our approach also reveals a rather unex-
pected connection of modular resonance with the geometry ofSL2pCq-representation
varieties, which are governed by the Maurer–Cartan equation.
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1. Introduction and statement of results

1.1. The Milnor fibration. In his seminal book on complex hypersurface singularities,
Milnor [45] introduced a fibration that soon became the central object of study in the
field, and now bears his name. In its simplest manifestation,Milnor’s construction asso-
ciates to each homogeneous polynomialQ P Crz1, . . . , zℓs a smooth fibration overC˚, by
restricting the polynomial mapQ: Cℓ Ñ C to the complement of the zero-set ofQ.

The Milnor fiber of the polynomial,F “ Q´1p1q, is an affine manifold, and thus
has the homotopy type of a finite CW-complex of dimensionℓ ´ 1. The monodromy
of the fibration is the maph: F Ñ F, z ÞÑ e2πi{nz, wheren “ degQ. The induced
homomorphisms in homology,hq : HqpF,Cq Ñ HqpF,Cq, are all diagonalizable, with
n-th roots of unity as eigenvalues.

A key question, then, is to compute the characteristic polynomials of these operators
in terms of available data. We will only address here the caseq “ 1, which is already far
from solved if the polynomialQ has a non-isolated singularity at 0.

1.2. Hyperplane arrangements. Arguably the simplest situation is when the polyno-
mial Q completely factors into distinct linear forms. This situation is neatly described
by a hyperplane arrangement, that is, a finite collectionA of codimension-1 linear sub-
spaces inCℓ. Choosing a linear formfH with kernel H for each hyperplaneH P A,
we obtain a homogeneous polynomial,Q “

ś

HPA fH, which in turn defines the Milnor
fibration of the arrangement.

To analyze this fibration, we turn to the rich combinatorial structure encoded in the
intersection lattice of the arrangement,LpAq, that is, the poset of all intersections of
hyperplanes inA (also known as flats), ordered by reverse inclusion, and ranked by
codimension. We then have the following, much studied problem, which was raised in
[30, Problem 9A] and [34, Problem 4.145], and still remains open.

Problem 1.1. Given a hyperplane arrangementA, is the characteristic polynomial of the
algebraic monodromy of the Milnor fibration,∆Aptq “ detptI ´ h1q, determined by the
intersection latticeLpAq? If so, give an explicit combinatorial formula to compute it.

Without essential loss of generality, we may assume that theambient dimension is
ℓ “ 3, in which case the projectivization̄A is an arrangement of lines inCP2. In Theorem
1.2, we give a positive answer to Problem1.1in the case when those lines intersect only
in double or triple points. Despite its apparent simplicity, this case already poses quite
a challenge. It was previously attacked in a number of papers, including [14, 18, 37],
but only partial answers were obtained as a result. Our approach, though, provides a
complete answer in this setting.

As the multiplicities of those intersection points increase, we still get some answers,
albeit not complete ones. For instance, in Theorem1.6 we identify in combinatorial
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terms the number of times the cyclotomic factorΦ3ptq appears in∆Aptq, under the as-
sumption thatĀ has no intersection points of multiplicity 3r, with r ą 1, while in
Theorem1.7we treat the analogous problem for the cyclotomic factorsΦ2ptq andΦ4ptq.

1.3. Combinatorics and the algebraic monodromy. In order to describe our results in
more detail, we need to introduce some notation. LetMpAq be the complement of the
arrangement, and letQ: MpAq Ñ C˚ be the Milnor fibration, with Milnor fiberFpAq.
SetedpAq “ 0 if d ∤ n. The polynomial

(1) ∆Aptq “ pt ´ 1qn´1 ¨
ź

1ăd|n

ΦdptqedpAq

encodes the structure of the vector spaceH1pFpAq,Cq, viewed as a module over the
group algebraCrZns via the action of the monodromy operatorh1. More precisely,

(2) H1pFpAq,Cq “ pCrts{pt ´ 1qqn´1 ‘
à

1ăd|n

pCrts{ΦdptqqedpAq.

Therefore, Problem1.1amounts to deciding whether the integersedpAq are combinato-
rially determined, and, if so, computing them explicitly.

Let LspAq be the set of codimensions flats inLpAq. For each such flatX, let AX be
the subarrangement consisting of all hyperplanes that contain X. Finally, let multpAq be
the set of integersq ě 3 for which there is a flatX P L2pAq such thatX has multiplicity
q, i.e., |AX| “ q. Not all divisors ofn appear in the above formulas. Indeed, as shown
by Libgober in [35, 36], if d does not divide one of the integers comprising multpAq,
the exponentedpAq vanishes. In particular, if multpAq Ď t3u, then onlye3pAq may be
non-zero. Our first main result computes this integer under this assumption.

Theorem 1.2.Suppose L2pAq has only flats of multiplicity2 and3. Then the character-
istic polynomial of the algebraic monodromy of the Milnor fibration is given by

(3) ∆Aptq “ pt ´ 1q|A|´1 ¨ pt2 ` t ` 1qβ3pAq,

whereβ3pAq is an integer between0 and2 that depends only on Lď2pAq.

As we shall explain below, the combinatorial invariantβ3pAq is constructed from the
mod 3 cohomology ring ofMpAq. Our theorem implies at once a result of Libgober
([37, Theorem 1.1]), which states that, under the same assumption on multiplicities,
the question whether∆Aptq equalspt ´ 1q|A|´1 or not can be decided combinatorially.
Our result is much stronger, in that it gives a completely combinatorial formula for the
polynomial∆Aptq, by showing that the cyclotomic factorΦ3ptq appears with multiplicity
e3pAq “ β3pAq, and also by showing that this multiplicity can be at most 2.

1.4. Resonance varieties and multinets.Fix a commutative Noetherian ringk. A cele-
brated theorem of Orlik and Solomon [46] asserts that the cohomology ringH˚pMpAq, kq
is isomorphic to the OS-algebra of the underlying matroid,A˚pAq b k, and thus is deter-
mined by the (ranked) intersection posetLpAq. Key to our approach are the resonance
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varieties ofA, which keep track in a subtle way of the vanishing cup products in this
ring. For our purposes here, we will only be interested in resonance in degree 1.

For an elementτ P A1pAq b k “ kA, left-multiplication byτ in the cohomology ring
gives rise to ak-cochain complex,pA˚pAq b k, τ¨q. The (first) resonance variety ofA
overk, denotedR1pA, kq, is the locus of those elementsτ for which the homology in
degree 1 of this complex is non-zero. Whenk is a field, this set is a homogeneous sub-
variety of the affine spacekA. Whenk “ C, all the irreducible components ofR1pA,Cq
are linear subspaces, intersecting transversely at 0, see [9, 38]. In positive characteristic,
the components ofR1pA, kq may be non-linear, or may have non-transverse intersec-
tion, see [26]. Very useful to us will be a result of Falk and Yuzvinsky [27] and Marco
Buzunáriz [43], which describes all components ofR1pA,Cq in terms of multinets on
the arrangementA and its subarrangements.

A k-multinetonA is a partition of the arrangement intok ě 3 subsetsAα, together
with an assignment of multiplicitiesmH to eachH P A, and a choice of rank 2 flats,
called the base locus. All these data must satisfy certain compatibility conditions. For
instance, any two hyperplanes from different parts of the partition intersect in the base
locus, while the sum of the multiplicities over each part is constant. Furthermore, ifX is
a flat in the base locus, then the sumnX “

ř

HPAαXAX
mH is independent ofα.

A multinet as above isreducedif all the multiplicitiesmH are equal to 1. If, moreover,
all the numbersnX are equal to 1, the multinet is, in fact, anet—a classical notion from
combinatorial geometry.

Hyperplane arrangements may be viewed as simple matroids realizable over the field
of complex numbers. (From now on, when we speak aboutrealizablematroids, we mean
realizability overC.) For an arbitrary simple matroidM , one may speak about (reduced)
multinets and nets, as well as resonance varietiesR1pM , kq with arbitrary coefficients.
Let BkpM q Ď kM be the constant functions, and letσ P BkpM q be the function taking
the constant value 1. Thecocycle space ZkpM q Ď kM is defined by the linear condition
σ ¨ τ “ 0. Plainly,σ P R1pM , kq if and only if ZkpM q ‰ BkpM q. Whenk is a field, the
Aomoto–Betti numberof the matroid is defined as

(4) βkpM q “ dimk ZkpM q{BkpM q.

Clearly, this integer depends only onp :“ charpkq, and so will often be denoted simply
by βppM q.

Having multinets in mind, let us consider a finite setk with k ě 3 elements, and define
BkpM q Ď kM as before. The subset of ‘special’k-cocycles,Z1

k
pM q Ď kM , consists of

those functionsτ with the property that their restriction to an arbitrary flatfrom L2pM q
is either constant or bijective. Given a partition,M “

š

αPkMα, we associate to it the
elementτ P kM defined byτu “ α, for u P Mα.

Our starting point is the following result, which relates nets to modular resonance, and
which will be proved in§4.3.

Theorem 1.3.LetM be a simple matroid, and let kě 3 be an integer. Then:
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(i) For any k-element setk, the above construction induces a bijection,

λk : tk-nets onM u
» // Z1

k
pM qzBkpM q .

(ii) If k ı 2 mod 4, there is a commutative ringk of cardinality k such that Z1
k
pM q Ď

ZkpM q. If, in fact, k “ ps, for some prime p, thenk can be chosen to be the
Galois fieldk “ Fps.

1.5. Matroid realizability and essential components. It is well-known that non-trivial
k-nets on simple matroids exist, for allk ě 3. For realizable matroids, the picture looks
completely different: by a result of Yuzvinsky [59], non-trivialk-nets exist only fork “ 3
or 4; many examples of 3-nets appear naturally, while the only known 4-net comes from
the famous Hessian configuration [58].

The difference between realizable and non-realizable matroids comes to the fore in
§9. Starting from the affine geometries AGpm, kq, wherek “ Fps is a Galois field with
at least 3 elements, we construct by a process of rank 3 truncation a family of matroids
with ground setkm, which we denote byMkpmq. We then show in Proposition9.5
that βppMkpmqq ě m. Furthermore, we show in Corollary9.8 that, for m ě 2, the
lattice Lď2pAGpm, kqq is realizable overC if and only if m “ 2 andk “ F3, thereby
strengthening a classical result from matroid theory [47].

Using a delicate analysis of 3-nets supported by the matroidsM pmq “ MF3pmq and a
result of Yuzvinsky [58] in complex projective geometry, we establish in Corollary9.21
the following non-realizability criterion.

Theorem 1.4.LetM be a simple matroid, and suppose there are3-netsN , N 1, andN 2

onM such thatrλF3pN qs, rλF3pN
1qs, andrλF3pN

2qs are independent in ZF3pM q{BF3pM q.
ThenM is not realizable overC.

For an arrangementA, the irreducible components ofR1pA,Cq corresponding to
multinets onA are calledessential. We denote those components arising fromk-nets
by EsskpAq. By the the above discussion, EsskpAq “ H for k ě 5. In §6.5, we use
Theorem1.3to obtain a good estimate on the size of these sets in the remaining cases.

Theorem 1.5.LetA be an arrangement. For k“ 3 or 4,

(5) |EsskpAq| ď
kβkpAq ´ 1
pk ´ 1q!

,

wherek “ Fk. Moreover, the setsEss3pAq andEss4pAq cannot be simultaneously non-
empty.

1.6. Modular bounds. Work of Cohen and Orlik [7, Theorem 1.3], as sharpened by
Papadima and Suciu [49, Theorem 11.3], gives the following inequalities:

(6) epspAq ď βppAq, for all s ě 1.
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In other words, the exponents of prime-power orderps are bounded above by the
(combinatorially defined)βp-invariants of the arrangement. As shown in [49], these
bounds are of a topological nature: they are valid for spacesmuch more general than
arrangement complements, but they are far from being sharp in complete generality. The
modular bounds were first used in [39] to study the algebraic monodromy of the Milnor
fibration, especially in the context of (signed) graphic arrangements.

We are now ready to state our next main result, which in particular shows that, under
certain combinatorial conditions, the above modular bounds are sharp, at least for the
prime p “ 3 and fors “ 1.

Theorem 1.6. Let M be a simple matroid. Suppose L2pM q has no flats of multiplicity
3r, for any r ą 1. Then, the following conditions are equivalent:

(i) Lď2pM q admits a reduced3-multinet.
(ii) Lď2pM q admits a3-net.

(iii) β3pM q ‰ 0.

Moreover, ifM is realized by an arrangementA, the following hold:

(iv) β3pAq ď 2.
(v) e3pAq “ β3pAq.
(vi) |Ess3pAq| “ p3β3pAq ´ 1q{2.

In the matroidal part of the above result, the equivalence (i)ô(ii ) follows immediately
from Lemma2.1. The key matroidal equivalence, (ii )ô(iii ), which uses Theorem1.3,
is proved in§4.4. As we saw in§1.5, the invariantβ3pM q can take arbitrary large
values. The striking fact, though, is that its range of values is drastically constrained in
the realizable case from Theorem1.6(iv).

Indeed, for arrangementsA, we establish the crucial inequality (iv) in Theorem9.10,
using in an essential way Theorem1.4. In Theorem8.6, we prove the implication
(iv)ñ(v). Finally, equality (vi) is established in§6.5. In the particular case when
multpAq Ď t3u, parts (iv) and (v) together imply Theorem1.2.

Our assumption on multiplicities is definitely needed. Thisis illustrated in Example
8.11, where we produce a family of arrangementstA3d`1udě1 having rank-2 flats of
multiplicity 3pd ` 1q: these arrangements support no reduced 3-multinets, yet satisfy
e3pA3d`1q “ β3pA3d`1q “ 1; in particular, property (vi) fails. Nevertheless, both (iv)
and (v) hold for this family of arrangements, as well as for the related family of monomial
arrangements from Example8.10, which also violate our hypothesis.

Our approach also allows us to characterize 4-nets in terms of mod 2 resonance, and to
find combinatorial conditions which imply that the modular bounds (6) are again sharp,
for p “ 2 ands ď 2. The next result is proved in§8.6.

Theorem 1.7.For a simple matroidM , the following are equivalent:

(i) Z1
F4

pM q ‰ BF4pM q.
(ii) Lď2pM q supports a4-net.
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If M is realized by an arrangementA with β2pAq ď 2 and the above conditions hold,
then e2pAq “ e4pAq “ β2pAq “ 2.

1.7. Flat connections. Foundational results due to Goldman and Millson [28], together
with related work from [32, 22, 21], imply that the local geometry of representation
varieties of fundamental groups of arrangement complements in linear algebraic groups,
near the trivial representation, is determined by the global geometry of varieties of flat
connections on Orlik–Solomon algebras with values in the corresponding Lie algebras.

In this paper, we establish a link between the information onmodular resonance en-
coded by non-constant specialk-cocycles on an arrangementA, andg-valued flat con-
nections onApAq b C, for an arbitrary finite-dimensional complex Lie algebrag. More
precisely, we denote byHkpgq Ď gk the subspace of vectors with zero sum of coordinates,
and declare a vector inHkpgq to be regular if the span of its coordinates has dimension
at least 2. Inside the variety of flat connections,F pApAq bC, gq, the elements which do
not come from Lie subalgebras ofg of dimension at most 1 are also called regular.

In Proposition5.3, we associate to every special cocycleτ P Z1
k
pAqzBkpAq an em-

bedding evτ : Hkpgq ãÑ F pApAq b C, gq which preserves the regular parts. Building on
recent work from [21, 41], we then exploit this construction in two ways, forg “ sl2pCq.
On one hand, as noted in Remark7.5, the construction gives the inverse of the mapλk
from Theorem1.3(i). On the other hand, we use a version of this construction, involv-
ing a subarrangement ofA as a second input, to arrive at the following result, which is
proved in Theorem7.6.

Theorem 1.8.Suppose that, for every subarrangementB Ď A, all essential components
of R1pB,Cq arise from nets onB. Then

FregpApAq b C, sl2pCqq “
ď

B,τ

evBτ pHkregpsl2pCqqq ,

where the union is taken over allB Ď A and all non-constant specialk-cocyclesτ P
Z1
k
pBqzBkpBq.

WhenA satisfies the above combinatorial condition (for instance,whenA is an un-
signed graphic arrangement), it follows that the variety ofsl2pCq-valued flat connections
has an interesting property: it can be reconstructed in an explicit way from information
on modular resonance.

