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New mimetic discretizations of diffusion-type equations (for instance, equations modeling
single phase Darcy flow in porous media) on unstructured polygonal meshes are derived. The
first order convergence rate for the fluid velocity and the second-order convergence rate for
the pressure on polygonal, locally refined and non-matching meshes are demonstrated with
numerical experiments.
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1. Introduction

The determining factor for reliability, accuracy, and efficiency of numerical sim-
ulations in porous media applications is accurate locally conservative discretizations.
Practical experience shows that the most effective discrete approximations mimic the
underlying properties of original continuum differential operators. One such approx-
imations, the mimetic finite difference (MFD) method, has been applied successfully
to several applications including diffusion processes on both conformal [7,9,16,21] and
locally refined [13] meshes, magnetic diffusion and electromagnetics [8], continuum me-
chanics [15], and gas dynamics [4]. The convergence of the MFD method on triangular
and quadrilateral meshes has been proved in [2,3].

As mathematical modeling of fluid flow in reservoirs becomes more sophisticated,
the need for discretization methods that handle meshes with mixed types of elements
has become clear. In this paper, we derive new mimetic discretizations on unstructured
polygonal meshes. Generally speaking, most meshes used in applications are polygonal

∗ The work was partly performed at Los Alamos National Laboratory operated by the University of
California for the US Department of Energy under contract W-7405-ENG-36. The U.S. Government’s
right to retain a non-exclusive, royalty free license in and to any copyright is acknowledged. The research
of the first author was supported by a grant from the Los Alamos Computer Science Institute (LACSI).∗∗ Corresponding author.



302 Y. Kuznetsov et al. / Mimetic finite differences on polygonal meshes

meshes. For instance, locally adaptive triangular meshes are polygonal meshes consist-
ing of triangular and degenerate quadrilateral elements. Another example comes from
applications with nonmatching meshes. Here, we may consider the mesh points on the
interface between two nonmatching meshes as vertices of a conformal polygonal mesh.

In this paper, we consider the diffusion problem formulated as a system of the
first-order equations for the mass balance and the fluid velocity. The system models
single phase Darcy flow in porous medium applications. We begin with considering each
mesh polygon as an independent domain and generate an independent discretization for
this polygon. The mimetic technique uses the discrete flux and divergence operators
which are adjoint to each other. The system of element-based discretizations is closed
by imposing continuity conditions for the pressure and normal velocity component on
polygon edges.

The earlier MFD method shows reasonable convergence rate for the pressure vari-
able on polygonal meshes consisting of only convex elements. Unfortunately, it does not
preserve linear solutions, the convergence rate for the velocity variable is below optimal,
and it cannot be extended to meshes with degenerate elements. The new MFD method
is more accurate than the old one and has optimal convergence rates for both scalar and
vector variables. Moreover, the new method supports nonconvex polygons and degen-
erate polygons, i.e. polygons with s vertices which can be described as polygons with
s − 1 vertices.

The development of the new MFD method on unstructured polygonal meshes be-
came possible after performing a deep analysis of recent theoretical results concern-
ing new finite element prolongation operators in Hdiv on polygonal and polyhedral
meshes [12]. These operators produce the finite element vector functions which have
constant divergence in each polygon. In this paper, some of the ideas from [12] are
used to derive an accurate scalar product in the space of discrete velocities – one of
the key elements of the mimetic technique. It is pertinent to note that the new mimetic
discretization is the novel discretization. Generally speaking, it cannot be derived from
a mimetic discretization on a triangular mesh by eliminating some degrees of freedom
(e.g., by computing a Shur complement).

Nowadays, the use of polygonal meshes is limited by a small number of accurate
discretization schemes. We mention here the finite volume scheme proposed in [19].
The scheme is exact for linear solutions but results in a nonsymmetric coefficient ma-
trix. Therefore, it requires the use of nontraditional iterative solvers. The new MFD
method is also exact for linear solutions but results in an algebraic problem with a sym-
metric positive definite matrix. Therefore, the problem may be solved with the conjugate
gradient method. We believe that the MFD method developed in this paper will make
polygonal meshes more attractive for engineering applications.

The paper outline is as follows. In section 2, we formulate a model elliptic bound-
ary value problem and describe the general framework of the MFD method. In section 3,
we analyze the new scalar product in the space of discrete velocities. In section 4, we
prove that the resulting numerical scheme is exact for uniform flows. An efficient so-
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lution technique based on static condensation and computational results are given in
section 5.

2. The mimetic finite difference method

2.1. Formulation of the problem

Let us consider a model elliptic boundary value problem that in porous medium
applications models single phase Darcy flow:

div F = b,

F = −K grad p.
(1)

The problem is posed in a bounded polygonal domain � ⊂ �2 and is subject to appro-
priate boundary conditions on ∂�. Here p denotes a scalar function that we refer to as
the pressure, F denotes a vector function that we refer to as the velocity, K denotes a full
tensor representing the rock permeability divided by the fluid viscosity, and b denotes a
source function.

