
The Miner’s Dilemma

Ittay Eyal

Cornell University

Abstract—An open distributed system can be secured by
requiring participants to present proof of work and rewarding
them for participation. The Bitcoin digital currency introduced
this mechanism, which is adopted by almost all contemporary
digital currencies and related services.

A natural process leads participants of such systems to form
pools, where members aggregate their power and share the
rewards. Experience with Bitcoin shows that the largest pools
are often open, allowing anyone to join. It has long been known
that a member can sabotage an open pool by seemingly joining
it but never sharing its proofs of work. The pool shares its
revenue with the attacker, and so each of its participants earns
less.

We define and analyze a game where pools use some of
their participants to infiltrate other pools and perform such
an attack. With any number of pools, no-pool-attacks is not
a Nash equilibrium. We study the special cases where either
two pools or any number of identical pools play the game and
the rest of the participants are uninvolved. In both of these
cases there exists an equilibrium that constitutes a tragedy of
the commons where the participating pools attack one another
and earn less than they would have if none had attacked.

For two pools, the decision whether or not to attack is
the miner’s dilemma, an instance of the iterative prisoner’s
dilemma. The game is played daily by the active Bitcoin
pools, which apparently choose not to attack. If this balance
breaks, the revenue of open pools might diminish, making them
unattractive to participants.

I. INTRODUCTION

Bitcoin [1] is a digital currency that is gaining accep-

tance [2] and recognition [3], with an estimated market

capitalization of over 4.5 billion US dollars, as of Novem-

ber 2014 [4]. Bitcoin’s security stems from a robust incentive

system. Participants are required to provide expensive proofs

of work, and they are rewarded according to their efforts.

This architecture has proved both stable and scalable, and it

is used by most contemporary digital currencies and related

services, e.g. [5], [6], [7], [8], [9]. Our results apply to all

such incentive systems, but we use Bitcoin terminology and

examples since it serves as an active and archetypal example.

Bitcoin implements its incentive systems with a data

structure called the blockchain. The blockchain is a serial-

ization of all Bitcoin transactions. It is a single global ledger

maintained by an open distributed system. Since anyone

can join the open system and participate in maintaining the

blockchain, Bitcoin uses a proof of work mechanism to deter

attacks: participation requires exerting significant compute

resources. A participant that proves she has exerted enough

resources with a proof of work is allowed to take a step in the

protocol by generating a block. Participants are compensated

for their efforts with newly minted Bitcoins. The process of

creating a block is called mining, and the participants —

miners.

In order to win the reward, many miners try to generate

blocks. The system automatically adjusts the difficulty of

block generation, such that one block is added every 10

minutes to the blockchain. This means that each miner

seldom generates a block. Although its revenue may be

positive in expectation, a miner may have to wait for

an extended period to create a block and earn the actual

Bitcoins. Therefore, miners form mining pools, where all

members mine concurrently and they share their revenue

whenever one of them creates a block.

Pools are typically implemented as a pool manager and a

cohort of miners. The pool manager joins the Bitcoin system

as a single miner. Instead of generating proof of work, it

outsources the work to the miners. In order to evaluate the

miners’ efforts, the pool manager accepts partial proof of

work and estimates each miner’s power according to the

rate with which it submits such partial proof of work. When

a miner generates a full proof of work, it sends it to the pool

manager which publishes this proof of work to the Bitcoin

system. The pool manager thus receives the full revenue of

the block and distributes it fairly according to its members

power. Many of the pools are open — they allow any miner

to join them using a public Internet interface.

Such open pools are susceptible to the classical block
withholding attack [10], where a miner sends only partial

proof of work to the pool manager and discards full proof

of work. Due to the partial proof of work it sends to the

pool, the miner is considered a regular pool member and the

pool can estimate its power. Therefore, the attacker shares

the revenue obtained by the other pool members, but does

not contribute. It reduces the revenue of the other members,

but also its own. We provide necessary background on the

Bitcoin protocol, pools and the classical block withholding

attack in Section II, and specify our model in Section III.

For a broader view of the protocol and ecosystem the reader

may refer to the survey by Bonneau et al. [11].

In this work we analyze block withholding attacks among

pools. A pool that employs the pool block withholding attack
registers with the victim pool as a regular miner. It receives

tasks from the victim pool and transfers them to some of

its own miners. We call these infiltrating miners, and the

mining power spent by a pool the infiltration rate. When

2015 IEEE Symposium on Security and Privacy

© 2015, Ittay Eyal. Under license to IEEE.

DOI 10.1109/SP.2015.13

89

2015 IEEE Symposium on Security and Privacy

© 2015, Ittay Eyal. Under license to IEEE.

DOI 10.1109/SP.2015.13

89



the attacking pool’s infiltrating miners deliver partial proofs

of work, the attacker transfers them to the victim pool,

letting the attacked pool estimate their power. When the

infiltrating miners deliver a full proof of work, the attacking

pool discards it.

This attack affects the revenues of the pools in several

ways. The victim pool’s effective mining rate is unchanged,

but its total revenue is divided among more miners. The

attacker’s mining power is reduced, since some of its miners

are used for block withholding, but it earns additional

revenue through its infiltration of the other pool. And finally,

the total effective mining power in the system is reduced,

causing the Bitcoin protocol to reduce the difficulty.

Taking all these factors into account, we observe that a

pool might be able to increase its revenue by attacking other

pools. Each pool therefore makes a choice of whether to

attack each of the other pools in the system, and with what

infiltration rate. This gives rise to the pool game. We specify

this game and provide initial analysis in Section IV.

In Section V we analyze the scenario where exactly two

of the pools take part in the game and only one can attack

the other. Here, the attacker can always increase its revenue

by attacking. We conclude that in the general case, with any

number of pools, no-pool-attacks is not a Nash equilibrium.

Next, Section VI deals with the case of two pools, where

each can attack the other. Here, analysis becomes more

complicated in two ways. First, the revenue of each pool

affects the revenue of the other through the infiltrating

miners. We prove that for a static choice of infiltration

rates the pool revenues converge. Second, once one pool

changes its infiltration rate of the other, the latter may prefer

to change its infiltration rate of the former. Therefore the

game itself takes multiple rounds to converge. We show

analytically that the game has a single Nash Equilibrium

and numerically study the equilibrium points for different

pool sizes. For pools smaller than 50%, at the equilibrium

point both pools earn less than they would have in the non-

equilibrium no-one-attacks strategy.

Since pools can decide to start or stop attacking at any

point, this can be modeled as the miner’s dilemma — an

instance of the iterative prisoner’s dilemma. Attacking is the

dominant strategy in each iteration, but if the pools can agree

not to attack, both benefit in the long run.

Finally, we address in Section VII the case where the

participants are an arbitrary number of identical pools. There

exists a symmetric equilibrium in which each participating

pool attacks each of the other participating pools. As in

the minority two-pools scenario, here too at equilibrium all

pools earn less than with the no-pool-attacks strategy.

Our results imply that block withholding by pools leads

to an unfavorable equilibrium. Nevertheless, due to the

anonymity of miners, a single pool might be tempted to

attack, leading the other pools to attack as well. The implica-

tions might be devastating for open pools: If their revenues

are reduced, miners will prefer to form closed pools that

cannot be attacked in this manner. Though this may be

conceived as bad news for public mining pools, on the whole

it may be good news to the Bitcoin system, which prefers

small pools. We examine the practicality of the attack in

Section VIII and discuss implications and model extensions

in Section IX.

In summary, our contributions are the following:

1) Definition of the pool game where pools in a proof-of-

work secured system attack one another with a pool

block withholding attack.

2) In the general case, no-pool-attacks is not an equilib-

rium.

3) With two minority pools participating, the only Nash

Equilibrium is when the pools attack one another, and

both earn less than if none had attacked.

Miners therefore face the miner’s dilemma, an instance

of the iterative prisoner’s dilemma, repeatedly choos-

ing between attack and no-attack.

