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BY
ROBERTO J. MIATELLO'

ABSTRACT. We use harmonic analysis on semisimple Lie groups to determine the
Minakshisundaram-Pleijel asymptotic expansion for the trace of the heat kernel on
natural vector bundles over compact, locally symmetric spaces of strictly negative
curvature.

Introduction. Let G be a connected, real semisimple Lie group of rank one with
finite center. Let G = K- A - N be an Iwasawa decomposition of G and let M be
the centralizer of A in K. Denote by g = ® a @ n the corresponding Iwasawa
decomposition of g, the Lie algebra of G. We use the G-invariant Riemannian
metric on G/K induced by a~'- B, (a~' is a convenient constant and B, is the
Killing form of g). If (r, V) is an irreducible representation of K we form the
homogeneous vector bundle E. = G XV, - G/K.

There is unique G-invariant connection on E_ such that if s is a C* cross-sec-
tion, X €p, m: G—» G/K is the canonical projection and =, designates the
differential of = at e (the identity of G), then

d
Vaun)(8) == —o s(exp(¢£X)K).

We denote by V2 the connection Laplacian on (E,, V).

We consider now a discrete, torsion free subgroup I' of G such that '\ G is
compact. We give to X = I'\ G/K the push down Riemannian metric. Then X is
the most general compact locally symmetric space of negative curvature. Also,

= -V2 pushes down to a nonnegative, elliptic differential operator on T'\ G
X, V,— X. Let {A,} = spec(D) be the spectrum of D. As it is well known, e ~*?
exists and is trace-class for s > 0. Moreover ¢ (s) = tr(e *?) = T e~*™ has an
asymptotic expansion

o0
&,(s) ~ s"’/z( > a,.si) as 5|0
i=0
(¢ =3 dim(G/K)) and the coefficients g, are local Riemannian invariants of X (see
[ABP], [BGM], [MS} and [MP]). In this paper we will use harmonic analysis on G
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2 R. J. MIATELLO

to compute the coefficients g; of the above expansion. In essence our method is as

follows.
Since I' is cocompact, the right regular representation 7. of G on LT\ G)
decomposes
= 3 nw):w
weé

and np(w) < oo for any w € G. Here G stands for the set of all equivalence classes
of irreducible unitary representations of G. If f is a C* function with compact
support on G, the operator mp(f) = [gf(x) - mp(x) dx on L* T\ G) is well defined
and has a trace. Hence tr 7.(f) = 2 np(w) - ,(f), where 8, denotes the character
of the class w. On the other hand, by using the Selberg trace formula, we may
compute tr 7(f) in a different manner (see [Wa2, Theorem 6.7]). It has been
proved by Wallach in [Wa3] that

&,(s) = % np(w) - [ 7: ‘*’|K]es0‘“_x') M

where [7: w] is the multiplicity of 7 in the restriction of w to K and A, A, are
respectively the eigenvalues of the Casimir elements of G and K when computed
with respect to a™! - B,. To study ¢,(s) near s = 0 we wish to look at (1) as being
the trace of m(f,,) with f, ; a function to be determined and then to use the Selberg
trace formula to estimate ¢,(s).

In the first place we notice that the trace formula applies to K-finite functions
belonging to C'(G) (see 2.14 and 2.16). Here if p > 0, °(G) denotes Harish-
Chandra p-Schwartz space. What we need is therefore a K-finite function f,; €
C'(G) satisfying 0,,(f,,) = [7: wgle"® ™™ forall w € G. A candidate for f, , is the
continuous part of the heat kernel that we call 4_,, defined by means of a wave
packet in the sense of Harish-Chandra (see §4). Historically this function was
introduced by Gangolli in the case 7 =1 to study ¢,(s) (see [Ga]). The main
problem is the fact that unless 7 and G are very specific, s, & C!(G) (see remarks
after Theorem 5.7). Hence (A, ;) is in general not defined.

To avoid this problem we use a convenient decomposition of A, ,: h,, = kY, +
h},, where h} € C?(G) for all p > 0 and moreover h!, has the same continuous
Fourier transform as A, ,. This decomposition is due to Campoli (see [C]). The
Selberg trace formula is then applied, not to A, , but to 4}, implying that

¢, (s) ~ vol(T'\ G)(hm(e) + 3 d(w)[ 71 0] es(x,,—k.)) )

weéd

where ~ means that the difference between both sides tends to zero exponentially
as s — 0. Moreover, if w € Gd, d(w) stands for the formal degree of w. This formula
was proved by the author under the condition that 7 € G restrict simply to M. The
result for arbitrary 7 is due to De George and Wallach (see [GWa]). Since the sum
Zocé, dW)T: wle*® ™™ is computable (see [HS]), (2) implies that the asymptotic
expansion of ¢, (s) as s — 0 is determined by the expansion of A_,(e) as s > 0. We
derive this expansion in §6.
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MINAKSHISUNDARAM-PLELJEL COEFFICIENTS 3

In [CGW] (see also [CW]) Cahn, Gilkey and Wolf obtain a proportionality
principle that relates in a simple manner the expansion of ¢,(s) to the expansion of
¢.(s), the trace of the heat kernel on the vector bundle determined by 7 over the
compact dual X’ of X = '\ G/K. In the light of this principle our formulas for
the expansion of ¢,(s) imply similar formulas for the expansion of ¢.(s).

The outline of the exposition is as follows. In §1 we collect notation and recall
some standard facts on homogeneous vector bundles over G/K. §2 is devoted to
the Selberg trace formula. We prove a sufficient condition on f, a K-finite function
on G, for the trace formula to be valid for f (see 2.14 and 2.16). §3 contains the
description of the problem. We next discuss some facts on representation theory
necessary for the study of A ;. The main result of §4 is Theorem 4.11 that
establishes certain growth and functional properties of A, .. In §5 we use results of
De George to prove an asymptotic estimate (Theorem 5.1) and then use this
estimate together with properties of 4_, to prove the main result (Theorem 5.7). §6
is devoted to the computation of the asymptotic expansion of 4, (e). To obtain it,
we profit from the useful fact that as tempered distributions, tanh(wx) and
P - v(coth orx) have very simple Fourier transforms: -i- po(cosech(z/2)) and —i-
po(coth(z/2)) respectively.

1. Homogeneous vector bundles. In this section we follow closely the notation of
Wallach {Wal, Chapters 5 and 7]. Let G be a connected semisimple Lie group with
finite center. Let G = K- A4 - N be an Iwasawa decomposition of Gandg=f®Da
@ n be the corresponding decomposition at the algebra level. We will assume that
G has split rank one, that is, dim a = 1. Then, there is a real linear functional on a,
we call it A, such that

n=g,,®a
with g,y = {X €g|[H, X] =+ MH) - X, for any H € a} (j =§, 1). The spaces
g)/2 and g, are the restricted root spaces of a, corresponding to A/2 and A, which
are the positive restricted roots of a. Let m(A/2) = dimgg, ,,m, = dimgg, and
P =%(% m(A/2) + m(A\))A. We will parametrize a* by A, so that always m(}) is
nonzero.

Choose H, € a so that A\(H,) = 2. Any a € A can be written a = g, = exp(tH,),

~ for a unique € R. Set A™ = {a,|t > 0}. Let B, denote the Killing form of g, that
is,
B(X,Y)=tr(ad X-ad Y) forX,Y €g.

The restriction of B, to a X a puts in duality a with itself. Given p € a* there is
a unique element H, € a so that w(Z) = By(H,, Z) for all Z €a.

We define an inner product on a by

B(Z,,Z,)
(Zy, 2,y =>—"=.
! 2 Bg(Hl’HI)

On a* we use the dual inner product, that we also denote by {, >. With respect to
these inner products,

IHI? =<H, H)y =1, JAIP=AM) =4
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4 R. J. MIATELLO

and, if b = number of different positive restricted roots of a, then
1
lpl* = -5 (m(A/2) + 2m(N))’.

Let K denote the set of all equivalence classes of irreducible unitary representa-
tions of K. If (1, V,) € K setd, = dim(V,) and x,(k) = tr 7(k) for r € K. If 6 is an
arbitrary representation of K and 7 € K we let [r: 6] = dim Hom (Vs Vo)

For fixed o € K, we form the G-vector bundle over G/ K

E=GX,V,»M=G/K
where G X, ¥V, =G X V,/K and K acts on the right on G X V, as usual:
(g vk =(gk,o0(k™ ")), g€ G, vEV, k€ K. We write [g,v] =(g,v) K.
Moreover, we define the left action of G on E by x - [ g, v} = [xg, v].

If {, ) is a K-invariant inner product on ¥V, then {[g, v}, [g, v']) = {v,v') isa
well-defined unitary structure on E and G acts unitarily on the left in the obvious
manner.

We now fix normalizations of Haar measures. Let p be the orthogonal of f with
respect to B, and let §: g — g be the Cartan involution. Then

B(X, Y) = -B(X, 8Y)
is an inner product on g. We set {, > = (1/B(H,,H,)) - B (where H, € a is such
that A(H,) = 2 and A is the long restricted root). Let dXx, dk and dx denote the
Riemannian measures on G, K and G/K respectively, corresponding to the
Riemannian structures induced by { , ) in the standard fashion. If vol(X) is the
volume of K relative to dk, let dx = vol(K)~'- d% and dk = vol(K)~!- dk. With
respect to these normalizations

fG/K fK f(xk) dk dx = fG f(x) dx

for any f € C(G).