Let �h be a non-overlapping conformal partition of � onto polygonal elements ei ,

�h =
m⋃

i=1

ei. (2)

The elements ei are closed simply-connected polygons with nonzero angles and edges.
The number of polygon edges is equal to the number of polygon vertices. The conformal
partition implies that (a) if ei ∩ ej consists of exactly one point, then it is a common
vertex of ei and ej and (b) if for i �= j , ei ∩ ej consists of more than one point, then
ei ∩ ej is the union of common edges of ei and ej , i.e.

ei ∩ ej =
sij⋃

k=1

Lk
ij ,

where Lk
ij denotes a mesh edge common to ei and ej and sij is the number of those edges

(see figure 2). In other words, there are no gaps and overlaps in the mesh.
The class of such partitions is very wide and includes meshes used in many appli-

cations. For instance, locally refined (LR) meshes with hanging nodes are among them.
If we consider a hanging node as the additional vertex of the corresponding element,
we get a polygonal partition (2) containing degenerate polygons, i.e. polygons with an-
gles equal to 180◦ between some adjacent edges (see section 5.4 for a few examples of
such meshes). A nonmatching mesh is another example of a polygonal mesh. If we
consider the mesh points on the interface between two nonmatching meshes as vertices
of a conformal mesh, we get a polygonal partition (2) containing degenerate (possibly
nonconvex) polygons (see section 5.6 for a few examples of such meshes).
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2.2. Discretization on element

Let us introduce operators G and D for a polygon e by

G p = −K grad p, DF =
{

div F on e,

−F · n on ∂e,

where ∂e denotes the boundary of e. We shall refer to G and D as the flux and extended
divergence operators, respectively. The operator D acts from the space Hdiv(e) to the
space L2(e) × L2(∂e). The operators G and D are adjoint to each other. To show this
property we introduce the following scalar products:

(F, G)X,e =
∫

e

F · K−1G dV and (p, q)Q,e =
∫

e

pq dV +
∮

∂e

pq dl,

in the space X of velocities and in the space Q of pressures, respectively. Using the
above notations we may rewrite the Gauss–Green formula

∫

e

F · (K−1Gp) dV −
∫

e

p div F dV = −
∮

∂e

p F · n dl (3)

in the equivalent form:

(F,Gp)X,e = (p, DF)Q,e.

The last expression clearly states that the flux and extended divergence operators are
adjoint to each other, i.e.

G = D∗.

The MFD method produces discretizations of these operators which are adjoint to each
other with respect to scalar products in the discrete velocity and pressure spaces.

The first step of the MFD method is to specify the degrees of freedom for physical
variables p and F and their location. We assume that medium in each mesh element is
homogeneous, but material properties may vary between elements. The discrete pres-
sures are defined on an element, p0, and at mid-points of its edges, p1, p2, . . . , ps , where
s is the number of edges of this element (see, e.g., hexagon in figure 1 where s = 6).
The discrete velocities are defined as edge-based normal components, f 1, f 2, . . . , f s ,
located at the mid-points of polygon edges. For instance, f 1 approximates the dot prod-
uct of F with the outward unit normal n1, i.e. f 1 ≈ F · n1.

The second step of the MFD method is to equip the spaces of discrete pressures
and velocities with scalar products. We denote the vector space of pressure unknowns
(for a polygon e) by Qd . The dimension of Qd is equal to s + 1, where s is the number
of polygon edges. Thus, any vector �p ∈ Qd , can be written as �p = (p0, p1, . . . , ps)T.
The scalar product on the vector space Qd is given by

[ �p, �q]
Qd,e

= p0q0Ve +
s∑

k=1

pkqk�k ∀ �p, �q ∈ Qd, (4)
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Figure 1. Location of pressure and velocity unknowns for a hexagon.

where Ve denotes the polygon area and �k denotes the length of its kth edge. Let 〈·, ·〉
denote the conventional inner product in the Euclidean space. Then

[ �p, �q]
Qd,e

= 〈
S �p, �q〉, S = diag

{
Ve, �

1, . . . , �s
}
.

We denote the vector space of edge-based velocity unknowns by Xd . The dimen-
sion of Xd is equal to the number of polygon edges, s. Thus, any vector �f ∈ Xd can be
written as �f = (f 1, . . . , f s)T. The scalar product on Xd is given by

[ �f , �g]
Xd,e

= 〈
M �f , �g〉 ∀ �f , �g ∈ Xd, (5)

where M is a symmetric positive definite s × s matrix. It is extremely difficult to find
for an arbitrary polygon such a matrix M that the discrete scalar product approximates
the continuous one with sufficient accuracy. It was shown in [10] that the accuracy
of mimetic discretizations strongly depends on a choice of the matrix M . Note that a
similar problem appears in some other mixed discretizations, e.g., in control volume
mixed finite elements [17]. We postpone the derivation of matrix M until section 3.

The third step of the MFD method is to derive an approximation to the extended
divergence operator. The discrete divergence operator, DIVh, naturally arises from the
Gauss divergence theorem as

DIVh �f def= 1

Ve

s∑

k=1

f k�k. (6)

We emphasize one more time that s is the number of polygon edges which may be
bigger than the number of straight line boundary pieces. This happens when some of the
polygon angles equal to π .

The discrete extended divergence operator is defined by

Dh �f = (
DIVh �f , −f 1, . . . , −f s

)T
.

The fourth step of the MFD method is to define the discrete flux operator Gh, as the
adjoint to the discrete extended divergence operator Dh with respect to scalar products
(4) and (5), i.e.