4) With multiple pools of equal size there is a symmetric

Nash equilibrium, where all pools earn less than if

none had attacked.

5) For Bitcoin, inefficient equilibria for open pools may

serve the system by reducing their attraction and

pushing miners towards smaller closed pools.

The classical block withholding attack is old as pools

themselves, but its use by pools has not been suggested

until recently. We overview related attacks and prior work in

Section X, and conclude with final remarks in Section XI.

II. PRELIMINARIES — BITCOIN AND POOLED MINING

Bitcoin is a distributed, decentralized digital cur-

rency [12], [13], [1], [14]. Clients use the system by issuing

transactions, and the system’s only task is to serialize

transactions in a single ledger and reject transactions that

cannot be serialized due to conflicts with previous transac-

tions. Bitcoin transactions are protected with cryptographic

techniques that ensure that only the rightful owner of a

Bitcoin can transfer it. The transaction ledger is stored by a

network of miners in a data structure caller the blockchain.

A. Revenue for Proof Of Work

The blockchain records the transactions in units of blocks.

The first block, dubbed the genesis block, is defined as part

of the protocol. A valid block contains the hash of the

previous block, the hash of the transactions in the current

block, and a Bitcoin address which is to be credited with a

reward for generating the block.

Any miner may add a valid block to the chain by

(probabilistically) proving that it has spent a certain amount

of work and publishing the block with the proof over an

overlay network to all other miners. When a miner creates

a block, it is compensated for its efforts with Bitcoins. This

compensation includes a per-transaction fee paid by the users

9090



whose transactions are included, and an amount of minted

Bitcoins that are thus introduced into the system.

The work which a miner is required to do is to repeatedly

calculate a a hash function — specifically the SHA-256 of

the SHA-256 of a block header. To indicate that he has

performed this work, the miner provides a probabilistic proof

as follows. The generated block has a nonce field, which

can contain any value. The miner places different values

in this field and calculates the hash for each value. If the

result of the hash is smaller than a target value, the nonce

is considered a solution, and the block is valid.

The number of attempts to find a single hash is therefore

random with a geometric distribution, as each attempt is

a Bernoulli trial with a success probability determined by

the target value. At the existing huge hashing rates and

small target values, the time to find a single hash can be

approximated by an exponential distribution. The average

time for a miner to find a solution is therefore proportional

to its hashing rate or mining power.

To maintain a constant rate of Bitcoin generation, and

as part of its defense against denial of service and other

attacks, the system normalizes the rate of block generation.

To achieve this, the protocol deterministically defines the

target value for each block according to the time required to

generate recent blocks. The target, or difficulty, is updated

once every 2016 blocks such that the average time for each

block to be found is 10 minutes.

Note that the exponential distribution is memoryless. If

all miners mine for block number b, once the block is found

at time t, all miners switch to mine for the subsequent block

b+ 1 at t without changing their probability distribution of

finding a block after t. Therefore, the probability that a miner

i with mining power mi finds the next block is its ratio out

of the total mining power m in the system.

Forks

Block propagation in the overlay network takes seconds,

therefore it is possible for two distant miners to generate

competing blocks, both of which name the same block as

their predecessor. Such bifurcations, or forks, are rare since

the average mining interval is 10 minutes, and they occur

on average once every 60 blocks [15]. The system has a

mechanism to solve forks when they do occur, causing one

of the blocks to be discarded.

We ignore bifurcations for the sake of simplicity. Since the

choice of the discarded block on bifurcation is random, one

may incorporate this event into the probability of finding a

block, and consider instead the probability of finding a block

that is not discarded.

B. Pools

As the value of Bitcoin rose, Bitcoin mining has become

a rapidly advancing industry. Technological advancements

lead to ever more efficient hashing ASICs [16], and mining

Miner Miner Miner Miner Miner Miner Miner Miner

Pool 1 Pool 2 Pool 3

Bitcoin Network

Figure 1. A system with 8 miners and 3 honest pools. Pool 1 has 3
registered miners, pools 2 and 3 have 2 registered miners each, and one
miner mines solo.

datacenters are built around the world [17]. Mining is only

profitable using dedicated hardware in cutting edge mining

rigs, otherwise the energy costs exceed the expected revenue.

Although expected revenue from mining is proportional

to the power of the mining rigs used, a single home miner

using a small rig is unlikely to mine a block for years [18].

Consequently, miners often organize themselves into mining

pools. Logically, a pool is a group of miners that share

their revenues when one of them successfully mines a block.

For each block found, the revenue is distributed among the

pool members in proportion to their mining power1. The

expected revenue of a pool member is therefore the same

as its revenue had it mined solo. However, due to the large

power of the pool, it finds blocks at a much higher rate, and

so the frequency of revenue collection is higher, allowing

for a stable daily or weekly income.

In practice, most pools are controlled by a centralized

pool manager.2 Miners register with the pool manager and

mine on its behalf: The pool manager generates tasks and

the miners search for solutions based on these tasks that can

serve as proof of work. Once they find a solution, they send it

to the pool manager. The pool manager behaves as a single

miner in the Bitcoin system. Once it obtains a legitimate

block from one of its miners, it publishes it. The block

transfers the revenue to the control of the pool manager.

The pool manager then distributes the revenue among the

miners according to their mining power. The architecture is

illustrated in Figure 1

In order to estimate the mining power of a miner, the pool

manager sets a partial target for each member, much larger

(i.e., easier) than the target of the Bitcoin system. Each miner

is required to send the pool manager blocks that are correct

according to the partial target. The partial target is chosen to

be large, such that partial solutions arrive frequently enough

for the manager to accurately estimate the power of the

miner, but small (hard) to reduce management overhead.

1This is a simplification that is sufficient for our analysis. The intricacies
of reward systems are explained in [10].

2A notable exception is P2Pool [19], which we discuss in Section IX.

9191



Pools often charge a small percentage of the revenue as fee.

We discuss in Section IX the implications of such fees to

our analysis.

Many pools are open and accept any interested miner. A

pool interface is typically comprised of a web interface for

registration and a miner interface for the mining software.

In order to mine for a pool, a miner registers with the

web interface, supplies a Bitcoin address to receive its

future shares of the revenue, and receives from the pool

credentials for mining. Then he feeds his credentials and

the pool’s address to its mining rig, which starts mining.

The mining rig obtains its tasks from the pool and sends

partial and full proof of work, typically with the STRATUM

protocol [20]. As it finds blocks, the pool manager credits

the miner’s account according to its share of the work, and

transfers these funds either on request or automatically to

the aforementioned Bitcoin address.

Too Big Pools

Despite their important role of enabling small-scale min-

ing, pools can constitute a threat to the Bitcoin system if their

size is too large. If one pool controls the majority of mining

power, the system becomes unstable [21], [22] (and [23]

warns that the system is unstable with even smaller pools).

Arguably, in realistic scenarios of the Bitcoin system no

pool controls a majority of the mining power. As an example,

for one day in June 2014 a single pool called GHash.IO

produced over 50% of the blocks in the Bitcoin main

chain. The Bitcoin community backlashed at the pool (which

has done nothing worse than being extremely successful).

GHash.IO reduced its relative mining power and publicly

committed to stay away from the 50% limit.

C. Block Withholding and its Detection

Classical Block Withholding [10] is an attack performed

by a pool member against the other pool members. The

attacking miner registers with the pool and apparently starts

mining honestly — it regularly sends the pool partial proof

of work. However, the attacking miner sends only partial

proof of work. If it finds a full solution that constitutes a full

proof of work it discards the solution, reducing the pool’s

total revenue.3 This attack is illustrated in Figure 2.

The attacker does not change the pool’s effective mining

power, and does not affect directly the revenue of other

pools. However, the attacked pool shares its revenue with

the attacker. Therefore each miner earns less, as the same

revenue is distributed among more miners.

Recall that the proof of work is only valid for a specific

block, as it is the nonce with which the block’s hash is

smaller than its target. The attacking miner cannot use it.