Let C®(E) and C°(E) be respectively the set of C® cross-sections of E and of
C*, compactly supported cross-sections of E. If 1 < p < oo let L?(E) be the set of
p-integrable cross-sections of E. We now recall the standard correspondence
between cross-sections of E = G X, ¥V, and certain ¥, -valued functions on G. Set

C*(G:0) = {hh: GV, hisC*
and h(gk) = o(k) 'h(g) for g € G, k € K}.

Let A: C®(E) > C®(G: o) be so that Af(g) = g~ 'f(gK), for f € C®(E). Define,
for h € C*(G: o), B(hXgK) = [g, h(g)}. Then B(h) € C*(E)and (4 - B}(h) = h,
(BAYf) = f, for h € C®(G: o) and f € C®(E). Moreover A intertwines the
actions of G, where (g-f)(xK) = gf(g~'xK) and (gh}x) = h(g~'x), for f €
C®(E), h € C*(G: o). Finally A4 preserves the p-norms.

Let now D be a G-invariant differential operator on E. The action of G on

C>®(E) induces an action of @(g), the universal enveloping algebra of g, on
C*®(E)sothatif f € C®(E)and X € g,

(X1)(gK) = 5| _ exp(tX) - flexp(-1X)gK).
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MINAKSHISUNDARAM-PLEIJEL COEFFICIENTS 5

If X), X5,...,X, is a basis of g, let Y, Y,,..., Y, be the dual basis with
respect to {, > = (1/By(H,, H,)) - B,.

Put € = 31X;- Y, € AU(g). Then L is clearly independent of the choice of basis
and in particular, Ad(g)Q = Q. Thus © defines a G-invariant elliptic differential
operator on E that we denote £ .

We define a G-invariant connection on E by putting

Vo = | 88 X)) g exp(ix)K),

where f € C*(E), v € T(G/K),x and X € p is unique with the property that
v =7, (X).

1.1 PROPOSITION. Let V? denote the connection Laplacian on E. Then there is a
scalar A, so that @ =V? + A, - I.

PrOOF. Letforh € C*(G:0)and X € g

d
(Rxh)(g) = Z, h(g - exp tX).

Then if f € C*(E) and X, X,, ... ,Xd is an orthonormal basis of p with
respect to {, >,

A(VY) = 3 R2(4P).

i=1
A computation shows that if X € g, f € C*(E) then
A(X7f)(8) = (RiAd(g")(X)(Af))(g)'

Hence, if X, X2, .. X,,, isabasisof pand Y, Y,, ..., Y, is a basis of I such
that (X, X;> = §,, (Y, Y;> = -9, then A(Qf) = A(VY) - E R,,(Af)

Now SZ =-2, Y2 lies in the oenter of AU(F), the universal envelopmg algebra of
£; hence if 0 € K then o6(2x) = A, - I for some A, € C. It is easy to check that

EIRYJ(Af) AA(f). QED.

Let now I be a discrete torsion free subgroup of G such that T’ \ G is compact.
This assumption says that I\G/K is a manifold since I' acts freely and properly
discontinuously on G/K. Since I' acts by isometries, we may push down the
Riemannian structure of G/K to I' \ G/K so that =: G/K ->T \ G/K is a local
isometry. The operators £ and V2 push down to elliptic operators on I'\ E; we
call them . and V2 and we still have Q. = V2 + A, - 1. Finally, since the action of
T on E is unitary T\ E has a well defined unitary structure. We fix a measure dg
on I' \ G so that

S, (2 flvx)) di = [ ) dx, forf € C(G).

On I' \ G/ K we use the Riemannian measure dx. With respect to these measures,

f f h(xk) dk dx = f h(x) d%, forh € C(T'\ G).
nG/K Jk G

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6 R. J. MIATELLO

If 1 <p<oolet|fll,=/rg/kl (I dx and LP(T'\ E) = {f|f = cross-section
of TNET\Mst| |f] ||, < o}

We still have a correspondence between cross-sections and vector-valued func-
tions on the group.

1.2 LeMMA. Let C*(T'\ G: 6) = {f: G - V,|fis C* and f(ygk) = o(k~)f(g) for
vyeEI,g € G,k €K).

Let Br: C*(T'\G: 6)> C®°T\E) be B(/)I'xK) =T -Bf(xK) where B:
C*®(G: 0) » C*®(F) satisfies B(h)(gK) = [ g, h(g)]. Then By is an isomorphism and
preserves the p-norms.

PROOF. If f € C®(E) satisfies f(yx) = yf(x), fory €T, x € G/K set f(Tx) =T
-f(x). Then f € C®(I'\ E) and if f, € C®(T' \ E) there is a unique f € C®(E) so
that f(yx) = yf(x) and f = Jfi- Indeed, since the action of I' on M is free, if
[v] = £(Tx) there is a unique v € E,, the fiber of E at x, so that #(v) = [v] where
#: E—T\ E is the canonical projection. This globally defines the desired f. The
first part of the lemma follows, since the I'-equivariant cross-sections of E corre-
spond bijectively with the I-invariant elements of C*(G: o¢). The p-norms are
preserved since

[ B (R, (B (Dhlkdx = [ (A%, /(%)) dk. QED.
T\G/K \G

2. The Selberg trace formula. We keep the notation of §1. Let » denote the right
regular representation of G on LXT \ G). It is a well-known fact that 7 decompo-
ses mp = 2 (W) - w and np(w) < oo for w € G, where as usual, G stands for
the set of all equivalence classes of irreducible unitary representations of G. We
now briefly describe the trace formula on LT \ G). Our source is Wallach [Wa2].

If € C°(G), w € G and (7, H,) € w, the operator 7, (¢) = [gd(x) - 7, (x) dx
on H, is trace class and its trace 8 (¢) = tr 7 (¢) (the character of w) completely
characterizes the class w.

The operator on LT\ G), m($) = [(x) * mr(x) dx is a kernel operator with
C* kernel k(x,y) = 2 cr( y 1.y x), the series converging uniformly on com-
pacta. Because k(x, y) is C*, m(¢) is of trace class and

tr 7(9) = fr R %) k= fr . g o(x " lyx) dx.

Setfory el

[v] = the I'-conjugacy class of y.

[T'] = the set of all I'-conjugacy classes of elements of T'.

G, = the centralizer of y in G.

I,=TnAgG,

Also we normalize the measures on G, and G, \ G so that for §, n € C(G)

JuDdg=[ [ #xg)dxdg,

fG n(g) dg = ]; 2 n(1g) dg.

y\Gy r€T,
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MINAKSHISUNDARAM-PLEIJEL COEFFICIENTS 7

With these normalizations we have

trap(e) = X np(w) - 0,(¢)

wEé

= 3 vlC\G) [  #(s7ve) dg.
[v1€(r] GG
As in §1, let H, € a satisfy A(H,) = 2. Then 4 = {q, = exp(tH,)|t € R}.
Since all elements y € ' are semisimple (see e.g. Raghunathan [R]) and T is
torsion free, it follows that for any y € T there exists g € G so that

g vge=m,-exp(t,- H) (m € M,t >0).
Here 1, happens to be independent of the choice of g or the particular Iwasawa

decomposition and so is m,, up to conjugacy in M. Therefore, the following are
well defined:

D(y) = D(m, - exp(t,H)))
exp(~t,llpll) - [det{Ad(m, - exp(z, H,)) ™' = I1,)l,

u(y) = Vol(A\ G, exp(r,my) 204 x(m,) = tr o(m,).

Here b = number of distinct positive restricted roots (i.e, b = 1 if m(A/2) = 0 and
b =2if mQA/2) # 0).

Finally, we let for o6 € Mandv € ag, 7,, be the principal series representations
of G, that is, m,, ~ #%**” in the notation of [Wal, Chapter 8].

2.1 THEOREM.(SEE [W, THEOREM 6.7].) If ¢ € C°(G) then
trag(e) = X np(w) - 0,(¢)

wEG

1 -
= vol(T'\ G) - ¢(e) + 5 > vol(T,\G)D(y)™'
[r1€[T]-[e]

—_— + 00
w7 S %m) b [ 6, @) db.
cEM et

If ¢ € L'(G) instead of ¢ € CX°(G), the operator m(¢) is still defined but it
need not be true that #(¢) is trace class. The objective of the rest of the section is
to give a sufficient condition for ¢ € L'(G) to be put into the trace formula. We
observe that all we need for the validity of the trace formula for ¢ is that the series
2, erd( » ~yx) converges uniformly on compacta to a sufficiently regular kernel,
because then the operator m(¢) has to be given by this kernel and will be trace
class because of the regularity of the kernel. Throughout the rest of this section we
may drop the assumption that G be of split rank one.

2.2 LEMMA. Let M be a compact manifold of dimension n with volume form w. Let
k: M X M — C be of class C"*V. Then the operator

(KNx) = [ k(x,2)-f0) daly) (] € LA(M, w))

is trace class and tr K = {,, k(x, x) dw(x).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8 R. J. MIATELLO

ProoF. For M = T” the theorem follows from the fact that if

k(x,y) = > a,ge’ ™ e P
a,BEZ

and k(x,y) € C"*)(T?") then =, gla,g| < 0. For a general compact manifold,
the obvious partition of unity argument reduces the problem to M = T™".

