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Abstract

The Theory of Mind provides a framework for an
agent to predict the actions of adversaries by build-
ing an abstract model of their strategies using re-
cursive nested beliefs. In this paper, we extend a
recently introduced technique for opponent mod-
elling based on Theory of Mind reasoning. Our ex-
tended multi-agent Theory of Mind model explic-
itly considers multiple opponents simultaneously.
We introduce a stereotyping mechanism, which
segments the agent population into sub-groups of
agents with similar behaviour. Sub-group profiles
guide decision making. We evaluate our model us-
ing a multi-player stochastic game, which presents
agents with the challenge of unknown adversaries
in a partially-observable environment. Simula-
tion results demonstrate that the model performs
well under uncertainty and that stereotyping allows
larger groups of agents to be modelled robustly.
The findings show that Theory of Mind modelling
is useful in many artificial intelligence applications.

1 Introduction

Opponent modelling is a technique to recognize the strategy
of an opponent and make predictions about their behaviour.
In AI, opponent modelling is used for decision making by
exploiting sub-optimal opponents [Ganzfried and Sandholm,
2011].

One technique that can be used in opponent modeling is
Theory of Mind (ToM) [Goldman, 2012]. ToM is a concept
from psychology that describes the higher cognitive mecha-
nism of attributing unobservable mental content, such as be-
liefs, desires and intentions to others. ToM is used by hu-
mans to form models for predicting the behaviour, decisions
and actions of other individuals. ToM is a bounded rational-
ity model [Brennan and Lo, 2012], and as such is suitable to
simulate human decision making in agents. Typically, this is
a done recursively using nested beliefs – a process referred to
as higher-order ToM. That is, an agent A can not only form
beliefs about what another agent B would do, but also about
what the other agent B would believe about agent A or what
the other agent B believes the agent A to know about them,
etc.

In this paper, we propose a multi-agent ToM model
(MToM) that extends an existing computational ToM model.
In contrast to De Weerd et al., [2013b], who model one adver-
sary, our model allows multiple opponents to be considered
at the same time. Thus, agents have to model other agents’
views of them and their views of other agents. Humans have
limited ability to model multiple opponents, so they resort
to stereotyping [Fiske, 2000]. We introduce a mechanism to
model stereotyping that segments opponents into categories,
which are then treated as single opponents in MToM.

We validate our MToM model using a stochastic multi-
player game. ToM models are particularly useful in stochas-
tic games due to the fact that recognizing the strategies
of opponents gives a player a significant advantage. The
stochastic game used in the experiments is the Common
Pool Resource Game (CPRG) [Sethi and Somanathan, 1996;
von der Osten et al., 2017], a large-scale social dilemma. This
game is particularly suitable as a demonstration for MToM, as
in reality individual behaviour is dependent on beliefs about
the behaviour of other individuals [Cavalcanti et al., 2010].
Outcomes of the game depend on the cumulative actions of
all agents, hence it is critical to predict other agents’ actions.
Furthermore, the CPRG is a difficult game in the context
of AI, as it presents agents with multiple challenges: non-
deterministic game dynamics, partial observability and un-
known adversaries.

We show the MToM model can be used to predict agents’
actions and demonstrate the model’s behaviour under uncer-
tainty by detailing the impact of perfect and imperfect knowl-
edge. Furthermore we show the effect of using different or-
ders of ToM. We establish that MToM agents are able to esti-
mate the the sophistication of their opponents’ strategy, espe-
cially in non-homogeneous populations.

2 Related Work

Research in psychology has dealt with the topic of ToM quite
extensively [Perner, 1999; Goldman, 2012]. Psychologists in-
vestigate ToM as a tool of human cognition that equips them
with an evolutionary advantage. As an integrated part of a
more general model of bounded rationality it helps explain
human behavior accurately [Robalino and Robson, 2012;
Brennan and Lo, 2012]. ToM is often viewed from an evolu-
tionary perspective [Kimbrough et al., 2014] and it was found
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that natural selection favours intention recognition, which en-
ables the evolution of cooperation [Pereira et al., 2012].

Such concepts have been formalised in computational
models, such as in interactive POMDPs [Gmytrasiewicz and
Doshi, 2005], in which agents explicitly contains a nested
model of other agents in the environment. These have been
used to successfully model human-agent settings, such as in
PsychSim [Pynadath and Marsella, 2005].