3Although the term block withholding has become canonical, note that
the block is discarded and never introduced into the system as the name
block withholding implies.

Miners

Pool 1

Bitcoin Network

Miners MinersMiners

Pool 2

Figure 2. Classical Block Withholding attack. A group of miners attack
Pool 2 with a block withholding attack, denoted by a dashed red arrow.

Moreover, this attack reduces the attacker’s revenue com-

pared to solo mining or honest pool participation: It suffers

from the reduced revenue like the other pool participants,

and its revenue is less than its share of the total mining

power in the system. This attack can therefore only be used

for sabotage, at a cost to the attacker.

Detection: Even if a pool detects that it is under a block

withholding attack, it might not be able to detect which

of its registered miners are the perpetrators. A pool can

estimate its expected mining power and its actual mining

power by the rates of partial proofs of work and full proofs

of work, respectively, supplied by its miners. A difference

above a set confidence interval indicates an attack. To detect

whether a single miner is attacking it, the pool must use a

similar technique, comparing the estimated mining power of

the attacker based on its partial proof of work with the fact

it never supplies a full proof of work. If the attacker has

a small mining power, it will send frequent partial proofs

of work, but the pool will only expect to see a full proof

of work at very low frequency. Therefore, it cannot obtain

statistically significant results that would indicate an attack.

An attacker can use multiple small block withholding

miners and replace them frequently. A small miner is,

for example, a miners whose expected full proof of work

frequency is yearly. Such a miner will see a non-negligible

average daily revenue (B25/365 ≈ B0.07). If the attacker

replaces such a small miner every month, he will collect

about B2 at the end of each month. The pool must decide

within this month whether the miner is an attacker (and

revoke its earnings), or just an unlucky honest miner. Since

an honest miner of this power is unlikely to find a full proof

of work within a month (probability of about 8% according

to the exponential distribution) a pool that rejects miners

based on this criterion would reject the majority of its honest

miners. The alternative of rejecting small miners in general

or distributing revenue on a yearly basis contradicts the goal

of pooled mining.

9292



III. MODEL AND STANDARD OPERATION

We specify the basic model in which participants operate

in Section III-A, proceed to describe how honest miners

operate in this environment in Sections III-B and III-C, and

how the classical block withholding attack is implemented

with our model in Section III-D.

A. Model

The system is comprised of the Bitcoin network and nodes

with unique IDs, and progresses in steps. A node i generates

tasks which are associated with its ID i.
A node can work on a task for the duration of a step. The

result of this work is a set of partial proofs of work and a

set of full proofs of work. The number of proofs in each set

has a Poisson distribution, partial proofs with a large mean

and full proofs with a small mean. Nodes that work on tasks

are called a miners, miners have identical power, and hence

identical probabilities to generate proofs of work.

The Bitcoin network pays for full proofs of work. To

acquire this payoff an entity publishes a task task and its

corresponding proof of work to the network. The payoff

goes to the ID associated with task. The Bitcoin protocol

normalizes revenue such that the average total revenue dis-

tributed in each step is a constant throughout the execution

of the system. Any node can transact Bitcoins to another

node by issuing a Bitcoin transaction.

Nodes that generate tasks but outsource the work are

called pools. Pools send tasks to miners over the network,

the miners receive the tasks, perform the work, and send the

partial and full proofs of work to the pool.

Apart from working on tasks, all local operations, pay-

ments, message sending, propagation, and receipt are in-

stantaneous.

We assume that the number of miners is large enough such

that mining power can be split arbitrarily without resolution

constraints.

Denote the number of pools with p, the total number

of mining power in the system with m and the miners

participating in pool i (1 ≤ i ≤ p) with mi. We use a quasi-

static analysis where miner participation in a pool does not

change over time.

B. Solo Mining

A solo miner is a node that generates its own tasks. In

every step it generates a task, works on it for the duration

of the step and if it finds a full proof of work, it publishes

this proof of work to earn the payoff.

C. Pools

A pool is a node that serves as a coordinator and multiple

miners can register to a pool and work for it. In every step

it generates a task for each registered miner and sends it

over the network. Each miner receives its task and works on

it for the duration of the step. At the end of the step, the

miner sends the pool the full and the partial proofs of work

it has found. The pool receives the proofs of work of all its

miners, registers the partial proofs of work and publishes the

full proofs. It calculates its overall revenue, and proceeds to

distribute it among its miners. Each miner receives revenue

proportional to its success in the current step, namely the

ratio of its partial proofs of work out of all partial proofs of

work the pool received. We assume that pools do not collect

fees of the revenue. Pool fees and their implications on our

analysis are discussed in Section IX.

D. Block Withholding Miner

A miner registered at a pool can perform the classical

block withholding attack. An attacker miner operates as

if it worked for the pool. It receives its tasks and works

on them, only at the end of each round it sends only its

partial proofs of work, and omits full proofs of work if it

had found any. The pool registers the miner’s partial proofs,

but cannot distinguish between miners running honestly and

block withholding miners.

The implications are that a miner that engages in block

withholding does not contribute to the pool’s overall mining

power, but still shares the pool’s revenue according to its

sent partial proofs of work.

To reason about a pool’s efficiency we define its per-miner

revenue as follows.

Definition 1 (Revenue density). The revenue density of a
pool is the ratio between the average revenue a pool member
earns and the average revenue it would have earned as a
solo miner.

The revenue density of a solo miner, and that of a miner

working with an unattacked pool are one. If a pool is at-

tacked with block withholding, its revenue density decreases.

E. Continuous Analysis

Because our analysis will be of the average revenue,

we will consider proofs of work, both full and partial, as

continuous deterministic sizes, according to their probability.

Work on a task therefore results in a deterministic fraction

of proof of work.

IV. THE POOL GAME

A. The Pool Block Withholding Attack

Just as a miner can perform block withholding on a pool j,

a pool i can use some of its mining power to infiltrate

a pool j and perform a block withholding attack on j.

Denote the amount of such infiltrating mining power at step t
by xi,j(t). Miners working for pool i, either mining honestly

or used for infiltrating pool j, are loyal to pool i. At the end

of a round, pool i aggregates its revenue from mining in the

current round and from its infiltration in the previous round.

It distributes the revenue evenly among all its loyal miners

according to their partial proofs of work. The pool’s miners

9393



are oblivious to their role and they operate as regular honest

miners, working on tasks.

B. Revenue Convergence

Note that pool j sends its revenue to infiltrators from

pool i at the end of the step, and this revenue is calculated

in pool i at the beginning of the subsequent step. If there is

a chain of pools of length � where each pool infiltrates the

next, the pool revenue will not be static, since the revenue

from infiltration takes one step to take each hop. If �max is

the longest chain in the system, the revenue stabilizes after

�max steps. If there are loops in the infiltration graph, the

system will converge to a certain revenue, as stated in the

following lemma.

Lemma 1 (Revenue convergence). If infiltration rates are
constant, the pool revenues converge.

Proof: Denote the revenue density of pool i at the end

of step t by ri(t), and define the revenue density vector

r(t) Δ
= (r1(t), . . . , rp(t))

T .

In every round, pool i uses its mining power of m1−
∑

j x1,j

used for direct mining (and not attacking), and shares it

among its m1 +
∑

j xj,1 members, including malicious

infiltrators (all sums are over the range 1, . . . , p). Denote

the direct mining revenue density of each pool (ignoring

normalization, which is a constant factor) with the vector

m Δ
=

(
m1 −

∑
j x1,j

m1 +
∑

j xj,1
, . . . ,

mp − xp,j

mp +
∑

j xj,p

)T

.

The revenue of Pool i in step t taken through infiltration

from pool j’s revenue in step t− 1 is xi,jrj(t− 1). Pool i

distributes this revenue among its mi+
∑

k xk,i members —

loyal and infiltrators. Define the p× p infiltration matrix by

its i, j element

G Δ
=

[
xi,j

mi +
∑

k xk,i

]
ij

.