1.8. Discussion.We return now to Problem1.1, and discuss the literature surrounding
it, as well as our approach to solving it in some notable special cases. Nearly half the
papers in our bibliography are directly related to this problem. This (non-exhaustive) list
of papers may give the reader an idea about the intense activity devoted to this topic, and
the variety of tools used to tackle it.

In [4, 5, 6, 14, 15, 18, 19, 36, 37], mostly geometric methods (such as superabundance
of linear systems of polynomials, logarithmic forms, and Mixed Hodge theory) have
been used. It seems worth mentioning that our approach also provides answers to rather
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subtle geometric questions. For instance, a superabundance problem raised by Dimca in
[14] is settled in Remark8.9.

The topological approach to Problem1.1 traces its origins to the work of Cohen and
Suciu [8, 9] on Milnor fibrations and characteristic varieties of arrangements, which
builds in turn on Arapura’s theory [1] of characteristic varieties of quasi-projective man-
ifolds. This theory, as refined in [2, 13], provides a geometric interpretation of these
topologically defined varieties in terms of (orbifold) pencils.

A crucial ingredient in our approach is the idea to connect the Orlik–Solomon algebra
in positive characteristic to the monodromy of the Milnor fibration. This idea, which ap-
peared in [7, 11], was developed and generalized in [49]. The modular bounds from (6),
first exploited in a systematic way by Măcinic and Papadima in [39], have since been put
to use in [3, 18, 54]. Theorem1.2 is used by Dimca in [16] to solve a difficult problem,
namely the combinatorial computation of the equivariant Poincaré-Deligne polynomial
for the Milnor fiber of a triple point line arrangement.

On the combinatorial side, multinets and their relationship with complex resonance
varieties, established in [27, 43] and further developed in [50, 59] play an important role
in [12, 18, 20, 52, 53], and are key to our approach. Here, the novelty in our viewpoint
is to relate (multi)nets to modular resonance and varietiesof flat connections.

1.9. Conclusion. The many examples we discuss in this paper show a strikingly simi-
lar pattern, whereby the only interesting primes, as far as the algebraic monodromy of
the Milnor fibration goes, arep “ 2 and p “ 3. Furthermore, all rank 3 simplicial
arrangements examined by Yoshinaga in [57] satisfye3pAq “ 0 or 1, andedpAq “ 0,
otherwise. Finally, we do not know of any arrangementA of rank at least 3 for which
βppAq ‰ 0 if p ą 3. By [39], no such example may be found among subarrangements
of non-exceptional Coxeter arrangements.

Theorems1.6and1.7, together with these and other considerations lead us to formu-
late the following conjecture.

Conjecture 1.9. Let A be an arrangement of rank at least 3. ThenepspAq “ 0 for all
primesp and integerss ě 1, with two possible exceptions:

(7) e2pAq “ e4pAq “ β2pAq and e3pAq “ β3pAq.

WhenedpAq “ 0 for all divisorsd of |A| which are not prime powers, this conjecture
would give the following complete answer to Problem1.1:

(8) ∆Aptq “ pt ´ 1q|A|´1ppt ` 1qpt2 ` 1qqβ2pAqpt2 ` t ` 1qβ3pAq.

Recent results from [40, 17, 23] establish the validity of this conjecture, in the strong
form (8), for all complex reflection arrangements.

1.10. Organization of the paper. We start in§2 with a review of matroids and multi-
nets, and establish some simple lemmas which will be of use later on. In§3 we discuss
the Orlik–Solomon algebra, the resonance varieties, and the Aomoto–Betti numbers of
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a matroid, and we explore some of the constraints imposed on those numbers by the ex-
istence of nets on the matroid. We then construct in§4 suitable parameter sets for nets
on matroids, and relate these parameter sets to modular resonance, leading to a proof of
Theorem1.3and the combinatorial parts of Theorems1.6and1.7.

We switch our point of view in§5, where we study the space ofg-valued flat con-
nections on the Orlik–Solomon algebra of a simple matroidM , and the closely related
holonomy Lie algebrahpM q. This analysis is continued in§7, where we find a com-
binatorial condition insuring that the variety ofsl2pCq-valued flat connections on the
Orlik–Solomon algebra of an arrangementA can be reconstructed explicitly from in-
formation on modular resonance. The definitions and resultsfrom these two sections
regarding the space of flat connections are not used in the remainder of the paper, but are
of independent interest.

In §6 we narrow our focus to realizable matroids, and recall the description of the res-
onance varietyR1pA,Cq of an arrangementA in terms of multinets on subarrangements
of A. As an application of these techniques, we prove Theorem1.5and Theorem1.6(vi).
In §8 we use the jump loci for homology in rank 1 local systems to derive information
on the characteristic polynomial of the algebraic monodromy of the Milnor fiberFpAq.
In the process, we establish implication (iv)ñ(v) from Theorem1.6, and we finish the
proof of Theorem1.7.

In the last section, we construct in§9.1–9.3 an infinite family of rank 3 matroids,
M pmq, which are realizable overC if and only if m “ 2, and which have the property
thatβ3pM pmqq “ m. Finally, in §9.4–9.6 we use this information to establish the key
part (iv) of Theorem1.6, thereby completing the proof of this theorem.

To recap, the logical dependence of the remaining sections is given by the following
Leitfaden:

§6 // §8

§2 // §3 //

OO

��

§4 //

��

§9

§5 // §7

2. Matroids and multinets

The combinatorics of a hyperplane arrangement is encoded inits intersection lattice,
which in turn can be viewed as a lattice of flats of a realizablematroid. In this section, we
discuss multinet structures on matroids, with special emphasis on nets. As a byproduct,
we prove the combinatorial equivalence (i) ô (ii ) from Theorem1.6.

2.1. Matroids. We start by reviewing the notion of matroid. There are many ways to
axiomatize this notion, which unifies several concepts in linear algebra, graph theory,
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discrete geometry, and the theory of hyperplane arrangements, see for instance Wilson’s
survey [56]. We mention here only the ones that will be needed in the sequel.

A matroid is a finite setM , together with a collection of subsets, called theindepen-
dent sets, which satisfy the following axioms: (1) the empty set is independent; (2) any
proper subset of an independent set is independent; and (3) if I andJ are independent
sets and|I | ą |J|, then there existsu P IzJ such thatJ Y tuu is independent. A maximal
independent set is called abasis, while a minimal dependent set is called acircuit.

The rank of a subsetS Ă M is the size of the largest independent subset ofS. A
subset isclosedif it is maximal for its rank; the closureS of a subsetS Ă M is the
intersection of all closed sets containingS. Closed sets are also calledflats.

We will consider onlysimplematroids, defined by the condition that all subsets of size
at most two are independent.

The set of flats ofM , ordered by inclusion, forms a geometric lattice,LpM q, whose
atoms are the elements ofM . We will denote byLspM q the set of rank-s flats, and by
LďspM q the sub-poset of flats of rank at mosts. We say that a flatX has multiplicityq
if |X| “ q. The join of two flatsX andY is given byX _ Y “ X Y Y, while the meet is
given byX ^ Y “ X X Y.

2.2. Hyperplane arrangements. An arrangement of hyperplanes is a finite setA of
codimension-1 linear subspaces in a finite-dimensional, complex vector spaceCℓ. We
will assume throughout that the arrangement is central, that is, all the hyperplanes pass
through the origin. Projectivizing, we obtain an arrangement Ā “ tH̄ | H P Au of
projective, codimension-1 subspaces inCPℓ´1, from whichA can be reconstructed via a
coning construction.

The combinatorics of the arrangement is encoded in itsintersection lattice, LpAq.
This is the poset of all intersections of hyperplanes inA (also known asflats), ordered
by reverse inclusion, and ranked by codimension. The join oftwo flatsX,Y P LpAq is
given byX_Y “ XXY, while the meet is given byX^Y “

Ş

tZ P LpAq | X`Y Ď Zu.
Given a flatX, we will denote byAX the subarrangementtH P A | H Ą Xu.

We may viewA as a simple matroid, whose points correspond to the hyperplanes in
A, with dependent subsets given by linear algebra, in terms ofthe defining equations of
the hyperplanes. In this way, the lattice of flats of the underlying matroid is identified
with LpAq. Under this dictionary, the two notions of rank coincide.

A matroidM is said to berealizable(overC) if there is an arrangementA such that
LpM q “ LpAq. The simplest situation is whenM has rank 2, in which caseM can
always be realized by a pencil of lines through the origin ofC2.

For most of our purposes here, it will be enough to assume thatthe arrangementA
lives inC3, in which caseĀ is an arrangement of (projective) lines inCP2. This is clear
when the rank ofA is at most 2, and may be achieved otherwise by taking a generic
3-slice. This operation does not change the posetLď2pAq, or derived invariants such as
βppAq, nor does it change the monodromy action onH1pFpAq,Cq.
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Figure 1. A p3, 2q-net on the A3 arrangement, and on the corresponding matroid

For a rank-3 arrangement, the setL1pAq is in 1-to-1 correspondence with the lines
of Ā, while L2pAq is in 1-to-1 correspondence with the intersection points ofĀ. The
poset structure ofLď2pAq corresponds then to the incidence structure of the point-line
configurationĀ. This correspondence is illustrated in Figure1. We will say that a flat
X P L2pAq has multiplicityq if |AX| “ q, or, equivalently, if the point̄X has exactlyq
lines fromĀ passing through it.

2.3. Multinets on matroids. Guided by the work of Falk and Yuzvinsky [27], we define
the following structure on a matroidM —in fact, on the posetLď2pM q.

A multinet on M is a partition intok ě 3 subsetsM1, . . . ,Mk, together with an
assignment of multiplicities,m: M Ñ N, and a subsetX Ď L2pM q with |X| ą 2 for
eachX P X , called the base locus, such that:

(1) There is an integerd such that
ř

uPMα
mu “ d, for all α P rks.

(2) For any two pointsu, v P M in different classes, the flat spanned bytu, vu be-
longs toX .

(3) For eachX P X , the integernX :“
ř

uPMαXX mu is independent ofα.
(4) For each 1ď α ď k andu, v P Mα, there is a sequenceu “ u0, . . . , ur “ v such

thatui´1 _ ui R X for 1 ď i ď r.

We say that a multinetN as above hask classes and weightd, and refer to it as a
pk, dq-multinet, or simply as ak-multinet. Without essential loss of generality, we may
assume that gcdtmuuuPM “ 1.

If all the multiplicities are equal to 1, the multinet is saidto bereduced. If nX “ 1, for
all X P X , the multinet is called apk, dq-net; in this case, the multinet is reduced, and
every flat in the base locus contains precisely one element from each class. Apk, dq-net
N is non-trivial if d ą 1, or, equivalently, if the matroidM has rank at least 3.

The symmetric groupΣk acts freely on the set ofpk, dq-multinets onM , by permuting
the k classes. Note that theΣk-action onk-multinets preserves reducedk-multinets as
well ask-nets.
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2

2

2

Figure 2. A p3, 4q-multinet Figure 3. A reducedp3, 4q-
multinet, but not a 3-net

We will say that an arrangementA admits a multinet if the matroid realized byA
does. The various possibilities are illustrated in the above figures. Figure1 shows a
p3, 2q-net on a planar slice of the reflection arrangement of type A3. Figure2 shows a
non-reducedp3, 4q-multinet on a planar slice of the reflection arrangement of type B3.
Finally, Figure3 shows a simplicial arrangement of 12 lines inCP2 supporting a reduced
p3, 4q-multinet which is not a 3-net. For more examples, we refer to[27, 57, 58].

2.4. Reduced multinets and nets.Let N be a multinet on a matroidM , with associ-
ated classestM1, . . . ,Mku. For each flatX P L2pM q, let us write

(9) suppN pXq “ tα P rks | Mα X X ‰ Hu.

Evidently, |suppN pXq| ď |X|. Notice also that|suppN pXq| is either 1 (in which case
we sayX is mono-colored), ork (in which case we sayX is multi-colored). Here is an
elementary lemma.

Lemma 2.1. Suppose a matroidM has no2-flats of multiplicity kr, for any rą 1. Then
every reduced k-multinet onM is a k-net.

Proof. Let X be a flat in the base locus of ak-multinetN ; then|suppN pXq| “ k. If the
multinet is reduced, we have that|X| “ knX. Since, by assumption,L2pM q has no flats
of multiplicity kr, with r ą 1, we must havenX “ 1. Thus, the multinet is a net. �

In the case whenk “ 3, Lemma2.1proves implication (i) ñ (ii ) from Theorem1.6.
(The implication (ii ) ñ (i) from that theorem is of course trivial.)

Work of Yuzvinsky [58, 59] and Pereira–Yuzvinsky [50] shows that, ifN is a k-
multinet on a realizable matroid, with base locus of size greater than 1, thenk “ 3 or 4;
furthermore, ifN is not reduced, thenk must equal 3.
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Work of Kawahara from [33, §3] shows that nets on matroids abound. In particular,
this work shows that, for anyk ě 3, there is a simple matroidM supporting a non-trivial
k-net. By the above, ifM is realizable, thenk can only be equal to 3 or 4.

Let us look in more detail at the structure of nets on matroids. First recall the following
well-known definition. Given a matroidM and a subsetS Ď M , we say thatS is line-
closed(in M ) if X is closed inM , for all X P L2pSq. Clearly, this property is stable
under intersection.

Lemma 2.2. Assume a matroidM supports a k-net with partsMα. Then:
(1) Each submatroidMα has the same cardinality, equal to d:“ |M | {k.
(2) Each submatroidMα is line-closed inM .

Proof. Part (1) follows from the definitions. To prove (2), let X be a flat inL2pMαq, and
suppose there is a pointu P pM zMαq X X, whereX denotes the closure inM . Since
X P L2pMαq, there exist distinct pointsv,w P Mα X X. Since alsou P X, the flatX must
belong to the base locus. On the other hand,X contains a single point fromMα. This is
a contradiction, and we are done. �

2.5. Nets and Latin squares.The next lemma provides an alternative definition of nets.
The lemma, which was motivated by [58, Definition 1.1] in the realizable case, will prove
to be useful in the sequel.

Lemma 2.3. A k-netN on a matroidM is a partition with non-empty blocks,M “
š

αPrks Mα, with the property that, for every uP Mα and vP Mβ with α ‰ β and every
γ P rks,

(10) |pu _ vq X Mγ| “ 1.

Proof. Plainly, the net axioms (2) and (3) from §2.3 imply the following dichotomy, for
an arbitrary flatX P L2pM q: eitherX is mono-colored, orX belongs to the base locus
X and|X| “ |suppN pXq| “ k ą 2. Hence, we may replaceX by the subset of multi-
colored, rank-2 flats, i.e., the set of flats of the formu _ v, whereu P Mα, v P Mβ, and
α ‰ β. In this way, axiom (2) may be eliminated, and axiom (3) reduces to property (10).
In turn, this property clearly implies axiom (4), by takingr “ 1, u0 “ u, andu1 “ v.

In order to complete the proof, we are left with showing that property (10) implies
axiom (1). To this end, let us fixv P Mγ, and define for eachα ‰ γ a function

(11) fv : Mα Ñ tX P X | v P Xu

by settingfvpuq “ u _ v. By property (10), the functionfv is a bijection. Finally, given
α ‰ β in rks, pick a third elementγ P rks and a pointv P Mγ to infer that|Mα| “ |Mβ|.
This verifies axiom (1), and we are done. �

A Latin squareof sized is a matrix corresponding to the multiplication table of a
quasi-group of orderd; that is to say, ad ˆ d matrixΛ, with each row and column a
permutation of the setrds “ t1, . . . , du.
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In the sequel, we will make extensive use of 3-nets. In view ofLemma2.3, a 3-net on
a matroidM is a partition into three non-empty subsetsM1,M2,M3 with the property
that, for each pair of pointsu, v P M in different classes, we haveu _ v “ tu, v,wu, for
some pointw in the third class.

Three-nets are intimately related to Latin squares. IfM admits ap3, dq-net with parts
M1,M2,M3, then the multi-colored 2-flats define a Latin squareΛ: if we label the
points ofMα as uα1, . . . , u

α
d, then thepp, qq-entry of this matrix is the integerr given

by the condition thattu1
p, u

2
q, u

3
r u P L2pM q. A similar procedure shows that ak-net is

encoded by apk ´ 2q-tuple of orthogonal Latin squares.
The realizability of 3-nets by line arrangements inCP2 has been studied by several

authors, including Yuzvinsky [58], Urzúa [55], and Dimca, Ibadula, and Măcinic [18].

