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THE MINAKSHISUNDARAM-PLEIJEL COEFFICIENTS
FOR THE VECTOR VALUED HEAT KERNEL ON COMPACT

LOCALLY SYMMETRIC SPACES OF NEGATTVE CURVATURE
BY

ROBERTO J. MIATELLO1

Abstract. We use harmonic analysis on semisimple Lie groups to determine the
Minakshisundaram-Pleijel asymptotic expansion for the trace of the heat kernel on
natural vector bundles over compact, locally symmetric spaces of strictly negative
curvature.

Introduction. Let G be a connected, real semisimple Lie group of rank one with
finite center. Let G = K ■ A ■ N be an Iwasawa decomposition of G and let M be
the centralizer of A in K. Denote by g = f ® o © n the corresponding Iwasawa
decomposition of g, the Lie algebra of G. We use the G-invariant Riemannian
metric on G/K induced by a~l ■ Bg (a~l is a convenient constant and Ba is the
Killing form of g). If (t, Vt) is an irreducible representation of K we form the
homogeneous vector bundle ET = G XTVT —» G/K.

There is unique G-invariant connection on ET such that if i is a C00 cross-sec-
tion, X e p, it: G^G/K is the canonical projection and irm designates the
differential of -rr at e (the identity of G), then

v".<*>(*)=-dt
72

s(exp(tX)K).

We denote by V  the connection Laplacian on (ET, V).
We consider now a discrete, torsion free subgroup T of G such that T \ G is

compact. We give to X = T \ G/K the push down Riemannian metric. Then X is
the most general compact locally symmetric space of negative curvature. Also,
D = - V2 pushes down to a nonnegative, elliptic differential operator on T \ G
XT VT -» X. Let {\,} = spec(Z>) be the spectrum of D. As it is well known, e~sD
exists and is trace-class for s > 0. Moreover <í>t(j) = tr(e~sD) = 2„e_iA" has an
asymptotic expansion

i,lo-')<l>T(s) ~ s-"/2l 2   a,s'\    as 40

(c = j dim(G/.r\)) and the coefficients a¡ are local Riemannian invariants of X (see
[ABP], [BGM], [MS] and [MP]). In this paper we will use harmonic analysis on G
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2 R. J. MIATELLO

to compute the coefficients a, of the above expansion. In essence our method is as
follows.

Since T is cocompact, the right regular representation itt of G on L2(T \ G)
decomposes

wr =   2   Mr(w) ' w
»EC

and nT(u) < oo for any u> & G. Here G stands for the set of all equivalence classes
of irreducible unitary representations of G. If / is a C °° function with compact
support on G, the operator wr(/) = /G/(x) • ttt(x) dx on L2(T \ G) is well defined
and has a trace. Hence tr %(/) = 2unr(w) • 0u(f), where 0U denotes the character
of the class w. On the other hand, by using the Selberg trace formula, we may
compute tr tTT{f) in a different manner (see [Wa2, Theorem 6.7]). It has been
proved by Wallach in [Wa3] that

*T«-2 nT{U)-[r:^K]e^-^ (1)

where [r: u,K] is the multiplicity of t in the restriction of w to K and Xu, \ are
respectively the eigenvalues of the Casimir elements of G and K when computed
with respect to a-1 • ¿?g. To study 4>r(s) near s = 0we wish to look at (1) as being
the trace of wr(/T s) with/T^ a function to be determined and then to use the Selberg
trace formula to estimate <i>T(s).

In the first place we notice that the trace formula applies to Affinité functions
belonging to G\G) (see 2.14 and 2.16). Here if p > 0, QP(G) denotes Harish-
Chandra /»-Schwartz space. What we need is therefore a /T-finite function f e
&(G) satisfying 9w(frs) = [t: ^K]es(K~K) for all <o G G. A candidate for/Ti is the
continuous part of the heat kernel that we call hT¿, defined by means of a wave
packet in the sense of Harish-Chandra (see §4). Historically this function was
introduced by Gangolli in the case t = 1 to study $x(s) (see [Ga]). The main
problem is the fact that unless t and G are very specific, hrs & C'(G) (see remarks
after Theorem 5.7). Hence wr(/¡TÍ) is in general not defined.

To avoid this problem we use a convenient decomposition of hTy. hTS = f$ +
h^, where h^s E G?(G) for all p > 0 and moreover ATV, has the same continuous
Fourier transform as hTS. This decomposition is due to Campoli (see [C]). The
Selberg trace formula is then applied, not to hTS but to h^, implying that

<t>r(s)~vol(T\G)L(e)+   2   d(a)[T: a]K]e«*--v\ (2)

where — means that the difference between both sides tends to zero exponentially
as s -» 0. Moreover, if u> G Gd, d{u) stands for the formal degree of co. This formula
was proved by the author under the condition that t E. G restrict simply to M. The
result for arbitrary t is due to De George and Wallach (see [GWa]). Since the sum
2a,e¿ d(u>)[r: w,A-]ei(X"~^) is computable (see [HS]), (2) implies that the asymptotic
expansion of <t>T(s) as s —* 0 is determined by the expansion of hr^(e) as s —> 0. We
derive this expansion in §6.
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MINAKSHISUNDARAM-PLEIJEL COEFFICIENTS 3

In [CGW] (see also [CW]) Cahn, Gilkey and Wolf obtain a proportionality
principle that relates in a simple manner the expansion of </>T(s) to the expansion of
<¡>r(s), the trace of the heat kernel on the vector bundle determined by r over the
compact dual A" of X = T \ G/K. In the light of this principle our formulas for
the expansion of <j>T(s) imply similar formulas for the expansion of <f>'T(s).

The outline of the exposition is as follows. In §1 we collect notation and recall
some standard facts on homogeneous vector bundles over G/K. §2 is devoted to
the Selberg trace formula. We prove a sufficient condition on/, a ^-finite function
on G, for the trace formula to be valid for/(see 2.14 and 2.16). §3 contains the
description of the problem. We next discuss some facts on representation theory
necessary for the study of h,.. The main result of §4 is Theorem 4.11 that
establishes certain growth and functional properties of hT¿. In §5 we use results of
De George to prove an asymptotic estimate (Theorem 5.1) and then use this
estimate together with properties of hTS to prove the main result (Theorem 5.7). §6
is devoted to the computation of the asymptotic expansion of hTS(e). To obtain it,
we profit from the useful fact that as tempered distributions, tanh(7rx) and
p ■ u(coth ttx) have very simple Fourier transforms: -/ • /7t>(cosech(//2)) and -/•
pv(coth(t/2)) respectively.

1. Homogeneous vector bundles. In this section we follow closely the notation of
Wallach [Wal, Chapters 5 and 7]. Let G be a connected semisimple Lie group with
finite center. Let G = K • A • N be an Iwasawa decomposition of G and g = ï © û
© n be the corresponding decomposition at the algebra level. We will assume that
G has split rank one, that is, dim a = 1. Then, there is a real linear functional on a,
we call it X, such that

n = 9x/2 © 9x
with Qj.x = {X G q\[H, X]=j- X(H) ■ X, for any H G a} (/ -i> !)• The spaces
gA/2 and gA are the restricted root spaces of a, corresponding to A/2 and X, which
are the positive restricted roots of a. Let m(X/2) = dimRgx/2,wx = dimRgx and
p = 1(1 w(A/2) + m(X))X. We will parametrize a* by X, so that always m(X) is
nonzero.

Choose Hl G û so that X(HX) = 2. Any a & A can be written a = a, = exp(/7/,),
for a unique t G R. Set A + = [a,\t > 0). Let Bg denote the Killing form of g, that
is,

Ba(X, Y) = tr(ad X • ad Y)    for X, Y G g.

The restriction of Bg to o X a puts in duality a with itself. Given ju G a* there is
a unique element H  G a so that ¡i(Z) = B^H^, Z) for all Z G a.

We define an inner product on a by

B¿ZX,Z2)
<Z"Z2>    B¿HX,HXY

On a* we use the dual inner product, that we also denote by < , >. With respect to
these inner products,

||//,||2 = <//„//,> = !,        ||A||2 = <X, \> = 4
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4 R. J. MIATELLO

and, if b = number of different positive restricted roots of a, then

IIPll2 = -¿MV2) + 2m(X))\
b

Let K denote the set of all equivalence classes of irreducible unitary representa-
tions of K. If (t, Vt) G K set dT = dim( Vr) and xÂk) = tr r(k) for t G £ If o is an
arbitrary representation of K and t G K we let [t: a] = dim Hom^ VT, Va).

For fixed a G K, we form the G-vector bundle over G/^f

E=GxaVn^>M= G/K
where GxoK„ = GxK0/ä: and AT acts on the right on G X Va as usual:
(g, v)k = (gk, a(*f')©), g G G, o é K, A: G tf. We write [g, o] = (g, t>) • K.
Moreover, we define the left action of G on E by x ■ [ g, v] = [xg, o].

If < , > is a ^-invariant inner product on Va, then <[g, o], [g, o']> = <ü, t/> is a
well-defined unitary structure on E and G acts unitarily on the left in the obvious
manner.