And the revenue vector at step t is

r(t) = m + Gr(t− 1) . (1)

Since the row sums of the infiltration matrix are smaller

than one, its largest eigenvalue is smaller than 1 according

to the Perron-Frobenius theorem. Therefore, the revenues at

all pools converge as follows:

r(t) =

(
t−1∑
t′=0

Gt′
)

m +Gtr(0) t→∞−−−→ (1−G)−1m . (2)

C. The Pool Game

In the pool game pools try to optimize their infiltration

rates of other pools to maximize their revenue. The overall

number of miners and the number of miners loyal to each

pool remain constant throughout the game.

Time progresses in rounds. Let s be a constant integer

large enough that revenue can be approximated as its conver-

gence limit. In each round the system takes s steps and then

a single pool, picked with a round-robin policy, may change

its infiltration rates of all other pools. The total revenue of

each step is normalized to 1/s, so the revenue per round is

one.

The pool taking a step knows the rate of infiltrators

attacking it (though not their identity) and the revenue rates

of each of the other pools. This knowledge is required

to optimize a pool’s revenue, as we see next. We explain

in Section VIII how a pool can technically obtain this

knowledge.

D. General Analysis

Recall that mi is the number of miners loyal to pool i. and

xi,j(t) is the number of miners used by pool i to infiltrate

pool j at step t.
The mining rate of pool i is therefore the number of its

loyal miners minus the miners it uses for infiltration. This

effective mining rate is divided by the total mining rate in

the system, namely the number of all miners that do not

engage in block withholding4. Denote the direct mining rate

of pool i at step t by

Ri
Δ
=

mi −
∑p

j=1 xi,j

m−∑p
j=1

∑p
k=1 xj,k

(3)

The revenue density of pool i at the end of step t is its

revenue from direct mining together with its revenue from

infiltrated pools, divided by the number of its loyal miners

together with block-withholding infiltrators that attack it:

ri(t) =
Ri(t) +

∑p
j=1 xi,j(t)rj(t)

mi +
∑p

j=1 xj,i(t)
. (4)

Hereinafter we move to a static state analysis and omit

the t argument in the expressions.

No attack

If no pool engages in block withholding,

∀i, j : xi,j = 0 ,

and we have

∀i : ri = 1/m ,

that is, each miner’s revenue is proportional to its power, be

it in a pool or working solo.

4Recall that difficulty is only adjusted periodically, and there are transient
effects that are not covered by this stable-state analysis. We discuss this in
Section VIII.

9494



Miners

Pool 1 Pool 2

Bitcoin Network

Miners Miners

��,�

Figure 3. The one-attacker scenario. Pool 1 infiltrates pool 2.

V. ONE ATTACKER

We begin our analysis with a simplified game of two

pools, 1 and 2, where pool 1 can infiltrate pool 2, but pool 2

cannot infiltrates pool 1. The m−m1 −m2 miners outside

both pools mine solo (or with closed pools that do not

attack and cannot be attacked). This scenario is illustrated in

Figure 3. The dashed red arrow indicates that x1,2 of pool 1’s

mining power infiltrates pool 2 with a block withholding

attack.

Since Pool 2 does not engage in block withholding, all

of its m2 loyal miners work on its behalf. Pool 1, on the

other hand does not employ x1,2 of its loyal miners, and its

direct mining power is only m1 − x1,2. The Bitcoin system

normalizes these rates by the total number of miners that

publish full proofs, namely all miners but x1,2. The pools’

direct revenues are therefore

R1 =
m1 − x1,2

m− x1,2

R2 =
m2

m− x1,2
.

(5)

Pool 2 divides its revenue among its loyal miners and the

miners that infiltrated it. Its revenue density is therefore

r2 =
R2

m2 + x1,2
. (6)

Pool 1 divides its revenue among its registered miners.

The revenue includes both its direct mining revenue and

the revenue its infiltrators obtained from pool 2, which is

r2 · x1,2. The revenue per loyal Pool 1 miner is therefore

r1 =
R1 + x1,2 · r2

m1
. (7)

We obtain the expression for r1 in Equation 7 by substi-

tuting r2 from Equation 6 and R1 and R2 from equation 5:

r1 =
m1(m2 + x1,2)− x2

1,2

m1(m− x1,2)(m2 + x1,2)

A. Game Progress

Pool 1 controls its infiltration rate of pool 2, namely x1,2,

and will choose the value that maximizes the revenue density
(per-miner revenue) r1 on the first round of the pool game.

The value of r1 is maximized at a single point in the

feasible range 0 ≤ x1,2 ≤ m1. Since pool 2 cannot

not react to pool 1’s attack, this point is the stable state

of the system, and we denote the value of x1,2 there by

x̄1,2
Δ
= argmaxx1,2

r1 , and the values of the corresponding

revenues of the pools with r̄1 and r̄2.

Substituting the stable value x1,2 we obtain the revenues

of the two pools; all are given in Figure 4, normalizing

m = 1 to simplify the expressions.

B. Numerical Analysis

We analyze this game numerically by finding the x1,2

that maximizes r1 and substituting this value for r1 and r2.

We vary the sizes of the pools through the entire feasible

range and depict the optimal x1,2 and the corresponding

revenues in Figure 5. Each point in each graph represents

the equilibrium point of a game with the corresponding m1

and m2 sizes, where we normalize m = 1. The top right

half of the range in all graphs is not feasible, as the sum of

m1 and m2 is larger than 1. We use this range as a reference

color, and we use a dashed line to show the bound between

this value within the feasible range.

Figure 5a shows the optimal infiltration rate. In the entire

feasible range we see that pool 1 chooses a strictly positive

value for x1,2. Indeed, the revenue of pool 1 is depicted in

Figure 5b and in the entire feasible region it is strictly larger

than 1, which the pool would have gotten without attacking

(x1,2 = 0). Figure 5c depicts the revenue of Pool 2, which

is strictly smaller than 1 in the entire range.

Third parties: Note that the total system mining power

is reduced when pool 1 chooses to infiltrate pool 2. There-

fore, the revenue of third parties, miners not in either pool,

increases from 1/m to 1/(m− x1,2). Pool 2 therefore pays

for the increased revenue of its attacker and everyone else

in the system.

C. Implications to the general case

Consider the case of p pools. For any choice of the pools

sizes m1, . . . ,mp, at least one pool will choose to perform

block withholding:

Lemma 2. In a system with p pools, the point ∀j, k : xk
j = 0

is not an equilibrium.

Proof: Assume towards negation this is not the case,

and ∀j, k : xk
j = 0 is an equilibrium point. Now consider

a setting with only pools 1 and 2, and treat the other pools

as independent miners. This is the setting analyzed above

and we have seen there that pool 1 can increase its revenue

by performing a block withholding attack on pool 2. Denote

pool 1’s infiltration rate by x̃1,2 > 0. Now, take this values

9595



x̄1,2 =
m2 −m1m2 −

√
−m2

2(−1 +m1 +m1m2)

−1 +m1 +m2

r̄1 =
m1 + (2 +m1)m2 − 2

√
−m2

2(−1 +m1 +m1m2)

m1(1 +m2)2

r̄2 =
m2(−1 +m1 +m2)

2(
m2

2 −
√
−m2

2(−1 +m1 +m1m2)
)(

1−m1(1 +m2)−
√
−m2

2(−1 +m1 +m1m2)
)

(8)

Figure 4. Stable state where only pool 1 attacks pool 2.

(a) x1,2 (b) r1 (c) r2

Figure 5. Two pools where one infiltrates the other: Optimal infiltration rate x1,2 and corresponding revenues (r1 and r2) as a function of pool sizes.
The line in (a) shows x1,2 = 0 and the lines in (b) and (c) show the revenue density of 1.

back to the setting at hand with p pools. The revenue of

pool 1 is better when

x1,2 = x̃1,2, ∀(j, k) �= (1, 2) : xj,k = 0 .

Therefore, pool 1 can improve its revenue by attacking

pool 2, and no-one-attacks is not an equilibrium point.