Example 2.4. Particularly simple is the following construction, due to Kawahara [33]:
given any Latin square, there is a matroid with a 3-net realizing it, such that each subma-
troid obtained by restricting to the parts of the 3-net is a uniform matroid.

In turn, some of these matroids may be realized by line arrangements inCP2. For in-
stance, supposeΛ is the multiplication table of one of the groupsZ2, Z3, Z4, orZ2 ˆ Z2.
Then the corresponding realization is the braid arrangement, the Pappusp93q1 configura-
tion, the Kirkman configuration, and the Steiner configuration, respectively.

In general, though, there are many other realizations of Latin squares. For example,
the groupZ3 admits two more realizations, see [18, Theorem 2.2] and Examples3.8, 3.9.

3. Modular Aomoto–Betti numbers and resonance varieties

We now study two inter-related matroidal invariants: the Aomoto–Betti numbersβp

and the resonance varieties in characteristicp ą 0. In the process, we explore some of
the constraints imposed on theβp-invariants by the existence of nets on the matroid.

3.1. The Orlik–Solomon algebra. As before, letA be an arrangement of hyperplanes
in Cℓ. The main topological invariant associated to such an arrangement is its com-
plement,MpAq “ Cℓz

Ť

HPA H. This is a smooth, quasi-projective variety, with the
homotopy type of a connected, finite CW-complex of dimensionℓ.

Building on work of Brieskorn, Orlik and Solomon described in [46] the cohomology
ring ApAq “ H˚pMpAq,Zq as the quotient of the exterior algebra on degree-one classes
dual to the meridians around the hyperplanes ofA, modulo a certain ideal determined
by the intersection lattice.

Based on this combinatorial description, one may associatean Orlik–Solomon algebra
ApM q to any (simple) matroidM , as follows. LetE “

Ź

pM q be the exterior algebra
on degree 1 elementseu corresponding to the points of the matroid, and define a graded
derivationB : E Ñ E of degreé 1 by settingBp1q “ 0 andBpeuq “ 1, for all u P M .
Then

(12) ApM q “ E{idealtBpeSq | S a circuit inM },
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whereeS “
ś

uPS eu. As is well-known, this graded ring is torsion-free, and theranks
of its graded pieces are determined by the Möbius function of the matroid. In particular,
A1pM q “ ZM (this is one instance where the simplicity assumption onM is needed).

This construction enjoys the following naturality property: if M 1 Ď M is a subma-
troid, then the canonical embedding

Ź

pM 1q ãÑ
Ź

pM q induces a monomorphism of
graded rings,ApM 1q ãÑ ApM q.

3.2. Resonance varieties.Let A be a graded, graded-commutative algebra over a com-
mutative Noetherian ringk. We will assume that each graded pieceAq is free and finitely
generated overk, andA0 “ k. Furthermore, we will assume thata2 “ 0, for all a P A1, a
condition which is automatically satisfied ifk is a field with charpkq ‰ 2, by the graded-
commutativity of multiplication inA.

For each elementa P A1, we turn the algebraA into a cochain complex,

(13) pA, δaq : A0 δa // A1 δa // A2 // ¨ ¨ ¨ ,

using as differentials the mapsδapbq “ ab. For a finitely generatedk-moduleH, we
denote by rankk H the minimal number ofk-generators forH. The (degreeq, depthr)
resonance varietiesof A are then defined as the jump loci for the cohomology of this
complex,

(14) R
q
r pAq “ ta P A1 | rankk HqpA, δaq ě ru.

When k is a field, it is readily seen that these sets are Zariski-closed, homogeneous
subsets of the affine spaceA1.

For our purposes here, we will only consider the degree 1 resonance varieties,RrpAq “
R1

r pAq. Clearly, these varieties depend only on the degree 2 truncation of A, denotedAď2.
Over a fieldk, RrpAq consists of 0, together with all elementsa P A1 for which there
existb1, . . . , br P A1 such that dimk spanta, b1, . . . , bru “ r ` 1 andabi “ 0 in A2.

The degree 1 resonance varieties over a field enjoy the following naturality property:
if ϕ : A Ñ A1 is a morphism of commutative graded algebras, andϕ is injective in degree
1, thenϕ1 embedsRrpAq into RrpA1q, for eachr ě 1.

3.3. The Aomoto–Betti numbers. Consider now the algebraA “ ApM q b k, i.e., the
Orlik–Solomon algebra of the matroidM with coefficients in a commutative Noetherian
ring k. SinceA is a quotient of an exterior algebra, we have thata2 “ 0 for all a P A1.
Thus, we may define the resonance varieties of the matroidM as

(15) RrpM , kq :“ RrpApM q b kq.

If the coefficient ring is a field, these varieties essentially depend only on the character-
istic of the field. Indeed, ifk Ă K is a field extension, thenRrpM , kq “ RrpM ,KqXkM .
The resonance varieties of a realizable matroid were first defined and studied by Falk [24]
for k “ C, by Matei and Suciu [44] for arbitrary fields, and then by Falk [25, 26] in the
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general case. A complete description of the resonance varieties R1pM ,Cq for a (not
necessarily realizable) simple matroidM were given by Marco Buzunáriz in [43].

Over an arbitrary Noetherian ringk, thek-moduleA1 “ kM comes endowed with a
preferred basis, which we will also write asteuuuPM . Consider the “diagonal” element

(16) σ “
ÿ

uPM

eu P A1,

and define thecocycle spaceof the matroid (with respect toσ) to be

(17) ZkpM q “ tτ P A1 | σ Y τ “ 0u.

Over a field, the dimension ofZkpM q depends only on the characteristic ofk, and not
on k itself. The following lemma gives a convenient system of linear equations for the
cocycle spaceZkpM q, in general.

Lemma 3.1. LetM be a matroid, and letk be a commutative Noetherian ring. A vector
τ “

ř

uPM
τueu P kM belongs to ZkpM q if and only if, for each flat XP L2pM q and

v P X, the following equation holds:

(18)
ÿ

uPX

τu “ |X| ¨ τv.

Furthermore, ifk is a field of characteristic pą 0, the above equations are equivalent
to the system

(19)

#

ř

uPX τu “ 0 if p | |X|,

τu “ τv, for all u, v P X if p ∤ |X|.

Proof. The first assertion follows from [25, Theorem 3.5], while the second assertion is
a direct consequence of the first one. �

Note thatσ P ZkpM q. Define thecoboundary spaceof the matroid to be the submod-
ule BkpM q Ď ZkpM q spanned byσ. Clearly, a vectorτ as above belongs toBkpM q if
and only if all its componentsτu are equal. Let us define theAomoto–Betti numberover
k of the matroidM as

(20) βkpM q :“ rankk ZkpM q{BkpM q.

Clearly, βkpM q “ 0 if and only if ZkpM q “ BkpM q. If k is a field of positive
characteristic, the Aomoto–Betti number ofM depends only onp “ chark, and so we
will write it simply asβppM q. We then have

(21) βppM q “ dimk ZkpM q ´ 1.

Note thatZkpM q{BkpM q “ H1pApM q b k, δσq. Thus, the above mod-p matroid
invariant may be reinterpreted as

(22) βppM q “ maxtr | σ P RrpM , kqu.
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3.4. Constraints on the Aomoto–Betti numbers. We now use Lemma3.1 to derive
useful information on the matroidal invariants defined above. We start with a vanishing
criterion, which is an immediate consequence of that lemma.

Corollary 3.2. If p ∤ |X|, for any XP L2pM q with |X| ą 2, thenβppM q “ 0.

For instance, ifM is a rank 3 uniform matroid, thenβppM q “ 0, for all p. At the other
extreme, if all the points ofM are collinear, andp divides|M |, thenβppM q “ |M |´2.

The next application provides constraints on the Aomoto–Betti numbers in the pres-
ence of nets.

Proposition 3.3. Assume thatM supports a k-net. ThenβppM q “ 0 if p ∤ k, and
βppM q ě k ´ 2, otherwise.

Proof. Setk “ Fp. First suppose thatp ∤ k. Let τ P ZkpM q. Pick u, v P Mα, and then
w P Mβ, with β ‰ α. Since|u _ w| “ |v _ w| “ k, by the net property, we infer from
Lemma3.1 thatτu “ τw “ τv. Hence,τ is constant on each partMα. Applying once
again Lemma3.1to a multi-colored flat, we deduce thatτ P BkpM q.

Now supposep | k, and consider thek-dimensional subspace ofkM consisting of
those elementsτ that are constant (say, equal tocα) on eachMα. By Lemma3.1 and
the net property, the subspace ofkM given by the equation

ř

αPrks cα “ 0 is contained in
ZkpM q. Thus, dimk ZkpM q ě k ´ 1, and the desired inequality follows at once. �

Finally, let us record a construction which relates the cocycle space of a matroid to the
cocycle spaces of the parts of a net supported by the matroid.

Lemma 3.4. Let k be a field. Suppose a matroidM supports a net. For each partMα,
the natural projectionkM Ñ kMα restricts to a homomorphism hα : ZkpM q Ñ ZkpMαq,
which in turn induces a homomorphism̄hα : ZkpM q{BkpM q Ñ ZkpMαq{BkpMαq.

Proof. In view of Lemmas2.2(2) and3.1, the equations definingZkpMαq form a subset
of the set of equations definingZkpM q. Thus, the projectionkM Ñ kMα restricts to a
homomorphismZkpM q Ñ ZkpMαq. Clearly, this homomorphism takesσ toσα, and the
second assertion follows. �

3.5. More on 3-nets and theβ3 numbers. In the case when the net has 3 parts and the
ground field has 3 elements, the previous lemma can be made be more precise.

Proposition 3.5. LetN be a3-net on a matroidM , and letk “ F3. For each partMα,
we have an exact sequence ofk-vector spaces,

(23) 0 // k // ZkpM q{BkpM q
h̄α // ZkpMαq{BkpMαq .

Proof. Let τα P kM be the vector whose components are equal to 0 onMα, and are
equal to 1, respectivelý 1 on the other two parts of the net. It follows from Lemmas
2.2(2) and3.1 thatτα P ZkpM q. Clearly,τα P kerphαq. In fact, as we shall see next,τα
generates the kernel ofhα.
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Figure 4. A p3, 3q-net on
the Ceva matroid Figure 5. A p4, 3q-net on the

Hessian matroid

Supposehαpηq “ 0, for someη P ZkpM q. We first claim thatη must be constant
on the other two parts,Mβ andMγ. To verify this claim, fix a pointu P Mγ and pick
v,w P Mβ. By the net property and (19), ηu ` ηv ` ηv1 “ 0 andηu ` ηw ` ηw1 “ 0, for
somev1,w1 P Mα. But ηv1 “ ηw1 “ 0, by assumption. Hence,ηv “ ηw, and our claim
follows.

Writing now condition (19) for η on a multi-colored flat ofN , we conclude thatη P
k ¨ τα. It follows that sequence (23) is exact in the middle. Exactness atk is obvious, and
so we are done. �

Corollary 3.6. If a matroid M supports a3-net with partsMα, then1 ď β3pM q ď
β3pMαq ` 1, for all α.

If β3pMαq “ 0, for someα, thenβ3pM q “ 1, while if β3pMαq “ 1, for someα,
thenβ3pM q “ 1 or 2. Furthermore, as the next batch of examples shows, all three
possibilities do occur, even among realizable matroids.

Example 3.7. First, letA be the braid arrangement from Figure1. ThenA admits a
p3, 2q-net with all partsAα in general position. Hence,β3pAαq “ 0 for eachα, and thus
β3pAq “ 1.

Example 3.8.Next, letA be the realization of the configuration described by the Pappus
hexagon theorem. As noted in [18, Example 2.3],A admits ap3, 3q-net with two parts
in general position and one not. Hence,β3pA1q “ β3pA2q “ 0 while β3pA3q “ 1.
Therefore,β3pAq “ 1.

Example 3.9. Finally, letA be the Ceva arrangement, defined by the polynomialQ “
pz3

1´z3
2qpz3

1´z3
3qpz3

2´z3
3q. As can be seen in Figure4, this arrangement admits ap3, 3q-net

with no parts in general position. Hence,β3pAαq “ 1 for eachα. Moreover,β3pAq “ 2,
by direct computation, or by Proposition9.4below. The classification results from [18]
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and the above considerations imply that the only rank 3 arrangementA of at most 9
planes that supports a 3-net and hasβ3pAq ě 2 is the Ceva arrangement.

4. From modular resonance to nets

In this section, we construct suitable parameter sets for nets on matroids, and relate
these parameter sets to modular resonance. The approach we take leads to a proof of
Theorem1.3and the combinatorial parts of Theorems1.6and1.7from the Introduction.

4.1. A parameter set for nets on a matroid. As before, letM be a simple matroid.
Generalizing the previous setup, letk be a finite set of sizek ě 3. Inside the setkM of
all functionsτ : M Ñ k, we isolate two subsets.

The first subset,Z1
k
pM q, consists of all functionsτ with the property that, for every

X P L2pM q, the restrictionτ : X Ñ k is either constant or bijective. The second subset,
BkpM q, consists of all constant functions. Plainly,BkpM q Ď Z1

k
pM q. In view of Lemma

4.5below, we will call the elements ofZ1
k
pM q specialk-cocycles.

Now define a function

(24) λk : tk-nets onM u // kM ,

by associating to ak-netN , with partitionM “
š

αPkMα, the elementτ :“ λkpN q
which takes the valueα onMα.

Lemma 4.1. The above construction induces a bijection,

λk : tk-nets onM u
» // Z1

k
pM qzBkpM q .

Proof. Plainly, λk is injective, with image disjoint fromBkpM q. To show thatλkpN q
belongs toZ1

k
pM q, for anyk-netN , pick X P L2pM q. If the flatX is mono-colored with

respect toN , the restrictionτ : X Ñ k is constant, by construction. IfX is multi-colored,
this restriction is a bijection, according to Lemma2.3, and we are done.

Finally, letτ be an element inZ1
k
pM qzBkpM q. Define a partitionM “

š

αPkMα by
settingMα “ tu P M | τu “ αu. Sinceτ is non-constant onM , there must be a flat
X P L2pM q with τ : X Ñ k bijective, which shows that all blocks of the partition are
non-empty. Foru P Mα andv P Mβ with α ‰ β, we infer thatτ : u _ v Ñ k must be
bijective, sinceτ P Z1

k
pM q. It follows from Lemma2.3 that the partition defines ak-net

N onM . By construction,λkpN q “ τ, and this completes the proof. �

Corollary 4.2. If |k| ą 4, then Z1
k
pM q “ BkpM q, for any realizable matroid of rank at

least3.

4.2. Sums in finite abelian groups. Before proceeding with our main theme, let us
consider a purely algebraic general situation. Given a finite abelian groupk, define

(25) Σpkq “
ÿ

αPk

α.
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to be the sum of the elements of the group. The following formula is then easily checked:

(26) Σpk ˆ k1q “ p|k1| ¨ Σpkq, |k| ¨ Σpk1qq.

Clearly, 2Σpkq “ 0. Moreover, ifk is cyclic, thenΣpkq “ 0 if and only if the order of
k is odd. These observations readily imply the following elementary lemma.

Lemma 4.3. Let k “
ś

p prime

ś

sě1pZ{psZqepp,sq be the primary decomposition ofk.
ThenΣpkq “ 0 if and only if

ř

s ep2, sq ‰ 1.

Next, we examine the conditions under whichΣpkq vanishes when the groupk is, in
fact, a (finite) commutative ring.

Lemma 4.4. Let k be a positive integer. There is a finite commutative ringk with k
elements and satisfyingΣpkq “ 0 if and only if kı 2 mod4. Moreover, if2 ‰ k “ ps,
we may takek “ Fps.

Proof. Let k “
ś

p pvppkq be the prime decomposition. If|k| “ k, then
ř

s sep2, sq “

v2pkq, andk ” 2 mod 4 if and only ifv2pkq “ 1. If v2pkq ‰ 1, we may takek “
ś

p F
vppkq
p ,

and infer from Lemma4.3 that Σpkq “ 0. If v2pkq “ 1 and |k| “ k, then clearly
ř

s ep2, sq “ 1. Again by Lemma4.3, this implies thatΣpkq ‰ 0. For the last claim, note
thatFps “ Fs

p, as an additive group. �

4.3. Modular resonance and multinets. For the rest of this section, we will assumek
is a finite commutative ring. In this case,BkpM q coincides with the coboundary space
defined in§3.3. The next lemma establishes a relationship between the subsetZ1

k
pM q Ď

kM and the modular cocycle spaceZkpM q.