We now fix normalizations of Haar measures. Let p be the orthogonal of ï with
respect to fifl and let 9: g —» g be the Cartan involution. Then

B(X, Y) = -B(X, 9Y)
is an inner product on g. We set < , > = (1/B(HVHX)) • B (where Hx G a is such
that X(HX) = 2 and X is the long restricted root). Let dx, dk and dx denote the
Riemannian measures on G, K and G/K respectively, corresponding to the
Riemannian structures induced by < , > in the standard fashion. If vol(^T) is the
volume of K relative to dk, let dx = vol(A^)-1 • dx and dk = vol(K)~l ■ dk. With
respect to these normalizations

/"       f f(xk) dkdx= f f(x) dx
JG/K JK JG

for any/ G CC(G).
Let CX(E) and CC°°(E) be respectively the set of C°° cross-sections of E and of

C°°, compactly supported cross-sections of E. If 1 < p < oo let LP(E) be the set of
/7-integrable cross-sections of E. We now recall the standard correspondence
between cross-sections of E = G X a Va and certain Fa-valued functions on G. Set

Cx(G:a) = {h\h: G-+ F^/iisC00

and h(gk) = a{k)~'h{g) for g G G, it G tf).
Let ^: C°°(£) -» C°°(G: a) be so that 4/(g) = g_1/(g#), for/ G C00^). Define,
for h G C°°(G: a), B(h)(gK) = [g, A(g)]. Then 5(A) G C°°(£:) and (A ■ fi)(A) = A,
(BA)(f) =/ for A G CM(G: a) and / G C°°(£). Moreover ^ intertwines the
actions of G, where (g •/)(*#) = gf(g'lxK) and (gA)(x) = h(g~lx), for / G
C°°(£:), h G C°°(G: a). Finally A preserves the/»-norms.

Let now D be a G-invariant differential operator on E. The action of G on
C°°(rJ) induces an action of %(g), the universal enveloping algebra of g, on
C°°{E) so that if/ G C°°(£) and A G g,

(Xf)(gK)=j-t cxp(tX)f(cxp(-tX)gK).
-o
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MINAKSHISUNDARAM-PLEIJEL COEFFICIENTS 5

If Xx, X2, ■ ■ ■ , X„ is a basis of g, let Yx, Y2, . . ., Yn be the dual basis with
respect to < , > = (\/B¿Hx, //,)) • Bg.

Put fi = "ZnxX¡ ■ Y¡ G %(g). Then fi is clearly independent of the choice of basis
and in particular, Ad(g)fi = fi. Thus fi defines a G-invariant elliptic differential
operator on E that we denote fi£.

We define a G-invariant connection on E by putting
dV     f =»^      dt g(gcxp(tX))-lf(gexp(tX)K),

where / G C°°(E), v G T(G/K\K and X G p is unique with the property that
v = *„(*).

1.1 Proposition. Let V2 denote the connection Laplacian on E. Then there is a
scalar X„ so that fi = V2 + X„ • I.

Proof. Let for h G C^G: a) and A" G g
d

(Rxh)(g) = A(gexpíA-).
»-o

Then if / G C°°(jfT) and A"„ X2, . . ., Xd is an orthonormal basis of p with
respect to < , >,

AW) = í *Ü(4/).
1=1

A computation shows that if A G g,/ G C°°(£) then

A(X2f)(g) = (ÄiAd(,-.)(^)(>i/))(g).

Hence, if Xx, X2, . . . , Xd is a basis of f and y,, y2, . . ., ym is a basis of f such
that <*„ Xj> = «(,, <y,, y,> = -5^ theny<(0/) = ^(V2/) - 2jR2(Af).

Now fijç = -2i l^2 lies in the center of %(f), the universal enveloping algebra of
i; hence if a G K, then a(QK) = Xa • I for some Xa G C. It is easy to check that
-ZjR2(Af) = \A(f).    Q.E.D.

Let now T be a discrete torsion free subgroup of G such that T \ G is compact.
This assumption says that r\G/# is a manifold since T acts freely and properly
discontinuously on G/K. Since T acts by isometries, we may push down the
Riemannian structure of G/K to T \ G/K so that w: G/K^T \ G/K is a local
isometry. The operators Q,E and V2 push down to elliptic operators onT\£; we
call them fir and V2- and we still have fir = V2- + Xa • I. Finally, since the action of
r on E is unitary T\ E has a well defined unitary structure. We fix a measure dg
on T \ G so that

f    ( 2 AY*)) dx={ Ax) dx,    for/ G CC(G).

On T \ G/K we use the Riemannian measure dx. With respect to these measures,

f f h{xk) dkdx = f     h{x) dx,   for A G C(r \ G).
JT\G/K JK JT\G
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6 R. J. MIATELLO

If 1 < p < oo let ||/H, = /rvG/jfl/Cx)!* dx and LP(T\E) = {/|/= cross-section
of r\¿r-^r\Mst m/m, < oo}.

We still have a correspondence between cross-sections and vector-valued func-
tions on the group.

1.2 Lemma. Let C°°(T \ G: a) = {/: G — V„\f is C°° andf(ygk) = a(k-l)f(g)for
y Gl\gG G.fcGtf}.

Let Br: C°°(r \ G: a) -> C°°(r \ £) ¿>e 5r(/)(rx/i:) = T • £/(**) where B:
C°°(G: a) -» C00^) sa/w//es B(h)(gK) = [g, A(g)]. 77ie« 5r is an isomorphism and
preserves the p-norms.

Proof. If/ G C°°(£) satisfies/(yx) - y/(x), for y G T, x G G/.K set/(Ix) = T
■f(x). Then/ G C°°(r \ E) and if/, er(r\ £) there is a unique/ G C°°(E) so
that /(yx) = y/(x) and / = /,. Indeed, since the action of T on M is free, if
[v] = /(rx) there is a unique t> G Ex, the fiber of £ at x, so that 7t(ü) = [t>] where
tr: is—» T \ E is the canonical projection. This globally defines the desired/. The
first part of the lemma follows, since the T-equivariant cross-sections of E corre-
spond bijectively with the T-invariant elements of C^^G: a). The /»-norms are
preserved since

f ((B/r(x),(Bfr(x)y¿2Kdx=f     </(x),/(x)//2dx.    Q.E.D.
JT\G/K JT\G

2. The Selberg trace formula. We keep the notation of §1. Let trr denote the right
regular representation of G on L2(r \ G). It is a well-known fact that irr decompo-
ses wr = 2weG«r(w) • w and «r(co) < oo for co e G, where as usual, G stands for
the set of all equivalence classes of irreducible unitary representations of G. We
now briefly describe the trace formula on L2(r \ G). Our source is Wallach [Wa2].

If <f> G C~(G), « G G and (wa, HJ G «, the operator vjfà = fG<¡>(x) • ttw(x) dx
on Ha is trace class and its trace 0w(<i>) = tr itj$) (the character of w) completely
characterizes the class u.

The operator on L2(r \ G), wr(<i>) = fG<Kx) " "ri*) ¿x ls a kernel operator with
C00 kernel k(x,y) = 2Ter</>(.y-1 ■ y • x), the series converging uniformly on com-
pacta. Because k(x,y) is C°°, 7rr(<i>) is of trace class and

tr wT(<j>) = |      k(x, x) dx = I      2 4>{x~lyx) dx.
Jr\G Jr\G   y

Set for y G T
[y] = the T-conjugacy class of y.
[r] = the set of all T-conjugacy classes of elements of T.
Gy — the centralizer of y in G.
rr = r n Gr
Also we normalize the measures on Gy and Gy \ G so that for \p, rj G CC(G)

[ Hg)dg= f        (   x¡>(xg)dxdg,
JG JGr\G JGy

[   n(g)dg =  f 2    V(rg)dg.
JGy J^Gy T6rT
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With these normalizations we have

tr*rri»=   2   M«) Ai»
«EG

=    2     vol(rr \Gy)f      <t>(g-xyg)dg.
{y)e[T) •,GÏ\G

As in §1, let Hx G a satisfy À(//,) = 2. Then/I = {a, = exp(íi/,)|/ G R).
Since all elements y G T are semisimple (see e.g. Raghunathan [R]) and T is

torsion free, it follows that for any y G T there exists g G G so that

g- SÉ = my ■ exp(ty • Hx)       {my G M, ty > 0).
Here ty happens to be independent of the choice of g or the particular Iwasawa

decomposition and so is m,, up to conjugacy in M. Therefore, the following are
well defined:

D(y) = D(my ■ exp(tyHx))

= exp(-gipH) • |det(Ad(mr • exp^tf,))"1 - I\n)\,

«(y) = vol(A \ Gmr.exp(,r#i))   and   x„(mY) = tr a(my).

Here b = number of distinct positive restricted roots (i.e, b = 1 if m(X/2) = 0 and
b = 2 if m(X/2) ¥> 0).

Finally, we let for a G M and v G ac, w„ „ be the principal series representations
of G, that is, iTay„ as •Jr"-'>+" in the notation of [Wal, Chapter 8].

2.1 Theorem. (See [W, Theorem 6.7].) //</> G C^G) fA<?n

tr ^r(<i>) =   2   "r(") • ̂ («í»)

= vol(T \ G) • fa) +¿        2        vol(rT \ Gv)Z)(y)-'

•«(y)_1 2   x,K)-6 /+X»e-2-Vd».
,6«

If <> G L'(G) instead of <¡> G CC°°(G), the operator 7rr(<f>) is still defined but it
need not be true that 7rr(<¡>) is trace class. The objective of the rest of the section is
to give a sufficient condition for <j> G Ll(G) to be put into the trace formula. We
observe that all we need for the validity of the trace formula for <j> is that the series
2yer</>(.y ~'y*) converges uniformly on compacta to a sufficiently regular kernel,
because then the operator itt(<¡>) has to be given by this kernel and will be trace
class because of the regularity of the kernel. Throughout the rest of this section we
may drop the assumption that G be of split rank one.