D. Test-case
As a test case, we take the pool distribution in January 16,

2015 [24], shown in Figure 6. We analyze the cases where

each of the pools attacks all other open pools, all of which

behave honestly. Note that attacking all pools with force

proportional to their size yields the same results as attacking

a single pool of their aggregate size. Plugging in the numbers

into the analysis above shows that a larger pool needs to use

a smaller ratio of its mining power for infiltration and can

increase its revenue density more than a small pool. The

largest pool, DiscusFish, achieves its optimum attack rate

at 25% of the pool’s mining power, increasing its revenue

by almost 3%. This amounts to a daily revenue increase

of B26 Bitcoin, or almost 5500 USD at the exchange rate

on that date. This represents a considerable increase of the

pools net revenue. However, for the smallest pool, Eligius,

the attack is much less profitable. To reach the optimum it

needs almost a third of its power for attacking but increases

its revenue density by merely 0.6%, amounting to B0.86 a

day or 18 USD.

Name Size Infiltration
Rate

Revenue
Density

DiscusFish 24% 25% 102.9%

AntPool 13% 28% 101.8%

GHash.IO 10% 30% 101.5%

BTChine 7% 30% 101.1%

BTCGuild 6% 30% 100.9%

Eligius 4% 32% 100.6%

Others 36% - -

Figure 6. The six largest open pool sizes as of January 16, 2015 [24],
their optimal infiltration rates (of each pool as a fraction of its size, if it
attacked all others without reciprocation), and their revenue density when
attacking.

VI. TWO POOLS

We proceed to analyze the case where two pools may

attack each other and the other miners mine solo. Again

we have pool 1 of size m1 and pool 2 of size m2; pool 1

controls its infiltration rate x1,2 of pool 2, but now pool 2

also controls its infiltration rate x2,1 of pool 1. This scenario

is illustrated in Figure 8

The total mining power in the system is m− x1,2− x2,1.

The direct revenues R1 and R2 of the pools from mining

are their effective mining rates, without infiltrating mining

9696



(a) x1,2 (b) x2,1

(c) r1 (d) r2

Figure 7. Two attacking pools system: Optimal infiltration rates (x1 and x2) and corresponding revenues (r1 and r2) as a function of pool sizes. Lines
in (a) and (b) are at x1,2 = 0 and x2,1 = 0, respectively. Lines in (c) and (d) are at r1 = 1 and r2 = 1, respectively.

Miners

Pool 1 Pool 2

Bitcoin Network

Miners Miners

��,� ��,�

Figure 8. Two pools infiltrating each other.

power, divided by the total mining rate.

R1 =
m1 − x1,2

m− x1,2 − x2,1

R2 =
m2 − x2,1

m− x1,2 − x2,1
.

(9)

The total revenue of each pool is its direct mining revenue,

above, and the infiltration revenue from the previous round,

which is the attacked pool’s total revenue multiplied by its

infiltration rate. The pool’s total revenue is divided among

its loyal miners and miners that infiltrated it. At stable state

this is

r1 =
R1 + x1,2r2
m1 + x2,1

r2 =
R2 + x2,1r1
m2 + x1,2

.

(10)

Solving for r1 and r2 we obtain the following closed

9797



expressions for each. We express the revenues as functions

of x1,2 and x2,1.

r1(x1,2, x2,1) =
m2R1 + x1,2(R1 +R2)

m1m2 +m1x1,2 +m2x2,1

r2(x2,1, x1,2) =
m1R2 + x2,1(R1 +R2)

m1m2 +m1x1,2 +m2x2,1
.

(11)

Each pool controls only its own infiltration rate. In each

round of the pool game, each pool will optimize its infiltra-

tion rate of the other. If pool 1 acts at step t, it optimizes

its revenue with

x1,2(t)← argmax
x′

r1(x
′, x2,1(t− 1)) , (12)

and if pool 2 acts at step t, it optimizes its revenue with

x2,1(t)← argmax
x′

r2(x
′, x1,2(t− 1)) . (13)

An equilibrium exists where neither pool 1 nor pool 2 can

improve its revenue by changing its infiltration rate. That is,

any pair of values x′1, x
′
2 such that{

argmaxx1,2
r1(x1,2, x

′
2,1) = x′1,2

argmaxx2,1 r2(x
′
1,2, x2,1) = x′2,1

(14)

under the constraints

0 < x′1 < m1

0 < x′2 < m2 .
(15)

The feasible region for the pool sizes is m1 > 0,m2 > 0,

and m1 +m2 ≤ m. The revenue function for ri is concave

in xi for all feasible values of the variables (∂2ri/∂x
2
i < 0).

Therefore the solutions for equations 12 and 13 are unique

and are either at the borders of the feasible region or where

∂ri/∂xi,j = 0.

From Section V we know that no-attack is not an equi-

librium point, since each pool can increase its revenue by

choosing a strictly positive infiltration rate, that is, x1,2 =
x2,1 = 0 is not a solution to Equations 14–15.

Nash equilibrium therefore exists with x1,2, x2,1 values

where ⎧⎪⎪⎨
⎪⎪⎩

∂r1(x1,2, x2,1)

∂x1,2
= 0

∂r2(x2,1, x1,2)

∂x2,1
= 0

. (16)

Using symbolic computation tools, we see that there is a

single pair of values for which Equation 16 holds for any

feasible choice of m1 and m2.

A. Numerical Analysis

A numerical analysis confirms these observations. We

simulate the pool game for a range of pool sizes. For each

choice of pool sizes, we start the simulation when both pools

do not infiltrate each other, x1,2 = x2,1 = 0, and the revenue

densities are r1 = r2 = 1. At each round one pool chooses

its optimal infiltration rate based on the pool sizes and the

rate with which it is infiltrated, and we calculate the revenue

after convergence with Equation 11. Recall the players in the

pool game are chosen with the Round Robin policy, so the

pools take turns, and we let the game run until convergence.

The results are illustrated in Figure 7.

Each run with some m1,m2 values results in a single

point in each graph in Figure 7. We depict the infiltration

rates of both pools x1,2, x2,1 in Figures 7a–7b and the pools’

revenue densities r1, r2 in Figures 7c–7d. So, for each choice

of m1 and m2, the values of x1,2, x2,1, m1 and m2 are the

points in each of the graphs with the respective coordinates.

For the xi,j graphs we draw a border around the region

where there is no-attack by i in equilibrium. For the ri
graphs we draw a line around the region where the revenue

is the same as in the no-attack scenario, namely 1.

We first observe that only in extreme cases a pool does

not attack its counterpart. Specifically, at equilibrium a pool

will refrain from attacking only if the other pool is larger

than about 80% of the total mining power.

But, more importantly, we observe that a pool improves

its revenue compared to the no-pool-attacks scenario only

when it controls a strict majority of the total mining power.

These are the small triangular regions in Figures 7c and 7d.

In the rest of the space, the trapezoids in the figures, the

revenue of the pool is inferior compared to the no-pool-

attacks scenario.

B. The Prisoner’s Dilemma

In a healthy Bitcoin environment, where neither pool

controls a strict majority of the mining power, both pools

will earn less at equilibrium than if both pools ran without

attacking. We can analyze in this case a game where each

pool chooses either to attack and optimize its revenue, or to

refrain from attacking.

Consider pool 1 without loss of generality. As we have

seen in Section V, if pool 2 does not attack, pool 1 can

increase its revenue above 1 by attacking. If pool 2 does

attack but pool 1 does not, we denote the revenue of pool 1

by r̃1. The exact value of r̃1 depends on the values of m1

and m2, but it is always smaller than one. As we have

seen above, if pool 1 does choose to attack, its revenue

increases, but does not surpass one. The game is summarized

in Figure 9.

When played once, this is the classical prisoner’s

dilemma. Attack is the dominant strategy: Whether pool 2

chooses to attack or not, the revenue of pool 1 is larger when

attacking than when refraining from attack, and the same for

pool 2. At equilibrium of this attack-or-don’t game, when

both pools attack, the revenue of each pool is smaller than

its revenue if neither pool attacked.