De Weerd et al. [2015] apply ToM to the tacit communica-
tion game to support the hypothesis that ToM facilitates coop-
erative behaviour. This application of ToM shows its poten-
tial in the field of AI. Other approaches [Yoshida et al., 2008;
Pereira et al., 2011] keep a model to learn beliefs about op-
ponents’ actions and a separate model to infer the complexity
of opponent strategies, whereas De Weerd et al. [2013b] inte-
grate beliefs about opponent behaviour with inference about
the sophistication of their strategies (see integration of differ-
ent orders of ToM in Section 3). Furthermore, a game the-
oretic advantage of ToM is that it allows agents to infer the
opponents degree of sophistication [Yoshida et al., 2008].

Despite the Vygotskian intelligence hypothesis suggesting
that higher-order ToM allows individuals to cooperate more
effectively [Moll and Tomasello, 2007], higher-order ToM
has an advantage over lower-order ToM, but becomes inef-
fective beyond the second order [De Weerd et al., 2013b;
2013a], i.e., person A estimates what person B estimates per-
son A estimates person B will do [zero order: person A esti-
mates what person B will do; first order: person A estimates
what person B estimates person A will do]. The reason for
this might lie in the biological cost in humans (brain power)
on one hand, and the mathematical limitations of the model
(over-fitting when dealing with lower orders of ToM) on the
other hand. However, the limited sophistication of ToM in
humans is not necessarily a consequence of biological costs,
but can be explained by cooperation favouring lower orders
of ToM [Devaine et al., 2014].

We are not the first to consider ideas of segmentation. Al-
brecht et al. [2016] use agent types to generalise agents with
similar behaviour. The difference between our stereotyping
and that of Albrecht et al. is that we create a behavioural pro-
file of a type, rather than assigning a probability that an agent
is of that particular type. Felli et al.. [2015] propose agent
models, and define ‘stereotypical reasoning’ about individu-
als or groups of agents. Similar to Albrecht et al. though,
they do not aim to learn the segments, but merely to prescribe
them manually.

3 Model

3.1 Multi-ToM

The model used in this paper is an extension of the De Weerd
et al., [2013b] model, conceptualized for one player and one
opponent. In principle this model can be used for any order of
ToM, but for the sake of simplicity, we limit the description
to the first two orders.

A zero-order theory of mind (ToM0) agent i starts out with
a set of beliefs b about the other agent j, which is a set of
probabilities that indicate the likelihood that the opposing
agent j takes a certain action aj ∈ Aj in a particular state

s ∈ S of the game:

b(0)(aj ; s) ≥ 0 ∀aj ∈ Aj

with
∑

aj∈Aj

b(0)(aj ; s) = 1 ∀s ∈ S (1)

where Aj is the set of actions performed by agent j and S is
the set of possible game states (see Section 4.1).

In the multi-agent extension of De Weerd’s ToM model,
an agent i has to keep zero-order beliefs not just about one
opponent, but about multiple:

b(0) =
(

b
(0)
1 , b

(0)
2 , . . . , b

(0)
n−1

)T

(2)

in which n is the total number of agents participating in the

game and b
(0)
j is the belief of agent i about agent j. Using this

set of beliefs, agent i can assign a value Φ to playing a cer-
tain action itself given the likelihood of the opposing agents
j playing a particular action, based on the pay-off πi agent i
will get. This is done by summing over all possible permuta-
tions of actions of all other agents:

Φi(ai;b
(0), s) =

∑

σk∈Kn−1









∏

aj∈σk

b(0)(aj ; s)



 · πi(s, (ai, σk)





(3)

with permutation σk (also called permutation with repeti-
tion/of a multi-set or tuple) consisting of actions ak ∈ A
out of the set of all permutations Kn−1. The agent will then
choose the action ai that maximizes this value Φ with a deci-
sion function t∗i :

t∗i (b
(0); s) = arg max

ai∈Ai

Φi(ai; b
(0), s) (4)

A first-order theory of mind (ToM1) agent keeps its zero-

order beliefs b(0), but also has first-order beliefs b(1); that is,
a set of probabilities that describe agent i’s estimate of an

agent j’s zero-order beliefs. The beliefs b(1) thus describe
what agent i believes agent j believes about agent k (where
k can also be agent i). The first-order beliefs do not only
include the zero-order beliefs of other agents j about agent i,
but also about each other:

b(1) =













b
(1)
1,i b

(1)
1,2 · · · b

(1)
1,n−1

b
(1)
2,i b

(1)
2,1 · · · b

(1)
2,n−1

...
...