2.2 Lemma. Let M be a compact manifold of dimension n with volume form u. Let
k: M X M -+ C be of class C(n+1). Then the operator

(Kf)(x) = f   k(x,y) -f(y) dw{y)        (/ G L\M, W))JM

is trace class and tr K = fM k(x, x) dw(x).
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8 R. J. MIATELLO

Proof. For M = T" the theorem follows from the fact that if

a«,ßeKx,y)=    2     aaSeiax-e-^
a.ßeZ"

and k(x,y) G c(n+1)(r2n) then Sa/8|aay8| < oo. For a general compact manifold,
the obvious partition of unity argument reduces the problem to M = T".

2.3 Theorem. Let (t, Vr) be a unitary representation of K, r a natural number and
n = dim G. Assume that f: G -h> End(FT) is C°° and f(kxgk2) = r{kx) -/(g) • rikj,
for k¡ G K,g G G and that üjf G L1 for 0 < j < n + [r/2] + 1. Then S/ig'Vx)
converges almost everywhere to a C function on T\ G X T \ G.

Proof. Let (p, End VT) be the unitary representation of K X K with action and
inner product given by p(fc„ k2)T = t(A;,) • T- t^-1, (T, U) = tr(t/*r). The
series 2Y/(g_IyJC) converges almost everywhere to an integrable function <f>(g, x) in
r \ G X T \ G, since

f      f       2   ll/(g-V)l|dgdx = /      f llXg-'x)!! dgdx
•'nG •'rxG Yer jt\g jg

= ll/lli- voi(r\ c?).
Also, <t>(gkx, xk2) = p(kx, k2)~l ■ <f>(g, x). Thus, in the notation of §1,

<i> G L'(r X T\ G X G:p).
We will compute fip«i>, fip being the Laplacian on the vector bundle

rxr\GxGxp/c:x k->t x t\g x g/k x k.
Let $ G C°°(r X r \ G X G: p). Then ifleg,

/      f     2/(g-V)^^(g,x)dxdg
Jr\G •'r\a   y

-/     41      (     2Xg-1Y*)<Mír,*exp(fA'))d*dg.
■'rxG "' |'-o-'r\G  y

By dominated convergence the above equals

Í      Í  41     /(g"^expHA-))-^(g,x)dxdg
Jr\G jg "' |'-0

= f      [(-A/Kg-'x^g.xJdxdg
■/r\G •'G

= f     f   Í2 (-A7)(g-1yx)Wg,x)dxdg.

Therefore, for y =1,2,...,« + [r/2] + 1, we have that in the sense of distribu-
tions

(o¿*)(g, x) = 2 &Ág- V) e ¿l(r\ g x r\ g)
a.e.     .,
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since fi7/ G L\G), for 1 < j < n + [r/2] + 1. Similarly

[      f    Í2/(g"^)K^(g,x)dgdx

-/       f (^W-gK-x/Xg-1*) • *(*, *) * dx.
JV\G JG

This implies that

T\G -T\G
f     f    <K g> ̂)ßg»/'( s> *) 4g ¿*

= f      f    (^m8'lyx))^(8'x)dgdx.
Jr\G JT\G\   y I

Thus

f      [     </.( g, x)fix X Q *( g, x) dg dx
JT\G JT\G

= [      [    ( 2 2fiX g- V*) W g, x) dg dx.
JY\G JT\G\   y I

That is, as distributions, for any/ =1,2,...,« + [r/2] + 1,

(fi>)(g, x) =  2   2^Xg-'y^) G ¿'(T x r \ G X G: p).
Ysr

For s G R, let Hs denote the s-Sobolev space of the vector bundle r X T \ G X
GXPKXK^TXT\GXG\KXK (cf. Palais et al. [P]).

It now follows that

aj+i'/2]+lO) ê L'(r x r \ g x g: p)

^L\T XT\GXGXPKXK)C H'"'',   for any e > 0.

But fip is elliptic of order 2. Hence
<j> G //-"-£ + 2('I + I''/21+l) Q  jjn + r+l-e

This completes the proof since Hn+r+s c Cr, for any 5 > 0.   Q.E.D.
We wish to prove a similar result for scalar valued functions. Let for/ G C(G)

and A G C(K)
(/*A)(x)= f f(xk)h(k-x) dk,

JK

(h*f)(x)= [ h(k)f(k-lx)dk.
JK

A function/ G C(G) is left AT-finite (resp. right Affinité) if the left (resp. right)
^-translates of/: {Lk(f)\k G K) (resp. {/?*/!& G AT}) span a finite dimensional
subspace of C(G).

2.4 Lemma, (a)/ G C(G) ¿s /<?// K-finite if and only if there are t„ t2, . . . , t„ G K
such that

2  dT^*f = f.
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10 R. J. MIATELLO

(b)/ G C(G) is right K-fini te if and only if there are t„ t2, . .., t„ G K such that

2</*x,=/.
2.5 Lemma. If A G End(FT) then

dr f tT(r(k-l)A)-T(k)dk = A.
JK

Proof. Let ex, e2, . . ., en be an orthonormal basis of Vr. Then

(dT^ tx{r{k-')A) ■ r{k)dk{em),e}j

= <( 2 fi-rik-1)^, et)(Aei, ej)r(k)dk(em), e,\

= (Aem,e,).    Q.E.D.

2.6 Lemma. Let

XT = [<j>: G —» End( VT)\<i> is continuous and

<t>(kxgk2) = r(kx)<t>(g)r(k2), kt G A", g G G),
yT = { /: G -h> C| / is K-central and drXr * f = /}.

Set, for </> G A"T, A(<f>) = tr <J>. 77ien A : Xr -> yT is a« isomorphism.

Proof. If {e,}" is an orthonormal basis of VT, then by Lemma 2.5

dT(Xr * tr <i»)(x) = j dTxT(k)tr <t>(k~lx) dk

= 2 <<H*k, «,> = tr <f>(x).i
Thus ^(<i>) G yT, if <#> G Xr. Now let

*(/)( g) = dT f /( g*) • r(k - ') d£,       f£Yr.
JK

It is easy to check that B(f) G XT and that the maps A and 5 are inverses of each
other.    Q.E.D.

Lemmas 2.4 and 2.6 imply

2.7 Corollary. /// G C(G) is K-central and K-finite then f = 27_itr{^) for
some <f>, G XT and t, G K, i = 1,2,...,«.

2.8 Remark. The following more general version of the corollary is true:
If / G C(G) is left and right Affinité then there exist AT-types (t,,Ft), (oiyVa),

vectors v¡ G Vr, w, G Va, continuous functions <J>,: G-^HonXK,., K) such that
Hkxgk2) = a,.(Ä,>i),.(g)T,(^2)and

/(g)= 2 <</>,(«)»„h>>.
1-1

2.9 Corollary. Let r be a natural number. Iff is a K-central, K-finite function on
G such that fi7/ G L\G) for j = 1, 2,. . . , « + [r/2] + 1, then S^/ig'V) con-
verges almost everywhere to a Cr function on T\ G X T \ G.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



minakshisundaram-pleuel coefficients 11

Proof. This is a direct consequence of Theorem 2.3 and Corollary 2.7 since /
can be written /= 2tr <¡>¡ and Ü>f = 2,-tr Ofy- G L\G) if and only if fiÁf), G
L\r: G: t).

In particular if / is as above with r = « + 1 + [(« + l)/2], by 2.3, trT(f) is a
kernel operator with kernel given by

<t>(g,x) = 2Aff~V)e c<n+1>(r\G xr\G).
By 2.2 we thus have,

2.10 Corollary. Let f G C3(" + 1)(G),/ K-central and K-finite. Assume also that
fi*/ G L\G)for k - 1,2,...,(« + 1) + l(» + l)/2]. 77ie« wr(/) « frace c/osj o«
L2(r \ G) and tr wr(/) = /rxG<K*> *) dx.

At this point we observe that if the convergence of the series 2y f(g~lyx) were
uniform on compacta, then the conditions of 2.10 would be enough to ensure that/
goes into the trace formula (Theorem 2.1). To fill this gap we will need to impose
another mild condition on/

2.11 Definition. A function / G C(G) n L'(G) is of regular growth if there
exist a compact neighborhood U of e and a constant M so that

| A(x)| <m[ h(x-y)dy   for all x G G.
J ti

2.12 Proposition (see Gel'fand et al. [GGP, p. 23]). Let f G C(G) and A G
C(G) n L'(G) so ?Aai |/| < A a«d A Aas regular growth. Then the series S./ig'S'-'O
converges absolutely and uniformly on compacta of G X G.

Any x G G, can be written x = A:,aA:2 with kx, k2 G K, a G A. Define A(x) =
é?-|p0oga)|. Then A(x) is well defined. Also x = k- exp(A), k G AT, X G p in a
unique fashion. We define a(x) = -S^A", A")1/2 where Bg denotes as usual the
Killing form of g.

2.13 Proposition. Let r = split rank of G. Then for any e > 0

/w = —MfL
(1 + a(x)r+£

is of regular growth.

We refer to [GW] for a proof of the proposition.

2.14 Theorem. Let f G C3("+1)(G) te K-central, K-finite and such that Wf G
L\G)forj = 1, 2, . . ., (« + 1) + [(« + l)/2]. Assume also that

A(x)2l/WI < (1 + a(x))r+'

with r = split rank of G and e > 0. Then the Selberg trace formula (Theorem 2.1) is
valid for f.
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12 R. J. MIATELLO

Proof. The theorem is a direct consequence of 2.10, 2.12 and 2.13.
Let now </>0(x) be the spherical function of weight 0,

^(x) = [ e~«m>*)) dk

where H(xk) = log a(xk) and xk = AT(xfc) • a(xA;) • n(xk) with K(xk) G K, a(xk)
G A,n(xk) G N.