[ �f ,Gh �p]
Xd,e

= [ �p,Dh �f ]
Qd,e

∀ �p ∈ Qd, �f ∈ Xd. (7)
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Since velocity �f ∈ Xd is an arbitrary vector, formula (7) implies that

Gh �p = M−1(D)TS �p = M−1S̃




p1 − p0

...

ps − p0



 , (8)

where S̃ is the diagonal matrix, S̃ = diag{�1, . . . , �s}.
Using the discrete flux and divergence operators the continuous problem (1) is

discretized as follows:

DIVh �f = be,

�f = Gh �p,
(9)

where be denotes the mean value of the source function over a polygon e. We refer to
[7,20] for a detailed description of mimetic discretizations.

2.3. Interface conditions

The system of the element-based discretizations (9) is closed by imposing conti-
nuity conditions for pressure and velocity on the mesh edges. Hereafter, we shall use a
subscript i for vectors, operators and scalar products involved in derivation of (9). For
instance, �pi denotes a vector from the vector space Qd

i equipped with the scalar product
[·, ·]Qd

i ,ei
.

Let �ij be the length of a common boundary of polygons ei and ej . In general, this
interface consists of sij edges Lk

ij , k = 1, . . . , sij (sij = 3 in figure 2), i.e.

�ij ≡ |ei ∩ ej | =
∣∣∣∣∣

sij⋃

k=1

Lk
ij

∣∣∣∣∣ =
sij∑

k=1

�k
ij ,

where �k
ij = |Lk

ij |. It is convenient to use the double subscript for all edge-based un-
knowns. For instance, pk

ij denotes the pressure unknown associated with the kth edge of
interface ei ∩ ej .

Figure 2. Interface between polygons ei and ej consisting of edges L1
ij

, L2
ij

and L3
ij

.
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For the continuous problem (1), we have continuity of the fluid pressure and normal
velocity component across mesh edges. For the discrete problem it gives us the following
continuity conditions:

f k
ij = −f k

ji and pk
ij = pk

ji, k = 1, . . . , sij . (10)

The system of equations (9), (10) is closed by imposing boundary conditions. For
instance, the homogeneous Dirichlet boundary conditions imply that the pressure un-
knowns associated with boundary edges are equal to zero.

3. Scalar products in space of discrete velocities

In this section, we describe a method for deriving a family of scalar products in
the space of discrete velocities (quadrature rules) which are exact for uniform flows. We
begin by splitting a polygon into triangles and introducing auxiliary velocities on interior
edges. Then, an accurate scalar product over a triangle (see, e.g., [14]) is used to build a
scalar product over the polygon. In order to eliminate the auxiliary velocities, we express
them via boundary velocities using the assumption that divergence over each triangle is
equal to divergence over the polygon. Finally, we consider more general assumptions
that may be used to eliminate the auxiliary velocities.

3.1. Derivation of scalar product

Let us first review briefly the scalar product proposed for strictly convex polygons
[7,9,16,21] and then develop a new scalar product for general polygons.

Old scalar product. Let e be a strictly convex polygon. Then, the velocity vector can
be recovered at each corner of this polygon from two orthogonal projections on edges
which share that corner. We denote the recovered vectors by F1, F2, . . . , Fs , where s is
the number of polygon edges. We assume the that Fk is recovered from f k and f k−1

(see figure 3).

Figure 3. Recovered velocities F2 and F6.
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Let nk = (nk
x, n

k
y)

T be the unit vector normal to the kth edge of a polygon e. Then,

Fk =
[

nk
x nk

y

nk−1
x nk−1

y

]−1 [
f k

f k−1

]
. (11)

Using the recovered velocities, the old scalar product is given by

〈
Mold �f , �g〉 = Ve

Ṽe

s∑

k=1

VTk
Fk · (K−1Gk

)
, Ṽe =

s∑

k=1

VTk
, (12)

where Tk denotes a triangle uniquely defined by two edges ending at the kth vertex of e

and VTk
denotes the area of this triangle. The triangles T2 and T6 are shaded triangles in

figure 3. It will be shown in section 5.5 that the scalar product (12) results in a numerical
scheme with the optimal second-order convergence rate for the pressure (for all types
of meshes with convex elements) but non-optimal convergence rate (less than 1) for the
velocity (for polygonal meshes with s � 5). For triangular and quadrilateral meshes,
scalar product (12) provides a good approximation of the continuous scalar product and
the convergence rate for velocities is optimal. However, it cannot be applied for non-
convex (see figure 2 and the left quadrilateral in figure 4) and degenerate elements (see
the right quadrilateral in figure 4). Later in this section, we propose a new scalar prod-
uct which recovers the optimal convergence rate for velocities for all types of polygonal
meshes.

In the special case when K = I and e is a triangle, formulas for entries of matrix
Mold are quite simple. Let r1, r2 and r3 be the vertices of this triangle and θk be the
triangle angle at vertex rk. Then,

Mold = 1

6





�1�2

sin θ2
+ �1�3

sin θ1

�1�2 cos θ2

sin θ2

�1�3 cos θ1

sin θ1

�2�1 cos θ2

sin θ2

�2�3

sin θ3
+ �2�1

sin θ2

�2�3 cos θ3

sin θ3

�3�1 cos θ1

sin θ1

�3�2 cos θ3

sin θ3

�3�2

sin θ3
+ �3�1

sin θ1




. (13)

New scalar product. Let e be a general polygon. We assume that e is split into t non-
overlapping triangles �l , l = 1, . . . , t . As shown in figure 5 there are a few ways to split

Figure 4. A few cases of irregularly shaped polygons.
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(a) (b)

Figure 5. Two ways for splitting a pentagon.

a polygon into triangles. On each interior edge we temporarily introduce an additional
unknown, the normal component of the fluid velocity. Let �f int be the vector of these

auxiliary unknowns and �̂
f be the vector of all edge-based normal velocity components

such that �̂
f = ( �f , �f int)T where �f ∈ Xd . For the pentagon shown in figure 5, vector �f

has five components associated with boundary edges and vector �f int has two and five
components for the left and right splittings, respectively. Furthermore, let �fl ∈ �3 be
a vector of normal velocity components associated with edges of a triangle �l . In this
section we shall use subscript l for the vectors associated with a triangle �l and super-
script k for their components.