2.3 THEOREM. Let (7, V,) be a unitary representation of K, r a natural number and
n = dim G. Assume that f: G — End(V,) is C* and f(k,gk,) = t(k)) - (&) - 7(ky),
for k; € K, g € G and that ¥f € L' for 0 < j < n +[r/2] + 1. Then = f(g " 'yx)
converges almost everywhere to a C" function on '\ G X T\ G.

PROOF. Let (p, End V) be the unitary representation of K X K with action and
inner product given by p(k,, k)T = 1(k)) - T- 7(kp)~", (T, U) = to(U*T). The
series 2 f(g~ lyx) converges almost everywhere to an integrable function ¢( g, x) in
I'\G X T\ G, since

Lo S, S uste vldidi= [ [ 1A de

\G yer
= ||fll, - vol(T'\ G).

Also, ¢(gk,, xky) = p(k,, k;) "' - $(g, x). Thus, in the notation of §1,
¢ € L' XT\ G X G:p).
We will compute 2,6, £, being the Laplacian on the vector bundle
I'XT\GXGX,KXK->TXT\GXG/K XK.

Lety € C°T X T\ G X G: p). Thenif X € g,

f f 2 g7 'vx)- X, ¥(g, x) di dg
"G “T\G ¥

4
e 4t

of S Ag~vx) - ¥(g, x exp(iX)) ds dg.
t=0T\G vy
By dominated convergence the above equals
fooy f, ], /(8 (i) 9, x) e
NG JcG t=0
= [ [ XP(g D8, x) dx &g
G G
= [ (2 Cantsmv)ue, x) at s
"G I\G

Y

Therefore, forj = 1,2, ..., n + [r/2] + 1, we have that in the sense of distribu-
tions

(29o)(g, x)= ; Yfg~yx) € LT\ G X T\ G)
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MINAKSHISUNDARAM-PLEUEL COEFFICIENTS 9
since @f € LY(G), for 1 < j < n + [r/2] + 1. Similarly
[ L (2 R ) Xuls, x) di ax
G MG\ ‘Y

= j["\G fG(RAd("-lg)(‘“x)f)(g_lx) . |P(g, x) dg dx.

This implies that

f f ¢( & x)ﬂg‘l’( 8 X) dg' dx
I'\G ‘T\G

[ 3 ) a0
Thus

[ [ e(g %), x Qu(e, x) dg d
I\G “I'\G

= [ (2 20 w))i(s, ) i ax.
I\G T\G\ ¥
That is, as distributions, foranyj = 1,2,...,n + [r/2] + 1,
(o) g, x) = Zr Y9f(g 'yx) € LT X T\ G X G: p).
YE
For s € R, let H* denote the s-Sobolev space of the vector bundle I' X I'\ G X

G X, KXK->TXT\G X G\K X K(cf. Palais et al. [P]).
It now follows that

@/ (g) € LT X T\ G X G: p)
~LTXT\GXGX,KXxK)c H™""*, foranye > 0.
But £, is elliptic of order 2. Hence
= H—n-—z+2(n+[r/2]+l) C Hn+r+l—¢.

This completes the proof since H"*"*% < C’, foranyé > 0. Q.E.D.
We wish to prove a similar result for scalar valued functions. Let for f € C(G)

and h € C(K)
(f * B)(x) = fK SCxk)R(k™") dk,

(h* f)(x) = fx h(k)- f(k~'x) dk.

A function f € C(G) is left K-finite (resp. right K-finite) if the left (resp. right)
K-translates of f: {L.(f)|k € K} (resp. {R,f|lk € K}) span a finite dimensional
subspace of C(G).

2.4 LeMMA. (a) f € C(G) is left K-finite if and only if there are 7\, 7,, . .., 1, € K
such that
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10 R. J. MIATELLO

() f € C(G) is right K-finite if and only if there are v, 75, . .., T, € K such that
2dfrx, =1
2.5 LeMMA. If A € End(V,) then
d, f tr(r(k~1)A) - (k) dk = A.
K

PROOF. Let ey, e,, . . ., €, be an orthonormal basis of V,. Then

<d,fK tr(r(k ™Y A) - 7(k)dk(e,,), e,>

= 4 [(y @), o r(kIak(en). )
= (Ae,, ¢). QE.D.

2.6 LEMMA. Let
X, = {¢: G— End(V,)|¢ is continuous and
o(kygks) = 7(k)o(&)r(ky), k, € K, g € G),
Y, = {f: G—>C|fis K-central and d,x, » f = f}.
Set, for ¢ € X, A(¢) = tr . Then A: X, — Y, is an isomorphism.
PrROOF. If {¢;}] is an orthonormal basis of ¥,, then by Lemma 2.5

d(x, * tr 9)(x) = [ dx,()tr $(k~'x) dk

= 2 (¢(x)e;, e) = tr ¢(x).
Thus A(¢) € Y, if ¢ € X,. Now let
B(/N8) = d [ f(gk)-7(k™ ) dk, fEV,

It is easy to check that B(f) € X, and that the maps A and B are inverses of each
other. Q.E.D.
Lemmas 2.4 and 2.6 imply

2.7 CoRrROLLARY. If f € C(G) is K-central and K-finite then f = 37_,tr(¢;) for
some ¢; € X, and 1, € K, i = ,2,...,n.

2.8 ReMARK. The following more general version of the corollary is true:

If f € C(G) is left and right K-finite then there exist K-types (7,V,), (0, V),
vectors o; € V,, w; € ¥, continuous functions ¢;: G— Hom(V,, V,) such that
ok gky) = o,(k )b 8)7(ky) and

f(g) = él <¢i(8)°ia Wi>-

2.9 COROLLARY. Let r be a natural number. If f is a K-central, K-finite function on
G such that Yf € LX(G) for j=1,2,...,n+[r/2] + 1, then = f(g~'yx) con-
verges almost everywhere to a C" function on T\ G X T'\ G.
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Proor. This is a direct consequence of Theorem 2.3 and Corollary 2.7 since f
can be written f = Str ¢; and ¥f = 3 ,tr W¢, € L'Y(G) if and only if Y¢, €
L(r: G: 7).

In particular if f is as above with r = n + 1 + [(n + 1)/2], by 2.3, #(f) is a
kernel operator with kernel given by

¢(g, x) = > g lyx) € C*N(\ G X T\ G).
By 2.2 we thus have,

2.10 COROLLARY. Let f € C*"*(G), f K-central and K-finite. Assume also that
Qf € LNG) fork=1,2,...,(n+ 1)+ [(n + 1)/2]. Then = (f) is trace class on
LT\ G) and tr n(f) = [po®(x, X) dx.

At this point we observe that if the convergence of the series 2, (g~ 'yx) were
uniform on compacta, then the conditions of 2.10 would be enough to ensure that f
goes into the trace formula (Theorem 2.1). To fill this gap we will need to impose
another mild condition on f.

2.11 DerINITION. A function f € C(G) N L'(G) is of regular growth if there
exist a compact neighborhood U of e and a constant M so that

Ih(x)| < Mfuh(x-y) dy forall x € G.

2.12 PROPOSITION (SEE GEL'FAND ET AL. [GGP, p. 23)). Let f € C(G) and h €
C(G) N L'(G) so that | f| < h and h has regular growth. Then the series = _f(g~'yx)
converges absolutely and uniformly on compacta of G X G.

Any x € G, can be written x = k,ak, with k,, k, € K, a € A. Define h(x) =
e~ P18l Then h(x) is well defined. Also x = k- exp(X), k€K, X €Ep in a
unique fashion. We define o(x) = B (X, X )1/ where B, denotes as usual the
Killing form of g.

2.13 PROPOSITION. Let r = split rank of G. Then for any ¢ > 0

h(x)?
fx) = —HE
(1 + o(x))
is of regular growth.

We refer to [GW] for a proof of the proposition.

2.14 THEOREM. Let f € C3>"*Y(G) be K-central, K-finite and such that ¥f €
LXG)forj=1,2,...,(n+ 1)+ [(n + 1)/2). Assume also that

h(x)?

(1 + o(x))™*

with r = split rank of G and ¢ > 0. Then the Selberg trace formula (Theorem 2.1) is
valid for f.

[f(x)] <
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ProOOF. The theorem is a direct consequence of 2.10, 2.12 and 2.13.
Let now ¢(x) be the spherical function of weight 0,

do(x) = fK e~ PLHGR) g

where H(xk) = log a(xk) and xk = K(xk) - a(xk) - n(xk) with K(xk) € K, a(xk)
€ A, n(xk) € N.

2.15 DeFINITION. If 1 < p < 2, let P(G) (the p-Schwartz space of G) be the set
of all C* functions on G such that for each natural m and for each D, a product of
a left invariant and a right invariant differential operator on G, there is a constant
M, ,, such that

sup |DA()| < M, 90(x)*7/ (14 a(x)".

x€

Then ©?(G) with the topology defined by the seminorms
apm(f) = sup. [(1 + o(x))™ ¢o(x)™7 - DAx))

is a Fréchet space (cf. [HC1)]). It is clear from the definitions that f € C°(G)
implies that Q¥ € ?(G) for all k and that @*(G) c L?(G) for any p.