...
...

b
(1)
n−1,i b

(1)
n−1,1 · · · b

(1)
n−1,n−2













(5)

where b
(1)
j,k represents the belief agent i has that agent j

believes about k. Given this set of first-order beliefs, agent i

can make a prediction â
(1)
j of agent j’s action by mimicking

agent j’s decision process with its decision function t∗ given

its beliefs b(1) about agent j’s zero-order beliefs:

â
(1)
j = t∗j (b

(1); s) = arg max
aj∈Aj

Φj(aj ; b
(1), s) (6)
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The agent i now has a prediction â
(1)
j of each of its op-

ponents actions based on its first-order beliefs and its own

zero-order belief b(0) indicating the probability of the oppo-
nent playing a certain action. These two are integrated to
form a combined estimate of opponent behaviour. An agent i

has a certain confidence cj1 – the extent to which ToM1 gov-

erns their decisions – in its first-order beliefs b(1). An agent
has a different confidence for each first-order belief about
agent j, and uses that confidence to weight the influence of
its first-order beliefs when integrating zero-order beliefs and
first-order prediction. The integration function U produces
an integrated zero-order belief that weighs in the first-order
prediction:

U(b(0), â
(1)
j , c1)(aj ; s) =

{

(1− cj1) · b
(0)(aj ; s) if aj 6= â

(1)
j

(1− cj1) · b
(0)(aj ; s) + cj1 if aj = â

(1)
j

(7)

Agent i can now use this integrated belief to make a deci-
sion with its decision function t∗:

t∗i (U(b(0), â
(1)
j , c1); s) = t∗i (U(b(0), t∗j (b

(1); s), c1); s) (8)

Given the actual action ãj of opponent j and agent i’s own

actual action ãi, the confidence cj1 is updated with

cj1 :=

{

(1− λ) · cj1 if ãj 6= â
(1)
j

(1− λ) · cj1 + λ if ãj = â
(1)
j

(9)

with nested beliefs being updated as follows:

b(d)(aj ; s) := U(b(d), ãj , λ)(aj ; s) ∀aj ∈ Aj (10)

where λ is the learning speed of an agent. Belief integration
not only includes updating first-order beliefs about agent i
but also about all other agents, using their corresponding ob-
served actions ã, i.e., agent i observing agent j’s action does

not only prompt an update of b
(0)
j but also b

(1)
1,j , b

(1)
2,j , etc. Note

that for the experiments in this paper we limit the order of
ToM to first-order beliefs. For a visualization of how MToM
is applied, see Figure 2.

In the experiments in Section 4, agents either have com-
plete knowledge (CI) of the game dynamics, or the pay-off
π is not known to agents, but approximated by means of
Q-Learning [Watkins and Dayan, 1992]. Agents learn their
expected pay-off given other agents’ contributions and their
own decision in a given game state. The resulting Q-values
are a qualitative representation of the pay-off magnitude and
can serve as a pay-off estimation in place of the known pay-
off function.

Correspondingly, the action selection mechanism consists
of either choosing the action with the best value (t∗, see Equa-
tion 4) when the pay-off is known, or Boltzmann/Softmax se-
lection when the pay-off is unknown; i.e., actions are selected
with a probability proportional to their value:

Pr(ai | b
(0), s) =

eΦ(ai;b
(0),s)

∑

k∈A

eΦ(ak;b(0),s)
(11)

3.2 Segmentation

With an increasing number of agents, not only does the com-
putational complexity of a simulation rise exponentially (see
Figure 1), the model also becomes increasingly unrealis-
tic in modelling human behaviour. When confronted with
too much information to process at once, humans resort
to stereotyping to generalize details and still make reason-
ably accurate predictions [Oakes et al., 1994; Fiske, 2000;
Kashima et al., 2000]. Stereotyping is the generalization
of individual behaviour to a group to simplify decisions and
evaluations. For this reason we introduce a mechanism to
segment agents into groups according to their observed his-
tory of actions. There are several ways to approach this, and
to demonstrate MToM we have chosen a straightforward ap-
proach [Camerer et al., 2015; Kashima et al., 2000]: an agent
j’s action aj,r in round r, averaged over the last ∆t rounds of
the game, is assumed to be representative of its behaviour:

āj =
t

∑

r=t−∆t

aj,r/∆t (12)

Given a predefined number of categories C ∈ N
∗, an agent

falls into category v when

v − 1

C
‖A‖ ≤ ā <

v

C
‖A‖ (13)

When agents are segmented, the corresponding groups are
treated as single agents, thus reducing the computational cost
and simulating stereotyping as described above. This process
is repeated periodically throughout the game to be able to as-
sess and reassess opponent behaviour accurately.