Using the above notations, we write the scalar product over polygon e as the sum
of scalar products over triangles:

〈
M̂

�̂
f , �̂g〉 ≡

t∑

l=1

〈
Mold

l
�fl, �gl

〉
, (14)

where Mold
l is 3 × 3 matrix defined in (12) and M̂ is a symmetric positive definite matrix

obtained by the standard assembling of the matrices Mold
l , l = 1, . . . , t . This statement

follows from the fact that Mold
l are symmetric positive definite matrices and M̂ is an

irreducible matrix.
Now, we eliminate degrees of freedom associated with the interior edges assuming

that

DIVh
l

�fl = DIVh �f , (15)

where the discrete divergence operators are defined in (6). Let a vector �f be given. The
resolvability of system (15) for �f int is analyzed in the following lemma.

Lemma 3.1. System (15) has a solution �f int for any vector �f .

Proof. Let r be the number of interior edges of a polygon e. System (15) may be
rewritten as follows:

B2 �f int = B1 �f (16)
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where B2 ∈ �t×r and B1 ∈ �t×s . System (16) is consistent if and only if the right-hand
side, B1 �f , is orthogonal to ker BT

2 . In other words, the residual of system (15) should
be orthogonal to ker BT

2 . Let us show that the dimension of ker BT
2 is equal to one. If

�ψ ∈ ker BT
2 ⊂ �t then

(
BT

2
�ψ, �η) = 0 ∀�η ∈ �r . (17)

Since each interior edge is shared by two triangles, each row of BT
2 has exactly two

nonzero entries. Let �k and �l be two triangles having a common edge and let �η be
a vector in �r whose only nonzero component corresponds to this edge. Then equa-
tion (17) results in

1

V�k

ψk = 1

V�l

ψl. (18)

Since polygon e is simply connected, one component of vector �ψ defines uniquely the
other components. Therefore, the dimension of ker BT

2 is at most 1. It is obvious that
vector �ψ = {V�1, . . . , V�t

} is a nontrivial solution of (18). Thus, dim(ker BT
2 ) = 1.

Now, we prove that �ψ ⊥ B1 �f . Since vector �f is arbitrary, the orthogonality con-
dition holds if and only if BT

1
�ψ = 0. The definition of the discrete divergence and

system (15) imply that

(
BT

1
�ψ)k =

t∑

l=1

�k

Ve

ψl − �k

V�k

ψk = �k

(
t∑

l=1

V�l

Ve

− 1

)
= 0.

Since k is arbitrary, we get BT
1

�ψ = 0 which proves the assertion of the lemma. �

Corollary 3.1. dim(ker B2) = r − t + 1.

Let us consider a couple of typical examples illustrating lemma 3.1 and corol-
lary 3.1. As shown in figure 5, there exist a few ways to split polygon e into triangles
either by introducing additional interior points (one or more) or without such points.

In the first case (figure 5(a)) we have t − 1 auxiliary interior edges (t = 3) and t

equations for the corresponding velocities. Thus, dim(ker B2) = (t − 1)− t + 1 = 0 and
system (15) has a unique solution. In the second case (figure (5(b)) we have t auxiliary
interior edges and t equations for the corresponding velocities. Thus, dim(ker B2) =
t − t + 1 = 1 and we get one-parametric family of solutions for (15). In both cases it is
possible to construct a matrix B ∈ �r×s such that

�f int = B �f (19)

is a solution to equations (15). Using these relations, we may rewrite the scalar prod-
uct (14) as follows:
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〈
Mnew �f , �g〉≡ 〈

M̂
�̂
f , �̂g〉

=
〈 [

M̂11 M̂12

M̂21 M̂22

] [ �f
B �f

]
,

[ �g
B �g

] 〉
. (20)

It is obvious that Mnew is a symmetric positive definite matrix. Thus, it may be used to
generate a scalar product on Xd . Using (20), we may write down the explicit formula
for matrix Mnew:

Mnew = M̂11 + BTM̂22B + M̂12B + BTM̂21. (21)

3.2. Examples of irregularly shaped polygons

In this subsection, we consider a few special cases of irregularly shaped polygons.
It is sufficient to consider only irregularly shaped quadrilaterals shown in figure 4.

Polygons with relatively small edges. The middle quadrilateral in figure 4 has an edge
whose length is relatively much smaller than the length of other edges. The splitting
shown in the figure results in a thin triangle. Let us enumerate the edges of this quadrilat-
eral counter-clockwise starting with the smallest one. Thus, �1 be the length of the small-
est edge and �5 be the length of the interior edge. Using the above notations, the vector
of normal velocity components associated with the thin triangle is �f1 = (f 1, f 2, f 5)T.
Furthermore, let �1 be the thin triangle and �2 be the other triangle. It follows from
(15) that

f 5 = V�2(f
1�1 + f 2�2) − V�1(f

3�3 + f 4�4)

�5(V�1 + V�2)
.