2.16 COROLLARY. Let f € CN(G) be K-central and K-finite. Then f goes into the
Selberg trace formula.

3. The trace of the heat kernel. Let G, K and I" be as in 1 and fix r € K. Consider
the vector bundle T\ G X, ¥V, »T\ G/K over M =T\ G/K. We have a second
order, elliptic, formally selfadjoint differential operator D = -VZ = —Q. + A, - I
onT'\ G X_V,. The spectrum of D is the sequence of eigenvalues 0 = A, < A, <
Ay ... andlim, A = oo If m; = dim G°(T'\ G X, V) we set

&, r(5) = ¢,(s5) = > m-e”™ fors > 0.

We wish to study ¢.(s) near s = 0. Wallach shows in [Wa3, Lemma 3.2] that
¢,(s) can be written

&, (s) = e™ 3 n(w)[7: @] e
wEé

where A, is as in Proposition 1.1 and B (H,, H)™'- A, is the eigenvalue of the
Casimir element of G on the class w € G.
Let us assume that there exists a function f, to which the Selberg trace formula

applies and such that
0.(f) =[7wx]" e PN,
It then follows that
tra(f) = 2 np(w) 0,(f) = ¢,(s)

we é
and on the other hand tr #(f) is given by this formula. Hence we can use the
right-hand side of the formula applied to £, to study ¢,(s).
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Therefore there are two separate problems: to define such a function f, and then
to study the right-hand side of the trace formula near s = 0, for s > 0. In the next
section we will be concerned with the first of these questions.

4. The function 4, ;. Let (7, , ;. H°?*") be the principal series representations of
G, parametrised as in [Wal, Chapte: 8]. Then =,,,, is unitary if and only if
v € a*. We write 7,, = ,,,,. Let G, denote the set of all equivalence classes of
irreducible constituents of unitary principal series representations. Also, let G, be
the discrete series of G, that is, those classes @ € G that contain a square integrable
representation of G. We now state the version of the Plancherel theorem that we

will need (see [HC2)).

4.1 THEOREM. Let G be a connected Lie group with finite center and split rank one.
Let N\ € a* be the long positive restricted root. Given o € M, there exists a nonnega-
tive, even function of polynomial growth p(xA) (for x € R) such that, for any
f € C¥(G), K-finite on both sides,

fy= 3 de)- 0N+ 2 [ 70, () m) dx

wE Gy seMm %

Here d(w) denotes the formal degree of w € éd (d(w) and p,(xA) depend on the
choice of the Haar measure on G). Moreover all sums are finite.

Let (m, H) be a unitary, irreducible representation of G. Then (=, H) is K-finite,
that is, H is the unitary direct sum H = 3 .z H,, where, as a representation of K,
Ty, ~ m, -7 with m, < oo, for any 7 € K. We let E,: H— H, be the orthogonal
projection onto H,. We observe thatif d,- f » x, = f then

0.() = | (B 7(x)- B.) - f(x) dx.
If (=, H) = (m,,, H*"), the space H " is identified with ¥V, @ Hom (¥, V,)
via the map A4 given by
A(v ® T)(kan) = e~ #*+PX8a) . T(r(k~")p).
The matrix entries of the principal series are given by Eisenstein integrals: if 7,
Yy € K, T € Hom,(V,, V), » € a¢ and x € G, let
E,(T: iv: x) = fK e~ (r+PHG0) . y(K(xk)) - T- (k™) dk.
Let {pi|j=1,2,...,m,} be a basis of Hom,(V,, V,).
A computation (see [Wal, 8.12.4]) shows that
(7, (x)A(w ® pi), A(w ® p¥)) = (E, (pf - p¥: —iv: x)w, v).
Letus fixt € K. Let M, = {0 € M|[o: Tipl 7 0}. Then
V,= X X Hi with (1, H)) € 0.
seMm, /= 1

Letg) =p/-plforj=1,2,...,m

o*
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4.2 LEMMA. For each 6 € M, let a,(v) be a C™ function on a¥. Set
m‘ :
a-r(v) = 2 2 ao(v) * ‘I:-
oM, /™!
Then

2 tr(Ef‘”a,r(x)E‘r)ao(V) =1r E"(a,(v), —iv, X)

cE 1f1,
Jor any v € o
ProoF. By the matrix expression for E_ - m, (x) * E_we have

2 t(E, - 7,,(x)E)a,(v)

oE}l?,

= > § tr E, (gJ: —iv: x)a,(v) = tr E_(a,(»): -iv: x). Q.ED.

seM, /=1
Consider now the canonical double representation of K on End(V)). If k), k, €
Kand T € End(V,) let
wlky, K )(T) = 7(ky) - T - 7(ks)-
4.3 THEOREM [War, THEOREM 9.1.5.1]. If G is a rank one Lie group with finite

center, there exist meromorphic End(End,(V,))-valued functions on a&: c(v),
c_,.(v)and o(v: t) so that for any T € End(V,),» € Cand t > 0 we have

2
= ¢~ IPIB/D (et . g(y): £) - c,(VA) + e~ - o(-PA: 1) - ¢, (PA)T).

E,.,(T: ivA: exp té -H,)

Here, b = number of distinct positive restricted roots (as in 2.1).
We now summarize some properties of ¢ (»), ¢c_,,(») and o(»: ¢) that we will
need.

4.4 PROPOSITION. There is a meromorphic function c,: af — End,(V,) (that we
still call c,) such that for any T € End,(V)),

¢, (»)(T) = T-c(»),
c_1,(WNT) = 1(mg) ™" - ¢,(#)* - T+ 7(my).
Here my € M* — M and M* = {k € K|Ad(k)(a) C a}.

4.5 ProOPOSITION (HARISH-CHANDRA [HC2, I, LEMMA 13.4 AND III, THEOREM
27.3]). There exist constants d, € R depending only on o so that, if

"" .
b= X 2 dq,

oeMm, /=1
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and if

RO 2 1, (»)g}

ek, /=1
then ¢,(3) - ¢,(3)* = w(»)™"+ b,.
4.6 PROPOSITION. There exists a rational function q,(v) such that if Im (», a) <0,

e, () ™'l < 1gy(»)]
(|l || stands for the operator norm in End(V))).

We turn our attention to the function o(»: r) of 4.3. As shown in Warner
[War, Chapter 9], this function is given by a series

]

o(v:t) = T,(iv — ple ™

k=0
where the I, (iv — p) are rational functions on a¢ with values in End(End,, V,).
These functions are defined by means of complicated recurrence relations which
we will not need to describe. We will make use of the following important result.

4.7 PROPOSITION. There is a rational function q,(v) and a constant ¢ such that if
v € at and Im (v, A\) > 0 then ||T\(iv — p)|| < |g;(»)| - c*, k=0,1,2,.

Proor. This estimate is contained in the proof of Theorem 2.4 in Chapter II of
Helgason [He]. See also Johnson [J, Lemma 2.1].
Now let X, X,, . . ., X, be a basis of m such that (X, X;> = —§; and let

Wy = — 2 X, ,.2.
i
Then, since w,, is a scalar multiple of the Casimir element of M, given o € M
there is A, such that o(w,) = A, - 1.
4.8 PROPOSITION. The poles of T (ivA — p) lie in the set

A, — A,
P, ={vEC|v—2—b(h+ W ’)whereh=1,2,...,kando,~,ajCT|MJ.

ST

ProOF. In the notation of Warner [War, 9.1.4] we let 7(w,,) € End(End,(V,)) be
given by
T(wp)(T) = T 7(wpy)-
HV,=2en2 _,H’ and ¢/: V, - H! is orthogonal projection onto H} we have
that 7(wy)(q)) = A, - ¢/. Hence, the eigenvalues of

v = ad(r(wy)): End( End(V,)) — End( E;x{d(V,))
are all the differences A, — A, with ¢;, g; € M,. By the very definition of T, its
poles lie in the set {» € aX2h - By(H,, iH,) = h*- B(H,, H,) + v,B(H,, H,)

where h = 1,2, ..., k and y; runs over all eigenvalues of v}. Here a denotes the
short positive restrictcd root, that is @ = A/b. Hence, the poles of I',(irA — p) lie in
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16 R. J. MIATELLO

the set

A, — A,
P.= [VIV € Cand v = (-i/2b)- (h + - /)

-

with h = l,2,...,kando,-,ojEM]. Q.ED.

T

We now prove an estimate that we will need later on.

4.9 PROPOSITION. Let f(z) be a meromorphic function on H = [z|Im z > 0] such
that | f(2)] < |g(2)| for z € H, q(z) being a rational function of degree N. Suppose
also that the poles z,, z,, . ..,z of f in H are off the real axis, and that N, is the
order of the pole z;. If a > 0 is a constant we put

+ oo 2
1(1) = f e~ e "™ f(x) dx.
—0o0
Then there exist polynomials p(t) of degree N; — 1 forj = 1,2, ..., k so that

exp(-2/4a)- (I(t) - é p,(t)-e“/') = 0(t") ast— +co.
j=1

PrROOF. Since we are interested in large values of ¢ we may assume that
t/2a > Im z,forj=1,2,..., k. Letx = y-t.Then

10 =17 e @ f50) .