3.3 Complexity Analysis

Theorem 1. The space complexity of MToM is O(n2) with
O = Θ = Ω.

Proof. There are two data structures used by the model: the

zero-order beliefs b(0) about each agent, thus of size n, and

the first-order beliefs b(1) about each agent and their beliefs
about each other (bar their beliefs about themselves), thus of
size n−1×n−2 (see Equations 2 & 5 respectively). Hence,
the total size of the data structures used is n × n = n2. Fur-
thermore, the data structures are static, making the worst case
space complexity the same as the best and average cases. �

Theorem 2. The time complexity of MToM is O(nmn) with
m = ‖A‖.

Proof. For zero-order MToM, the expected pay-offs using

zero-order beliefs b(0) about other agents are calculated by
summing over all permutations of actions a of all agents n
multiplied. The number of permutations is then ‖A‖n (see
Equation 3). For first-order MToM, predictions for each other
agent’s action are made by mimicking their zero-order de-

cision process given b(1), thus repeating zero-order MToM
n − 1 times: n − 1‖A‖n (see Equation 6). The integration
of first and zero-order beliefs takes one iteration of the be-
lief table b(0), i.e., n operations (see Equation 7), and the up-
date process of both belief tables takes n2 and n operations
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Figure 1: The number of computation steps vs the number of agents
n. The plot shows the calculated worst case values for the MToM
model and MToM with segmentation (increasing numbers of cate-
gories). The results indicate that segmentation reduces the compu-
tational complexity to a constant.

respectively (see Equation 9 & 10). The overall action se-
lection uses the integrated beliefs, taking an additional n− 1
times: n − 1‖A‖n operations (see Equation 8), resulting in
2(n − 1)‖A‖n + n2 + 2n operations for an agent decision.
Figure 1 presents the computation steps measured in the ex-
periments. For segmentation the time complexity is reduced
to: O(CmC). For d orders of ToM, the time complexity is
O(mnn) to the d-th power of n. �

4 Experimental Design

4.1 Game Model

Stochastic games are Markov Decision Processes (MDP) in
which state transitions and pay-offs depend on the behaviour
of other agents [Condon, 1992]. A stochastic game is typi-
cally defined by the quadruple (S,A,P,R) with a finite set
of players [Shapley, 1953; Mertens and Neyman, 1981]. As
a case study, we use an instance of a stochastic game – the
Common Pool Resource Game (CPRG). Figure 2 illustrates
the thought processes of agents using MToM in a representa-
tive CPRG (an abstract fisheries game).

In the CPRG, a group of individuals harvest a resource (the
state space S) and each individual decides their effort x at a
cost c to invest in harvesting (the action space A). The com-
bined effort of the group X , along with the state of the re-
source N , determines their pay-off π (the reward R). The
state of the resource is in turn dependent on the harvest H , as
well as its growth G (described by the transition probabilities
between states P). The goal of the population as a whole is to
harvest the resource sustainably, whereas the individual goal
is to maximize the pay-off from harvesting. As the popula-
tion grows larger, it becomes increasingly difficult to harvest
both sustainably and profitably. The CPRG is formulated as
a stochastic game as follows. The state space S describes the

level of the resource N :

S : s =
N

Nmax

‖S‖ with N = [0, 1000] ∈ R

The action space A describes the actions available to an in-
dividual agent. In the CPRG, an action is a level of investment
x into harvesting the resource. The range of actions depends
on the number of agents n participating in the game:

A : a =
x− xmin

xmax − xmin

‖A‖ with x = [
Xmin

n
,
Xmax

n
]

Note that both state and action space are discretized into fi-
nite sets. The transition between states is represented as prob-
abilities P dependent on the current state and action. In the
CPRG, these transitions depend on the actions of all agents,
and are governed by coupled differential equations describing
resource dynamics, particularly the harvest H and growth G:

Pa(s, s
′) = Pr(st+1 = s′|st = s, at = a) : S ×A
with Nt = Nt−1 −H(Xt−1, Nt−1) +G(Nt−1)

and X =
n
∑

i=1

xi

Finally, agents receive a reward determined by the reward
function R, depending on the invested effort X of all agents
and the level of the resource N :

Ra(s, s
′) = 0.5s′ + 0.5π(s, a) with π =

x

X
H(N,X)− cx

with the pay-off π being the agents proportional fraction of
harvest according to its invested effort x with resource level

N . The cumulative pay-off A =
∑tmax

t=0 π and the resource
level N are used as performance measures for the CPRG.