In the asymptotic case, �1 → 0, (i.e. V�1 → 0 and �2 → �5) the above formula gives
the expected result:

f 5 = f 2 + O
(
�1

)
.

Substituting this estimate into the scalar product generated by the matrix Mold
1 , we get

that
〈
Mold

1
�f1, �g1

〉 ∼ �1
〈 �f1, �g1

〉
.

Thus, the contribution of the thin triangle into the scalar product over the quadrilateral
is relatively negligible.

Nonconvex polygons. The left polygon e in figure 4 is a nonconvex quadrilateral. The
splitting shown in the figure converts e into two triangles. It is possible that the mass
center of a nonconvex element lies outside this element. In this case it could be useful to
generalize the assumption of constant divergence as follows:

DIVh
l

�fl = αlDIVh �f . (22)
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The numbers αl , l = 1, . . . , t , represent relations between values of the discrete diver-
gence over the triangles and the polygon. The analysis presented in the previous subsec-
tions can be easily extended to (22). In particular, the following corollary of lemma 3.1
holds.

Corollary 3.2. Let the numbers αl , l = 1, . . . , t , be such that

t∑

l=1

αlV�l
= Ve. (23)

Then, system (22) has a solution �f int for any vector �f .

The numbers αl , l = 1, . . . , t , may be used (if necessary) to improve the discretiza-
tion for nonconvex mesh elements.

The right quadrilateral in figure 4 has two edges which form the angle of 180 de-
grees. Like in the case of the nonconvex quadrilateral, a proper splitting shown in the
figure resolves the problem.

The meshes with irregularly shaped polygons will be further analyzed in sec-
tions 5.3 and 5.6.

4. Accuracy considerations

Let us prove that discrete system (9) with the scalar product on Xd generated by
the matrix Mnew is exact for linear solutions.

Let �f ∗ and �f ∗
l , l = 1, . . . , t , be vectors of normal velocity components for a

uniform flow (linear pressure and constant velocity) associated with edges of polygon e

and triangles �l , l = 1, . . . , t , respectively. Furthermore, let �p∗ and �p∗
l , l = 1, . . . , t ,

be vectors of pressure unknowns for the linear solution associated with the polygon and
the triangles, respectively. Note, that p∗,0 and p

∗,0
l , l = 0, . . . , t , are evaluated at mass

centers of the polygon and triangles, respectively. Our goal is to show that

�f ∗ = Gh �p∗. (24)

It has been shown in [14] that for a triangular element �l , formula (24) is exact,
i.e.

�f ∗
l = Gh

l �p∗
l for l = 1, . . . , t.

Using the symmetry relation between the discrete flux Gh
l and extended divergence Dh

l

operators, we rewrite the above identities in an equivalent form:
[ �f ∗

l , �gl

]
Xd

l ,�l
= [

Gh
l �p∗

l , �gl

]
Xd

l ,�l
= [ �p∗

l ,Dh
l �gl

]
Qd

l ,�l
∀�gl ∈ Xd

l . (25)

Since the last formulas hold for arbitrary vectors �gl , l = 1, . . . , t , they are certainly
true for vectors where only components associated with boundary edges of polygon e
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are arbitrary and the other components are given by formula (19), i.e. �gint = B �g. It is
obvious that both sides of (15) equal to zero for a uniform flow. Therefore, formula (19)
holds for the uniform flow, i.e. �f ∗,int = B �f ∗. Summing up the identities (25), we get

t∑

l=1

[ �f ∗
l , �gl

]
Xd

l ,�l
= [ �f ∗, �g]

Xd,e
=

t∑

l=1

[ �p∗
l ,Dh

l �gl

]
Qd

l ,�l
∀�g ∈ Xd.

The definition of the extended divergence operator, assumption (15), linearity of p(x),
and the definition of the scalar product in the space of discrete pressures imply that

t∑

l=1

[ �p∗
l ,Dh

l �gl

]
Qd

l ,�l
=

t∑

l=1

p
∗,0
l

(
DIVh

l �gl

)
V�l

+
t∑

k=1

p∗,kgk�k

=DIVh �g
t∑

l=1

p
∗,0
l V�l

+
t∑

k=1

p∗,kgk�k

≡ [ �p∗,Dh �g]
Qd,e

.

The symmetry relation between the discrete flux, Gh, and the extended divergence, Dh,
operators imply that

[ �f ∗, �g]
Xd,e

= [ �p∗,Dh �g]
Qd,e

= [
Gh �p∗, �g]

Xd,e
∀�g ∈ Xd.

Since �g is arbitrary, we get (24).
In the case when αk �= 1, the mimetic discretization will remain exact for linear

solutions, i.e. formula (24) holds, if we evaluate the element-based pressure unknown,
p∗,0, at the point

c0 =
t∑

l=1

αl

V�l

Ve

cl

where cl is the centroid of triangle �l . Note that for αl = 1, l = 1, . . . , t , c0 is the mass
center of the polygon. A special choice of numbers αl may move (if necessary) this point
inside a nonconvex mesh element.