We use the method of steepest descent to study I(z). If A(y) = ay? — iy, then
h'(y) = 2ay — i. We move the contour of integration up to the line Imy = 1/2a.
Since the poles of f(y?) are at z;/t and t/2a > Im z; we have

(1) = tf e~ (awi+1/4a). }(ut + 2'—:1) du

+2mtz Res g(»),
Jj=1 y=z/t

where g(y) = e~ @ ~f(yr).
Letting ut = x,

+ . k
1) = e"’/“’f ® e-ax’j(x + 2'—:1) dx + 2mit Y, Res g(y).
-0

j=1 y=z/t

Since for z € H, |z| large, | f(z)| < c|z|" it is clear that
+oo
"”"j( +— )dx o(t") ast— +oo.

On the other hand, 1f h(z) = e"z("‘ ~#) then a computation shows that

ll' h(')( p ) = ﬁlj(t) - tleis

where P, ;(2) is a polynomial of degree /.
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Thus, if fz) = 2= b,(z — 2,

N-1

1 Z;
. - . 'O AN 4—i-1
thZI_{gs/’ g(2) th( ,_Eo il h (_t) b_j_\t )

N—1
= ( > 2mi- b_,_IJF,J(z))effe.
1=0
This completes the proof of the proposition.
We next use a wave packet to define a function &, closely related to our specific
problem (see §3). Our main task will be to study the growth of this function.

4.10 DEFINITION. If 7 € K and s > 0 we set

+o0
ha() = d7 e B [T (E, my(2) E)e™ - u () db

aeﬁ, et

where g, is as in 4.1.

. Here A, ,, denotes the eigenvalue of the Casimir £, , = By(H,, H) - @ on the
class 7,,,. Let a denote the short positive restricted root. Then ba = A where, as
usual, b is the number of distinct positive restricted roots. By the computation in
[Wal, p. 280] we have

-1, sy o(H)' p(H) _
Bg(Hl’ Hl) }‘u,izp d(Ha) a(Ha) }‘o'

Since A = ba and zp = —ivA we have z = — 2iv/p(H,), H, = 2H, /b - a(H,). Thus
p(H) | A

a(H,) " a(Hy |

Al:,izp = -Bg(Hl’ Hl) : a(Ha) : b2‘,2 +

But ||p|> = <H,, H,), where H, satisfies p(H) = B,(H,, H)/B,(H, H,), that
is, H, = B(H,, Hy)-H, Thus |p|*= By(H, H, ByH, H,. Using that
B(H,, H,) - B(H,, H)) = 4/b? we finally get that

ol = & P
=% a(H)

Hence the formula for the eigenvalue is
Aoor = = (497 + [Iol® + By(H,, Hy)- A,).
Thus, letting a = B (H,, H)),
h,(x) = d-'- e~ A +iel)s

+o0
2 tr(E1 * ‘”o,rk(x)E‘r) ) e—:h,a : e—:~4r2 : M'a(yk) dv.

T® seMm,

Lete,, = 3,c 5 27 e~ g/ € End,(V,). Then, by 4.2
2 +
h,(x) = d "} e~ O Hlel)s f “ir E (,(?\)- e,,: —ivh: x)e " dv.
-0
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Let us set a, = exp(¢- bH,/2). Using 4.3, 4.4 and 4.5 h, (a;) can be put into the
following form

h’r,:(a;) = d‘r—] . e_(>‘v+"9"2)3 . e—||p||b.,/2

+00 .
f e"“"ztr[e"”” -o(vA: 1)+ b, e, - c,(FA)*!

+e " . (= pA: t)'r(mo)_l . cf(v)\)" b e, 'r(mc)]dv.

We now need the fact that the poles of o(¥A: ¢) and c,(FA)* ™! form a discrete
subset of the imaginary axis. For ¢,(#A\)*~! this is a consequence of 4.5, 4.6 and of
the expression of the matrix entries of ¢,(¥\) as linear combinations of products of
beta functions (see [Wad]). Moreover, only finitely many of those poles: iy, . . ., i,
lie in H, the closed upper half plane. To avoid the possible pole at » = 0, we
change the contour of integration near » = 0. That is, the new contour I', consists
of the half-lines L+ = {»|v > e}, L, = {»|r < — ¢} and the semicircle C, = {» =
e-e"|0 <t < m}. We choose ¢ so that the new contour will be within the strip of
holomorphy of the integrand and also so that the only pole of o(#A: ) or c,(PN)* !
inside the circle of center at » = 0 and radius ¢ is, possibly, » = 0.

Then we have that the only poles of the first half of the integrand that lie above
T, are iv, iv,, . .., iy, (Where »; = 0, all j) and since the poles of o(-»A: 1) and
c,(YA)™! are the negative of the poles of o(¥A: 1) and ¢, (FA)* ' respectively, and
because of the choice of €, the poles of the second half of the integrand that lie
below T, are —iv, —iv,, . . ., iv, and possibly » = 0.

To estimate the growth of 4, (a;) for ¢ large we use Proposition 4.9. We note that
we need a slightly different formulation of it, since the contour of integration is I',
instead of the real axis and moreover because we will move the contour below I, to
study the second half of the integrand. However, making the obvious changes in
the proof we see that the proposition is still valid. We now break the integral into
two pieces.

f e~ 4 e™tr a(vA: 1)b, - e, ;c,(FN)* " dv
1y

= f e""ze""”’tr(z T.(ivA — p)e™“b, - e,_,c,(i)\)"') dv.
T, k

By 4.6 and 4.7 there is a rational function §(») and a constant ¢ so that
|tr T (ivA — p)b, - €,,¢,(PN)* 7| < |G(»)|c* if v € H.

Therefore the integrand is dominated by |e™e =% §(»)/(1 — ce™")), if t > 1 and
dominated convergence applies. Hence the above is

o0
= kzo fr e™e =47 tr(T (ivh — p)b, - e, ,c,(FA)* ") dve ¥

Now let be (see Proposition 4.8)

—i AU_AG ~
Pk',';={vEH|v=—2—;,(h+ 'h 1),h=l,2,...,kando,.,ojEM,].
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Then P}, = & and
Py, CP,,C...CP} C
and this chain is stationary if & is sufficiently large. We also put
=U l:o-lPk;’
={v € H|c,(v-\) =0},
Pk =P uUZ*
P =P*yuZ*.
Let P ke ={yli=12,..., 4} and P = {iy]|j=1,2,...,1}. It will be con-
venient to assume that
={inli=12...,hand0<p, <y, < ... <y},
P,rj‘ = {ll{,lj = lo+ 1, .. .,Ikandl',o_,,l >1’,o+2 > ... >Vlk}’
={iwlji=0hL+1,..., land vy oy >y 00> ... >}
Also let N;, be the order of iy; as a pole of tr T, (ivA — p)b.e, ,c,(PA)* . If we

apply Proposition 49 to our integral we find that there exist polynomials Pix(t) of
degree N;, — 1 and functions g,(?) so that

2 f bt e =47 r(T,(ivh — p)b, - €, ,c,(FA)*~")e™¥

23S pa) e 4 exp(BHY165): S gle".

k=0 j=1 k=0
Moreover | g, (¢)] < c*- O(t¥) as t — + oo, with N = deg(§(»)).Thus,
_ 1
|2 g()e™ | N

For the other half of the mtegral we must use the region below I',. Hence the
possible poles of the integrand are » = —iy; with iy; € P, or » = 0. By Proposition
4.9 there exist polynomials j; ,(¢) of degree N;, — 1 and functions g,(?) so that

- -0(tV) = O(t") ast— +oo.

f 2 e—lbvl —Mtr(rk(_ll'}\ — P)T(mo l)c (VA) l " TJT(mO)) dy

=5 S s s 2 Zi(f)e™ - exp(-b2/165).

k=0 j=0

In this case summation starts at j = O corresponding to the possible pole at
vo = 0. We observe that since 0 is not a pole of c,(vA)~' and by definiti-
To(ivA — p) = 1, we have poo(f) = 0

The next result summarises the properties of A, ,.

4.11 THEOREM. Fix 7 € K. Let

h(x)=d e 3 fa tr(E, m, (X) E,)e™p,(v) dv

aEM
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where a* is parametrised by X and y, is as in 4.1. Then
Ddx, *h,=dh, +x =h,
(i) h, , € C¥(G), the 2-Schwartz space of G,
Gii) 6, (h,,) = [0% Tpg)e ",
iv) h, , = h2, + b},
where h? . is a linear combination of matrix entries of the discrete series, h! . € &(G),
the p-Schwartz space of G, for all p > 0, and both h?; and h}_ satisfy (i).

Proor. Parts (i) and (iii) are clear from the definition and the Plancherel
theorem. By the estimates we just proved, we see that there exist polynomials g; ,(¢)
such that

h‘r’:(at) = e-(kr'.'llpuz)-'

ok
-e‘"”"’[ S X gu(t)- e U/ 4 exp(-12/4s)- O(t") |, ast— +oo,
k=0 j=0

where a, = exp(tH,).

Since goo =0, e'l-h (a,) decays exponentially as ¢ — + co. Since dg =
c(sinh® 2¢ /by™ - (sinh%/ bY"sdk,dtdk,, this says that (1 + o(x))" - h_(x) € LYG)
for all m € Z > 0. On the other hand

Qh, (x)=d " e~ +lel?)s
+ o0 2
“tr f QE, (1, (¥N)e, ;2 —ivA: x)e ™" dv
-0

=d ' e O Hler)s

-tr f+°°(—l)"E"(2 p(PA)e (40 + llolIA,) q2: —iv: x)e"“"'2 av.
oo Py

Therefore, arguing as in the case of 4, , we get a similar estimate to show that
(1 + o(x))"Q*h, (x) € L¥G) for all m, k €Z > 0. Hence h, , € *(G). Finally
let us consider the above expression for 4, ,(a,). Campoli has shown (essentially, see
[C)) that the first summand is the restriction to 4 of hf’,, a linear combination of
matrix entries of the discrete series. From the expression of A , — hf’, on A (the
second summand) we see that b}, = h , — k%, € @(G),forallp > 0. QED.