2.15 Definition. If 1 < p < 2, let QP(G) (the/»-Schwartz space of G) be the set
of all C °° functions on G such that for each natural m and for each D, a product of
a left invariant and a right invariant differential operator on G, there is a constant
MDm such that

sup  [D/ix)! < MD>m • <f>o(x)2/7 (1 + a(x))m.
xeG

Then 6P(G) with the topology defined by the seminorms

IdM) = sup  [(1 + o(x))m ■ Uxy2/P ■ Df(x)]

is a Fréchet space (cf. [HC1]). It is clear from the definitions that / G &(G)
implies that fi*/ G GP(G) for all k and that &(G) c LP(G) for any p.

2.16 Corollary. Le// G ß'(G) 6e K-central and K-finite. Then f goes into the
Selberg trace formula.

3. The trace of the heat kernel. Let G, K and T be as in 1 and fix t G K. Consider
the vector bundle r\GXTFT-^r\G/AT over M = T \ G/K. We have a second
order, elliptic, formally self adjoint differential operator D = -V2 = -fir + \ • I
on T \ G XT VT. The spectrum of D is the sequence of eigenvalues 0 = Xq < X, <
X2, . . . and lim,.^ X, = oo. If m¡ = dim C"(r \ G XT Vr) we set

«M-*) = *r(*) = 2 m,r *'*'*    ¡™ ' > 0-
i

We wish to study <j>T(s) near í = 0. Wallach shows in [Wa3, Lemma 3.2] that
<l>T(s) can be written

where \ is as in Proposition 1.1 and Bg(Hx, Hl)~1 ■ Xu is the eigenvalue of the
Casimir element of G on the class u Œ G.

Let us assume that there exists a function fs to which the Selberg trace formula
applies and such that

0Ms)= [rr^-e^-H
It then follows that

and on the other hand tr wr(f) is given by this formula. Hence we can use the
right-hand side of the formula applied to/ to study </>t(j).
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Therefore there are two separate problems: to define such a function/ and then
to study the right-hand side of the trace formula near s = 0, for s > 0. In the next
section we will be concerned with the first of these questions.

4. The function hTS. Let (it +ir, H"'p+") be the principal series representations of
G, parametrised as in [Wal, Chapter 8]. Then ir +¡r is unitary if and only if
v G a*. We write TTail = ira(1+iJ,. Let Gc denote the set of all equivalence classes of
irreducible constituents of unitary principal series representations. Also, let Gd be
the discrete series of G, that is, those classes <o G G that contain a square integrable
representation of G. We now state the version of the Plancherel theorem that we
will need (see [HC2]).

4.1 Theorem. Let G be a connected Lie group with finite center and split rank one.
Let X G a* be the long positive restricted root. Given a G A?, there exists a nonnega-
tive, even function of polynomial growth na(xX) (for x G R) such that, for any
f G 62(G), K-finite on both sides,

Ae)=   2    d(U)-9„(f)+   2     i + 30^(/)-ju0(xX)dx.
ueGj a e M

Here d(w) denotes the formal degree of w G Gd (d(u) and /^(xX) depend on the
choice of the Haar measure on G). Moreover all sums are finite.

Let (tr, H) be a unitary, irreducible representation of G. Then (tt, H) is AT-finite,
that is, H is the unitary direct sum H = 2T(=¿//T, where, as a representation of K,
v\h ~ mr 'T w'tn mr < °°> f°r any T e K- We let Er: H -» Hr be the orthogonal
projection onto Hr. We observe that if dT •/ * xv = /then

*„(/)=/ tr(ET.-TT(x)-ET.)-f(x)dx.
JG

If (it, H) = (it, „, H°<"), the space HT°- ' is identified with VT ® HomM(FT, V„)
via the map A given by

A(v ® r)(£a«) = e-(",+p)(loga)- r(T(/t-')«)-

The matrix entries of the principal series are given by Eisenstein integrals: if r,
y G K, T G Homw( VT, Vy), v G oc and x G G, let

£y T(T: />: x) = f e-("+p>"<**>. y(AT(xÂ:)) • T- r(k~l) dk.
J K

Let {PÍ\J = 1, 2, . . . , w0} be a basis of Homw(FT, K0).
A computation (see [Wal, 8.12.4]) shows that

<7r0>„(x)/l(»v ® p¿), ¿(w ® />*)> - <£T,T(¿* •>,*: -«>: x)w, v).

Let us fix t G £. Let MT = (a G M|[o: T|M] ̂  0}. Then

K=   2     2   #¿   with (t|a/, H>) G a.

Let ç> = pi' pi, îorj =\,2,...,m„.
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14 R. J. MIATELLO

4.2 Lemma. For each o G Mr let aa(v) be a C00 function on a^. Set

«r(") =22 «„W • 4-

77ie«

2      ̂ {Er^cÁX)Er)aÁV) = tr ETr(aAV)> ~™> X)
o(=Mr

for any v G ac.

Proof. By the matrix expression for ET • ma „(x) • ET we have

2    tT(ET-7T^(x)ET)a„(v)
oeMT

=   22  tr £„(<£:-«>: x)a>) = tr E„(aT(v): -iv: x).   Q.E.D.
OEM,  "'"•'

Consider now the canonical double representation of K on End(KT). If kv k2 G
KandT GEnd(FT)let

li(kx,k2)(T) = T(kx)-T-r(k2).

4.3 Theorem [War, Theorem 9.1.5.1]. // G is a rank one Lie group with finite
center, there exist meromorphic End^End^ VT))-valued functions on a£: cT(v),
c_lT(v) and a(v: t) so that for any T G End(FT), v G Cand t > Owe have

EÍT.ipX-.expt- -Hx\

= e-\\pMb/2)t(eM,. a(„x. ,). Ct(„x) + e-ivb,. a(_vX. ^ . c_iT(vX))(T).

Here, b = number of distinct positive restricted roots (as in 2.1).
We now summarize some properties of c7(v), c_Xr(v) and a(v: t) that we will

need.

4.4 Proposition. There is a meromorphic function cT: a^.—*EndM(VT) (that we
still call cr) such that for any T G EndM(VT),

cT(v)(T)= T-cT(v),

C-U*)(T) = T(ifio)"1 • cT(v)* ■ T- r(m0).

Here m0 G M* - M and M* = {k G K\Aà(k)(a) c a}.

4.5 Proposition (Harish-Chandra [HC2, I, Lemma 13.4 and III, Theorem
27.3]). There exist constants da G R depending only on a so that, if

K =    2      2   doqi,
OEM,  Jml
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and if

/*» =22   Ho(v)qi

then cT(r) ■ cT(ï)* = p>r' • bT.

4.6 Proposition. There exists a rational function qx(v) such that //Im <(»>, a> < 0,

IK«-1!! < \qM\
(|| || stands for the operator norm in End(FT)).

We turn our attention to the function o(v: t) of 4.3. As shown in Warner
[War, Chapter 9], this function is given by a series

*(":')=  2   Tk(iv-o)e-k<
k = 0

where the Tk(iv — p) are rational functions on ac with values in Endc(EndM KT).
These functions are defined by means of complicated recurrence relations which
we will not need to describe. We will make use of the following important result.

4.7 Proposition. There is a rational function q2(v) and a constant c such that if
v Ea£ and Im (y, X> > 0 then \\Tk(iv - p)|| < \q2(v)\ ■ ck, k = 0, 1, 2,-

Proof. This estimate is contained in the proof of Theorem 2.4 in Chapter II of
Helgason [He]. See also Johnson [J, Lemma 2.1].

Now let Xx, X2, . . . , Xm be a basis of m such that <A,, xy = -8¡j and let

<oM = - 2 *?•
i

Then, since uM is a scalar multiple of the Casimir element of M, given a G A?
there is X0 such that o(icM) = Xa-1.

4.8 Proposition. The poles ofTk(ivX — p) lie in the set

Pkr = \vGC\p = ^lh +   - -   "' \ where A = 1, 2, . . . , k and at, 0j c r,*   .

Proof. In the notation of Warner [War, 9.1.4] we let t(ww) G End(EndM( VT)) be
given by

t(o>m)(t) = Tt(wm).

If Vr = 2oex/T2^:i//o and o¿: VT -» HJa is orthogonal projection onto HJa we have
that T(uM)(qi) = X0 • q¿. Hence, the eigenvalues of

y = ad(T(ww)): End( End ( VT)) -* End( End ( Vr)\
M M

are all the differences X„ — X„ with a¡, Oj G MT. By the very definition of Tk, its
poles lie in the set {v G a&h-Bg(Ha, iH„) = h2Bg(Ha, Ha) + yjBg(Ha, Ha)
where A = 1,2,... ,k and y¡ runs over all eigenvalues of y}. Here a denotes the
short positive restricted root, that is a = X/b. Hence, the poles of Tk(ivX — p) lie in
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16 R. J. MIATELLO

the set

Pk.r = j H" S C and v = (-i/2*) • ( A +   *       °'\

with A = 1, 2, . . . , k and a„ o, G AfT}.    Q.E.D.

We now prove an estimate that we will need later on.

4.9 Proposition. Let f(z) be a meromorphic function on H = [z|Im z > 0] such
that \f(z)\ < \q(z)\ for z G H, q(z) being a rational function of degree N. Suppose
also that the poles zx, z2, . . . , zk of f in H are off the real axis, and that Nj is the
order of the pole Zj. If a > 0 is a constant we put

1(0 = f + X e-axV'xf(x)dx.

Then there exist polynomials pj(t) of degree Nj — 1 for j = 1, 2, . . . , k so that

exp(-i2/4a) • (/(f) - 2 />,(') • ei2A = 0(tN)   as t -» + oo.