The convergence of mimetic finite difference, mixed finite element and finite vol-
ume discretizations has been studied by many authors. We refer readers to articles
[1–3,5,6] and references therein. Note that the majority of publications consider trian-
gular or quadrilateral (usually orthogonal) meshes. The connection between MFD and
MFE methods established in [2] for quadrilateral meshes can be revised for polygonal
meshes using recently proposed new finite elements [12]. It opens a door for deriving
convergence estimates for the MFD method on polygonal meshes.
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5. Numerical experiments

5.1. Implementation issues

In all numerical experiments except section 5.3, we split a polygon into triangles
by inserting one interior point and connecting it with the polygon vertices. The inte-
rior point is placed into the geometric center of this polygon. This splitting means that
the matrix B in (19) is not unique. However, if we specify a particular formula for
computing one of the interior edge-based velocities, the other velocities will be calcu-
lated recursively using equations (15). In order to do that, we find the minimal angle
in a polygon e and recover the velocity vector at the corresponding vertex using for-
mula (11). Let Fk be the recovered vector. Then, we project Fk onto the unit vector,
nint,k = (nint,k

x , nint,k
y )T, normal to the interior edge corresponding to the vertex. It gives

us the required expression for the interior velocity, f int,k, in terms of boundary velocities:

f int,k = (
nk−1

y nint,k
x − nk−1

x nint,k
y

)
f k − (

nk
yn

int,k
x − nk

xn
int,k
y

)
f k−1.

In section 5.3 we consider meshes consisting of both convex and nonconvex quadri-
laterals. We choose αl = 1 and split a quadrilateral into two triangles by one of the two
diagonals. We use the shortest diagonal lying inside the quadrilateral.

System (9), (10) is a typical example of a saddle point problem with a symmetric
coefficient matrix. Therefore, it can be solved with the preconditioned Lanzcos iterative
method. However, a few simple algebraic transformations will reduce the system to a
problem with a symmetric positive definite matrix. Note, that some of the discrete un-
knowns, normal velocity components and element-based pressures are only connected
within a single element. Therefore, they may be easily excluded from the system result-
ing in the new system

A �p = �d, (26)

where �p denotes the global vector of edge-based pressure unknowns (one unknown for
each mesh edge) and �d is a right-hand side vector.

Lemma 5.1. The matrix A is symmetric and positive definite except the case of the
Neumann boundary value problem when A is semi-positive definite.

The proof of this lemma follows the proofs of similar results in the theory of hybrid-
mixed finite elements and is omitted here. In addition to the properties mentioned above,
the matrix A is sparse. Two examples of the stencil of the matrix A are shown in fig-
ure 6. The pressure unknown marked by a black bullet is connected only with pressure
unknowns located on edges of two polygons sharing the edge (marked by blank bullets).

Problem (26) can be solved by the preconditioned conjugate gradient method. In
the numerical experiments we use the algebraic multigrid preconditioner from [22]. Af-
ter solving problem (26), we may recover the primary variables element-by-element
using the local systems (9).
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Figure 6. Two examples of the stencil of the matrix A.

In the rest of this section, we present computational results which demonstrate the
accuracy of our method, its flexibility and the efficiency of the solution method. The
algebraic multigrid method was chosen as an example of a method applicable to arbi-
trary matrix stencils. However, its theoretical justification is limited to M-matrices. In
the case of highly distorted meshes and random isotropic tensors, its performance may
degrade. In order to ensure the robustness of the solver, the algebraic multigrid method
may be replaced by (or combined with) more robust multigrid methods such as aggrega-
tion multigrid methods [23] and algebraic multigrid methods with projectors [11].

5.2. Uniform flows

The first set of experiments verifies that our method is exact for linear functions.
We consider problem (1) in the unit square (0, 1)2 subject to nonhomogeneous boundary
conditions. Let K = I and p(x, y) = x + y be the exact solution.

The results of the numerical experiments are shown in the left picture in figure 7.
As it was proved in section 4, the discrete solution is exact at both edge mid-points and
polygon mass centers.

5.3. Nonconvex quadrilateral meshes

The second set of calculations addresses convergence of mimetic discretizations on
random quadrilateral meshes with nonconvex elements. We consider problem (1) in the
unit square subject to the Dirichlet boundary conditions. Let K = I and

p(x, y) = sin(2πx) sin(2πy)

be the exact solution.
The random mesh is generated by moving each mesh point of a uniform mesh

(with mesh step size h) to a random position inside a square centered at the point. The
sides of this square are aligned with the coordinate axes and equal to 1.6h. We explic-
itly check that the resulting mesh is valid. The computational mesh and isolines of the
discrete solution are shown in figure 8. The mesh contains 1.17% of nonconvex quadri-
laterals (one of them is marked by the circle). As it was shown in previous sections, a
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Figure 7. The isolines of discrete solutions for two scalar products generated by matrices Mnew (left) and
Mold (right).

Figure 8. The computational mesh and isolines of the discrete solution.

proper splitting of these elements results in the discrete scheme exact for linear solutions.
It is pertinent to note that the previously elaborated mimetic discretizations (see, e.g.,
[7,13]) either cannot be used on such a mesh or do not preserve linear solutions.

The convergence of new mimetic discretization is demonstrated in table 1. Con-
vergence rates of the relative L2 errors εp and εf for the element-centered pressure and
edge-based velocity unknowns, respectively, are close to the optimal rates for random
meshes. Percentage of irregular elements σ(�h) is shown in the last column of table 1.