Lemma 4.5. Let M be a matroid and letk be a finite commutative ring. IfΣpkq “ 0,
then Z1

k
pM q Ď ZkpM q. Otherwise, Z1

k
pM q X ZkpM q “ BkpM q.

Proof. For τ P Z1
k
pM q and X P L2pM q with τ ” α on X, equations (18) reduce to

|X|¨α “ |X|¨α. Whenτ : X Ñ k is a bijection, these equations take the formΣpkq “ |k|¨α,
for everyα P k, or, equivalently,Σpkq “ 0. The desired conclusions follow. �

Lemmas4.1, 4.4, and4.5 together prove Theorem1.3 from the Introduction. In turn,
Theorem1.3applied to the case whenk “ F4 proves the combinatorial part of Theorem
1.7, i.e., the equivalence (i)ô(ii ) from there.

Remark 4.6. WhenM supports a 4-net, the inclusionZ1
F4

pM q Ď ZF4pM q from The-
orem1.3(ii ) is always strict. Indeed, letM “

š

αPr4s Mα be a 4-net partition. Define
τ P FM

4 “ pF2 ˆ F2qM to be equal top0, 0q onM1 andM2, and top1, 0q onM3 andM4.
Using (19), we easily see thatτ P ZF4pM qzZ1

F4
pM q.

In the case of 3-nets, this phenomenon no longer occurs. For instance, ifA is the
Ceva arrangement from Example3.9, thenA admits a 3-net, whileZ1

F3
pAq “ ZF3pAq,

by Lemma4.8.
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Next, we provide an extension of Lemma4.1, from nets to multinets.

Lemma 4.7. Let k be a finite commutative ring withΣpkq “ 0. Then the function
λk : tk-nets onM u ãÑ ZkpM qzBkpM q has an injective extension,

λk : treduced k-multinets onM u ãÑ ZkpM qzBkpM q.

Proof. LetN be a reducedk-multinet onM . DefineλkpN q P kM by using the underly-
ing partition,M “

š

αPkMα, exactly as in (24). Clearly,λkpN q determinesN . By the
multinet axiom§2.3(3), the mapλkpN q : M Ñ k is surjective; henceλkpN q R BkpM q.

Now, if X P L2pM q is mono-colored, i.e.,X Ď Mα for someα P k, then the system of
equations (18) reduces to|X| ¨ α “ |X| ¨ α, which is trivially satisfied. Otherwise, those
equations take the form

ÿ

αPk

|X X Mα| ¨ α “ |X| ¨ β,

for all β P k, or, equivalently,nX ¨ Σpkq “ 0 and|X| “ 0, and we are done. �

4.4. A multiplicity assumption. Finally, let us consider the case whenk “ 3 (and
k “ F3) in Theorem1.3. Under a natural multiplicity assumption, we are then able to
say more about the cocycle space of our matroidM .

Lemma 4.8. Suppose L2pM q has no flats of multiplicity properly divisible by3. Then
Z1
F3

pM q “ ZF3pM q.

Proof. By (19), an elementτ “
ř

uPM
τueu P FM

3 belongs toZF3pM q if and only if, for
eachX P L2pM q, either 3 divides|X| and

ř

uPX τu “ 0, or elseτ is constant onX.
In view of our multiplicity hypothesis, the first possibility only occurs whenX has size

3, in which case the equation
ř

uPX τu “ 0 implies that the restrictionτ : X Ñ F3 is either
constant or bijective. Hence, the elementτ belongs toZ1

F3
pM q, and we are done. �

Putting now together Theorem1.3(i) with Lemma4.8establishes equivalence (ii )ô(iii )
from Theorem1.6in the Introduction. The remaining combinatorial part of Theorem1.6,
i.e., equivalence (i)ô(ii ), follows from Lemma2.1.

5. Flat connections and holonomy Lie algebras

In this section, we study the space ofg-valued flat connections on the Orlik–Solomon
algebra of a simple matroidM , and the closely related holonomy Lie algebrahpM q. We
construct flat connections from non-constant special cocycles onM , and we characterize
the key axiom for multinets onM by usinghpM q.

5.1. Flat, g-valued connections.We start by reviewing some standard material on flat
connections, following the approach from [21, 22, 41].

Let pA, dq be a commutative, differential graded algebra overC, for short, acdga. We
will assume thatA is connected (i.e.,A0 “ C) and of finiteq-type, for someq ě 1
(i.e.,Ai is finite-dimensional, for alli ď q). The cohomology groupsHipAq areC-vector
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spaces, of finite dimension ifi ď q. SinceA is connected, the differentiald : A0 Ñ A1

vanishes, and so we may viewH1pAq as a linear subspace ofA1.
Now letg be a finite-dimensional Lie algebra overC. On the graded vector spaceAbg,

we may define a bracket byra b x, b b ys “ abb rx, ys, for a, b P A andx, y P g. This
functorial construction produces a differential graded Lie algebraA b g, with grading
inherited fromA, and differentialdpa b xq “ dab x.

An elementω P A1 b g is called aninfinitesimal,g-valued flat connectionon pA, dq if
ω satisfies the Maurer–Cartan equation,

(27) dω` 1
2rω,ωs “ 0.

We will denote byF pA, gq the subset ofA1 b g consisting of all flat connections. This
set has a natural affine structure, and depends functorially on bothA andg. Notice that
F pA, gq depends only on the degree 2 truncationAď2 “ A{

À

ią2 Ai of ourcdga.
Consider the algebraic mapπ : A1 ˆ gÑ A1 b g given bypa, xq ÞÑ a b x. Notice that

π restricts to a mapπ : H1pAq ˆ gÑ F pA, gq. The setF p1qpA, gq :“ πpH1pAq ˆ gq is an
irreducible, Zariski-closed subset ofF pA, gq, which is equal to eithert0u, or to the cone
onPpH1pAqq ˆ Ppgq. We call its complement theregular part ofF pA, gq.

5.2. Holonomy Lie algebra. An alternate view of the parameter space of flat connec-
tions involves only Lie algebras. Let us briefly review this approach, following the de-
tailed study done in [41].

Let Ai “ HomCpAi ,Cq be the dual vector space. Let∇ : A2 Ñ A1 ^ A1 be the dual of
the multiplication mapA1 ^ A1 Ñ A2, and letd1 : A2 Ñ A1 be the dual of the differential
d1 : A1 Ñ A2. By definition, theholonomy Lie algebraof pA, dq is the quotient of the
free Lie algebra on theC-vector spaceA1 by the ideal generated by the image ofd1 `∇:

(28) hpAq “ LiepA1q{pimpd1 ` ∇qq.

This construction is functorial. Indeed, ifϕ : A Ñ A1 is a cdga map, then the linear
mapϕ1 “ pϕ1q˚ : A1

1 Ñ A1 extends to Lie algebra map Liepϕ1q : LiepA1
1q Ñ LiepA1q,

which in turn induces a Lie algebra maphpϕq : hpA1q Ñ hpAq.
Whend “ 0, the holonomy Lie algebrahpAq inherits a natural grading from the free

Lie algebra, compatible with the Lie bracket. Thus,hpAq is a finitely presented, graded
Lie algebra, with generators in degree 1, and relations in degree 2. In the particular case
when A is the cohomology algebra of a path-connected spaceX with finite first Betti
number,hpAq coincides with the classical holonomy Lie algebrahpXq of K.T. Chen.

Given a finite setk “ tc1, . . . , cku, let us define thereducedfree Lie algebra onk as

(29) Liepkq “ Liepc1, . . . , ckq{
´

ÿk

α“1
cα “ 0

¯

.

Clearly,Liepkq is a graded Lie algebra, isomorphic to the free Lie algebra ofrankk ´ 1.
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Example 5.1. Consider thek-times punctured sphere,S “ CP1ztk pointsu. Letting
k “ tc1, . . . , cku be the set of homology classes inH1pS,Cq represented by standardly
oriented loops around the punctures, we readily see thathpSq “ Liepkq.

As before, letg be a finite-dimensional Lie algebra. As noted in [41], the canonical
isomorphismι : A1 b g

»
ÝÑ HomCpA1, gq restricts to a functorial isomorphism

(30) ι : F pA, gq »
ÝÑ HomLiephpAq, gq.

Under this isomorphism, the subsetF p1qpA, gq corresponds to the set Hom1
LiephpAq, gq of

Lie algebra morphisms whose image is at most 1-dimensional.
If ϕ : A Ñ A1 is a cdga map, we will letϕ! : HomLiephpAq, gq Ñ HomLiephpA1q, gq

denote the morphism of algebraic varieties induced byhpϕq.

5.3. The holonomy Lie algebra of a matroid. Let M be a simple matroid, and let
A “ ApM q b C be the Orlik–Solomon algebra ofM with coefficients inC. As noted
before, theC-vector spaceA1 has basisteuuuPM . Let A1 be the dual vector space, with
dual basistauuuPM .

By definition, the holonomy Lie algebra of the matroid,hpM q :“ hpAq, is the quotient
of the free Lie algebra onA1 by the ideal generated by the image of the dual of the
multiplication map,A1 ^ A1 Ñ A2. Using the presentation (12) for the algebraApM q, it
is proved in [48, §11] thathpM q has the following quadratic presentation:

(31) hpM q “ Liepau, u P M q
M´

ÿ

vPX

rau, avs, X P L2pM q, u P X
¯

.

Now let g be a finite-dimensional Lie algebra overC. Once we identifyA1 b g – gA,
a g-valued 1-formω may be viewed as a vector with componentsωu P g indexed by the
pointsu P M . By (30), ω P F pA, gq if and only if

(32)
ÿ

vPX

rωu, ωvs “ 0, for all X P L2pM q andu P X.

Let spanpωq be the linear subspace ofg spanned by the settωuuuPM . Clearly, if
dim spanpωq ď 1, thenω is a solution to the system of equations (32); the set of such
solutions is preciselyF p1qpA, gq. We call a solutionω regular if dim spanpωq ě 2.

Noteworthy is the case wheng “ sl2, a case studied in a more general context in [41].
In this setting, ansl2-valued 1-formω “ pωuquPM is a solution to the system of equations
(32) if and only if, for eachX P L2pM q,

(33) either
ÿ

vPX

ωv “ 0, or dim spantωvuvPX ď 1.
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5.4. Holonomy Lie algebra and multinets. We may now characterize the key multinet
axiom (3) from §2.3in terms of certain Lie algebra morphisms defined on the holonomy
Lie algebra, as follows.

LetM be a matroid, endowed with a partition into non-empty blocks, M “
š

αPkMα,
and a multiplicity function,m: M Ñ N. For each flatX P L2pM q, define supppXq as in
(9), and call the flat mono-colored if|supppXq| “ 1, and multi-colored, otherwise. Write
k “ tc1, . . . , cku, and letLiepkq be the reduced free Lie algebra from (29). To these data,
we associate a graded epimorphism of free Lie algebras,

(34) ϕ : Liepau, u P M q // // Liepkq

by sendingau to mu ¨ cα, for eachu P Mα.

Proposition 5.2. Given a matroid partitionM “
š

αPkMα and a multiplicity function
m: M Ñ N, the following conditions are equivalent:

(1) The mapϕ defined above factors through a graded Lie algebra epimorphism,
ϕ : hpM q։ Liepkq.

(2) The integer nX :“
ř

uPMαXX mu is independent ofα, for each multi-colored flat
X P L2pM q.

Proof. The morphismϕ factors throughhpM q if and only if equations (32) are satisfied
byωu “ ϕpauq. In turn, these equations are equivalent to

(35)
”

ÿ

αPk

´

ÿ

uPXXMα

mu

¯

cα, cβ
ı

“ 0,

for all X P L2pM q andβ P supppXq. Clearly, equations (35) are always satisfied ifX is
a mono-colored flat.

Now assume condition (1) holds. As is well-known, commuting elements in a free Lie
algebra must be dependent; see for instance [42]. It follows that

ř

αPkp
ř

uPXXMα
muqcα

belongs toC ¨ cβ ` C ¨ p
ř

αPk cαq, for all β P supppXq. WhenX is multi-colored, this
constraint implies that

ř

uPXXMα
mu is independent ofα.

Conversely, assume (2) holds. Equations (35) for a multi-colored flatX reduce then to
nX ¨ r

ř

αPk cα, cβs “ 0, and these are satisfied since
ř

αPk cα “ 0 in Liepkq. �

5.5. An evaluation map. Let V be a finite-dimensionalC-vector space, and letk be a
finite set withk ě 3 elements. Inside the vector spaceVk, consider the linear subspace

(36) HkpVq “
 

x “ pxαq P Vk |
ÿ

αPk

xα “ 0
(

.

Given a family of elements of a vector space, we may speak about its rank, that is, the
dimension of the vector subspace generated by that family. InsideHkpVq, we define the
regular part to be the set

(37) HkregpVq “ tx P HkpVq | rankpxq ą 1u.
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Let us view an elementx P Vk as a map,x: kÑ V. Given a matroidM , let us denote
the induced map,kM Ñ VM , by ev.pxq. For a fixed elementτ P kM , we obtain in this
way a linear “evaluation” map

(38) evτ : Vk Ñ VM , evτpxqu “ xτpuq, for u P M .

We will use this simple construction in the case whenV is a Lie algebrag andτ is a
non-constant, specialk-cocycle onM .

Proposition 5.3. Let M be a matroid and letg be a finite-dimensional, complex Lie
algebra. For everyτ P Z1

k
pM qzBkpM q, the mapevτ induces a linear embedding,

evτ : Hkpgq ãÑ F pApM q b C, gq.

Moreover,evτ is rank-preserving, and so the regular parts are preserved.

Proof. We first check that evτpxq P gM satisfies the flatness conditions (32), for x P
Hkpgq, whereωu “ xτpuq, for u P M . If τ is constant onX P L2pM q, this is clear.
Otherwise,τ : X Ñ k is a bijection, hence the system (32) becomesr

ř

αPk xα, xτpuqs “ 0,
for all u P X, and we are done, sincex P Hkpgq.

We also know thatτ : M Ñ k is surjective, sinceτ R BkpM q. This implies that
rankpevτpxqq “ rankpxq for all x P gk. In particular, evτ is injective. �

In the setup from Theorem1.3(ii ), the above result may be interpreted as an explicit
way of lifting information on modular resonance toC, via flat connections.

6. Complex resonance varieties and pencils

We now narrow our focus to realizable matroids, and recall the description of the
(degree 1, depth 1) complex resonance variety of an arrangementA in terms of multinets
on subarrangements ofA. As an application of our techniques, we prove Theorem1.5
and Theorem1.6(vi) from the Introduction.

6.1. Resonance varieties of arrangements.LetA be a hyperplane arrangement inCℓ,
and letA “ H˚pMpAq,Cq be its Orlik–Solomon algebra overC. The (first) resonance
variety of the arrangement,R1pAq :“ R1pAq, is a closed algebraic subset of the affine
spaceH1pMpAq,Cq “ CA. Since the slicing operation described in§2.2does not change
R1pAq, we may assume without loss of generality thatℓ “ 3.

The basic structure of the (complex) resonance varieties ofarrangements is explained
in the following theorem, which summarizes work of Cohen–Suciu [9] and Libgober–
Yuzvinsky [38]. (We refer to [22] for a more general context where such a statement
holds.)

Theorem 6.1. All irreducible components of the resonance varietyR1pAq are linear
subspaces, intersecting pairwise only at0. Moreover, the positive-dimensional compo-
nents have dimension at least two, and the cup-product map A1 ^ A1 Ñ A2 vanishes
identically on each such component.
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We will also need a basic result from Arapura theory [1] (see also [22]), a result which
adds geometric meaning to the aforementioned properties ofR1pAq. Let S denoteCP1

with at least 3 points removed. A mapf : MpAq Ñ S is said to beadmissibleif f is a
regular, surjective map with connected generic fiber.

Theorem 6.2. The correspondence f{ f ˚pH1pS,Cqq gives a bijection between the
set of admissible maps (up to reparametrization at the target) and the set of positive-
dimensional components ofR1pAq.

Most important for our purposes are theessentialcomponents ofR1pAq, i.e., those
irreducible components which do not lie in any coordinate subspace ofCA. We will give
a complete description of these components in the next subsection.