Proof. Since we are interested in large values of t we may assume that
//2a > Im Zj, for/ = 1, 2,..., k. Let x = y ■ t. Then

•'-oo

We use the method of steepest descent to study I(t). If A(.y) = ay2 — iy, then
h'(y) = 2ay — i. We move the contour of integration up to the line Im.y = l/2a.
Since the poles of f(yt) are at Zj/t and f/2a > Im zy we have

/(,) = tf + x e-A-**»/«O./La + jAdu
k

+ 2ot7 2     Res   g(y),

where g(y) = e'^^-^Ayí).
Letting ut = x,

k
I(t) = e-'1'*" C X e-ax2fix + ^M dx + 2mt 2     Res   g(y).

•'-oo V ¿«/ j-\  y-zj/t

Since for z G H, \z\ large, |/(z)| < clz^ it is clear that

f + °° e-ax2fix +j-)dx = 0(tN)   así ^+oo.

On the other hand, if A(z) = e~'(az ~'z) then a computation shows that

where P^-C) ¡s a polynomial of degree /.
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Thus, if f(z) = 2% bv(z - Zji,

N,-l

= 1   2    2TTi-b_l_XJPIJ(t)Ui'1
1 = 0

This completes the proof of the proposition.
We next use a wave packet to define a function AT^ closely related to our specific

problem (see §3). Our main task will be to study the growth of this function.
4.10 Definition. If t g Â and 5 > 0 we set

*       J — cr\
dv

a&M,

where ju,0 is as in 4.1.
Here X„ „A denotes the eigenvalue of the Casimir fi,- y — Bg(Hx, Hx) ■ fi on the

class iT0tPX. Let a denote the short positive restricted root. Then ba = X where, as
usual, b is the number of distinct positive restricted roots. By the computation in
[Wal, p. 280] we have

Ba(HV H\)       " K,izp ~ z—  ,2 p(Hay   P(Ha)
a(Ha)       a(Ha)        °

Since X = ba and zp = -ivX we have z = - 2iv/p(Hx), Hx = 2Ha/b ■ a(Ha). Thus

A^,, = -*„(#„ //,) • a(Ha) bV + ^r+     X-
a(Ha)        a(Ha)

But llpll2 = (Hp, tfp>, where Hp satisfies p(#) = Bg(Hp, H)/Bg(Hx, //,), that
is, Hp = *„(#„ #,) • Hp. Thus llpll2 = Bg(H„ //,) • 2?fl(¿/p, //p). Using that
£8(#«> #J • £(#,, #i) = 4/Z>2 we finally get that

iipir = 4     p(Ha)2
b2     a(Ha) ■

Hence the formula for the eigenvalue is

\,,„a = -(4"2+ IJPlI2 +- Äe(//„ //,) - A„).
Thus, letting a = Bg(Hx, Hx),

k^(x) m ¿yx • «-vVHMr>

• f +       2    tr(£T • tt„x(x)EJ ■ e"*• ■ e-*^ ■ h(p\) dp.
-°°        .Ejf,

Let eTii = S.eA.SJi.e"*- • aj G EndM(KT). Then, by 4.2

KM) = dT-'e-^+rf>- f*"*^^*)-«^: -«A: x^^aV.
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18 R. J. MIATELLO

Let us set a¡ = exp(í • bHx/2). Using 4.3, 4.4 and 4.5 ATi(a,') can be put into the
following form

hrs(a^ = dr-1- ,-*+Wr> . e-llpll*'/2

VWtr[e** • a(*X: f) • 6T- ̂  • cT(fA)»-'/
+ 00

— oo

+ e~Ml • o(-vX: t)r{m0)~l ■ c^X)"1- ¿>T • eT>J • T(m„)]*.

We now need the fact that the poles of a(vX: t) and cT(vX)*~l form a discrete
subset of the imaginary axis. For cT(vX)* " ' this is a consequence of 4.5, 4.6 and of
the expression of the matrix entries of cr(vX) as linear combinations of products of
beta functions (see [Wa4]). Moreover, only finitely many of those poles: ivx, . . . , iv¡
lie in H, the closed upper half plane. To avoid the possible pole at v = 0, we
change the contour of integration near v = 0. That is, the new contour re consists
of the half-lines Le+ = {v\v > e}, L~ = [v\v < — e} and the semicircle Ct={v =
e- e"\0 <, t < it). We choose e so that the new contour will be within the strip of
holomorphy of the integrand and also so that the only pole of o(vX: t) or cT(vX)*~x
inside the circle of center at v = 0 and radius e is, possibly, v = 0.

Then we have that the only poles of the first half of the integrand that lie above
Te are ivx, iv2, . . . , iv, (where v, = 0, ally) and since the poles of a(-vX: t) and
cT(vXyl are the negative of the poles of a(vX: t) and cT(i>X)*~l respectively, and
because of the choice of e, the poles of the second half of the integrand that lie
below Te are -/>,, -iv2, . . . , iv, and possibly v = 0.

To estimate the growth of hTS(a¡) for t large we use Proposition 4.9. We note that
we need a slightly different formulation of it, since the contour of integration is Te
instead of the real axis and moreover because we will move the contour below Te to
study the second half of the integrand. However, making the obvious changes in
the proof we see that the proposition is still valid. We now break the integral into
two pieces.

f e-^e"b'tT o(vX: t)bT ■ eTScT(ïX)*~l dv

= f e-«»V»'tr/2 r*OX - p)e~k% ■ ̂(A)*"1) dv.

By 4.6 and 4.7 there is a rational function q(v) and a constant c so that

|tr r,(/VX - p)bT ■ eTJcT(vX)*-'\ < \q(v)\ck    if v € H.

Therefore the integrand is dominated by \e",b'e~As"1 ■ q(v)/(\ — ce~')\, if t > 1 and
dominated convergence applies. Hence the above is

= 1    Í eM'e-^tr(Tk(ivX - p)bT ■ ̂(fA)*"1) dve~k'.
k=o Jv,

Now let be (see Proposition 4.8)

Í& - l.w € H\p - ^Ía +   * h   °\ A = 1, 2, . . ., k and a„ Oj G û\.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



minakshisundaram-pleijel coefficients 19

Then P0+ = 0 and

p0:r c^c.c^c...
and this chain is stationary if k is sufficiently large. We also put

py = u r-Ä>
Zy = (v(EH\cT(v-X) = 0},

pT = py uzy.
Let PtA: = {ivj\j = 1, 2, . . . , 4} and PT = {ivj\j = 1, 2, . . . , /}. It will be con-

venient to assume that

Zr+ = {'"j\J = 1, 2, . . . , /0 and 0 O, < *<2 < . . . < v,o},

Kk = {'"jU = lo + 1, • • • , 4 and vlo+x > v,o+2 > ... >v,k),

pr+ = {ivj\J = lo + 1. • • ■ . 'and */o+1 > *,o+2 >...>»,}.

Also let Njjc be the order of ivj as a pole of tr r^iVX - p)bTeTJ¡cr(vX)* ~'. If we
apply Proposition 4*) to our integral we find that there exist polynomialspJk(t) of
degree N¡ k — 1 and functions gk(t) so that

2    / *** ■ *~** • tv(Tk(ivX - p)bT ■ eTrScr(vXy-i)e-k<
k = 0  "T,

= 22 Pj,k(t)-e-^+ky + exp{-b2t2/\(>s)- 2 &(/)«-**.

Moreover |g*(/)| < ck ■ 0(tN) as t -> + oo, with iV = deg^^.Thus,

12 gk(t)e-k'\ < —-:   0(tN) = 0(f")    as / - + oo.
1 — ce

For the other half of the integral we must use the region below re. Hence the
possible poles of the integrand are v = —iv, with ¡Vj G PT or v = 0. By Proposition
4.9 there exist polynomials^ k(t) of degree NjJc — 1 and functions gk(t) so that

/   2 e-'*"'e-^tr(r,(-,>X - P^K"')^)-V^i^o)) dv

= 22 PjA*)e-W + 2  ftíOe^-expí-oV/lóí).

In this case summation starts at / = 0 corresponding to the possible pole at
v0 = 0. We observe that since 0 is not a pole of cT(vX)~l and by definite
ro(/>X — p) = 1, we havep00(i) = 0.

The next result summarises the properties of AT^.

4.11 Theorem. Fix r G K. Let

hTiS(x) = d-le-^  2     f   tr(ET^y(x)ET)e^,,(v) dv
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where a* is parametrised by X and /t„ is as in 4.1. Then
(i) dTXr * Kj = dThTtS * xT = ATi,
(ii) hTS G 62(G), /Ae 2-Schwartz space of G,
(iii)^/AT^) = [a:T|A/]e^-\),
(iv) *,„ = *£ + <,

where h°s is a linear combination of matrix entries of the discrete series, h^ G QP(G),
the p-Schwartz space of G,for all p > 0, and both h®s and h}s satisfy (i).