The harvest returns and resource growth are determined by
a set of coupled differential equations and not usually known
to the participants of the game. A detailed description of the
game dynamics can be found in von der Osten et al. [2017].
The uncertainty in estimating pay-offs and the dynamic re-
source behaviour makes this an interesting application of op-
ponent modeling. Furthermore there are usually multiple par-
ticipants in this type of game, resulting in decision making
becoming more complex as populations increase.

4.2 Setup

In the first experiment, we demonstrate the efficacy of MToM
as an opponent modelling mechanism, under the assumptions
of either complete information or uncertainty. The popula-
tion is fixed size (n = 5, independent variable). Different
zero (MToM0) and first-order (MToM1) agents are com-
pared with an optimal baseline (OPT ) — which knows the
pay-offs and actions of all agents — and a population of ran-
dom agents (RND). In the second experiment, we exam-
ine the scalability and relative robustness of the segmentation
process. The population ranged from n = 10 to n = 50
with increments of 10, and the number of categories rang-
ing from C = 1 to C = 4. The third set of experiments
is used to determine the success of stereotyping facilitated
by the inference of opponent sophistication in MToM given
non-homogeneous populations. The population size is fixed
(n = 10) using C = 1 category for segmentation. Populations
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Figure 2: The thought processes of agents using MToM in a CPRG
(fisheries example). The fish tank depicts the resource N (here
N = 12). The dashed box denotes the fish that are replenished af-
ter the harvest (determined by the growth function G) as part of the
transition probabilities. Agents are thinking about the amount of re-
source to extract (number of fish they attempt to catch). Agents also
consider the thought process of their opponents. The actual harvest
return (fish caught) is determined by the production function H .

Parameter Interpretation Value

λ Learning parameter 0.5
∆t Timescale for assessing agents 10
Xmin Minimum effort 100
Xmax Maximum effort 500
‖A‖ # of actions available to agents 10
‖S‖ # of game states agents recognize 5

n # of agents in the game [2,10]
C # of categories for segmentation [1,4]
h % of RND agents in the population [20,50]

Table 1: Parameters used in the experiments

are made up of MToM0/MToM1 agents and 20/30/40/50%
RND agents (independent variable h). Each simulation is
run for 5000 rounds, with each setting repeated 50 times. We
ran one-way ANOVA with subsequent post-hoc Tukey HSD
tests. Table 1 shows the parameters and variables used in the
experiments.

Agents use MToM as their strategy to play the stochastic
game (see Figure 2). The success of the agents is defined
by the outcome of the game. Therefore, the measures taken
are: (1) the level of the resource N that describes the sus-
tainability of the system; and (2) the average agent assets Ā,
which is symptomatic of an agent’s goal of profit maximiza-
tion. Ideally, the resource N stays on a stable positive level
(see the baseline optimal agent type), whereas the assets A
would grow. It is difficult for agents to harvest the resource in
a stable and profitable manner (only 7% of the action space
A are profitable and sustainable [von der Osten et al., 2017]),
even more so with increasing population, as the impact of an
individual action on the overall outcome decreases.

Figure 3: Full MToM: each agent models each opponent, n = 5.
Random (RND) and optimal (OPT ) agents are shown for refer-
ence.

Figure 4: MToM models using segmentation with different granu-
larity, n = 10.

5 Results and Discussion

5.1 MToM

The first experiment demonstrates the feasibility and perfor-
mance of MToM in a stochastic game. Figure 3 shows the
development of the resource N and the average agent assets
Ā in a time series over 5000 rounds. Agents with complete
knowledge of the pay-offs (CI) satisfy both performance mea-
sures. Note results for differing levels of MToM(CI) are
exactly the same, hence they are not distinguishable on the
graph. When presented with uncertainty, their pay-offs de-
crease slightly, and a difference in the results for alternative
orders of ToM becomes visible: MToM0 performs better
than MToM1. MToM0 surpasses both models with com-
plete information (possibly due to overestimating adversary
behaviour).