6.2. Pencils and multinets. As shown by Falk and Yuzvinsky in [27], the essential
components ofR1pAq can be described in terms of pencils arising from multinets on
Lď2pAq. An alternate description ofR1pM ,Cq, valid for arbitrary simple matroidsM ,
was given in [43]. We will follow here the approach from [27].

Suppose we have ak-multinetN onA, with partsA1, . . . ,Ak and multiplicity vector
m. Let QpAq “

ś

HPA fH be a defining polynomial forA, and set

(39) Qα “
ź

HPAα

f mH
H .

The polynomialsQ1, . . . ,Qk define a pencil of degreed in CP1, havingk completely
reducible fibers that correspond toA1, . . . ,Ak. For eachα ą 2, we may writeQα as a
linear combinationaαQ1 ` bαQ2. In this way, we obtain ak-element subset

(40) D “ tp0 : ´1q, p1 : 0q, pb3 : ´a3q, . . . , pbk : ´akqu Ă CP1.

Consider now the arrangementA1 in C2 defined by the polynomialQpA1q “ g1 ¨ ¨ ¨ gk,
wheregαpz1, z2q “ aαz1 ` bαz2. Projectivizing gives a canonical projectionπ : MpA1q Ñ
S :“ CP1zD. Settingψpxq “ pQ1pxq,Q2pxqq gives a regular mapψ : MpAq Ñ MpA1q.
It is now readily verified that the regular map

(41) fN “ π ˝ ψ : MpAq Ñ S

is admissible. Hence, the linear subspacef ˚
N

pH1pS,Cqq Ă H1pMpAq,Cq is a component
of R1pAq. Moreover, this subspace has dimensionk ´ 1, and does not lie in any coor-
dinate subspace. Conversely, as shown in [27, Theorem 2.5], every essential component
of R1pAq can be realized asf ˚

N
pH1pS,Cqq, for some multinetN onA.

6.3. An induced homomorphism. To describe the above subspace explicitly, and for
further purposes, we need to compute the homomorphism induced in homology by the
map fN . To that end, letγ1, . . . , γk be compatibly oriented, simple closed curves on
S “ CP1zD, going around the points ofD, so thatH1pS,Zq is generated by the homology
classescα “ rγαs, subject to the single relation

řk
α“1 cα “ 0.
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Recall that the cohomology ringH‚pMpAq,Zq is generated by the degree 1 classes
teHuHPA dual to the meridians about the hyperplanes ofA. We shall abuse notation, and
denote by the same symbol the image ofeH in H1pMpAq,Cq. As is well-known,eH is
the de Rham cohomology class of the logarithmic 1-form1

2πi d log fH on MpAq.
For each indexα P rks, set

(42) uα :“
ÿ

HPAα

mHeH P H1pMpAq,Cq.

Lemma 6.3. The induced homomorphismp fN q˚ : H1pMpAq,Zq Ñ H1pS,Zq is given by

p fN q˚paHq “ mHcα, for H P Aα.

In other words,p fN q˚ is theZ-form of the homomorphismϕ associated toN that appears
in Proposition5.2.

Proof. Given the construction offN from (41), it is plainly enough to check that the dual
homomorphism,ψ˚ : H1pMpA1q,Cq Ñ H1pMpAq,Cq, sends the de Rham cohomology
class ofd loggα to uα. An easy calculation shows that

(43) ψ˚pd loggαq “ d logQα “
ÿ

HPAα

mHd log fH,

and the claim follows. �

Taking the transpose ofp fN q˚ and using linear algebra, we obtain the following im-
mediate corollary.

Corollary 6.4 ([27]). LetN be a k-multinet on an arrangementA, and let fN : MpAq Ñ
S “ CP1ztk pointsu be the associated admissible map. Then the pull-back f˚

N
pH1pS,Cqq

is the linear subspace of H1pMpAq,Cq spanned by the vectors u2´u1, . . . , uk´u1, where
uα “

ř

HPAα
mHeH.

6.4. Mapping multinets to resonance components.Let EsspAq be the set of essential
components of the resonance varietyR1pAq. The preceding discussion allows us to
define a map

(44) Ψ : tmultinets onAu Ñ EsspAq, N ÞÑ f ˚
N pH1pS,Cqq.

This map sendsk-multinets to essential,pk ´ 1q-dimensional components ofR1pAq. By
the above-mentioned result of Falk and Yuzvinsky, the mapΨ is surjective. The next
lemma describes the fibers of this map.

Lemma 6.5. The surjective mapΨ defined in(44) is constant on the orbits of the natural
Σk-action on k-multinets. Moreover, the fibers ofΨ coincide with those orbits.

Proof. The first claim is an immediate consequence of the description of the action ofΣk

on k-multinets, given in§2.3, coupled with the construction ofΨpN q.
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Suppose now thatN is a k-multinet, andΨpN q “ ΨpN 1q, for some multinetN 1.
As noted before, dimΨpN q “ k ´ 1; hence,N 1 is also ak-multinet. Let fN and
fN 1 be the corresponding admissible maps fromMpAq to S “ CP1ztk pointsu. Since
f ˚
N

pH1pS,Cqq “ f ˚
N 1pH1pS,Cqq, Arapura theory implies thatfN and fN 1 differ by an

automorphism of the curveS.
In turn, this automorphism extends to an automorphism ofCP1, inducing a permuta-

tion g P Σk of thek points. Hence, the automorphism induced onH1pS,Zq sendscα to
cgα, for eachα P rks. Using Lemma6.3, we conclude thatN andN 1 are conjugate under
the action ofg. �

More generally, every positive-dimensional componentP of R1pAq may be described
in terms of multinets. Indeed, denote by prH : CA Ñ C the coordinate projections,
and consider the subarrangementB Ď A consisting of those hyperplanesH for which
prH : P Ñ C is non-zero. It is easy to check that the subspaceP Ď CB belongs to EsspBq.
Hence, there is a multinetN onB such thatP “ ΨpN q. Denoting byfP : MpAq Ñ S
the regular map given by the restriction of the admissible map fN : MpBq Ñ S to the
complement ofA, this means thatP “ f ˚

P pH1pS,Cqq.

Corollary 6.6. When P runs through the set of positive-dimensional irreducible compo-
nents ofR1pAq, the regular maps fP constructed above form a complete set of represen-
tatives for the admissible maps on MpAq, modulo reparametrization at the target.

Proof. By Theorem6.2, we only need to check that each regular mapfP : MpAq Ñ S is
admissible. SincefN : MpBq Ñ S is admissible, it is easy to infer thatfP is non-constant,
with connected generic fiber. Therefore, it is enough to prove that fP is surjective. In
turn, this is a consequence of the fact thatP “ f ˚

P pH1pS,Cqq is a component ofR1pAq.
To prove this last claim, let us denote byS1 the image offP. ThenS1 is obtained from

S by removing a finite set of points, andfP “ j ˝ f 1, where j : S1 Ñ S is the inclusion
and f 1 : MpAq Ñ S1 is the corestriction off . Clearly, the mapf 1 is admissible. Hence,
both j˚ : H1pS,Cq Ñ H1pS1,Cq and f 1˚ : H1pS1,Cq Ñ H1pMpAq,Cq are injections. On
the other hand,f 1˚pH1pS1,Cqq is a component ofR1pAq, by Theorem6.2. Therefore,f ˚

and f 1˚ have the same image. Hence,H1pS,Cq andH1pS1,Cq have the same dimension,
and soS1 “ S. This proves the claim, and we are done. �

6.5. Counting essential components.Recall that EsskpAq denotes the set of essential
components ofR1pAq arising fromk-nets onA. As mentioned previously, this set is
empty fork ě 5.

Proof of Theorem1.5. Let k “ 3 or 4, and letk be the corresponding Galois field,Fk. By
Lemma6.5and Theorem1.3, we have that

(45) |EsskpAq| “
1
k!

|Z1
kpAqzBkpAq| ď

1
k!

|ZkpAqzBkpAq| .
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Clearly,

(46) |ZkpAqzBkpAq| “ |k| ¨ |ZkpAq{BkpAqzt0u| “ k ¨ pkβkpAq ´ 1q.

Inequality (5) now follows at once.
Next, assume that both Ess3pAq and Ess4pAq are non-empty. From Proposition3.3we

then infer thatβ2pAq “ 0 andβ2pAq ě 2, a contradiction. This completes the proof.�

Proof of Theorem1.6(vi). SupposeL2pAq has no flats of multiplicity properly divisible
by 3. By Lemma4.8, Z1

F3
pAq “ ZF3pAq. The above proof then shows that|Ess3pAq| “

p3β3pAq ´ 1q{2, and we are done. �

7. Evaluation maps and multinets

We extend in this section our construction of evaluation maps, from nets to multinets.
For realizable matroids, we exploit evaluation maps in two directions. First, we construct
the inverse of the bijectionλk from Lemma4.1 by using the variety ofsl2pCq-valued
flat connections on the Orlik–Solomon algebra. Second, we provide in Theorem7.6
(Theorem1.8from the Introduction) a combinatorial condition insuringthat this variety
can be reconstructed explicitly from information on modular resonance.

7.1. Flat connections coming from multinets. We first extend the construction from
Proposition5.3 to a broader context. Letk be a finite set withk ě 3 elements and let
M be a simple matroid. For ak-multinetN onM , denote byϕN : hpM q։ Liepkq the
epimorphism of graded Lie algebras constructed in Proposition 5.2.

Let g be a finite-dimensional complex Lie algebra, and let

(47) ϕ!
N

: HomLiepLiepkq, gq // HomLiephpM q, gq

be the induced map on Hom-sets. Using (29) and (30), we may identify HomLiepLiepkq, gq
with Hkpgq and HomLiephpM q, gq with F pApM q b C, gq. Let

(48) EvN : Hkpgq // F pApM q b C, gq

be the map corresponding toϕ!
N

under these identifications. Finally, for eachα P k, let
prα : Hkpgq Ñ g be the restriction toHkpgq of theα-coordinate projectiongk Ñ g.

Proposition 7.1. With notation as above, the following hold.

(1) The evaluation mapEvN is a rank-preserving, linear embedding.
(2) For any uP M , there isα P k such that the restriction ofpru b idg : A1pM qbgÑ
g to Hkpgq via EvN belongs toC˚ ¨ prα.

(3) If N is a k-net, thenEvN “ evτ, whereτ “ λkpN q.

Proof. (1) By construction, the map EvN is linear. SinceϕN is surjective, the mapϕ!
N

is
rank-preserving; hence, EvN is also rank-preserving, and thus, injective.
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(2) Using the underlying partition ofN , we find thatu P Mα, for a uniqueα P k. By
construction ofϕN , we have that Ev˚N ppru b idgq “ mu ¨ prα.

(3) Let N be ak-net. Forx P Hkpgq andu P Mα, we have that EvN pxqu “ muxα,
by construction. Moreover,mu “ 1, sinceN is a reduced multinet. On the other hand,
evτpxqu “ xτpuq, by (38), andτpuq “ α, by (24). This completes the proof. �

7.2. Flat connections and complex resonance varieties.In the case of realizable ma-
troids, a crucial ingredient in our approach is a general result relating resonance and flat
connections, based on the detailed study done in [41].

To start with, letA be a graded, graded-commutative algebra overC. Recall we assume
A is connected andA1 is finite-dimensional. Given a linear subspaceP Ă A1, define a
connected sub-algebraAP Ă Aď2 by settingA1

P “ P andA2
P “ A2, and then restricting

the multiplication map accordingly.
Now letg be a complex Lie algebra. The following equality is then easily verified:

(49) F pAP, gq “ F pA, gq X pP b gq.

Thus, ifg is finite-dimensional, thenF pAP, gq is a Zariski-closed subset ofF pA, gq.

Theorem 7.2. SupposeR1pAq “
Ť

PPP
P, whereP is a finite collection of linear sub-

spaces of A1, intersecting pairwise only at0. Then, for any finite-dimensional Lie algebra
g, the following hold:

(1) F pAP, gq X F pAP1 , gq “ t0u, for all distinct subspaces P,P1 P P.

(2) F pA, gq Ě F p1qpA, gq Y
Ť

PPP
F pAP, gq.

(3) If g “ sl2, then the above inclusion holds as an equality.
(4) If g “ sl2 and all subspaces fromP are isotropic, thenF pAP, gq “ P b g, for

every PP P.

Proof. Claim (1) follows from our transversality hypothesis, while claim (2) is obvious,
by the naturality property of flat connections. Claim (3) is proved in [41, Proposition
5.3]. Here, the assumption thatg “ sl2 is crucial. In the proof of Proposition 5.3 from
[41] it is also shown thatP b g Ď F pA, gq, whenP is isotropic. Claim (4) follows then
from (49). �

7.3. From evaluation maps to multinets. We now return to the situation whenA “
H˚pMpAq,Cq is the Orlik–Solomon algebra of an arrangementA. In view of Theorem
6.1, all the hypotheses of Theorem7.2are satisfied in this case.

Guided by Proposition7.1, we takeg “ sl2pCq and define the evaluation spaceEkpAq
to be the set of all maps,e: Hkpgq Ñ F pApAq b C, gq, satisfying properties (1) and (2)
from that proposition, and having the property that impeq is an irreducible component of
F pApAq b C, gq.
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Lemma 7.3. Let A be the complex Orlik–Solomon algebra of an arrangementA, and
let R1pAq “

Ť

PPP
P be the irreducible decomposition of its resonance variety. The

following then hold.

(1) The irreducible decomposition of the varietyF pA, sl2q is given by

F pA, sl2q “ F
p1qpA, sl2q Y

ď

PPP

F pAP, sl2q.

(2) For every k-multinetN onA,

impEvN q “ P b sl2 “ F pAP, sl2q,

where P“ ΨpN q.

Proof. (1) By Theorem6.2, every non-zero subspaceP P P is of the form P “
f ˚pH1pS,Cqq, for some admissible mapf : MpAq Ñ S :“ CP1ztk pointsu. Theorem
7.4 from [41] gives the irreducible decomposition ofF pA, sl2q, with F pAP, sl2q replaced
by f !pF pH.pS,Cq, sl2qq. But F pH.pS,Cq, sl2q “ H1pS,Cq b sl2, sinceH2pS,Cq “ 0.
Hence, by Theorem7.2(4),

(50) f !pF pH.pS,Cq, sl2qq “ P b sl2 “ F pAP, sl2q,

and this proves our claim.
(2) Let fN : MpAq Ñ S be the admissible map associated to the multinetN . By

Lemma6.3, the mapϕ1
N

: h1pAq Ñ Lie
1
pkq may be identified withp fN q˚ bC. It follows

that impEvN q “ ΨpN q b sl2, by the construction (44) of Ψ. In view of (50), we are
done. �

In view of the above lemma, the construction from Proposition 7.1gives a correspon-
dence,

(51) Ev: tk-multinets onAu // EkpAq .

We now define another function,

(52) Net :EkpAq // tk-multinets onAu{Σk ,

as follows. Given a mape: Hkpsl2q Ñ F pApAq b C, sl2q belonging toEkpAq, the
variety impeq cannot be the irreducible componentF p1qpA, sl2q. Indeed,Hkpsl2q contains
a regular elementx, since dimsl2 ě 2. Sincee is a rank-preserving linear map we must
have rankpepxqq ě 2, and thereforeepxq is a regular flat connection. Hence, by Lemma
7.3(1) and Theorem7.2(4), impeq “ P b sl2, for a unique 0‰ P P P.

We claim thatP must be an essential component ofR1pAq. For otherwise we could
find a hyperplaneH P A such that prH : A1 Ñ C vanishes onP. But now recallesatisfies
property (2) from Proposition7.1; hence, prα must vanish onHkpsl2q, for someα P k, a
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contradiction. By Lemma6.5, then,P “ ΨpN q, for somek1-multinetN onA, uniquely
determined up to the naturalΣk1-action. Moreover,

3pk1 ´ 1q “ dimP b sl2 “ dimHkpsl2q “ 3pk ´ 1q,

and thusk1 “ k. We then define Netpeq to be the class moduloΣk of thek-multinetN .

Corollary 7.4. The compositionNet˝ Ev is the canonical projection that associates to
a k-multinetN onA its Σk-orbit.