Proof. Parts (i) and (iii) are clear from the definition and the Plancherel
theorem. By the estimates we just proved, we see that there exist polynomials qJyk(t)
such that

KU.) = e-vV+IMl'V

-M' 2    2   qM(')- e-^ + k)2,/b + cxp(-t2/4s)- 0(tN)
k=o y=o

as t -» + oo,

where a, = exp(tHx).
Since a00 = 0, ellp" • Kj(at) decays exponentially as t -» + oo. Since dg =

c(sinh4 2t/'b)m-- (sinh4i/b)m*°dkxdtdk2, this says that (1 + a(x))m ■ ATi(x) G L2(G)
for all m G Z > 0. On the other hand

fi*A(x) = dT-'-e -(\ + IIpIP)j

• tr [ + X fiX( fl^AR,: -*fc ^"^ *
•'-oo

= d"1 •e_^ + M|2^

•tr f + 0°(-l)X(2 ft,(A)e-^-(4^+ ||p||X0)^:-i>X:x)e-4-2dr.
•'-oo V „,/ '

Therefore, arguing as in the case of AT we get a similar estimate to show that
(1 + a(x))mfi*AT ,(x) G L\G) for all m, k G Z > 0. Hence AT>J G (?(G). Finally
let us consider the above expression for hT^(a,). Campoli has shown (essentially, see
[C]) that the first summand is the restriction to A of A^, a linear combination of
matrix entries of the discrete series. From the expression of AT^ — A°^ on A (the
second summand) we see that A^ = ATJ - A^ G QP(G), for allp > 0.    Q.E.D.

The main difficulty at this point is the fact that we need (1 + a(x))mfi*«T^(x) G
L\G) for all m and k G Z > 0 (instead of (1 + a(x))mQkhT¡s(x) G L2(G)) in order
forAT^ to be plugged into the right-hand side of the Selberg trace formula (see 2.1).
This is false in general and we see from the proof of Theorem 4.10 that the
obstruction comes from those poles izj, Zj > 0, of Xv(a(vX: t)breT¿cT(vX)*~x) that
occur as a pole of ir(Tk(ivX — p)brerscT(vX)*~x) for some A: so that k + Zj < \\p\\ •
b/2. Let izx, iz2, . . . , izr be these poles and let A^ be the order of iz- as a pole of
trWi-A: i)b^.cjm*-x). Set

P(X) - II {(A - At, iZj)Nj\i G MT and/ = 1, . .., r).
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4.12 Theorem. Ifr£Kands>0, let

KM) 'díT1- e~Ks  2     /   tr(ETTToyx)EMK>sK'^) dv.
a&M,

Then,
(Í) <Xr * kj =  ¿A, * XT =  V
(iOA^GC'iG).
(iii) 9nJhrJ = [a: vle^'-^iKA., „).
Proof. Parts (i) and (iii) are clear. The argument in 4.11 when applied to AT^

gives a similar estimate for hTS(at), t large. But the poles ivj G H arising in the
proof, satisfy Vj + k > ||p||6/2, hence AT^ G Ll(G). Similarly we see that hTJ¡ G
&(G).

5. Asymptotic estimates for <í>t(í). By Theorem 4.12 the function AT^ G ß'(G).
Hence, by Corollary 2.16, tr wr(A~Ti) can be evaluated by the right-hand side of the
Selberg trace formula. Theorem 2.1 implies

tr *r<£,) = VOKT \ G) • KM) + ¿        2        vol(ry \ Gy)D(y)~'
Z7r  Me[r]-[e]

•»(Y)"1   2    ¿-ZK)   ( + °°0*.,AK,s)e-2i,Tvdv.

We now apply results of De George to show that the right-hand side is
asymptotic to vol(r \ G) • hT^(e) as s¡,0.

5.1 Theorem. Let e(s) = tr 7rr(A~T^) - vol(r \ G)A~TJ(e). Then there exists d > 0
such that

lim e(s) ■ e(d/s) = 0.
s-*0
s>0

In particular this says that e(s) can be extended to a Cx-function on R by setting
e(s) = 0ifs< 0.

Proof.

£(i) = i 2 vol(ry\Gy)Z>(y)-yy)-'2   xMy)

■b-[a: T|Af]e-^+^ + M2)IJ+°° *"WS CjV2J\e-2"^ dv

wherep(Xay) = 2c,»'2-'. Moreover

2 Cjf + X e-A^v2Je-2i'^dv
j        •'-oo

d \?|= 2 c/e-S»)'(2g = 2 cy (±)\_2t{\/Vsyxp{-v2/\6s).

natural numbers c, d and a constant Af so that if

\(p(X„,y)e-^y(ty)\ <M- #-*. expi^,2^).

Then there are natural numbers c, d and a constant Af so that if 0 < s < 1,
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Hence, if 0 < * < 1,

\e(s)\<M'-       2        vol^NG^-tfíy)-1
[y]e[T]-[e)

■u(yyi-tys~d-cxp(-t2/4s).

We want to show that e(s) —> 0 exponentially, as slO. We will need to introduce
more notation.

An element y G T is primitive if y ¥= e and y = yx for yx G T, k G Z, implies
that k = ±1. It is known that if P = (y G T|y is primitive}, then (cf. De George
[G])

(i) U y£P U ^°_ )[y"] is a complete set of conjugacy class representatives.
(ii) If y is primitive, then Ty* = Ty is infinite cyclic generated by y.
If y is primitive let y = xmyayx~x with my G M, ay G A+ and x G G. Then

y* = xmk • ayx~l and it is a well-known fact that vol(ry* \ Gy») • u(y~k) = ty.
On the other hand, by the proof of Lemma 7.7.11 in Wallach [Wal]

D(yyl < M ■ eMUr ■ sinh(/y/2)m° • sinh(ry)m2-.

It is also well known that there is a lower bound a > 0 for the sequence
{/y|[y] G [I"1]} (for a proof see [G, Proposition 18], for instance). Hence there exists
a constant A/, st

D(y)~i < M,   for all y G T.
Thus

14s)) < A/' • «-"2 vol(ry \ Gy) • |£>(y)|-1»(y)-1/yc • expí^-í2^)

< M2 ■ s-dexp(-a2/%s) ■       2        'Yc+ ' ' exp(-/2/8j).
[Y]e[r]-[e]

To prove the theorem we only need to show that the series 2[y]iy • exp(-fy/8s)
converges for all s > 0. Set

£(x) = card{[y] e[T]\ty<x).

Then, by results of De George (see [G, Corollary 2]) there exists a constant a > 0
such that

E(x) — e^/ax    asx—»+oo.

Hence, if 0 < e < 1, for x sufficiently large

(1 -e)—  <E(x) < (1 + e)—.
ax ax

Therefore

2       t; ■ exp(-/2/8S) < bN
N<tr<2N

where

bN = (2A')c-1exp(-A'2/85)[(l + e)e2aN - (2 - 2e)eaN] ■ a~l

and clearly 2NbN < oo.    Q.E.D.
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We now set, for t G K and s > 0,

4>r(s)=  2   «r(«)-[r:«|Jf]e^-H

«kW«   2   nr(u)-[r:U]K]e^-V.
uEC

Our next task is to relate <¡>T(s) and \pT(s).

5.2 Proposition. Lei t G A\ 77ie« </>T(s) — i/v(s) extends to an analytic function on
R. (/« particular it is bounded as s -» 0+.)

Proof. Let L2(r \ G) = 2u6c«r(to) • w. Set

Gr,T = {to G G|[t: w|Ar] ̂ = 0 and «r(«) ¥= 0}.

To prove the proposition it is enough to show that the set Gr T — Gc is finite. If
u G G, by the subquotient theorem, to imbeds in the nonunitary principal series ira „
for some 0 G A/T and p G a£.

Hence Xu = X,,, = -X„ - ||p||2 - 4v2 and since Xa G R (see [War, 4.4.4.3]) then
*- G R or ? G /R. If to G Gc then p G íR. Thus, for any to G GFr - Gc,

K > -K - IIpII2 > sup{xw - iipiiV g K).
On the other hand, the series 2u«r(to)[r: u\K]esX" converges for all s > 0. Hence, no
infinite subset of {AJ«r(to) ¥= 0} can be bounded below.    Q.E.D.

5.3 Lemma. Iffy G CX(G) n L\G) is such that dTxv * <í> = dr<¡> * Xr = <t> then for
all a G A? the map v —> 9„aX(<f>) is defined and holomorphic in the open strip
Sp = {v ■ X\ |Im v\ < ||p||/2} and continuous in the closed strip Sp.

Proof. Since tt(<¡>) = ET * tt(4>)Et * , if {e,}"_, is a basis of //T°/A and v G R,

»*.*(♦) = /c *(*)( 2 <<^(*)<e,), *,>) dx.

From Wallach [Wal, p. 278] we see that if g(x, p) = 2<w0„x(x)e,, e,> then, for any
U compact subset of Sp, there is a constant Mu so that | g(x, »>)| < Mv for x G G,
v e U. On the other hand, the Cauchy integral formula implies that for any
z0 G 5p there is a neighborhood K and a constant Af so that

i *<*'">
< A/   for *• G K, x G G.

The lemma follows by dominated convergence.    Q.E.D.
We need the following result of Langlands.

5.4 Theorem (Langlands [L]). Let G be a semisimple Lie group of split rank one
and let to G G. 77ie« one of the following is true.

(a) to G Gc.
(b) to G G„.
(c) u G Gcomp, the complementary series, that is, u~ TrayX for some v = iy with

0>y>-\\p\\/2.
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(d) to is infinitesimally equivalent with L = ir /Ker A (v) with v = iyX, 0 >y >
-HpII/2, where A(v): H™-*H""~* (1 ¥= s G W(A)) is the canonical intertwining
operator (cf. Wallach [Wal, 8.11]). Moreover Lay = La. y. iff a = a' and v = v'.

Note. The theorem can be stated under much more general conditions but we
only need the above version.

5.5 Theorem. Let hT¿ be as in 4.10. Then <}>r(s) - vohT \ G) • AT s(e) extends to a
C °° function on R.

(In particular, it is bounded as s -» 0+.)