However, the game is not played once, but rather continu-

ously, forming a super-game, where each pool can change its

strategy between attack and no-attack. The pools can agree

(even implicitly) to refrain from attacking, and in each round

9898



����������Pool 2

Pool 1
no attack attack

no attack (r1 = 1, r2 = 1) (r1 > 1, r2 = r̃2 < 1)
attack (r1 = r̃1 < 1, r2 > 1) (r̃1 < r1 < 1, r̃2 < r2 < 1)

Figure 9. Prisoner’s Dilemma for two pools. The revenue density of each pool is determined by the decision of both pools whether to attack or not. The
dominant strategy of each player is to attack, however the payoff of both would be larger if they both refrain from attacking.

a pool can detect whether it is being attacked and deduce

that the other pool is violating the agreement. In this super-

game, cooperation where neither pool attacks is a possible

stable state [25], [26] despite the fact that the single Nash

equilibrium in every round is to attack.

C. Test-case

As an example we take again the pool sizes shown in

Figure 6, and study the case where the two largest pools,

DiscusFish and AntPool, attack one another. The optimal

infiltration rates (out of the total system mining power) are

8% and 12%, respectively, and the pools would lose 4%
and 10% of their revenues, respectively, compared to the

no-attack scenario.

VII. q IDENTICAL POOLS

Let there be q pools of identical size that engage in block

withholding against one another. Other miners neither attack

nor are being attacked. In this case there exists a symmetric

equilibrium. Consider, without loss of generality, a step of

pool 1. It controls its attack rates each of the other pools,

and due to symmetry they are all the same. Denote by x1,¬1
the attack rate of pool 1 against any other pool. Each of the

other pools can attack its peers as well. Due to symmetry, all

attack rates by all attackers are identical. Denote by x¬1,∗
the attack rate of any pool other than 1 against any other

pool, including pool 1.

Denote by R1 the direct revenue (from mining) of pool 1

and by R¬1 the direct revenue of each of the other pools.

Similarly denote by r1 and r¬1 the revenue densities of

pool 1 and other pools, respectively.

The generic equations 3 and 4 are instantiated to

R1 =
mi − (q − 1)x1,¬1

m− (q − 1)(q − 1)x¬1,∗ − (q − 1)x1,¬1

R¬1 =
mi − (q − 1)x¬1,∗

m− (q − 1)(q − 1)x¬1,∗ − (q − 1)x1,¬1

(17)

and

r1 =
R1 + (q − 1)x1,¬1r¬1
mi + (q − 1)x¬1,1

r¬1 =
R¬1 + (q − 2)x¬1,∗r¬1 + x¬1,∗r1

mi + (q − 2)x¬1,∗ + x1,¬1

. (18)

Substituting Equations 17 in Equation 18 and solving

we obtain a single expression for any ri, since in the

symmetric case we have r1 = r¬1. The expression is shown

in Equation 18 (Figure 10).

Given any value of q and mi (where qmi < 1), the feasi-

ble range of the infiltration rates is 0 ≤ xi,j ≤ mi/q. Within

this range ri is continuous, differentiable, and concave in

x1,¬1. Therefore, the optimal point for pool 1 is where

∂r1/∂x1,¬1 = 0. Since the function is concave the equation

yields a single feasible solution, which is a function of the

attack rates of the other pools, namely x¬1,1 and x¬1,∗.
To find a symmetric equilibrium, we equate x1,¬1 =

x¬1,1 = x¬1,∗ and obtain a single feasible solution. The

equilibrium infiltration rate and the matching revenues are

shown in Equation 20 (Figure 11).

As in the two-pool scenario, the revenue at the symmetric

equilibrium is inferior to the no-one-attacks non-equilibrium

strategy.

VIII. PRACTICALITIES

A. Ramp-up

Our analysis addresses the eventual revenue of the pools,

assuming the mining difficulty is set based on the effective

mining power, not including mining power used for with-

holding. However, difficulty is updated only periodically —

every 2016 blocks in Bitcoin. When mining power in the

system is regularly increasing, which has been true for the

majority of Bitcoin’s history [27], no adjustment may be

necessary. Specifically, if an attacker purchases new mining

hardware and employs it directly for block withholding,

this mining power is never included in the difficulty cal-

culation — the system is never aware of it. The difficulty

is therefore already correctly calculated and the attack is

profitable immediately.

However, if the mining power is static, the attack becomes

profitable only after the Bitcoin system has normalized the

revenues by adjusting difficulty. Before the adjustment, the

revenue of an attacking pool is reduced due to the reduction

in block generation of both the attacking and attacked pools.

B. Pool Knowledge

In order to choose its optimal infiltration rate, a pool has to

know the rate at which it is attacked, and the revenue density

of potential victim pools. A pool can estimate the rate with

which it is attacked by comparing the rates of partial and full

proofs of work it receives from its miners, as explained in

Section II-C. In order to estimate the revenue densities of the

other pools, a pool can use one of two methods. First, pools

9999



ri = − m2
i +mix1,¬1 − (q − 1)x1,¬1((q − 1)x¬1,∗ + x1,¬1)

((q − 1)x1,¬1 + (q − 1)2x¬1,∗ − 1) ((mi + x1,¬1)(mi + (q − 1)x¬1,1)− (q − 1)x1,¬1x¬1,∗)
(19)

Figure 10. Expression for ri in a system with pools of equal size.

x̄1,¬1 = x̄¬1,1 = x̄¬1,∗ =
q −mi −

√
(mi − q)2 − 4(mi)2(q − 1)2q

2(q − 1)2q)

r̄1 = r̄¬1 =
2q

q −mi + 2miq +
√

(mi − q)2 − 4(mi)2(q − 1)2q

(20)

Figure 11. Symmetric equilibrium values for a system of q pools of equal sizes.

often publish this data to demonstrate their honesty to their

miners [28], [29], [30]. Second, a pool can infiltrate each of

the other pools with some nominal probing mining power

and measure the revenue density directly by monitoring the

probe’s rewards from the pool.

C. Block Withholding Recycling

We assume that the infiltrating miners are loyal to the

attacker. However, some of the pool’s members may be

disloyal infiltrators. When sending disloyal miners to per-

form block withholding at other pools, an attacker takes a

significant risk.

For example, pool 1 can use a loyal miner w to infiltrate

pool 2, and pool 2, thinking the miner is loyal to it, might

use it to attack pool 1. The miner m can perform honest

mining for pool 1, rather than withhold its blocks, and not

return any revenue to pool 2. Moreover, it will take its share

of pool 2’s revenues (which thinks the miner is loyal to it)

and deliver it back to pool 1.

To avoid such a risk, a pool needs a sufficient number

of verified miners — miners that it knows to be loyal. In

general, the optimal infiltration rate may be as high as 60%
of the pool size, but this is only in extreme cases when

pools are large. For practical pool sizes, as we saw, a pool

may need up to 25% of its mining power for infiltration. In

Bitcoin, pools typically have loyal mining power — either

run directly by the pool owners or sold as a service but run

on the pool owners’ hardware [31], [32]. However the size

of this mining power is considered a trade secret and is not

published.

D. Countermeasures

As in the case of classical block withholding explained in

Section II-C, a pool might detect that it is being attacked, but

cannot detect which of its miners is the attacker. Therefore

a pool cannot block or punish withholding miners.

Nevertheless, various techniques can be used to encourage

miners to submit full blocks. A pool can pay a bonus for sub-

mitting a full proof of work. This would increase the revenue

of the miner that found a block while reducing the revenue of

the other miners from this block. While the average revenue

of each miner would stay the same, small miners will suffer

from higher variance in revenue. Another approach is to

introduce a joining fee by paying new miners less for their

work until they have established a reputation with the pool.