Proof. By Lemma7.3, we have that impEvN q “ ΨpN qbsl2. By construction, NetpEvN q
is theΣk-orbit of N . �

Remark 7.5. Returning to the bijection from Lemma4.1, let us take a specialk-cocycle
τ P Z1

k
pAqzBkpAq, and setN “ λ´1

k
pτq. By Proposition7.1(3) and Corollary7.4,

evτ P EkpAq and Netpevτq is theΣk-orbit of thek-netN . This shows that, for realizable
matroids, the inverse of the modular constructionλk may be described in terms ofsl2pCq-
valued flat connections on the Orlik–Solomon algebra.

7.4. Flat connections from special cocycles.LetB Ď A be a subarrangement. Denote
the associated monomorphism between complex Orlik–Solomon algebras byψ : B ãÑ A.
This map in turn induces a rank-preserving inclusion,ψ b idg : F pB, gq ãÑ F pA, gq,
for any finite-dimensional complex Lie algebrag. For τ P Z1

k
pBqzBkpBq, denote by

evBτ : Hkpgq Ñ F pA, gq the linear, rank-preserving embeddingpψ b idgq ˝ evτ.

Theorem 7.6.Assume that all essential components ofR1pBq arise from nets onB, for
every subarrangementB Ď A. Then

(53) FregpApAq b C, sl2pCqq “
ď

B,τ

evBτ pHkregpsl2pCqqq ,

where the union is taken over allB Ď A and allτ P Z1
k
pBqzBkpBq.

Proof. Let R1pAq “
Ť

PPP
P be the decomposition of the complex resonance variety

of A into (linear) irreducible components. For simplicity, writeH “ Hkpsl2q. In view
of Theorem7.2, we only have to show that, for every non-zero componentP of R1pAq,
the setpP b sl2qreg is contained in the right-hand side of (53). As explained in§6.4, the
subspaceP belongs to EsspBq, for some subarrangementB Ď A. Thus, we may replace
A byB, and reduce our proof to showing that, for anyP P EsspBq, the setpP b sl2qreg is
contained in evτpHregq, for someτ P Z1

k
pBqzBkpBq.

Using our hypothesis, we infer thatP “ ΨpN q, for somek-netN on B. Setτ “
λkpN q P Z1

k
pBqzBkpBq. It follows from Proposition7.1(3) and Lemma7.3that evτpHq “

P b sl2. By construction, rankpevτpxqq “ rankpxq, for all x P H. Hence, evτpHregq “
pP b sl2qreg. �
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7.5. Examples. We conclude this section with a couple of extended examples.

Example 7.7.LetA be the reflection arrangement of type B3, defined by the polynomial
Q “ z1z2z3pz2

1´z2
2qpz2

1´z2
3qpz2

2´z2
3q. As shown in [39], we have thatβppAq “ 0, for all p.

In particular,A supports no net, by (5). On the other hand, this arrangement admits the
multinet from Figure2. Thus, the hypothesis of Theorem7.6is violated in this example.

We claim that Theorem7.6 does not hold for this arrangement. To verify this claim,
pick x “ px0, x1, x2q P H

F3
regpsl2q and defineω “

ř

HPA eH b ωH P A1 b sl2 by

ωz1 “ 2x1, ωz2 “ 2x2, ωz3 “ 2x0, ωz1˘z2 “ x0, ωz2˘z3 “ x1, ωz1˘z3 “ x2.

It is easy to check thatω P FregpA, sl2q. Since clearlyxi ‰ 0 for all i, we infer that
ω is supported on the whole arrangementA. On the other hand, all elements from the
right-hand side of (53) are supported on proper subarrangements ofA, by Lemma4.1.
Thus, equality does not hold in (53) in this case.

Example 7.8. Let Γ be a finite simplicial graph, with vertex setrℓs and edge setE. The
corresponding (unsigned) graphic arrangement,AΓ, is the arrangement inCℓ defined by
the polynomialQ “

ś

pi, jqPEpzi ´ zjq.
For instance, ifΓ “ Kℓ is the complete graph onℓ vertices, thenAΓ is the reflection

arrangement of type Aℓ´1. The Milnor fibrations of graphic arrangements were studied
in [39]. Clearly, multpAΓq Ď t3u, and soβppAΓq “ 0, unlessp “ 3. It turns out that
β3pAΓq “ 0 for all graphsΓ exceptΓ “ K3 andK4, in which caseβ3pAΓq “ 1.

Theorem1.2 was proved in [39] for the class of graphic arrangements. For such
arrangements, the inequalities (5) are sharp. Indeed,R1pAΓq has an essential component
if and only if Γ “ K3 or K4, in which case|EsspAΓq| “ |Ess3pAΓq| “ 1; see [51, 9].
Moreover, it follows that Theorem7.6holds for all graphic arrangements.

Finally, by [39, Theorem A], Conjecture1.9holds in the strong form (8), for all (not
necessarily unsigned) graphic arrangements.

8. Characteristic varieties and the Milnor fibration

In this section, topology comes to the fore. Using the jump loci for homology in rank
1 local systems, we prove implication (iv)ñ(v) from Theorem1.6, and we finish the
proof of Theorem1.7.

8.1. Characteristic varieties and finite abelian covers.Let X be a connected, finite-
type CW-complex. Without loss of generality, we may assumeX has a single 0-cell. Let
π “ π1pX, x0q be the fundamental group ofX, based at this 0-cell.

Let Hompπ,C˚q be the affine algebraic group ofC-valued, multiplicative characters
on π, which we will identify with H1pπ,C˚q “ H1pX,C˚q. The (degreeq, depthr)
characteristic varietiesof X are the jump loci for homology with coefficients in rank-1
local systems onX:

(54) V
q

r pXq “ tξ P Hompπ,C˚q | dimC HqpX,Cξq ě ru.
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By construction, these loci are Zariski-closed subsets of the character group. Here is
a simple example, that we will need later on.

Example 8.1. Let S “ CP1ztk pointsu. ThenV 1
r pSq equalsH1pS,C˚q “ pC˚qk´1 if

1 ď r ď k ´ 2, it equalst1u if r “ k ´ 1, and it is empty ifr ě k.

As is well-known, the geometry of the characteristic varieties controls the Betti num-
bers of regular, finite abelian covers ofX. For instance, suppose that the deck-trans-
formation group is cyclic of ordern, and fix an inclusionι : Zn ãÑ C˚, by sending
1 ÞÑ e2πi{n. With this choice, the epimorphismν : π ։ Zn defining the cyclic cover
Xν yields a (torsion) character,ρ “ ι ˝ ν : π Ñ C˚. We then have an isomorphism of
CrZns-modules,

(55) HqpXν,Cq – HqpX,Cq ‘
à

1ăd|n

pCrts{Φdptqqdepthpρn{dq,

where depthpξq :“ dimC HqpX,Cξq “ maxtr | ξ P V
q

r pXqu. For a quick proof of this
classical formula (originally due to A. Libgober, M. Sakuma, and E. Hironaka), we refer
to [12, Theorem 2.5] or [52, Theorem B.1].

As shown in [49], the exponents in formula (55) coming from prime-power divisors
can be estimated in terms of the corresponding Aomoto–Bettinumbers. More precisely,
supposen is divisible byd “ ps, for some primep. Composing the canonical projection
Zn։ Zp with ν defines a cohomology class ¯ν P H1pX, Fpq.

Theorem 8.2([49]). With notation as above, assume H˚pX,Zq is torsion-free. Then

dimC HqpX,Cρn{dq ď dimFp HqpH.pX, Fpq, δν̄q.

8.2. Characteristic varieties of arrangements.Let A be a hyperplane arrangement
in Cℓ. Since the slicing operation described in§2.2 does not affect the character torus,
H1pMpAq,C˚q “ pC˚qA, or the degree 1 characteristic varieties of the arrangement,
VrpAq :“ V 1

r pMpAqq, we will assume from now on thatℓ “ 3.
The varietiesVrpAq are closed algebraic subsets of the character torus. SinceMpAq

is a smooth, quasi-projective variety, a general result of Arapura [1] insures thatVrpAq
is, in fact, a finite union of translated subtori. Moreover, as shown in [9, 38], and, in
a broader context in [22], the tangent cone at the origin toV1pAq coincides with the
resonance varietyR1pAq.

More explicitly, consider the exponential mapC Ñ C˚, and the coefficient homo-
morphism exp:H1pMpAq,Cq Ñ H1pMpAq,C˚q. Then, ifP Ă H1pMpAq,Cq is one of
the linear subspaces comprisingR1pAq, its image under the exponential map, exppPq Ă
H1pMpAq,C˚q, is one of the subtori comprisingV1pAq. Moreover, this correspondence
gives a bijection between the components ofR1pAq and the components ofV1pAq pass-
ing through the origin.

Now recall from Arapura theory ([1, 22]) that each positive-dimensional component
of R1pAq is obtained by pullback along an admissible mapf : MpAq Ñ S, where
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S “ CP1ztk pointsu andk ě 3. Thus, each positive-dimensional component ofV1pAq
containing the origin is of the form exppPq “ f ˚pH1pS,C˚qq, with f admissible. In
view of Example8.1, the subtorusf ˚pH1pS,C˚qq is a positive-dimensional component
of V1pAq through the origin that lies insideVk´2pAq, for any admissible mapf as above.

Next, let Ā be the projectivized line arrangement inCP2, and letUpAq be its com-
plement. The Hopf fibration,π : C3zt0u Ñ CP2 restricts to a trivializable bundle map,
π : MpAq Ñ UpAq, with fiberC˚. Therefore,MpAq – UpAq ˆ C˚, and the character
torusH1pMpAq,C˚q splits asH1pUpAq,C˚qˆC˚. Under this splitting, the characteristic
varietiesV 1

r pMpAqq get identified with the varietiesV 1
r pUpAqq lying in the first factor.

8.3. The homology of the Milnor fiber. Let Q “ QpAq be a defining polynomial for
our arrangement. The restriction ofQ to the complement defines the Milnor fibration,
Q: MpAq Ñ C˚, whose typical fiber,FpAq “ Q´1p1q, is the Milnor fiber of the ar-
rangement.

The mapπ : MpAq Ñ UpAq restricts to a regular,Zn-coverπ : FpAq Ñ UpAq, where
n “ |A|. As shown in [8] (see [52, Theorem 4.10] for full details), this cover is classified
by the “diagonal” epimorphism

(56) ν : H1pUpAq,Zq։ Zn, νpπ˚paHqq “ 1 modn.

For each divisord of n, let ρd : H1pMpAq,Zq Ñ C˚ be the character defined by
ρdpaHq “ e2πi{d. Using formula (55), we conclude that

(57) H1pFpAq,Cq “ Cn´1 ‘
à

1ăd|n

pCrts{ΦdptqqedpAq,

as modules overCrZns, whereedpAq “ depthpρdq. Furthermore, applying Theorem8.2,
we obtain the “modular upper bound”

(58) epspAq ď βppAq,

valid for all primesp and integerss ě 1.

8.4. Milnor fibration and multinets. A key task now is to find suitable lower bounds
for the exponents appearing in formula (57). The next result provides such bounds, in
the presence of reduced multinets on the arrangement.

Theorem 8.3. Suppose that an arrangementA admits a reduced k-multinet. Letting
f : MpAq Ñ S denote the associated admissible map, the following hold.

(1) The characterρk belongs to f˚pH1pS,C˚qq, and ekpAq ě k ´ 2.
(2) If k “ ps, thenρpr P f ˚pH1pS,C˚qq and epr pAq ě k ´ 2, for all 1 ď r ď s.

Proof. First letN be an arbitraryk-multinet onA, with partsAα and multiplicity func-
tion m, and let f “ fN : MpAq Ñ S. It follows from Lemma6.3 that the induced
morphism between character groups,f ˚ : H1pS,C˚q Ñ H1pMpAq,C˚q, takes the char-
acterρ given byρpcαq “ ζα, whereζ1 ¨ ¨ ¨ ζk “ 1, to the character given by

(59) f ˚pρqpaHq “ ζmH
α , for H P Aα.
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Now assumeN is reduced. Takingζα “ e2πi{k in the above, we see thatρk “ f ˚pρq
belongs to the subtorusT “ f ˚pH1pS,C˚qq. SinceT lies insideVk´2pAq, formula (57)
shows thatekpAq “ depthpρkq ě k ´ 2.

Finally, supposek “ ps. Thenρpr “ f ˚pρqpś r
, which again belongs to the subtorus

T, for 1 ď r ď s. The inequalityepr pAq ě k ´ 2 now follows as above. �

Remark 8.4. An alternate way of proving Theorem8.3, part (1) is by putting together
[27, Theorem 3.11] and [20, Theorem 3.1(i)]. The proof we give here, though, is more
direct, and, besides, it will be needed in the proof of Theorem 8.6 below. Furthermore,
the additional part (2) will be used in proving Theorem1.7.

8.5. From β3pAq to e3pAq. Before proceeding, we need to recall a result of Artal Bar-
tolo, Cogolludo, and Matei, [2, Proposition 6.9].

Theorem 8.5([2]). Let X be a smooth, quasi-projective variety. Suppose V and W are
two distinct, positive-dimensional irreducible components ofVrpXq andVspXq, respec-
tively. If ξ P V X W is a torsion character, thenξ P Vr`spXq.

The next theorem establishes implication (iv) ñ (v) from Theorem1.6 in the Intro-
duction.

Theorem 8.6.LetA be an arrangement that has no rank-2 flats of multiplicity properly
divisible by3. If β3pAq ď 2, then e3pAq “ β3pAq.

Proof. From the modular bound (58), we know thate3pAq ď β3pAq. Since we are
assuming thatβ3pAq ď 2, there are only three cases to consider. First, ifβ3pAq “ 0,
then clearlye3pAq “ 0. Second, ifβ3pAq “ 1, thene3pAq “ 1, by implication (iii ) ñ
(i) from Theorem1.6and Theorem8.3(1).

Finally, supposeβ3pAq “ 2. We then know from Theorem1.6(vi) that the resonance
variety R1pAq has at least 4 essential components, all corresponding to 3-nets onA.
Pick two of them, given by 3-netsN andN 1, constructed as in Corollary6.4.

By Theorem8.3, the characteristic varietyV1pAq has two positive-dimensional com-
ponents,f ˚

N
pH1pS,C˚qq and f ˚

N 1pH1pS,C˚qq, both passing through the torsion character
ρ3. These components must be distinct, since the corresponding components of the res-
onance variety,f ˚

N
pH1pS,Cqq and f ˚

N 1pH1pS,Cqq, are distinct. By Theorem8.5, then,
ρ3 belongs toV2pAq. Formula (57) now givese3pAq ě 2. By the modular bound,
e3pAq “ 2, and the proof is complete. �

8.6. From β2pAq to e2pAq and e4pAq. We are now ready to complete the proof of
Theorem1.7from the Introduction.

Proof of Theorem1.7. The equivalence (i)ô(ii ) is a direct consequence of Theorem1.3,
casek “ F4.

SupposeA admits a 4-net. By Theorem8.3(2), then, bothe2pAq ande4pAq are at
least 2. On the other hand, the modular bound (58) gives that bothe2pAq ande4pAq are
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at mostβ2pAq. The further assumption thatβ2pAq ď 2 implies that this bound is sharp,
and we are done. �

Example 8.7(cf. [20, 27, 58]). In Theorem1.7, we were guided by the properties of the
Hessian arrangement. This is the arrangementA of 12 lines inCP2 which consists of the
4 completely reducible fibers of the cubic pencil generated by z3

1`z3
2`z3

3 andz1z2z3. Each
of these fibers is a union of 3 lines in general position. The resulting partition defines a
p4, 3q-net onLď2pAq, depicted in Figure5. Clearly, multpAq “ t4u.

From the above information, we find thatβ2pAq “ 2. Using Theorem1.7, we recover
the known result that∆Aptq “ pt´1q11rpt`1qpt2`1qs2. The Hessian arrangement shows
that the hypothesis on multiplicities is needed in Theorem1.2. Indeed,βppAq “ 0 for
all primesp ‰ 2, by Corollary3.2; consequently,∆Aptq ‰ pt ´ 1q11pt2 ` t ` 1qβ3pAq.

Finally, we infer from the above discussion that Conjecture1.9holds for the Hessian
arrangement, in the strong form (8).

8.7. More examples. We conclude this section with several applications to some con-
crete classes of examples. To start with, Theorem1.6 provides a partial answer to the
following question, raised by Dimca, Ibadula, and Măcinicin [18]: If ρd P V1pAq, must
ρd actually belong to a component ofV1pAq passing through the origin?