Proof. Recall

fcW-  2   ft<-)-[T:«|lt]..»^-H
«EG,

It is enough by 5.2 to show that the statement of the theorem holds for \pT(s) —
voUT \ G) • ATi(e). Let

*,(*) =   2    «r(«) ■ [t: «,*] -P(XJe^-».
«eGc

We first show that

Ms) -   2   ir(«)«-(0 = MrW G C-(R).
UEC

It is enough to see that if to G G, then either

K(KJ-[T-<»W]e'(K-K)p(K)   or   •„(£>)-0.
Since the first equality holds if to G Gc, by holomorphy (cf. 5.3), the same is true
for o> G Gcomp. By the Plancherel theorem 0U(AT,) = 0 for to G G¿.

Finally let u = Lay be a Langlands quotient, that is, Lay = H"" /Ker A(v)
where A(v): H°- ' -» #•*•-*. If Ker.4(K) n ff/' = 0, then t^JKj = K.^)- If
Ker ^(f) n #T°' " ¥= 0, then it turns out, by the definition of p(X), that/»(X„„) = 0.
Thus iray(hT,s) = 0> by holomorphy. We now set

«r(i)- 2 M«)^(Q-voi(r\G) at»,  if5>o,
«ec

and
o)T(s) = 0,    if í < 0.

Then, by 5.1, uT(s) G C°°(R). Hence

Us) - vol(T\G)h7Ae) = ur(s) + cor(s) G C°°(R).
But

^»-«^•>(^)«J*-M*)-
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Thus

/>(¿)(<^a(*) - voi(r\ g)km))) = eSMÁs) + «,(*)).
By picking vT(s) G C°°(R) so thatp(d/ds)(uT(j)) = es\uT(s) + u>T(s)) we see that

Us) - vol(r \ G) • KM) = e-V(»T(*) + 2  <lj(s)es^>]

where X„ „ are the roots of p(X) and qj(s) are polynomials of degree N, — I, Nj
being the order of X,, „ as a root of p(X).   Q.E.D.

5.6 Definition. If /, g G G°°(R+), then by/~g as i|0 we mean that for any
natural number n

f{s) - g(s) = 0(s")   as 40.
We now state the main result of this section. The theorem is due to the author

under the restriction on t that [0: t.^] G {0, 1} for all 0 G M. Since this paper was
written, the result has been generalized to arbitrary t G K by De George and
Wallach (see [GWa, §6]), rendering Theorem 5.5 obsolete.

5.7 Theorem. If r G K then

<pr(s)~yol(T\G)ih^(e) +   2   d(to)-[T:to|jr]e^-^>)    « 40.

Proof. Let as usual Gd be the discrete series of G and let Gc denote the classes
corresponding to the irreducible unitary principal series or the complementary
series. Let GL = G - (Gc U Gd). By 4.11(iv), we may write AT^ = A°^ + AT'ä where
Ks G Q"(G) for all/» > 0. This implies that the function v -> 9^x(hls) is entire (by
5.3, essentially), and then

$«.Jhi)=[°--T\MyiK*-K)
for all c£C, since both sides coincide for v G R, by 4.1 l(iii). This says that

W,)-[*:«|*]««*"-M
for to G Gc. By applying 5.1 to h}s, we find that there exists Er(s) G ß°°(R) such
that £r(j) = 0 for s < 0 and

tr irT{hl) = voKFV G)%M) + ¿rto-
By the Plancherel theorem

a?» = 2^ «W.K,)
«EC;

and since A^ = AT^ - A^ and 9u(hrJ = 0 if to G Gd, it follows that

KM) = KÁe)+ 2 *«) •••(O
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On the other hand

tr*rK,)-  2   «r(«)W„)
»EC

= <¡>T(*) +      2      nr(U)(9Ml) '[r: ^]e^"^>).
uEC-G,

By algebraic manipulations we get

KM)+   2    d(to)[T:to„]^-^) + vol(r1NG)   -ET(s)
ueG¿

1
^cj *W + 2. (dfr^j -**)(««U "[« »i«]«*-")voi(r

weGä

+ 2   ^g)(^^)-[«¿i«]^-^ (i)
uSGL

Now let us suppose that t is such that [a: t,m] G {0, 1} for all o G A?. Then for
any a £ W, c £ C, Í, W,s) = ^SK,s) where u is the subquotient of the composi-
tion series of irayX that contains t as a A-type. If to G G and [t: u,k] ¥= 0 then by
the subquotient theorem there exist o G M, v G C (with [o: t.^] ^ 0) such that u¡ is
a subquotient of irayX. Hence under the extra assumption that [0: T\M] G {0, 1} for
all 0 G M, we may conclude that

°Mi)=[T--<*\KyiK-K) (2)
for any to G G and s > 0. By substituting (2) in equation (1) we prove the theorem
in this case since ET(s) ~ 0 as s -> 0. We observe that the difficulty for a general t
is that we cannot assert (2).

In [GWa] De George and Wallach get around this problem by using their limit
formulas for multiplicities in L2(r \ G). For the sake of completeness we will
sketch their proof. The starting point is equation (1). If drT(s) is the right-hand side
of (1) set

yM = drX(s) - vol(r\G) *(')•

By a result of Cahn-Gilkey-Wolf the asymptotic expansion of (l/vol(r \ G)) • <í>t(í)
is independent of T (see [CGW]). Since Er(s) ~ 0 as s —*0, this says that crT(s) has
an asymptotic expansion as s —> 0 that is independent of T (here we have used the
fact that hTS(e) has an asymptotic expansion as s —» 0; this will be proved in §6).

On the other hand De George and Wallach proved that if u G Gd u GL then
9a(Ks) extends to an entire function of s. Hence, so does cT T(s). But since the
Taylor expansion cT T(s) is independent of T, it follows that cT r(s) itself is indepen-
dent of r.

Consider now a tower of subgroups of T, that is, a sequence {Tj} such that
Tj d TJ+X, Tj is a normal subgroup of T, Tj \ G is compact for all/ and DjTj =
{e}. By results of De George and Wallach
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«r(w)
lim d(U)-' =0   if a E G*

y-»oo vo"i> \ G )

«r.(w)
lim   -y- =0   if to G G,.

7-»oo  vol(r,\G)

These facts easily imply that if e > 0 there exists j0(e) such that |cTr(i)| < e if
0 < s < 1 and./' >j0(e)- Since crT(s) = ctT(s) for ally, it follows that ctT = 0. This
clearly implies the result.

Remark. It is of some interest to look at the case t = 1 more closely. Theorem
5.7 asserts that <¡>x(s) ~ vol(r \ G)hXs(e) as slO. This could be obtained directly in
this case, by observing that (c^vX)*)-1 and 0(*'X, t) have no poles in the upper half
plane. This fails to be true for almost any other t G K and we need to make use of
the decomposition granted by Theorem 4.11(iv). Thus if t = 1 one picks up no
residues when moving contours and A,¿(a,) = exp(-t2/4s) ■ 0(t") for / sufficiently
large. Hence hXs = A}^ G (?(G), for any e > 0. This says that 0, (AM) is entire as
a function of v and then the subquotient theorem and the classification of class-one
representations (see [Ko]) imply that 9u(hx^) has the right value for any u G G,,
that is, 9JHO = es\

Remark. As an example let us specialize by taking G = Sl(2, R). We will give a
simple proof of 5.7 in this particular case. We have that

K= ¡K(9)=\   cos9n     sini],9eR}    and    M={I,-I).
\        '     [ -sino    cos0J I i '      i

Hence if rm(k(9)) = e""e, for m G Z, then K = {tJ/w G Z}. Also M = (1, e},
where 1 is the trivial representation of M and e is the signum representation of M.
We now describe G. Fix k a natural number, let irk and ir_k be the irreducible
unitary representations of G such that

2
n>k

m=k +I mod 2 m=it + l mod2
m>k m< — k

Also, let ir+ and it   be such that

«\k =   2    Tm   and   r£ =   2   Tm
m>0 m<0
m odd m odd

and let, for d a natural number, ird designate the irreducible representation of G of
dimension d. Finally, let us recall that if irXyp and ire yp denote the unitary principal
series of G, then by Frobenius reciprocity

"■l,„P|Jt =      2       Tm> ",e,»p|ir =     2      Tm-
m EEZ me Z
m even m odd

We will need the following well-known classification.
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5.8 Proposition. If G = Sl(2, R) and it G G - {1} then ir belongs to one of the
following sets :

(a) Gc = (it, yp\v GR) u {nc,,,,\v G R, v ^ 0}, /Ae irreducible unitary principal
series.

(b) Gr = [ir +, ir~) the irreducible constituents of the reducible unitary principal
series.

(c) ¿comp = {^1.0-pl0 <y < l)'the complementary series.
(d) Gd = {irm\m G Z, m ¥= 0}, the discrete series. Moreover irm is integrable if and

only if \m\ > 1.

We now discuss the asymptotic expansion of <i>T (s), for k G Z. We will derive
Theorem 5.7 by reduction to the spherical case. We assume that k > 0. Indeed, it is
easily seen that <j>T_  (s) = </>T (s). By the definitions,

*rjs)= 2 «r(to)e^"-^+ 2  nT(ir2J_x)e<^-^>

= e-*»L(j) + fataH) + 2   "r(*2,-i)^-'l
Here we have used that the irreducible subquotients of the composition series of

irx ,p are 1, irx and it_x. Hence X, = X, = \_ = 0. On the other hand, it is well
known (see for example [Wa2]) that

(i) «r<7r±,) = vol(r \ G) d(ir±,) + 1,
(ii) nT(ir±k) = vol(r \ G)d(ir±k) if k > 2.
Thus

<t>TJs)~e-*^vo\(T\G)lhxye) + 2   ^-iV4*-)

or

*TM(j)~vol(r\ G)ihTiJe) + 2  d(ir2j_x)e*K-\

as 40» as was to be shown. It is of some interest to observe how in the above
argument the terms in <f>T (s) combine to make <i>Tw(i)/vol(r \ G) asymptotically
independent of T as it has to be by a result of Cahn-Gilkey-Wolf (see [CGW]). By
direct inspection of the poles of (cTik(vp)*)~l in 0 < Im(i<) < 1 it can be seen that
Aw <5É e'(G).