The main difficulty at this point is the fact that we need (1 + o(x))"Q%, (x) €
LY(G) for all m and k € Z > O (instead of (1 + o(x))"Q*h, ,(x) € L¥G)) in order
for b, , to be plugged into the right-hand side of the Selberg trace formula (see 2.1).
This is false in general and we see from the proof of Theorem 4.10 that the
obstruction comes from those poles iz, z; > 0, of tr(o(vA: b,e, ',c,(i)\)"‘") that
occur as a pole of tr(T';(ivA — p)b,e, ,,c,(FA)“') for some k so that k + z; < {lpf| -
b/2. Let iz, iz,, . . ., iz, be these poles and let N; be the order of iz; as a pole of
tr(a(vA: Db, e, c,(FA)* ). Set

p) =TI {A -7, iz)" ¢ € M,andj=1,...,r}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MINAKSHISUNDARAM-PLEIJEL COEFFICIENTS 21
4.12 THEOREM. If T € K and s > 0, let

hoa) = a7 e B [ (B (DEPN,)e ™ (v) .
aEIt?, a*
Then, ; ;

(l) = dfh'r,s * xvr = hf,.\"

(ii) h € @'(G)

(iif) 0 (B =02 ule’ ™, ).

ProOOF. Parts (i) and (iii) are clear. The argument in 4.11 when applied to h~
gives a similar estimate for 4_,(a,), ¢ large But the poles i, € H arising in the
proof, satisfy »; + k > ||p||b/2 hence h € LY(G). Sumlarly we see that h €
CY(G).

5. Asymptotic estimates for ¢ (s). By Theorem 4.12 the function A, € C'(G).
Hence, by Corollary 2.16, tr wp(h, ) can be evaluated by the right-hand side of the
Selberg trace formula. Theorem 2.1 implies

tr m(h,,) = vol(T\ G)- A, (e) + 21 > volT,\G)D(v)""
[Y]E[r] (e}

u(n)™' T b x(m) f () ™24 db.
oEM
We now apply results of De George to show that the right-hand side is
asymptotic to vol(I'\ G) - h,_,(e) as s]0.
5.1 THEOREM. Let e(s) = tr wp(h J) vol(T' \ G)h ,_,(e) Then there exists d > 0
such that
li e/ = Q.
lim g(s)- ¢ 0
s>0

In particular this says that e(s) can be extended to a C*®-function on R by setting
e(s)=0ifs<O.

ProoF.

e(s) = 5= 3 vol(T,\ G)D(M) ™ 'u(n) ™' Xlm)

X
.b. [o: T|M]e_(xv+hv+“P"2)J‘f+w e—‘!’!’(z cjvzj)e_zhv' dy
J

—00
where p(\,,) = Zc;»¥. Moreover
+ o0 ) .
2 (j‘/f e-‘wzpz’e_z"‘l' dv
i ~00
_ ina , [ d
- 2 ¢e Uy (2t) = ? ¢- (E) |’_2‘7(1/\/— )exp(-»%/16s).
J
Then there are natural numbers ¢, d and a constant M so thatif 0 <s < 1,
l(p(}\,,,)e“‘"’)‘(t,_)| <M- ty‘s"’- exp(—t3/4s).
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Hence, if 0 <5 < 1,
le(s)f <M’ - > vol(T,\ G,)- D(Y)”!
[Y]E[T]—[e]
u(y) ™'t s79 exp(-£2/4s).

We want to show that £(s) — 0 exponentially, as s{0. We will need to introduce
more notation.

An element y € T is primitive if y # e and y = yf for y, € T, k € Z, implies
that k = =1. It is known that if P = {y € Ty is primitive}, then (cf. De George
[GD

(i) U,ep U n=ily"]is a complete set of conjugacy class representatives.

(ii) If y is primitive, then I, = I'_ is infinite cyclic generated by .

If y is primitive let y = xm,a,x~' with m € M, a, € A* and x € G. Then
y* = xm¥ - afx~" and it is a well-known fact that vol(T« \ G,) - u(y ™) = ,.

On the other hand, by the proof of Lemma 7.7.11 in Wallach [Wal]

D(y)™! < M- el?t% . sinh(r, /2)™ - sinh(z,)™=.

It is also well known that there is a lower bound a > 0 for the sequence
{#,I[v] € [T']} (for a proof see [G, Proposition 18], for instance). Hence there exists
a constant M, st

D(y)"' < M, forally €T.
Thus

le(s)| < M"-s79% vol(T \ G,)- |D(y)|"u(y)_'t.,c . exp(—t$/4s)

< M, s %xp(-a%/8s)- D te*! - exp(~£2/8s).
[Y1€[T]—[e]
To prove the theorem we only need to show that the series 15 exp(—t.f /85)
converges for all s > 0. Set

E(x) = card{[v] €[T}lt, < x}.

Then, by results of De George (see [G, Corollary 2]) there exists a constant a > 0
such that

E(x) ~e*™/ax asx— +o0.
Hence, if 0 < ¢ < 1, for x sufficiently large

eﬂ.x eux
1 —¢)— _
( €) SE(x)<(1+%¢) -
Therefore

> - exp(-12/8s) < by
N<t, <2N

where
by = (2N)*"'exp(-N?/8s)[ (1 + e)e>™ — (2 — 2e)eV] - a”!
and clearly 3 by < 0. Q.E.D.
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We now set, for 7 € Kands > 0,

$.(5) = 3 np(w)-[1: et

weé

Y. (s) = > "r(w)’[’fi wlk]e:(x,,—h.).

wel
Our next task is to relate ¢, (s) and {,(s).

5.2 PROPOSITION. Let r € K. Then &,(8) — ¥,(5) extends to an analytic function on
R. (In particular it is bounded as s — 07%.)
PROOF. Let LT\ G) = 2 snp(w) - w. Set
Gr, = {weE él[’r: wk] # 0 and np(w) # 0}.
To prove the proposition it is enough to show that the set G} . é is finite. If

we G, by the subquotlent theorem, w imbeds in the nonunitary principal series 7,
for some 0 € M and » € a.

Hence A, = A,, = -A, — ||p||* — 4»* and since A, €R (see [War, 4.4.4.3)) then
vyERory € iR. If w & G, then » € iR. Thus, for any w € Gr, Gc,
A, > =A, — lipl® > sup{A, — llel*lo € M,}.
On the other hand, the series 3, np(w)[7: xJe*™ converges for all s > 0. Hence, no
infinite subset of {A_|nr(w) 7 0} can be bounded below. Q.E.D.

5.3 LeMMA. If ¢ € C*(G) N LY(G) is such that d,x, » ¢ = d,¢ * X, = ¢ then for
all 0 € M the map v — 0, ,\(¢) is defined and holomorphic_ in the open strip
S, = {v- Al |lm »| < |lpl| /2} and continuous in the closed strip S,,.

PROOF. Since 7(¢) = E, » m()E, * , if {¢;}7., is a basis of HX™ and » € R,
0@ = [ 602 (mn((e). ) a.

From Wallach [Wal, P 278] we see that if g(x, v) = 3{7, \(X)e;, ¢;) then, for any
U compact subset of SP, there is a constant M, so that | g(x, »)| < My, for x € G,
v € U. On the other hand, the Cauchy integral formula implies that for any
zy € §, there is a neighborhood V and a constant M so that

<M forreV,xeagG.

|55 200

The lemma follows by dominated convergence. Q.E.D.
We need the following result of Langlands.

5.4 THEOREM (LANGLANDS [L)). Let G be a semisimple Lie group of split rank one
and let o € G. Then one of the following is true.

@weoq.

b)we éd.

© © € Gopmpy
0>y > ~|lpll/2.

the complementary series, that is, w = m, ,\ for some v = iy with
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(d) w is infinitesimally equivalent with L,, = w,,/Ker A(¥) withv = iyA, 0 >y >
~lloll /2, where A(v): H®”" — H° " (1 #5 € W(A)) is the canonical intertwining
operator (cf. Wallach [Wal, 8.11]). Moreover L,, = L,, , iff 6 = ¢’ and v = v'.

Note. The theorem can be stated under much more general conditions but we
only need the above version.