Corollary 8.8. Suppose L2pAq has no flats of multiplicity3r, for any r ą 1. If ρ3 P
V1pAq, thenρ3 belongs to a2-dimensional component ofV1pAq, passing through1.

Proof. Sinceρ3 P V1pAq, formulas (57)–(58) imply thatβ3pAq ‰ 0. By Theorem1.6,
then,A supports a reduced 3-multinetN . By Theorem8.3, the characterρ3 belongs to
the 2-dimensional subtorusf ˚

N
pH1pS,C˚qq Ă V1pAq. �

Remark 8.9. In [14], A. Dimca used superabundance methods to analyze the algebraic
monodromy action onH1pFpAq,Cq, for an arrangementA which has at most triple
points, and which admits a reduced 3-multinet. In the case when |A| “ 18, he discov-
ered an interesting type of combinatorics, for which he proved the following dichotomy
result: there are two possibilities forA, defined in superabundance terms, and leading to
different values fore3pAq.

An example due to M. Yoshinaga and recorded in [14] shows that one of these two
cases is actually realizable. Our Theorem1.2 then shows that the other case is not real-
izable, thereby answering the subtle question raised in [14, Remark 1.2]. This indicates
that our topological approach may also be used to solve difficult superabundance prob-
lems.

Example 8.10.Let tAmumě1 be the family of monomial arrangements, corresponding to
the complex reflection groups of typeGpm,m, 3q, and defined by the polynomials

Qm “ pzm
1 ´ zm

2 qpzm
1 ´ zm

3 qpzm
2 ´ zm

3 q.
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As noted in [27], each arrangementAm supports ap3,mq-net with partition given by the
factors ofQm, and has Latin square corresponding toZm. There are 3 mono-colored flats
of multiplicity m, and all the others flats inL2pAmq have multiplicity 3.

With this information at hand, Lemma3.1easily implies thatβ3pAmq “ 1 if 3 ∤ m, and
β3pAmq “ 2, otherwise. In the first case, we infer from Theorem1.6 thate3pAmq “ 1.
If m “ 3, thenA3 is the Ceva arrangement from Example3.9; in this case, Theorem
1.6shows thate3pA3q “ 2. Finally, if m “ 3d, with d ą 1, the multiplicity assumption
from Theorem1.6no longer holds; nevertheless, the methods used here can be adapted
to show thate3pA3dq “ 2, for all d. In fact, it can be shown thateppAmq “ βppAmq, for
all m ě 1 and all primesp, see [40] for full details.

We conclude with an in-depth analysis of a family of arrangements which highlights
the necessity of our multiplicity assumptions from Theorem1.6, and reveals several other
interesting phenomena.

Example 8.11.Let tAmumě1 be the family of full monomial arrangements, correspond-
ing to the complex reflection groups of typeGpm, 1, 3q, and defined by the polynomials

Qm “ z1z2z3pzm
1 ´ zm

2 qpzm
1 ´ zm

3 qpzm
2 ´ zm

3 q.

It is easy to see that multpAmq “ t3,m`2u. Using Lemma3.1, we infer thatβ3pAmq “ 1
if m “ 3d ` 1, andβ3pAmq “ 0, otherwise.

As noted in [27], each arrangementAm supports a 3-multinetNm (non-reduced for
m ą 1), with multiplicity function equal tom on the hyperplanesz1 “ 0, z2 “ 0, z3 “ 0,
and equal to 1, otherwise. Letf : MpAmq Ñ S “ CP1zt3 pointsu be the associated
admissible map, and letρ P H1pS,C˚q be the diagonal character used in the proof of
Theorem8.3for k “ 3.

If m “ 1, thenA1 is the reflection arrangement of type A3 from Example7.8, andN1

is the 3-net from Figure1. In this case, Theorem1.6applies, givinge3pAq “ β3pAq “ 1.
Now supposem “ 3d ` 1, with d ą 0. In this case, even thoughNm is not reduced,

the equalityf ˚pρq “ ρ3 still holds, sincem ” 1 mod 3. Consequently,ρ3 belongs to the
componentT “ f ˚pH1pS,C˚qq of V1pAmq. Hence, by formula (57), e3pAmq ě 1.

Althoughβ3pAmq “ 1, we claim thatAm supports no reduced 3-multinet. Indeed, sup-
pose there was such a multinetN 1

m, with corresponding admissible mapf 1 : MpAmq Ñ
S. The same argument as above shows thatρ3 lies in the componentT 1 “ f 1˚pH1pS,C˚qq
of V1pAq. If T “ T 1, then f ˚pH1pS,Cqq “ f 1˚pH1pS,Cqq, forcingNm andN 1

m to be con-
jugate under the naturalΣ3-action, by Lemma6.5. This is clearly impossible, sinceN 1

m

is reduced andNm is not reduced. Hence, the componentsT andT 1 are distinct, and so
Theorem8.5implies thatρ3 P V2pAmq. By formula (57), we must then havee3pAmq ě 2,
thereby contradicting inequality (58).

Remark 8.12. The above family of examples shows that implication (iii ) ñ (i) from
Theorem1.6 fails without our multiplicity restrictions. Indeed,β3pAmq “ 1, yetAm

supports no reduced 3-multinet ifm ě 2.



MILNOR FIBRATIONS, MODULAR RESONANCE, AND ALGEBRAIC MONODROMY 39

Remark 8.13. These examples also show that the inclusionZ1
F3

pM q Ď ZF3pM q from
Theorem1.3(ii ) can well be strict, even for realizable matroids. Indeed, consider the
arrangementsA3d`1 with d ą 0. The equalityZ1

F3
pA3d`1q “ ZF3pA3d`1q would imply

thatZ1
F3

pA3d`1qzBF3pA3d`1q ‰ H, sinceβ3pA3d`1q ‰ 0. By Lemma4.1, A3d`1 would
then support a 3-net, contradicting the conclusion of the previous remark.

Remark 8.14. Note that the inequality (5) is strict forA3d`1 andk “ 3 whend ą 0,
since Ess3pA3d`1q “ H andβ3pA3d`1q “ 1. The same argument also shows that equality
(vi) from Theorem1.6fails without our multiplicity assumptions.

Remark 8.15. The above analysis shows thate3pAmq “ 1, and thus (58) holds as an
equality if 3 | m ` 2. We also have thate3pAmq “ β3pAmq “ 0 if 3 ∤ m ` 2. In fact,
it can be checked that Conjecture1.9 holds in the strong form (8), for all full mono-
mial arrangements. For a complete proof of Conjecture1.9(8) for all complex reflection
arrangements, we refer to [40, 17, 23].

9. A family of matroids

We conclude by constructing an infinite family of matroidsM pmq which are realiz-
able overC if and only if m ď 2, and with the property thatβ3pM pmqq “ m. As an
application, we establish part (iv) of Theorem1.6 from the Introduction, thereby com-
pleting the proof of that theorem.

9.1. Matroids coming from abelian groups. Given a finite abelian groupG and an
integerm ě 1, there is a simple matroidM pG,mq of rank at most 3 on the product
groupGm. The dependent subsets of size 3 of this matroid are all 3-tuplestv, v1, v2u for
whichv ` v1 ` v2 “ 0.

In this section, we takeG “ F3 and omitG from the notation. A useful preliminary
remark is thatv ` v1 ` v2 “ 0 in F3 if and only if eitherv “ v1 “ v2 or v, v1, andv2 are
all distinct. Note also that GLmpF3q acts naturally on the matroidM pmq.

Clearly,M p1q has rank 2, and is realized inCP2 by an arrangement of 3 concurrent
lines. It is equally clear thatM pmq has rank 3, for allm ą 1. It is not hard to check that
M p2q is realized overC by the Ceva arrangement from Example3.9. Our first goal is to
show thatM pmq cannot be realized overC, for anym ą 2.

It is useful to remark that the above construction is relatedto a classical topic, namely,
finite affine geometries. Over a Galois fieldk “ Fps, the dependent subsets of the as-
sociated rankm` 1 simple matroid AGpm, kq are given by affine dependence inkm, for
m ě 1. LetMkpmq be the simple matroid of rank at most 3 onkm whose size 3 dependent
subsets are given by all collinearity relations. Plainly, all 2-flats of Mkpmq have multi-
plicity ps. Furthermore,Mkp1q has rank 2, hence is realizable inCP2, while Mkpmq has
rank 3 form ą 1, being obtained from AGpm, kq by rank 3 truncation.

It is straightforward to check thatM pmq “ MF3pmq, for all m; see for instance [10].
With this remark, the next two lemmas (to be used later on in this section) become
obvious from a geometric viewpoint.
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For eachm ě 1, define a map

(60) q: M pmq ˆ M pmq Ñ M pmq

by settingqpv, vq “ v andqpv, v1q “ ´v ´ v1 if v ‰ v1. By construction,qpv, v1q is the
unique point inv _ v1 (the flat generated byv, v1) different fromv andv1.

Lemma 9.1. For any v ‰ v1, the settv, v1, qpv, v1qu belongs to L2pM pmqq. Conversely,
every rank2 flat of M pmq is of this form. In particular, all flats in L2pM pmqq have
multiplicity 3.

The matroidsM pmq have a lot of 3-nets. More precisely, fixa P rms and write

(61) M pmq “
ž

iPF3

Mipmq,

whereMipmq “ tv “ pv1, . . . , vmq P Fm
3 | va “ iu. We then have the following lemma.

Lemma 9.2. For each mě 2 and aP rms, the partition(61) defines a3-net onM pmq,
with all submatroidsMipmq being line-closed and isomorphic toM pm´ 1q.

Proof. First note that an affine line whose direction is transversal to the direction of an
affine hyperplane intersects that hyperplane in exactly one point. It follows that our
partition satisfies the criterion from Lemma2.3 for k “ 3, and thus defines a 3-net on
M pmq. The proofs of the other claims are immediate. �

Remark 9.3. More generally, fork “ Fps andk “ ps, the same argument shows that
the affine truncationMkpmq supports a non-trivialk-net, providedm ě 2 andk ě 3. As
explained in§2.4, this fact implies thatMkpmq is non-realizable overC, for k ě 5. We
will give more precise results of this type in Proposition9.5(2) and Theorem9.7below.

9.2. The β-invariants and matroid realizability. Next, we show that our family of
matroids is universal forβ3-computations, in the following sense.

Proposition 9.4. For all m ě 1, we have thatβ3pM pmqq “ m.

Proof. For m “ 1, this is clear. The inequalityβ3pM pmqq ď m follows by induction on
m, using Corollary3.6and Lemma9.2.

For eacha P rms, define a vectorηa P F
M pmq

3 by settingηapvq “ va. We claim that
ηa P ZF3pM pmqq. Indeed, lettv, v1, v2u be a flat inL2pM pmqq, so thatv ` v1 ` v2 “ 0.
Thenηapvq ` ηapv1q ` ηapv2q “ 0, and the claim follows from Lemma3.1.

To prove thatβ3pM pmqq ě m, it is enough to show thatη1, . . . , ηm andσ are indepen-
dent, whereσ P F

M pmq
3 is the standard diagonal vector (i.e.,σv “ 1, for all v P M pmq).

To that end, suppose
ř

a caηa `cσ “ 0. Evaluating onv “ 0, we find thatc “ 0. Finally,
evaluation on the standard basis vectors ofFm

3 givesca “ 0 for all a, as needed. �

Proposition 9.5. Letk “ Fps be a finite field different fromF2. Then,

(1) βppMkpmqq ě m, for all mě 1.
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(2) If k ‰ F3, the matroidsMkpmq are non-realizable overC, for all m ě 2.

Proof. From our hypothesis onk, we have thatΣpkq “ 0, by Lemma4.3. In view of
Lemma3.1, any affine functionτ P kMkpmq belongs toZkpMkpmqq. Indeed, letX “
tαu ` p1 ´ αqv | α P ku be a rank-2 flat ofMkpmq. Then

ÿ

wPX

τw “
ÿ

αPk

ατu ` p1 ´ αqτv “ ps ¨ τv ` Σpkqpτu ´ τvq “ 0,

as needed. An argument as in the proof of Proposition9.4now shows that assertion (1)
holds.

To prove assertion (2), we use the Hirzebruch–Miyaoka–Yau inequality from [31].
This inequality involves the numbers

(62) ti “ |tX P L2pM q | |X| “ iu|

associated to a matroidM for each 1ă i ď |M |. When there are no rank-2 flats of
multiplicity |M | or |M | ´ 1, andM is realized by a line arrangement inCP2, then

(63) t2 `
3
4

t3 ě |M | `
ÿ

iě4

pi ´ 4qti.

In our case,|M | “ psm, and the only non-zero numberti occurs wheni “ ps ą 3.
This clearly violates (63), thus showing thatM is not realizable. (Note that this argument
breaks down fork “ F3.) �

9.3. Realizability of the M pmq matroids. The casek “ F3 is much more subtle. In
order to proceed with this case, we need to recall a result of Yuzvinsky (Corollary 3.5
from [58]). Let A be an arrangement inC3.

Lemma 9.6([58]). LetN be ap3,mnq-net (mě 3) onA, such that each classAi can be
partitioned into n blocks of size m, denotedAi j , and for every pair i, j, there is a k such
thatA1i, A2 j, andA3k are the three classes of ap3,mq-subnetNi j of N . If, moreover,
each class ofNi j is a pencil, then every class ofN is also a pencil.

Realizability in the family of matroidstM pmqumě1 is settled by the next result.

Theorem 9.7. For any mě 3, the sub-lattice Lď2pM pmqq is not realizable overC, i.e.,
there is no arrangementA in Cℓ such that Lď2pM pmqq – Lď2pAq, as lattices.

Proof. By Lemma9.2, the matroidM pm´ 1q embeds inM pmq; thus, we may assume
m “ 3. Clearly, it is enough to show thatLď2pM p3qq cannot be realized by any arrange-
ment inC3.

Assuming the contrary, we will use Lemma9.6 to derive a contradiction. Takea “ 1
in Lemma9.2, and denote byN the associatedp3, 9q-net onM p3q. Write each class in
the form

(64) Mip3q “ tiu ˆ F3 ˆ F3 “
ž

jPF3

Mi j p3q,
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whereMi j p3q “ tiu ˆ t ju ˆ F3. For j, j 1 P F3, define j2 P F3 by j ` j 1 ` j2 “
0. To check the first assumption from Lemma9.6, we have to show that the partition
M0 jp3q

š

M1 j1p3q
š

M2 j2p3q is a 3-subnet ofN .
Pick v “ pi, j, kq andv1 “ pi 1, j 1, k1q in two different classes of this partition. Note

that necessarilyi ‰ i 1, by construction. By Lemma9.1, v _ v1 “ tv, v1, v2u, where
v2 “ ´v ´ v1. Thus, we must havev2 “ pi2, j2, k2q, wherei ` i 1 ` i2 “ j ` j 1 ` j2 “ 0.
This implies thatv2 belongs to the third class of the partition, as required for the 3-net
property. Clearly, the 3-net defined by this partition is a 3-subnet ofN .

As noted before, each class of the partition has rank 2, beingisomorphic to the matroid
M p1q. Hence, Lemma9.6 applies, and implies that all classes ofN have rank 2. On
the other hand, Lemma9.2 insures that these classes are isomorphic toM p2q. This is a
contradiction, and so the proof is complete. �

Let M be a simple matroid of rank at least 3. By taking a generic slice, it is easy to
check that the following statements are equivalent:

(1) The rank 3 truncationτ3pM q is realizable overC;
(2) The sub-latticeLď2pτ3pM qq is realizable overC;
(3) The sub-latticeLď2pM q is realizable overC.

Applying now Proposition9.5(2) and Theorem9.7 to the matroidsM “ AGpm, kq,
we obtain the following corollary.

Corollary 9.8. Let k “ Fps and set k“ ps. Suppose mě 2 and kě 3. Then the lattice
Lď2pAGpm, kqq is realizable overC if and only if m“ 2 and k“ 3.

Remark 9.9. It is well-known that, form ě 2 andk ě 3, the matroid AGpm, kq is
realizable overC if and only if m “ 2 andk “ 3, see for instance Oxley [47, p. 522].
Clearly, our non-realizability result is stronger: not only is this matroid non-realizable,
but even its collinearity relations are not realizable.

9.4. Collections of 3-nets. For the rest of this section,A will denote an arrangement
in C3. Our goal is to prove the following theorem, which verifies assertion (iv) from
Theorem1.6in the Introduction.