We now look at t = r2k+x. Then h, ¿ G G*(G) since Tj(iv - p) is holomorphic
in the upper half plane for ally, and the poles of (cT (v)*)~l in the upper half
plane are at v = hi, where A G Z and 1 < A < k. This says that we may apply the
Selberg trace formula to h, *• Now 0u(AT2jk+iiJ) = 0 if u G Gd and by means of a
holomorphy argument using 5.3 it is not hard to see that

0ÁK2k + J-[^k+v^]es{K-K^
for any to G G. The trace formula when applied to AT readily implies Theorem
5.7. Finally let us observe that, conversely, Theorem 5.7 implies equations (i) and
(ii) above.
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6. The asymptotic expansion of K^(e). As we have seen in §5, Theorem 5.7,

</v(4 - vol(r \ G)AT» ~ toT(4,   as 40,
where wr(s) is a computable entire function of s. Hence, the asymptotic expansion
of <(>T(s) is determined by the asymptotic expansion of hT^(e). Our final task is to
derive this expansion.

Let n„(v ■ X) • dv be the Plancherel measure corresponding to 0 G M (see 4.1). If
we write p0(z) = p.a(zX) then /i„(z) is a meromorphic function on C that restricts to
an even, nonnegative, analytic function on R that has polynomial growth.

As usual let i)~ c m be maximal abelian and let b = b~ + a. Then i>c is a
Cartan subalgebra of gc. Let A and Am be respectively the root systems of (gc, be)
and (mc, b¿"). We define an order in A so that positive elements on b~ are bigger
than positive elements on a. Let finally be ( , ) the form on b* that is dual to
Bg\t) X t). If 0 G M, we denote by X„ its highest weight and we let pM = 5(2ySA*y).
Both Xff and pM are trivially extended to bc- Set

qM)=    IT   (iz(y,X) + (y,Xa + pM)).
yEA+

Then (see for example [KS])
Ha(z) = c-da-pa(z)-<¡>a(z)

where c is a constant depending only on G (and on the choice of the Haar measure
on G), da = dim(0), and p„(z) is a monic polynomial that is a constant multiple of
qa(z). Moreover <t>a(z) = 1, if g =¿ SO(2« + 1,1), and otherwise </>„(z) = tanh irz or
coth irz, depending on 0. The choice of tanh or coth is done roughly as follows.
There is a distinguished element ß G exp b" of order at most 2. If H G b~
satisfies exp(H) = ß, then exp(X„ + pM)(H) = ±1. The coth is used when the sign
is + and the tanh when the sign is -. We have computed the polynomial p„(z) and
applied the above criterion to linear rank one groups to get a very explicit
expression of the Plancherel measure (see [M]).

From the definition of AT^ we see that

hTtS(e) = e-^ + ̂ 2>-   2    e-^-[0:v]/ + O°e-^-p<I(z)dz.
«EM, °°

Let us set

A/T/ = {0 G A/|[o: T|W] ¥= 0 and ju.„(z) goes with tanh },

AfTC = {0 G Af |[o: T|M] t¿= 0 and p.a(z) goes with coth }.

We first assume that g ä SO(2n + 1,1). Then A/T = A/T, u MTC and p„(z) is
odd. Let us writepa(z) = 2' = 0¿>2,+ 1(o) z2, + 1 and c =\- dim(G/A"). Then c = I
+ 1.

Let us set

M^ = ^ + IIpI|2K    2     c-da-[o:i[M}-e^°

• 2  l>2i+x(o)- r + °°z2' + 1-e-4"2- tanh irz dz.
, = 0 •'-oo
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We define hTS(e)c similarly, by using MTC and coth irz. We have that hT^(e) =
KM)i + KM)c- T° obtain the asymptotic expansion of hT^(e) we need some facts
from Fourier transform theory. Let S(R) denote the Schwartz space of R and 5"(R)
the space of tempered distributions. If / G S(R), T G S'(R) let

Ä /- + oo

Ax)-[      f(t)-e-"xdt,

/-(x)= f + c°At)-eilxdt,  <7",/> = <r,/>,  <r-,/> = <r,/->.
"'-OO

6.1 Proposition, (i) IfT& S'(R), (T)~= (T~)~ = 2tt ■ T.
(ii) If a > 0 a«d/(i) = e'"'2, then

f(x)=f(x) =\Tyfa ■ exp(-x2/4a).
(iii) Let h(t) = tanh irt G S'(R). Then

A"= -/ • p • v cosech(f/2).
If T = p ■ v coth irt, then

T"= -i ■ p ■ v coth(//2).

Therefore, 6.1 implies that

f z2i+i- e"4"2 • tanh irz dz = (2ff)_1<tanh irx, (z2, + 1 • e"4"2)")

= (-1)'+1 • (Vl6^s )"' ■ (p-v cosech(x/2), £>2'+1exp(-x2/16.s)>.

(Here D = d/dx.) If H2i+X(x) is the Hermite polynomial of order 2/ + 1 then

2A+1

where

ff2,+i(*) = 2 0,,2,+r*
/i = 0

(-l)'~* + '-(2'+ 1)!22*+1
e*A+i (/- A)! (2A + 1)!

Moreover

Z)2'+1exp(-ax2) = ( 2   «*+, + 1 • chai+i ■ x2A+1)exp(-ax2).

Hence, the above can be written

= (-i)'+1.(V^)-'- 2 2- 2A-4/-4 .     -A-/-1

h=0

■ch2i+x(p ■ v cosech x, x2*+1exp(-x2/4i))-

Let x cosech x = 2,d}x2-', for |x| < it. Using that Jí^x2* • e-*2 dx = T(k + {-)
it is not hard to show that (p ■ v cosechx, x2* + 1 • exp(-x2/4i)> is asymptotic in
the sense of 5.6 to 2£°d, ■ T(A + / + 5) • (V4l )2A+2>+1, as s -» 0+.
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Hence, adding over /' and letting m = c — i — 1, « = c +/ — i — 1, it follows
that

2  b2i+x(a) [ + °° z2i+ ' • e_4"2 • tanh irz dz
<=0

oo      c-\-v   max(c-l,n)
s~c[ 2    2       2    (W)_1(-i)c-°-22"-4f+2ü+1

Hence, as s -» 0+,

-2u-l    S    I.

where

<._]_„   max(c—l,n)

«„,(*)=  2   e-^.[a:T|M]  2       2    (-ir*-(W)-
„eea/t, A=0 u=0

.22„-4c+2t)+..¿,2c_2c_l(a).dn_„• chac_2v_x- r(A + « - v +1).

To derive the expansion for hTS(e)c we proceed similarly and arrive at

AT»c~e-^ + '""l2>-S-c( 2   **<*)•*").    as^O+.

Here anc(s) is given by the same formula as an,(s) except that dj is replaced by
dj, the coefficients of the Taylor expansion at z = 0 of z • coth z.

When G is locally isomorphic to SO(2« + 1, 1), the Plancherel measure is a
polynomial: ¡ia(z) = 2'=0I,2/(a) ' z^' and I = c — \. Thus

KM) = e-<^'H>.   2   [a: rlM]e- V. 2  M«) • r(i + $)
»E.

= e-(X,+ Hp|r>.s-e

zMT i-O

2    2 [^^]^"iVa-*2c-2A-.(<')-r(c-A)-i'
A = 0 .EM,

Summing up:

6.2 Theorem. For r G A^, s > 0, /e/ hrsbe as in 4.10. TAe«, as s -» 0+,

AT» ~ *"< • e-^ + llp|l2) • Í 2  OjisW)

where c = jdim(G/ K) and the coefficients a-(j) are as follows
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(i)//g=e:SO(2« + 1, 1), then
c-1-ü   max(c-l^)

aM)=    2 2      (-l)c-ü-(W)-,-cA,2f_2„_I-22'-4'+2''+1
A-0 u-0

•r(A + B-0 + I) 2    dn_v-[a:rw]-b2c_2v_x(o)-e-^a

+   2    <-¿-[«:'T|JÍ]-62e_2o_1(0)-e-^-

(ii)//g^SO(2« + 1, 1)

%(*)-   2    [<y-^M]e-sKa-b2c_2J_x(a)-T(c-j)
a£MT

ifj = 0, 1, . . . , (2c - l)/2 and a¿s) = 0, iff > (2c - l)/2.
Let us recall that

_ (-l)'-*+1(2/+ \)\-22h+l
Ch'2i+l (i - A)! (2A + 1)!

and if/ ¥= 0

(-iy(22>-2)5, (-iy-1-JB,-22-'-
4" 27!-'       4-^-•

Moreover d0 = d¿ = 1, and a = Bg(Hx, Hx).
If qa(z) denotes the polynomial part of the Plancherel measure, then qa(z) =

22c_-r>,(0) • zK
Remark. We observe that when t = 1, the functions aj(s) are constants. In

general there is an asymptotic expansion hT^(e) ~ 5_C(2°10CJÍ " •y/)> c- G R, as j -»
0+, and the c/s are determined by expanding the Oj(s) in Taylor series and
proceeding formally in the obvious manner.
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