5.5 THEOREM. Let h,_, be as in 4.10. Then ¢,(s) — vol(T' \ G) - h, (e) extends to a
C function on R.
(In particular, it is bounded as s — 0*))

PRrROOF. Recall
()= 2 nw)-[7:0k] "),
we éc
It is enough by 5.2 to show that the statement of the theorem holds for y,(s) —
vol(T'\ G) - h,_(e). Let

‘I‘;f(s) = 2 ”r(w) : [T: wIK] .p(ko)e"(&.—&)'
w€E G:
We first show that
6(s) = 2 ()8, (h,,) = uls) € C*(R).
«wEG
It is enough to see that if w € G, then either
0,(h,,) =[7: ]e‘(" Mp(A,) or 8,(h.)=0.
Since the first equality holds if w € G, by holomorphy (cf. 5. 3), the same is true
forw € G, By the Plancherel theorem 0,h)=0forw e Gd

comp®

Finally let @ = L,, be a Langlands quotient, that is, L, = H* */ Ker A(»)
where A(»): H* ’—>H" =7 If Ker A(») N H” =0, then 4, ( D=0, ( ) If
Ker A(») N H?* % 0, then it turns out, by the definition of p(A) that p()\, )=
Thus =, ,(h, ’,) = 0, by holomorphy. We now set

w(s) = 3 nw)d, (k) — vol(T\ G)-h,(e), ifs>0,
weG

and
w(s)=0, ifs<O.
Then, by 5.1, w,(s) € C*(R). Hence
¥ (s) — vol(T\ G)#, () = u(s) + w(s) € C*(R).
But

J(s) = e

() = = p(

Jeb(6),
) . b, (e).

&I& &I&
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Thus

P £ )M (5) = volT\ G)h (&) = eu(s) + w,(6))
By picking v,(s) € C(R) so that p(d/ds)(v,(s)) = e™(u,(s) + w,(s)) we see that

¥,(s) = vo(T\ G)- h, _(e) = e"""(u,(s) + é qj(s)e”"/-'/)
J=1

where )\, are the roots of p(A) and g;(s) are polynomials of degree N, — 1, N,
being thc order of )\, as a root of p(A). Q.E.D.

5.6 DEFINITION. If f g € C2(R™), then by f ~ g as 5|0 we mean that for any

natural number n
f(s) — g(s) = O(s") assl0.

We now state the main result of this section. The theorem is due to the author
under the restriction on 7 that [o: 7,,] € {0, 1} foralle € M Since this paper was
written, the result has been generalized to arbitrary 7 € K by De George and
Wallach (see [GWa, §6]), rendering Theorem 5.5 obsolete.

5.7 THEOREM. If € K then

¢,(s) — vol(T'\ G)(h”(e) + > dw)- [ wlx]e’("-'"")) as s)0.

weé,,

PROOF. Let as usual G, be the discrete series of G and let G: denote the classes
corresponding to the irreducible unitary principal series or the complementary
series. Let G, = G — (G, U G,). By 4.11(iv), we may write h,, = h2, + h!, where
h!, € (G) for all p > 0. This implies that the function » — 8, _(h, ) is entire (by
5.3, essentially), and then

. (BL) = [0 ] e"Pn)
for all » € C, since both s1des coincide for » € R, by 4.11(iii). This says that

0.(hL) =[7: o]

for w € é,. By applying 5.1 to h},, we find that there exists E(s) € C*(R) such
that Ep(s) = 0 for s < 0 and

tr mp(h}) = vol(T'\ G)h} (e) + Er(s).
By the Plancherel theorem

W)= X dw)b,(h,)

weéd

and since h!, = h,, — h2 and 8,(h,,) = Oif w € G, it follows that

hie) = h (&) + 3 dw)-8,(h,).

wEGd
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On the other hand
tra(hy,) = 2 n(w)f,(h;,)
weE é
=¢,(5)+ X n(w)(0,(R),) —[r: wk]e®™).

wE6— ér
By algebraic manipulations we get

1

hfe)+ 2 dw)|r: wg]e®™ + vol(T\ G)

weG',,

1 @ )
=i e) #9* Eé (#r‘\dé; —d(w))(ﬂ,,,(h,'”,) —[7: w]e*® )

-Er(s)

* wezé volra‘(‘:)G) (0"’(h ) [ wicle J(M—M). M

Now let us suppose that 7 is such that [o: ,,] € {0, 1} forall ¢ € M. Then for
any o € M,»€C, 0, A(h )= 0,h ,s) where o is the subquotlent of the composi-
tion series of 7, ,, that contains 7 as a K-type If o€ G and [7: w),] # O then by
the subquotient theorem there exist 0 € M, v € C (with [o: 7)p) # O) such that w is
a subquotlent of 7, ,,. Hence under the extra assumption that [o: 7),,] € {0, 1} for
allo € M, we may conclude that

w( J) ['r @, ]e’("ﬂ_"') 2)
for any w € Gands > 0. By substituting (2) in equation (1) we prove the theorem
in this case since Ep(s) ~ 0 as s — 0. We observe that the difficulty for a general 7
is that we cannot assert (2).

In [GWa] De George and Wallach get around this problem by using their limit
formulas for multiplicities in LXT \ G). For the sake of completeness we will
sketch their proof. The starting point is equation (1). If 4, (s) is the right-hand side
of (1) set

c.r(s) = d r(s) - 70'1—('1;\7) ¢,(s).

By a result of Cahn-Gilkey-Wolf the asymptotic expansion of (1/vol(T'\ G)) - ¢.(s)
is independent of T (see [CGW]). Since E(s) ~ 0 as s — 0, this says that c, 1(s) has
an asymptotic expansion as s — 0 that is independent aof I' (here we have used the
fact that h_,(e) has an asymptotic expansion as s — 0; this will be proved in §6)

On the other hand De George and Wallach proved that if w € Gd U GL then
8,,(h',) extends to an entire function of s. Hence, so does c,(s). But since the
Taylor expansion c, r(s) is independent of T, it follows that c, (s) itself is indepen-
dent of T.

Consider now a tower of subgroups of I, that is, a sequence {I;} such that
I; 5T, I, is a normal subgroup of I, I'; \ G is compact for all j and N,;I; =
{e}. By results of De George and Wallach
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. nrj(w) . A
lim d(w) - ———— =0 ifw€ G,
J—o0 vol(T;\ G)

ng (@) A
lim — 0 fwe .

joe VOlT,NG)

These facts easily imply that if ¢ > O there exists j(¢) such that |c, (s)| <e if
0 < s < 1 andj > jy(¢). Since c,,rj(s) = ¢, o(s) for all j, it follows that ¢, = 0. This
clearly implies the result.

REMARK. It is of some interest to look at the case 7 = 1 more closely. Theorem
5.7 asserts that ¢,(s) ~ vol(T' \ G)h, ,(e) as 5]0. This could be obtained directly in
this case, by observing that (c,(#A)*) ! and a(vA, 1) have no poles in the upper half
plane. This fails to be true for almost any other 1 € K and we need to make use of
the decomposition granted by Theorem 4.11(iv). Thus if 7 = 1 one picks up no
residues when moving contours and A, (a,) = exp(-t2/4s) - O(t™) for ¢ sufficiently
large. Hence A, , = hl s € &(G), for any ¢ > 0. This says that 0"1.-A(hl ) is entire as
a function of » and then the subquotient theorem and the classification of class-one
representations (see [Ko]) imply that 8,(h,,) has the right value for any w € él,
that is, 8,,(h,,) = e™.

REMARK. As an example let us specialize by taking G = SI(2, R). We will give a
simple proof of 5.7 in this particular case. We have that

cosd siné
={I, .
K {K(B) [ sin 0 cso],BER} and M= {I,-1I}

Hence if 7,,(k(8)) = ™, for m € Z, then K = {r,/m € Z). Also M = {1, ¢},
where 1 is the trivial representation of M and e is the signum representation of M.
We now describe G. Fix k a natural number, let 7, and 7_, be the irreducible
unitary representations of G such that

Tl = 2 Tm> Tk = 2 Tm

m>k m< —k
m=k+1mod2 m=k+1mod2

Also, let #* and =~ be such that

Tk = > 7, and Tk = > T,
m>0 m<0
m odd m odd
and let, for d a natural number, 7¢ designate the irreducible representation of G of
dimension d. Finally, let us recall that if 7, ,, and 7, ,, denote the unitary principal
series of G, then by Frobenius reciprocity

'”l,vp"( = 2 Tm» ‘”e,vpl,( = 2 Tme
mezZ meZ
m even m odd

We will need the following well-known classification.
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5.8 PROPOSITION. If G = SI2, R) and = € G — {1} then = belongs to one of the
Jollowing sets:

@@ G. = {7, ER} U {7,,,|v ER, v # 0}, the irreducible unitary principal
series.

(b) é, = {m*, 7~} the irreducible constituents of the reducible unitary principal
series.

(©) mep = {7,4,|0 <y < 1}, the complementary series.

@) G, = {m,,|m € Z, m % 0}, the discrete series. Moreover m,, is integrable if and
only if |m| > 1.

We now discuss the asymptotic expansion of ¢, (s), for k € Z. We will derive
Theorem 5.7 by reduction to the spherical case. We assume that k£ > 0. Indeed, it is
easily seen that ¢, (s) = ¢, (s). By the definitions,

k
¢"u(s) = 2 nl"(“’)es(kg_x') + 2 nr('lfzj_l)e"()"zl—l—)"u'

wEéc.IUéme.l J=1

k
e")""(‘f’l(s) + (np(my)-1) + X ”r("’ﬁ—l)e‘}"”")-

J=2

Here we have used that the irreducible subquotients of the composition series of
m,, are 1,7 and #_,. Hence A, = A, = A, = 0. On the other hand, it is well
known (see for example [Wa2]) that

@) n(m 1) = volT\ G) d( ;) + 1,

(i) np(m ) = vol(T\ G) d(w . ) if k > 2.