Theorem 9.10.Suppose L2pAq has no flats of multiplicity properly divisible by3. Then
β3pAq ď 2.

Our strategy is based on the mapλF3 : t3-nets onAu Ñ ZF3pAqzBF3pAq from Theo-
rem1.3. Recall that the mapλF3 is always injective. Moreover, as shown in Lemma4.8,
this map is also surjective when the above assumption on multiplicities is satisfied. In
this case,β3pAq ě m if and only if there is a collectionN 1, . . . ,Nm of 3-nets onA such
that the classesrλF3pN

1qs, . . . , rλF3pN
mqs are independent inZF3pAq{BF3pAq.

Let A be an arbitrary arrangement. When the above property holds,we call the nets
tN auaPrms independent. For v “ pv1, . . . , vmq P M pmq, we setAv “

Ş

aPrms N
a
va, where

A “
š

iPF3
N a

i is the partition associated toN a. We say that the familytN auaPrms has
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theintersection propertyif Av ‰ H for all v, and thestrong intersection propertyif there
is an integerd ą 0 such that|Av| “ d for all v.

Clearly, we have a partition,Av
š

Av1

š

Av2 , for any flattv, v1, v2u P L2pM pmqq. If
all these partitions define 3-nets, we say thattN auaPrms has thenet property.

Our starting point towards the proof of Theorem9.10is the following theorem.

Theorem 9.11.Suppose there is an arrangementA in C3, and a collection of3-nets
onA, tN ,N 1,N 2u, that has both the strong intersection property and the net property.
Then the sub-lattice Lď2pM p3qq is realizable overC.

Proof. Let Sdp3q Ď Sym.p3q be the vector space of degreed polynomials in 3 variables.
We will realizeLď2pM p3qq in the dual space,V “ Sdp3q˚.

For each hyperplaneH P A, choose a linear formfH in 3 variables such thatH “
kerp fHq. Next, we associate to a pointv P M p3q the vectorQv “

ś

HPAv
fH P V˚zt0u,

using the strong intersection property. Note thatt fHuHPA are distinct primes in the ring
Symp3q. In particular,tQvuvPM p3q are distinct elements ofPpV˚q, sinceAv X Av1 “ H
for v ‰ v1.

We have to show thattv1, v2, v3u is a dependent set inM p3q if and only if the set
tQv1,Qv2,Qv3u has rank 2. Iftv1, v2, v3u is a flat in L2pM p3qq, the rank property for
tQv1,Qv2,Qv3u follows from the fact that the partitionAv1

š

Av2

š

Av3 defines a 3-net,
according to [27, Theorem 3.11].

Conversely, lettv1, v2, v1
3u be a size 3 independent subset ofM p3q, so thatv1`v2`v1

3 ‰
0. Consider the flattv1, v2, v3u P L2pM p3qq, wherev1 ` v2 ` v3 “ 0; in particular,
v3 ‰ v1

3. Assume thatQv1
3

“ c1Qv1 ` c2Qv2. Pick hyperplanesH1 P Av1 andH2 P Av2,
and letX “ H1 X H2. By the net property, there is a hyperplaneH3 P Av3 such that
tH1,H2,H3u Ď AX.

Let x “ X be the intersection point of the projective linesH1 andH2. We then have
Qv1pxq “ Qv2pxq “ 0, and thusQv1

3
pxq “ 0. Therefore, there is a hyperplaneH1

3 P
Av1

3
X AX. Consequently, the arrangementAX contains the four distinct hyperplanes

tH1,H2,H3,H1
3u. Hence, the flatX must be monocolor with respect to the collection

tN ,N 1,N 2u, that is,AX Ď Ni X N 1
j X N 2

k “ Av, wherev “ pi, j, kq P M p3q. Since
Hi P Avi for i “ 1, 2, we infer thatv1 “ v2 “ v, a contradiction. Our realizability claim
is thus verified. �

In view of Theorem9.7, Theorem9.10will be proved once we are able to show that
the independence property fortN ,N 1,N 2u forces both the strong intersection property
and the net property.

Lemma 9.12. For a collectiontN 1, . . . ,Nmu of 3-nets onA, the intersection property
implies both the strong intersection property and the net property.

Proof. We start with the net property. LetX “ tv, v1, v2u be a flat inL2pM pmqq. We
know that the first two classes of the partitionpAv,Av1 ,Av2q are non-empty. Writev “
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pvaq P Fm
3 , and similarly forv1, v2. By construction of the matroidM pmq, the elements

tva, v1
a, v

2
au are either all equal or all distinct, for anya P rms.

Pick H P Av andH1 P Av1 . ThenH P N a
va

andH1 P N a
v1

a
, for somea with va ‰ v1

a,
sincev ‰ v1. HencetH,H1,H2u P L2pAq, for a unique hyperplaneH2, distinct fromH
andH1, and which belongs toN a

v2
a
, by the net property forN a.

We are left with checking thatH2 P Av2 , that is,H2 P N b
v2

b
for all b P rms. If vb ‰ v1

b,

we may use the previous argument. Ifvb “ v1
b, thenv2

b “ vb “ v1
b. Note thatX P L2pN b

vb
q

and thereforeH2 P N b
vb

, which is line-closed inA, by Lemma2.2(2). By the intersection
property,Av2 ‰ H. According to Lemma2.3, then,tN au has the net property.

It will be useful later on to extract from the preceding argument the following impli-
cation:

(65) Av ,Av1 ‰ H ñ Aqpv,v1q ‰ H ,

whereq is defined in (60).
We deduce from the net property that|Av| “ |Av1 | ą 0, for anyv ‰ v1 P M pmq, by

using the flatX “ tv, v1, qpv, v1qu. The strong intersection property follows. �

9.5. The closure operation. We have to analyze the relationship between the indepen-
dence and the intersection properties. In one direction, things are easy.

Lemma 9.13.If a collectiontN 1, . . . ,Nmu of 3-nets onA has the intersection property,
the nets are independent.

Proof. We have to show thatλF3pN
1q, . . . , λF3pN

mq andσ are independent inFA3 . Note
that λF3pN

aqH “ va, by construction, for anyv “ pv1, . . . , vmq P Fm
3 and H P Av.

Independence then follows exactly as in the proof of Proposition 9.4. �

For the converse, we will need the well-known line-closure operation from matroid
theory (see for instance Halsey [29]). In the case of our family of matroidsM pmq, this
operation may be conveniently described as follows. For a subsetM Ď M pmq, put
CM “ tqpu, vq | u, v P M u. Then iterate and defineCM “

Ť

sě1 CsM , the line-
closure ofM . The next lemma follows easily from the definitions.

Lemma 9.14.For each mě 1, the following hold.

(1) If M Ď M pmq, thenM Ď CM Ď CM .
(2) If M Ď M 1, then CsM Ď CsM 1 for all s, andCM Ď CM 1.
(3) If M Ď M 1 and the submatroidM 1 is line-closed inM pmq, then CsM and

CM coincide, when computed inM pmq andM 1.

Given a collectiontN auaPrms of 3-nets onA, setM “ tv P M pmq | Av ‰ Hu. We
deduce from (65) the following characterization of the intersection property.

Corollary 9.15. The familytN 1, . . . ,Nmu has the intersection property if and only if
CM “ M pmq.



MILNOR FIBRATIONS, MODULAR RESONANCE, AND ALGEBRAIC MONODROMY 45

For m “ 1, it is clear that independence implies the intersection property. We need
to establish this implication form “ 3. We have to start with the casem “ 2. In order
to minimize the amount of subcase analysis, it is useful to make a couple of elementary
remarks on matroid symmetry in the familytM pmqumě1.

Clearly, AutpM p1qq “ Σ3. It is equally clear that a partitionrms “ rns
š

rn1s induces
a natural morphism, AutpM pnqq ˆ AutpM pn1qq Ñ AutpM pmqq. We will need more
details form “ 2.

Let X “ tv, v1, v2u be a size 3 subset ofF2
3. It is easy to see thatX is dependent if and

only if X “ tpi, 0q, pi, 1q, pi, 2qu, or X “ tp0, jq, p1, jq, p2, jqu, or X “ tpi, giq | i P F3u,
for someg P Σ3.

Now assume thatX “ tpi, jq, pi 1, j 1q, pi2, j2qu is independent. ModuloΣ2 Ď GL2,
we may assume that|ti, i 1, i2u| “ 2. By pΣ3 ˆ idq-symmetry, we may normalize this
to i “ i 1 “ 0 and i2 “ 1, hencej ‰ j 1. If |t j, j 1, j2u| “ 3, the flatX is normal-
ized totp0, 0q, p0, 1q, p1, 2qu, by pid ˆΣ3q-symmetry. Otherwise,X “ tp0, 0q, p0, 1q, v2u,
with v2 “ p1, 0q or v2 “ p1, 1q, and these two cases are GL2-conjugate, as well as
tp0, 0q, p0, 1q, p1, 0qu andtp0, 0q, p0, 1q, p1, 2qu. To sum up, any independent subset of
size 3 can be put in the normal formtp0, 0q, p0, 1q, p1, 0qu, modulo AutpM p2qq.

Lemma 9.16.LetM Ď M p2q be a submatroid with at least3 elements.

(1) If |M | “ 3 andM is independent, thenCM “ M p2q.
(2) If |M | ě 4, thenCM “ M p2q.

Proof. Part (1). First, putM in normal form, as explained above. Then compute

qpp0, 0q, p0, 1qq “ p0, 2q, qpp0, 0q, p1, 0qq “ p2, 0q, qpp0, 2q, p2, 0qq “ p1, 1q,

qpp1, 0q, p1, 1qq “ p1, 2q, qpp0, 1q, p1, 1qq “ p2, 1q, qpp0, 0q, p1, 1qq “ p2, 2q,

and note that all the resulting values ofq belong toCM .
Part (2). Pick a size 4 subsettv1, v2, v3, v4u Ď M . Thentv1, v2, v3u andtv1, v2, v4u

cannot be both dependent. Our claim follows from part (1) and Lemma9.14(2). �

We will need to know the behavior of the mapλF3 : t3-nets onAu Ñ ZF3pAqzBF3pAq
with respect to the naturalΣ3-action on 3-nets. The description below does not require
the realizability of the matroidA.

Denote byσ P BF3pAq the constant cocycle equal to 1 onA, as usual. Letg P Σ3

be the 3-cyclep1, 2, 0q and leth P Σ3 be the transpositionp1, 2q, both acting onF3. It is
readily checked that, for any 3-netN onA,

(66) λF3pg ¨ N q “ σ` λF3pN q and λF3ph ¨ N q “ ´λF3pN q.

We may now settle the casem “ 2.

Proposition 9.17. If N andN 1 are independent3-nets onA, then the pairtN ,N 1u has
the intersection property.
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Proof. Plainly, for anyi P F3 there is aj P F3 such thatApi, jq “ Ni X N 1
j ‰ H and

similarly, for any j P F3 there is ani P F3 such thatApi, jq ‰ H. In particular,|M | ě 3.
If either |M | ě 4, or |M | “ 3 andM is independent, we are done, in view of Lemma
9.16and Corollary9.15.

Assume then that|M | “ 3 andM is dependent. According to a previous remark,
M “ tpi, giq | i P F3u, for someg P Σ3. For anyi P F3, we infer thatNi “

š

j NiXN 1
j Ď

N 1
gi. Therefore,N “ g ¨ N 1. It follows from (66) that rλF3pN qs “ ˘rλF3pN

1qs, in
contradiction with our independence assumption. �

Corollary 9.18. Assume L2pAq contains no flats of multiplicity3r, with r ą 1. Then
β3pAq ě 2 if and only if there exist two3-nets onA, with partstNiu andtN 1

j u, respec-
tively, such thatNi X N 1

j ‰ H, for all i , j P F3.

Proof. Follows from Lemma4.1, Lemma4.8, Lemma9.13and Proposition9.17. �

9.6. A bound of β3pAq. In this last subsection, we complete the proof of Theorem1.6
from the Introduction. We start by analyzing the critical case,m “ 3. LettN ,N 1,N 2u
be a triple of 3-nets on an arrangementA, with partstNiu, tN 1

j u, andtN 2
k u.

For a fixedk P F3, setMk “ tu P M p2q | pu, kq P M u. Hence,M “
š

kPF3
Mkˆtku,

whereMk is identified withM X pM p2q ˆ tkuq, and all submatroidsM p2q ˆ tku are
line-closed inM p3q and isomorphic toM p2q, as follows from Lemma9.2.

We first exploit the independence property.

Lemma 9.19. If N , N 1, andN 2 are independent3-nets, then there is no kP F3 such
thatMk is a size3 dependent subset ofM p2q.

Proof. Assuming the contrary, leth2
k : ZF3pAq Ñ ZF3pA

2
kq be the canonical homomor-

phism associated to the netN 2, as in Lemma3.4. We know from Proposition3.5 that
kerph2

kq is 1-dimensional. Leth be the restriction ofh2
k to the 4-dimensional subspace of

ZF3pAq spanned byλF3pN q, λF3pN
1q, λF3pN

2q andσ, a subspace we shall denote byZ.
Note that all these 4 elements ofFA3 are constant onAv, for anyv P M , by construc-

tion. We deduce from our assumption onMk thatA2
k is of the form

A2
k “ Apu1,kq

ž

Apu2,kq

ž

Apu3,kq,

with u1 `u2 `u3 “ 0 P F2
3. As noted before, composingh with the restriction maps from

A2
k to Apui ,kq gives three linear maps, denotedr i : Z Ñ F3. Moreover, kerphq “ kerprq,

wherer “ pr1 r2 r3q : Z Ñ F3
3.

SinceλF3pN q ” i onNi, and similarly forN 1 andN 2, we infer that the matrix ofr

is
´

u1 u2 u3
k k k
1 1 1

¯

. The fact thatu1 ` u2 ` u3 “ 0 implies that dim kerprq ě 2. Therefore,

dim kerph2
kq ě 2, a contradiction. �

Here is the analog of Proposition9.17.
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Proposition 9.20. If N , N 1, N 2 are independent3-nets onA, then this triple of nets
has the intersection property.

Proof. By Corollary9.15, we have to show thatCM “ M p3q. Due to Proposition9.17,
we know thatNi X N 1

j ‰ H, for all i, j P F3. We deduce that, for anyu P M p2q, there
is k P F3 such thatpu, kq P M . In particular,|M | ě 9.

Similarly, for anyu P M p2q, there is an elementk P F3 such thatpk, uq P M , by using
N 1 andN 2. This shows that we cannot haveM Ď M p2q ˆ tku, for somek, by taking
u “ p j 1, k1q, with k1 ‰ k.

We claim that ifM p2q ˆ tku Ď CM , for somek P F3, then we are done. Indeed,
pick pu1, k1q P M with k1 ‰ k, take an arbitrary elementu P M p2q, and compute
qppu, kq, pu1, k1qq “ p´u ´ u1, k2q P CM , wherek2 is the third element ofF3. This
shows thatM p2q ˆ tk2u Ď CM . Again,qppu, k2q, pu1, kqq “ p´u ´ u1, k1q P CM , for
all u, u1 P M p2q. Hence,M p2q ˆ tk1u Ď CM , and consequentlyCM “ M p3q, as
claimed.

If |Mk| ě 4 for somek P F3, thenM p2qˆtku Ď CM , by Lemma9.16(2) and Lemma
9.14(2)–(3). Otherwise,|Mk| “ 3, for all k. If Mk is independent inM p2q for somek,
Lemma9.16(1) implies as before thatM p2q ˆ tku Ď CM . The case when eachMk is
dependent inM p2q is ruled out by Lemma9.19. Our proof is now complete. �

Putting together Proposition9.20, Lemma9.12, Theorem9.11, and Theorem9.7, we
obtain the following corollary.

Corollary 9.21. No arrangementA supports a triple of3-netsN ,N 1,N 2 such that
rλF3pN qs, rλF3pN

1qs, andrλF3pN
2qs are independent in ZF3pAq{BF3pAq.

We are finally in a position to prove Theorem9.10, and thus complete the proof of
Theorem1.6in the Introduction.

Proof of Theorem9.10. By assumption,L2pAq has no flats of multiplicity properly di-
visible by 3. Hence, by Lemma4.1 and Lemma4.8, the image of the mapλF3 is
ZF3pAqzBF3pAq. Therefore, by Corollary9.21, we must haveβ3pAq ď 2. �
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