5.2 MToM with Segmentation

The second experiments confirms the appropriateness of seg-
mentation as a means of scaling the MToM model for in-
creasing numbers of agents. Figure 4 shows a population of
10 agents playing the CPRG using segmentation with differ-
ent granularity. Results of these experiments unveil several
insights: Agents with perfect information generally perform
better than agents without. Furthermore, even with complete
information, only the MToM1 agents manage to increase
their assets, even though all agent types can maintain the re-
source. This is contrary to the results of the first experiment,
where no differences between the MToM0 and MToM1 lev-
els were apparent for agents with complete information.

More interesting, however, is the development with in-
creasing C. For MToM1 with complete information, more
categories are beneficial, whereas MToM0 and MToM1 are
better off with treating the entire population as one opponent.
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Figure 5: MToM with increasing population size, C = 2.

Figure 6: MToM models in non-homogeneous populations with pro-
portions of random adversaries, n = 10, C = 1.

Without complete information, MToM0 performed bet-
ter than MToM1, indicating that the gains from higher-order
ToM depends on how much information is available. More-
over, the results illustrate that either one category, or an
increasing granularity of categories promises better results.
Note that the drop in assets for two categories is related to
the threshold of the categories lying between the observed
behaviour of agents, making their assessment inaccurate.

Figure 5 show an increasing population of agents using a
fixed segmentation (C = 2) under complete information. This
demonstrates the ability for segmentation to scale to larger
populations. While the agents are able to maintain the re-
source, their profitability decreases initially. With larger pop-
ulation sizes, first-order MToM agents are able to make profit.
This behaviour is attributed to resource dynamics.

5.3 MToM in Non-Homogeneous Populations

In the final set of experiments, the performance of agents is
tested against unknown adversaries. Figure 6 presents the re-
sults of simulations with 10 agents, a certain fraction h of
which are random (RND) agents. The results indicate that
in a non-homogeneous scenario, complete information leads
to pronounced differences. As expected, populations perform
worse when RND agents are present, however, the effect is
more distinct when facing uncertainty in pay-offs. Nonethe-
less, MToM0 and MToM1 agents scale linearly with the
number of unknown opponents. The difference between
them becomes less distinct when the population is more well-
mixed, otherwise MToM0 performs better. This result is
consistent with the previous experiment. It should be noted
that RND agents perform badly when compared to the other
models (see Figure 3). This means that having even a small
fraction of RND agents in the game makes the profitability
metric almost impossible to achieve.

Figure 7 provides important insights into the segmentation
process. The plot shows the distribution of agents in cate-

Figure 7: A sample view of the segmented population using the
MToM1 model with C = 4. Here, n = 10 including 4 random
(RND) agents. The game is run for 1000 rounds and categories are
reassessed every 100 rounds.

gories after every assessment. As RND agents select ac-
tions uniformly, they would usually fall in the middle of the
action space. MToM agents tend to take restrained actions.
While the groups are mixed in the beginning, agents are more
distinctly segmented into RND (mostly categories 2/3) and
MToM (mostly category 1) opponents, demonstrating the in-
tegrated approach of opponent modelling and strategy sophis-
tication works well with MToM.

6 Conclusion

This paper has examined an interesting application of ToM
in groups using a stochastic game as a case study. The re-
sults demonstrate that MToM is a useful approach to use
when modelling multiple opponents. MToM performs ro-
bustly under uncertainty and it scales with increasing num-
bers of agents provided it is combined with segmentation
into groups based on stereotyping. When agents have com-
plete information about game pay-offs, MToM1 outperforms
MToM0. In contrast, when there is uncertainty in game
pay-offs lower MToM0 performs better. This suggests that
higher-order ToM only gains an advantage over lower-order
ToM, or other simpler strategies, if enough information is
available. A similar distinction in model performance was ev-
ident when segmentation granularity was considered. As the
number of categories increases, ToM under uncertainty per-
forms worse, whereas ToM with complete information per-
forms better in terms of the stochastic game metrics.

Two research directions will be explored in future work.
Firstly, we will explore alternative segmentation mechanisms.
Secondly, we aim to apply MToM applications such as secu-
rity games, trading, or other stochastic and economic games.
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