Thus

¢, (s) ~ e~ Auvol(T \ G)(hl,,(e) + é d('rrzj_,)e""z/—-)
j=1

or
¢, (s) ~ vol(T'\ G)(h,m(e) + é d(qrzj_l)e”‘-u--)
j=1

as s]0, as was to be shown. It is of some interest to observe how in the above
argument the terms in ¢, (s) combine to make ¢, (s)/vol(I'\ G) asymptotically
independent of T as it has to be by a result of Cahn-Gilkey-Wolf (see [CGW]). By
direct inspection of the poles of (c,u(flp)‘)_‘ in 0 < Im(») < 1 it can be seen that
h,, € CY(G).

We now look at 7 = 7, ,,. Then h, ., € C'(G) since T(iv — p) is holomorphic
in the upper half plane for all j, and the poles of (c,u“(i)‘)" in the upper half
plane are at v = hi, where h € Z and 1 < h < k. This says that we may apply the
Selberg trace formula to b, .. Now 8,(h, ) =0ifw€E éd and by means of a
holomorphy argument using 5.3 it is not hard to see that

ow(h'rzkﬂr') = [ Tak+1* wlx] eS(A“-&uN)
for any w € G. The trace formula when applied to k,.,.,s readily implies Theorem
5.7. Finally let us observe that, conversely, Theorem 5.7 implies equations (i) and
(ii) above.
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6. The asymptotic expansion of /,_(e). As we have seen in §5, Theorem 5.7,
¢,(s) — vol(T'\ G)h, (e) ~ w,(s), ass|0,
where «,(s) is a computable entire function of s. Hence, the asymptotic expansion
of ¢,(s) is determined by the asymptotic expansion of A, s(e). Our final task is to
derive this expansion.

Let p,(v - A) - dv be the Plancherel measure corresponding to 6 € M (see 4.1). If
we write u,(z) = p,(zA) then p (z) is a meromorphic function on C that restricts to
an even, nonnegative, analytic function on R that has polynomial growth.

As usual let H~ C m be maximal abelian and let § = §~ + a. Then be is a
Cartan subalgebra of g¢. Let A and A,, be respectively the root systems of (g He)
and (mg, hc). We define an order in A so that positive elements on §~ are bigger
than positive elements on a. Let finally be ( ,) the form on h* that is dual to
By xphIfe € M, we denote by A, its highest weight and we let p,, = %(EYE axY)-
Both A, and p,, are trivially extended to h. Set

q,(z) = gﬁ (z(1, A) + (1, A, + pyy))-

Then (see for example [KS])
po(2) = &+d, - py(2) - §,(2)

where ¢ is a constant depending only on G (and on the choice of the Haar measure
on G), d, = dim(o), and p,(2) is a monic polynomial that is a constant multiple of
4,(2z). Moreover ¢,(z) = 1, if g ~SO(2n + 1, 1), and otherwise ¢,(z) = tanh =z or
coth 7z, depending on 0. The choice of tanh or coth is done roughly as follows.
There is a distinguished element 8 € exp h~ of order at most 2. If H € b~
satisfies exp(H) = B, then exp(A, + pp )(H) = +1. The coth is used when the sign
is + and the tanh when the sign is —. We have computed the polynomial p,(z) and
applied the above criterion to linear rank one groups to get a very explicit
expression of the Plancherel measure (see [M]).

From the definition of A_; we see that

2 + o0 2
h(e) = e~ Ot 3 gmNa g g, ] f e~ .y (2) dz.
oeﬁ, -

Let us set

19,,, ={o€ A?|[o: Tin] # 0 and p,(z) goes with tanh },
A?,,c ={o€ A?l[o: 71| # 0 and p,(2) goes with coth }

We first assume that g = SO(2n + 1, 1). Then A?, = A?,,, U M,,c and p,(2) is
odd. Let us write p,(z) = 2} _4by,1(0) - z%*! and ¢ =3- dim (G/K). Then ¢ =/
+1.

Let us set

hr,s(e)t = ¢~ (vrliol)s. 2 é-d,- [02 TIM] reohe
aeﬁ,_,

! + o0 A 2
: 2 b2i+1(°)'f 2%+ e=%" . tanh nz dz.
i=0 ~0
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We define A, (e), similarly, by using A?m and coth 7z. We have that A_,(e) =
h, (e), + h,(e).. To obtain the asymptotic expansion of A, ,(e) we need some facts
from Fourier transform theory. Let S(R) denote the Schwartz space of R and S'(R)
the space of tempered distributions. If f € SR), T € S'(R) let

Joy = [ fay- e a,
5y = [T g e, (T = (T (T =TS,
6.1 ProposiTiION. D) If T € S'‘R), (T)'=(TY=27-T.
(i) If a > O and f(t) = e, then

fx) = 57(x) =Vn/a - exp(-x*/4a).
(iii) Let h(¢) = tanh =t € S’(R). Then
h*= —i-p- v cosech(t/2).
If T = p- v coth =t, then
T = -i-p-vcoth(z/2).

Therefore, 6.1 implies that
fzz”‘ -e~*?. tanh 7z dz = (27) " '(tanh mx, (z¥*'- e"%7)™")

= (-1)"*'- (V16ms )~'- {p- v cosech(x/2), D**'exp(-x?/16s)).
(Here D = d/dx.) If H,,, (x) is the Hermite polynomial of order 2i + 1 then

i
2h+1
H, ,\(x) = 2 Chai+1" X +,
h=0
where

. ()T i+ 1)1 28!
h2i+ (i — h)!Qh+ 1)

Moreover

i
D%+ lexp(—ax?) = ( S oattitlg o, xz"“)exp(—axz).
h=0

Hence, the above can be written
= (_1)i+1 . (\/g )—l . héo 9-2h—4i-4, ~h-i-1
-Ca2is1{ P * v cosech x, x?#* lexp(-x?/4s)).
Let x cosech x = ,dx¥, for |x| <. Using that [*Zx-e~* dx = T(k + 3)

it is not hard to show that {p - v cosechx, x**!. exp(-x?/4s)) is asymptotic in
the sense of 5.6 to 2&d; - T(h + j + 3) - (Vas **¥* ! as s - 07,
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Hence, adding over i and letting m=c — i — 1, n=c¢ +j— i — 1, it follows
that

: +oo 2i+1 4522

2 b2i+1(°)f 4T . e™™ . tanh vz dz
i=0 -0

c—1—p max(c—1,n)

~(§ S S (Va)(el)e gmseraent

n=0 h=0 om0

“bye_2o-1(0)-d,_,- Ch2c—20-1" S")-

Hence, as s —» 07,
©
h‘r”’(e)’ —~ e_(kv"'"P"z)" . s_c( 2 an,t(s) . S")’

n=0

where
c—1-p max(c—1,n)

4 ()= 2 e N:[oimy] X >

h=0 o=0

D) (V)™

oefl,_,
PQirmder2onl, bre—20-1(0) " dy_ " Chac—20-1° I‘(h +tn—-ov+ El)

To derive the expansion for 4, (e), we proceed similarly and arrive at

-]
h, (€), ~ e~ OHlell)s. s“’( > a,(s)- s"), ass—0*.
n=0
Here a, (s) is given by the same formula as a, (s) except that d, is replaced by

d/, the coefficients of the Taylor expansion at z = 0 of z - coth z.
When G is locally isomorphic to SO(2n + 1, 1), the Plancherel measure is a

polynomial: y,(z) = 2/ _ib,(0) - 2% and ! = ¢ — ;. Thus

il
hf"(e) = e‘(&"’"ﬂ"z)‘ . 2 [0’2 ,,.IM]e—sA,-a . 2 b2i(o) . r(l +%)
oE]fl, i=0

e~ (Hlel)s s“[ 2 2 [oimu] e ™Mby sy y(0) T(c — h)- Sh]-
h=0 oeﬁ,

Summing up:
6.2 THEOREM. For 7 € K, s > 0, let h,, be as in 4.10. Then, as s — 0%,

o0
hm(e) ~5 . eSO +lel?) . ( 2 aj(s)s")
Jj=0

where ¢ = 1dim(G / K) and the coefficients a(s) are as follows
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(i) If ¢ = SO2n + 1, 1), then

c—1—p max(c—1y)

GO = 3 S (T (VA gy PR

h=0 v=0
T(h+n—v+3)| B dy [0 7] by_zp1(0)- e~
oEAAl,_,
+ 2 d):-u '[0: T|M] ' b2c—2u—l(o) : e—:&-a .
aEll?,_,

() Ifg=SO2n+1,1)
aj(s) =3 [": "|M]e_s)‘"a : b2c—2j—l(o) -T(c—))

cEM,
ifji=0,1,...,Q2c—1)/2and a(s) =0, if j > Qc — 1)/2.
Let us recall that .
o = (= D720 + 1)1+
h2i+1 (i — ) (2R + 1)
andif j # 0
(-1YQ¥-2, (-1)7'-B-2¥
4= 2! 4= 2! '

Moreover d, = dy = 1,and a = B(H,, H,).
If g,(z) denotes the polynomial part of the Plancherel measure, then ¢,(z) =
S¥o'b(0) - 2.

-0

JREMARK. We observe that when 7 =1, the functions gy(s) are constants. In
general there is an asymptotic expansion &, () ~ s 72716 ), GER, as s>
0*, and the ¢’s are determined by expanding the ay(s) in Taylor series and
proceeding formally in the obvious manner.
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