5.4. Locally refined meshes

The third set of calculations addresses the accuracy of the method on distorted
locally refined (LR) meshes (see also [5,13]). We again consider problem (1) in the unit
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Table 1
Convergence analysis on meshes with non-

convex elements.

1/h εp εf σ(�h), %

16 3.39e−2 3.28e−2 1.17
32 9.00e−3 1.58e−2 2.44
64 2.31e−3 9.78e−3 2.88

128 5.72e−4 4.53e−3 2.87
256 1.44e−4 2.67e−3 2.98

rate 1.97 0.91

Table 2
Convergence on a sequence of LR meshes.

l m LR/polygonal meshes LR/hanging nodes
εp εf εp εf

0 256 5.34e−2 8.26e−2 7.11e−2 9.25e−2
1 556 1.01e−2 3.28e−2 1.47e−2 3.25e−2
2 988 2.71e−3 1.16e−2 3.96e−3 1.55e−2
3 3952 6.92e−4 5.56e−3 9.60e−4 7.89e−3
4 15808 1.73e−4 2.84e−3 2.45e−4 3.69e−3

rate 2.67 1.58 2.66 1.47

square subject to nonhomogeneous Dirichlet boundary conditions. Let K = I and

p(x, y) = 1 − tanh

(
(x − 0.5)2 + (y − 0.5)2

0.01

)

be the exact solution. This function has a sharp peak in the middle of the domain and
close to zero near the domain boundary. Calculations were performed on a sequence of
randomly distorted locally refined meshes build in two steps.

The sequence of meshes begin with a 16 × 16 mesh. We use a simple geometric
approach to create a few first locally refined meshes. Each mesh element of the initial
mesh is uniquely identified by two indices i0 and j0, 1 � i0, j0 � 16. On the first
refinement level (l = 1), we split the mesh elements with indices 4 � i0, j0 � 13 into
four elements. The new mesh elements are uniquely identified by two indices i1 and j1,
1 � i1, j1 � 20. On the second refinement level, we split mesh elements with indices
5 � i1, j1 � 16 into four elements. On the subsequent levels (l > 2) we uniformly
refine all mesh elements.

The random mesh is generated by moving each mesh point to a random position
inside a square centered at the point. The sides of this square are aligned with the co-
ordinate axes and equal 80% of the size of the smallest element sharing the point. Note
that the hanging mesh points are always located at the edge mid-points. The relative L2

errors εp and εf are given in table 2. Note that the new method developed in this paper
results in more accurate solution than the method proposed in [13]. This is probably
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Figure 9. The computational mesh on level l = 2 and isolines of the discrete solution.

Figure 10. The computational multi-block mesh (l = 2) and the exact solution.

due to the fact that the new discretization scheme uses two velocities on the edge with
hanging node while the scheme described in [13] uses only one velocity unknown. The
computational mesh and isolines of the discrete solution (for the new method) are shown
in figure 9.

The fourth set of experiments addresses the convergence rate for the discrete ve-
locities on smooth LR meshes. We consider the Neumann boundary value problem in
the domain resembling shape of state Texas (see figure 10). The full tensor K and exact
solution are given by

K(x, y) =
[

(x + 1)2 + y2 −xy

−xy (x + 1)2

]
, p(x, y) = x3y2 + x cos(xy) sin(x).

An example of a computational mesh is shown in figure 10. The mesh consists of
13 quadrilateral blocks with different levels of uniform refinement. The mesh shown in
figure 10 corresponds to l = 2 where l denotes the refinement level.

Multi-block meshes provide a flexible tool for simulating layered structures occur-
ring in many porous medium applications. The L2-norms of errors are given in table 3.
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Table 3
Convergence analysis for the

full tensor.

l εp εf

2 2.97e−4 1.37e−2
3 7.37e−5 4.64e−3
4 1.87e−5 1.68e−3
5 4.72e−6 7.23e−4
6 1.19e−6 2.42e−4

rate 1.99 1.43

Note that the convergence rate for the fluid velocity is close to 1.5 which is considered
to be optimal for such types of meshes and low-order discretizations. Note that we have
not discussed the optimal splitting of a polygon as well as the optimal choice of the ma-
trix B in (19). Answers to these questions may allow us to improve the accuracy of the
discretization.

5.5. Median meshes

In the fifth set of experiments, we compare the scalar products in the space of veloc-
ities generated by matrices Mnew and Mold (see formulas (12) and (21), respectively) for
polygonal meshes with strictly convex elements. As we mentioned before, the method
based on the scalar product generated by matrix Mold is not exact for linear solutions.
We illustrate that in the right picture in figure 7.

In order to compare two scalar products we consider problem (1) in the unit square
subject to nonhomogeneous Dirichlet boundary conditions. Let K = I and

p(x, y) = sin(2πx) sin(2πy)

be the exact solution.
The results of the numerical experiments are shown in table 4. The errors are

computed on a sequence of polygonal median meshes. The set of points xij = (xij , yij )

for generating the Voronoi tessellation [18] is given by

xij = ξi + 0.1 sin(2πξi) sin(2πηj ), i = 0, . . . , nx,

yij = ηj + 0.1 sin(2πξi) sin(2πηj ), j = 0, . . . , ny,

where ξi = i/nx and ηj = j/ny . The median mesh is constructed from the Voronoi
mesh by moving a mesh vertex to the mass center of a triangle formed by the centers of
three Voronoi cells sharing the vertex.