Miners that seek flexibility may not accept this policy and

choose another pool. Finally, the pool can use a honeypot

trap by sending the miners tasks which it knows will result

in a full proof of work [10]. If a miner fails to submit the

full proof of work it is tagged as an attacker. To prevent

the attacker from learning them, the honeypot tasks have to

be regularly refreshed, consuming considerable resources.

Pools can also incorporate out of band mechanisms to deter

attacks, such as verifying the identity of miners or using

trusted computing technologies [33] that assure no block

withholding is taking place. This would require miners to

use specialized hardware and software, an overhead miners

may not accept.

In summary, there is no known silver bullet; all these

techniques reduce the pool’s attractiveness and deter miners.

E. Block Withholding in Practice

Long term block withholding attacks are difficult to hide,

since miners using an attacked pool would notice the re-

duced revenue density. Nevertheless, such attacks are rarely

reported, and we can therefore conclude that they are indeed

rare. A recent exception is an attack on the Eligius pool

performed in May and June 2014 [34]. The pool lost 300

Bitcoin before detecting the attack, at which point payouts

to the attackers were blocked. The attackers continued the

attack, accumulating 200 more Bitcoin before realizing they

were not receiving their payout.

The reasons the attack was so easily subverted is the

limited efforts of the attackers to hide themselves. They have

only used two payout addresses to collect their payouts, and

so it was possible for the alert pool manager to cluster the

attacking miners and obtain a statistically significant proof

of their wrongdoing.

It is unknown whether this was a classical block withhold-

ing attack, with the goal of sabotage, or a more elaborate

100100



scheme. To verify the effectiveness of block withholding for

profit, Luu et al. [35] implemented an experimental Bitcoin

test network and demonstrated the practicality of the attack.

IX. DISCUSSION

A. Bitcoin’s Health

Large pools hinder Bitcoin’s distributed nature as they put

a lot of mining power in the hands of a few pool managers.

This has been mostly addressed by community pressure on

miners to avoid forming large pools [21]. However such

recommendations had only had limited success, and mining

is still dominated by a small number of large pools. As a

characteristic example, in the period of November 2–8, 2014,

three pools generated over 50% of the proofs of work [36].

The fact that block withholding attacks are rarely observed

may indicate that the active pools have reached an implicit

or explicit agreement not to attack one another. However, an

attacked pool cannot detect which of its miners are attacking

it, let alone which pool controls the miners. At some point

a pool might miscalculate and decide to try and increase its

revenue. One pool might be enough to break the agreement,

possibly leading to a constant rate of attacks among pools

and a reduced revenue.

If open pools reach a state where their revenue density is

reduced due to attacks, miners will leave them in favor of

other available options: Miners of sufficient size can mine

solo; smaller miners can form private pools with closed

access, limited to trusted participants.

Such a change may be in favor of Bitcoin as a whole.

Since they require such intimate trust, private pools are likely

to be smaller, and form a fine grained distribution of mining

power with many small pools and solo miners.

B. Miners and Pools

1) Direct Pool Competition: A pool may engage in an

attack against another pool not to increase its absolute rev-

enue, but rather to attract miners by temporarily increasing

its revenue relative to a competing pool.

Recent work has investigated the motivation of pools

to utilize part of their resources towards sabotage attacks

against each other [37], [38]. The model of those works is

different from the pool game model in two major ways —

a sabotage attack does not transfer revenue from victim to

attacker, and migrating miners switch to less attacked pools,

changing pool sizes and hence revenues until convergence.

The model is parametrized by the cost of the attack and by

the mobility of the miners, and the analysis demonstrates

that when considering only sabotage attacks there are regions

where no-attack is the best strategy. The miner’s dilemma is

therefore not manifested in that model.

Pool competition for miners is an incentive in and of its

own for mutual attacks, and a pool may therefore choose

to perform block withholding even if its revenue would

increase only after the next difficult adjustment. The two

models are therefore complimentary; the analysis of their

combination is left for future work.

2) Pool Fees: We assumed in our analysis that pools do

not charge fees from their members since such fees are

typically nominal (0 – 3% of a pool’s revenue [39]). The

model can be extended to include pools fees. Fees would add

a friction element to the flow of revenue among infiltrated

and infiltrating pools. Specifically, Equation 4 would change

to take into account a pool fee of f

ri(t) =
Ri(t) +

∑p
j=1 xi,j(t)(1− f)rj(t)

mi +
∑p

j=1 xj,i(t)
. (21)

A pool with a fee of f is a less attractive target for

block withholding, since the attacker’s revenue is reduced

by f . However it is also less attractive for miners in general.

Trading off the two for best protection is left for future work,

as part of the treatment of the miner-pool interplay.

X. RELATED WORK

A. The Block Withholding Attack

The danger of a block withholding attack is as old as

Bitcoin pools. The attack was described by Rosenfeld [10] as

early as 2011, as pools were becoming a dominant player in

the Bitcoin world. The paper described the standard attack,

used by a miner to sabotage a pool at the cost of reducing

its own revenue. A more general view of fairness in proof

of work schemes was discussed in 2002 by Adam Back [40]

in the context of the HashCash system [41]. Early work did

not address the possibility of pools infiltrating other pools

for block withholding.

In concurrent work, Luu et al. [35] experimentally demon-

strate that block withholding can increase the attacker’s

revenue. They do not address the question of mutual attacks.

Courtois and Bahack [42] have recently noted that a pool

can increase its overall revenue with block withholding if all

other mining is performed by honest pools. We consider the

general case where not all mining is performed through pub-

lic pools, and analyze situations where pools can attack one

another. The discrepancy between the calculations of [42]

and our results for the special case analyzed there can be

explained by the strong approximations in that work. For

example, we calculate exactly how infiltrating miners reduce

the revenue density of the infiltrated pool.

B. Temporary Block Withholding

In the Block withholding attack discussed in this work the

withheld blocks are never published. However, blocks can

be withheld temporarily, not following the Bitcoin protocol,

to improve an attacker’s revenue.

A miner or a pool can perform a selfish mining attack [23].

With selfish mining the attacker increases its revenue by

temporarily withholding its blocks and publishing them in

response to block publication by other pools and miners.

101101



This attack is independent of the block withholding attack

we discuss here and the two can be performed in concert.

An attacker can also perform a double spending attack

as follows [10]. He intentionally generates two conflicting

transactions, places one in a block it withholds, and pub-

lishes the other transaction. After the recipient sees the pub-

lished transaction, the attacker publishes the withheld block

to revoke the former transaction. This attack is performed by

miners or pools against service providers that accept Bitcoin,

and it not directly related to this work.

C. Block Withholding Defense

Most crypto-currencies use a proof-of-work architecture

similar to Bitcoin, where finding proof of work is the result

of solution guessing and checking. All of the algorithms we

are aware of are susceptible to the block withholding attack,

as in all of them the miner can check whether she found

a full or a partial proof of work. Prominent examples are

Litecoin [5], Dogecoin [6] and Permacoin [7].

It is possible to use an alternative proof of work mech-

anism in which miners would not be able to distinguish

partial from full proofs of work [40], [10], [43]. Such

a solution could reduce or remove the danger of block

withholding. However, making such a change may not be

in the interest of the community: Pool block withholding,

or even its potential, could lead to a reduction of pool sizes,

as explained in Section IX-A.

D. Decentralized Pools

Although most pools use a centralized manager, a promi-

nent exception is P2Pool – a distributed pool architecture

with no central manager [19]. But the question of whether a

pool is run by a centralized manager or with a decentralized

architecture is almost immaterial for the attack we describe.

An open P2Pool group can be infiltrated and attacked, and

the P2Pool code can be changed to support attacks against

other pools.

On the other hand, P2Pool can be used by groups of

miners to easily form closed pools. These do not accept

untrusted miners, and are therefore protected against block

withholding.

XI. CONCLUSION

We explored a block withholding attack among Bitcoin

mining pools — an attack that is possible in any similar

system that rewards for proof of work. Such systems are

gaining popularity, running most digital currencies and re-

lated services.