Both scalar products (generated by matrices Mold and Mnew) result in the second
order convergence rate for the pressure unknown. However, the new scalar product gives
better resolution of both the fluid pressure and the velocity. The computational mesh and
the isolines of the discrete solution (for the new method) are shown in figure 11.
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Table 4
Convergence analysis for two scalar products.

m New scalar product Old scalar product
εp εf εp εf

166 1.07e−1 3.68e−1 1.81e−1 4.57e−1
598 2.60e−2 1.64e−1 3.39e−2 2.52e−1
2230 5.11e−3 8.28e−2 6.64e−3 1.72e−1
8566 1.05e−3 4.29e−2 1.51e−3 1.20e−1

rate 2.23 1.03 2.31 0.63

Figure 11. The computational mesh and isolines of the discrete solution.

5.6. Non-matching meshes

In the sixth set of experiments, we consider non-matching quadrilateral meshes
and perform numerical analysis of the convergence rate (see also [1]). We consider
problem (1) in the unit square with mixed boundary conditions. On the bottom and
top boundary parts, we impose the Dirichlet boundary condition. The homogeneous
Neumann boundary condition is set on the rest of the boundary. Let tensor K be the
scalar matrix equal to K1I in the region defined by y < 0.5 and equal to K2I in the rest
of the domain. The source term is chosen in such a way that the exact solution is given
by

p(x, y) =





7

16
− K2

12K1
+ 2K2

3K1
y3, y < 0.5,

y − y4, y � 0.5.

The computational mesh and the discrete solution for K2 = 4 and K1 = 1 are shown in
figure 12. The random meshes below and above interface line y = 0.5 were generated
using the rules described in section 5.4. The isolines of the discrete solution are straight
lines except the isoline located below the mesh interface where the computational mesh
is rather coarse. The relative L2 errors εp and εf presented in table 5 show the second or-
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Table 5
Convergence analysis on non-matching meshes.

m εp εf maxi ρi #itr CPU, s

175 4.91e−3 1.39e−2 167.3 11 0.02
780 1.12e−4 6.35e−3 267.1 13 0.11

3286 2.70e−4 2.89e−3 159.5 12 0.61
13482 6.63e−5 1.45e−3 612.1 14 3.14
54610 1.64e−5 7.22e−4 2024 14 13.2

Figure 12. The computational mesh and isolines of the discrete solution.

der convergence rate for the pressure and only the first order for the velocity. It confirms
the convergence rates observed in the previous experiments on nonsmooth meshes.

Non-matching quadrilateral meshes may result in very bad interface polygons (see,
e.g., the middle polygon in figure 12). We measure the geometric quality of a mesh
polygon ei as ratio ρi of the biggest edge length to the smallest one. The middle column
in table 5 shows that ρi may reach a few thousands. However, it seems that it does not
have any noticeable impact on the convergence rate.

A non-matching mesh is a challenging example for algebraic solvers. Therefore,
we present here more details about the performance of the solver. The last two columns
in table 5 demonstrate excellent performance of the AMG preconditioner. The stopping
criterion for the preconditioned conjugate gradient method is the relative decrease in the
norm of the residual by factor 10−12. The computational time, denoted by CPU, includes
time for initializing the AMG solver and time for solving problem (26). The arithmetical
cost per iteration grows almost linearly in the number of elements, m, except for very
coarse meshes where cache memory effects play an important role.

Let us keep the setting of the last experiment but replace the source term and bound-
ary conditions such that the exact solution is now p(x, y) = x − x4. The left picture in
figure 13 represents the discrete solution corresponding to the mesh shown in figure 12.
The breaking of isolines which are supposed to be the straight lines is due to a coarse
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Figure 13. Isolines of the discrete solutions on two consecutive meshes.

mesh in the bottom half of the computational domain. Indeed, the solution isolines on
the refined mesh (right picture) are very close to straight lines.

We stress one more time that the previously elaborated mimetic discretizations
cannot be used on non-matching meshes. The method described in the review paper [7]
uses the scalar product in the velocity space generated by the matrix Mold. Therefore,
the velocity vector cannot be recovered at polygon vertices corresponding to adjacent
edges with angle 180◦ between them. The method developed in [13] can be applied on
meshes with only one hanging node per mesh edge. The method proposed in this paper
overcomes all problems of the above methods.

6. Conclusion and future work

We have constructed new discretizations for the diffusion equation on unstructured
polygonal meshes. The class of polygonal meshes includes meshes with nonconvex
polygons (in particular, nonconvex quadrilaterals are very important for existing codes),
locally refined and nonmatching meshes.

The new mimetic discretization has been proved to be exact for uniform flows.
We have shown by numerical experiments the second-order convergence rate for the
pressure variable and the first order convergence rate for the velocity variable. These
convergence rates are considered optimal for sufficiently smooth solutions and lower
order discretization methods on unstructured meshes.

In future work we plan a more rigorous analysis of the new discretization. In partic-
ular, we shall exploit effects of polygon splittings, other scalar products for triangles, and
different expressions for auxiliary velocities on accuracy of mimetic discretizations. In
addition, we shall analyze extension of the method to other PDEs, including Maxwell’s
equations, Navier–Stokes equations, equations of linear elasticity, and diffusion-type
problems with a lack of elliptic regularity.
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Existence of accurate mimetic discretizations for tetrahedral meshes, enables us to
extend the method to unstructured polyhedral meshes.
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