We observe that no-pool-attacks is not a Nash equilibrium:

If none of the other pools attack, a pool can increase its

revenue by attacking the others.

When two pools can attack each other, they face a version

of the Prisoner’s Dilemma. If one pool chooses to attack, the

victim’s revenue is reduced, and it can retaliate by attacking

and increase its revenue. However, when both attack, at Nash

equilibrium both earn less than they would have if neither

attacked. With multiple pools of equal size a similar situation

arises with a symmetric equilibrium.

The fact that block withholding is not common may be

explained by modeling the attack decisions as an iterative

prisoner’s dilemma. However, we argue that the situation

is unstable since the attack can be done anonymously.

Eventually, one pool may decide to increase its revenue and

drag the others to attack as well, ending with a reduced

revenue for all. The inferior revenue would push miners

to join private pools, which can verify that their registered

miners do not withhold blocks. This would lead to smaller

pools, and so ultimately to a better environment for Bitcoin

as a whole.

Acknowledgements: For their valuable advice, the au-

thor is grateful to Ken Birman, Fred B. Schneider, Emin Gün

Sirer, Eva Tardos, and the paper shepherd Joseph Bonneau.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash sys-
tem,” 2008.

[2] S. Soper and O. Kharif, “EBay’s PayPal unit to start accepting
bitcoin payments,” Bloomberg, September 2014.

[3] A. Chowdhry, “Google adds Bitcoin currency conversion to
search,” Forbes, July 2014.

[4] blockchain.info, “Bitcoin market capitalization,”
http://blockchain.info/charts/market-cap, retrieved Nov. 2014.

[5] Litecoin Project, “Litecoin, open source P2P digital currency,”
https://litecoin.org, retrieved Nov. 2014.

[6] Dogecoin Project, “Dogecoin,” https://dogecoin.org, retrieved
Nov. 2014.

[7] A. Miller, E. Shi, A. Juels, B. Parno, and J. Katz, “Permacoin:
Repurposing bitcoin work for data preservation,” in Proceed-
ings of the IEEE Symposium on Security and Privacy. IEEE,
2014.

[8] Namecoin Project, “Namecoin DNS – DotBIT project,”
https://dot-bit.org, retrieved Sep. 2013.

[9] V. Buterin, “A next generation smart contract & de-
centralized application platform,” https://www.ethereum.org/
pdfs/EthereumWhitePaper.pdf/, retrieved Feb. 2015, 2013.

[10] M. Rosenfeld, “Analysis of Bitcoin pooled mining reward
systems,” arXiv preprint arXiv:1112.4980, 2011.

[11] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and
E. W. Felten, “Research perspectives on bitcoin and second-
generation cryptocurrencies,” in IEEE Symposium on Security
and Privacy. IEEE, 2015.

[12] Bitcoin community, “Protocol specification,”
https://en.bitcoin.it/wiki/Protocol specification, retrieved
Sep. 2013.

102102



[13] Bitcoin community, “Protocol rules,”
https://en.bitcoin.it/wiki/Protocol rules, retrieved Sep. 2013.

[14] Bitcoin community, “Bitcoin source,”
https://github.com/bitcoin/bitcoin, retrieved Sep. 2013.

[15] C. Decker and R. Wattenhofer, “Information propagation in
the bitcoin network,” in 13th IEEE International Conference
on Peer-to-Peer Computing. IEEE, 2013.

[16] M. B. Taylor, “Bitcoin and the age of bespoke silicon,” in Pro-
ceedings of the 2013 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems. IEEE
Press, 2013.

[17] N. Popper, “Into the bitcoin mines,”
http://dealbook.nytimes.com/2013/12/21/into-the-bitcoin-
mines/, 2013.

[18] E. Swanson, “Bitcoin mining calculator,”
http://www.alloscomp.com/bitcoin/calculator, retrieved
Sep. 2013.

[19] forrestv, “p2pool: Decentralized, DoS-resistant, Hop-Proof
pool,” https://bitcointalk.org/index.php?topic=18313, 2013.

[20] The Bitcoin community, “Stratum mining protocol,”
https://en.bitcoin.it/wiki/Stratum mining protocol, retrieved
Nov. 2014.

[21] G. Andresen, “Centralized mining,”
https://bitcoinfoundation.org/2014/06/centralized-mining/,
retrieved Nov. 2014, June 2014.

[22] I. Eyal and E. G. Sirer, “How a mining monopoly can at-
tack bitcoin,” http://hackingdistributed.com/2014/06/16/how-
a-mining-monopoly-can-attack-bitcoin/, 2014.

[23] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin
mining is vulnerable,” in Financial Cryptography and Data
Security, 2014.

[24] blockchain.info, “Bitcoin hashrate distribution,”
http://blockchain.info/pools, retrieved Jan. 2015.

[25] J. W. Friedman, “A non-cooperative equilibrium for su-
pergames,” The Review of Economic Studies, pp. 1–12, 1971.

[26] R. J. Aumann and L. S. Shapley, Long-term competition —
a game-theoretic analysis. Springer, 1994.

[27] blockchain.info, “Bitcoin hash rate,”
https://blockchain.info/charts/hash-rate, retrieved Feb. 2015.

[28] slush, “System statistics,” https://mining.bitcoin.cz/stats/, re-
trieved Nov. 2014.

[29] GHash.IO, “Ghash.io — bitcoin mining pool,”
http://organofcorti.blogspot.ca/2014/11/november-9th-2014-
weekly-bitcoin.html, retrieved Nov. 2014.

[30] F2pool, “F2Pool,” https://www.f2pool.com/, retrieved
Nov. 2014.

[31] GHash.IO, “Ghash.io,” https://ghash.io/, retrieved Nov. 2014.

[32] KnCMiner, “Kncminer bitcoin mining – cloud mining,”
https://www.kncminer.com/categories/cloud-mining, retrieved
Feb. 2015.

[33] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider, “Logical attestation: an
authorization architecture for trustworthy computing,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles. ACM, 2011.

[34] wizkid057, “Eligius,” https://bitcointalk.org/index.php?
topic=441465.msg7282674#msg7282674, retrieved
Nov. 2014.

[35] L. Luu, R. Saha, I. Parameshwaran, P. Saxena, and A. Hobor,
“On power splitting games in distributed computation: The
case of bitcoin pooled mining,” Cryptology ePrint Archive,
Report 2015/155, 2015, http://eprint.iacr.org/.

[36] Neighborhood Pool Watch, “November 9th
2014 weekly bitcoin network statistics,”
http://organofcorti.blogspot.ca/2014/11/november-9th-2014-
weekly-bitcoin.html, retrieved Nov. 2014.

[37] B. Johnson, A. Laszka, J. Grossklags, M. Vasek, and
T. Moore, “Game-theoretic analysis of ddos attacks against
bitcoin mining pools,” in Workshop on Bitcoin Research,
2014.

[38] A. Laszka, B. Johnson, and J. Grossklags, “When bitcoin
mining pools run dry,” in Workshop on Bitcoin Research,
2015.

[39] The Bitcoin community, “Comparison of mining pools,”
https://en.bitcoin.it/wiki/Comparison of mining pools,
retrieved Nov. 2014.

[40] A. Back, “Hashcash — amortizable publicly auditable
cost-functions,” http://hashcash.org/papers/amortizable.pdf,
retrieved Jan. 2015, 2002.

[41] A. Back, “Hashcash — a denial of service counter-measure,”
http://www.cypherspace.org/hashcash/hashcash.pdf, retrieved
Jan. 2015, 2002.

[42] N. T. Courtois and L. Bahack, “On subversive miner strategies
and block withholding attack in bitcoin digital currency,”
arXiv preprint arXiv:1402.1718, 2014.

[43] I. Eyal and E. G. Sirer, “How to dis-
incentivize large bitcoin mining pools,”
http://hackingdistributed.com/2014/06/18/how-to-
disincentivize-large-bitcoin-mining-pools/, retrieved
Jan. 2015.

103103


