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THE MINIMAL DEGREE OF A FINITE INVERSE SEMIGROUP

BORIS M. SCHEIN

Abstract. The minimal degree of an inverse semigroup S is the minimal
cardinality of a set A such that S is isomorphic to an inverse semigroup
of one-to-one partial transformations of A . The main result is a formula that
expresses the minimal degree of a finite inverse semigroup S in terms of certain
subgroups and the ordered structure of S . In fact, a representation of S by
one-to-one partial transformations of the smallest possible set A is explicitly
constructed in the proof of the formula. All known and some new results on
the minimal degree follow as easy corollaries.

If p is an isomorphic or a homomorphic representation of an inverse semi-
group S by one-to-one partial transformations of a set A, then the cardinality
of A is denoted by 6(p) and called the degree of p . Every inverse semigroup
has a faithful (that is, isomorphic) representation by one-to-one partial trans-
formations of a set. The minimal degree of a faithful representation of S is
called the minimal degree of S and denoted by 3(S). If the generalized con-
tinuum hypothesis is assumed and S is infinite, then S(S) is either |5| or the
predecessor of |5|. This follows from the fact that J¿ , the symmetric inverse
semigroup of all one-to-one partial transformations of an infinite set A, has
cardinality 2^1. In particular, if \S\ is a limit cardinal, the S(S) = \S\. While
finding ô(S) for infinite S is not devoid of interest, we consider only finite
inverse semigroups in this paper. Our main result is an exact formula for S(S)
"modulo groups." Solving semigroup problems "modulo groups" (a semigroup
problem reduced to a group problem is considered solved) may raise objections,
but in our case a "modulo groups" solution may be the best one can expect. In-
deed, if G is a group, then S(G), as is easily seen (Lemma 1), is the minimal
degree of faithful representations of G by permutations. The minimal degree
of groups has been considered for more than a century, no definitive formula
for 0(G) has been found yet, and one can hardly expect that such a formula
exists.

If 77 is a subgroup of G, we define ôG(H), the minimal degree of 77 in
G, as the minimal cardinality of a nonempty set A such that there exists a
(homomorphic) representation P of G by permutations of A which induces
a faithful representation of 77. Such a representation p is called a minimal
representation of 77 in G. It seems that this concept has not been considered in
the theory of groups, although it belongs to this theory. Observe that A above
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878 B. M. SCHEIN

is not empty for the following reason. A trivial group is isomorphic to the group
of all permutations of an empty set, and hence, from our point point of view,
its degree is 0 (and not 1!). Yet we want p(D), as defined below, to be positive.

One may consider representations of an inverse semigroup S by partial trans-
formations that are not necessarily one-to-one. As proved in [9], the minimal
degree of S with respect to such representations coincides with S(S).

To state our main result we introduce a few known and less known concepts.
Every inverse semigroup S is naturally (or canonically) ordered by a partial

order relation œ, where scot means s = ss~x t for any s, t £ S. Here, as usual,
s~x is the inverse of 5, that is, the only element of S such that ss~xs = s and
s~x = s~xss~x. Since an inverse semigroup is an ordered set, all usual concepts
of the theory of ordered sets can be applied. In particular, an element of 5 may
be the least upper bound (the l.u.b.) of a subset of S. An element 5 e S is
join-irreducible if it is not be the l.u.b. of any subset of S that does not contain
s. For example, the zero element of S, if it exists, is the l.u.b. of the empty
subset of elements of S, and hence the zero element is not joint-irreducible. If
s < t (that is, scot and s ^ t), then 5 is called a strict minorant of /.

Green's relations 3 and J7 coincide on every finite semigroup. Thus el-
ements s and t of an inverse semigroup S are ^-equivalent if and only if
they generate the same principal ideal of S or, equivalently, if ss~x = uu~x
and u~xu = t~xt for some u £ S. Each 3-class of a finite inverse semigroup
S is a Brandt groupoid with respect to the partial multiplication induced on
it. Each Brandt groupoid is isomorphic to a groupoid of the form I x G x I,
where 7 is a nonempty set and G is a group. The product of its elements
(i, g, j) and (k, h, I) is defined precisely when j = k, in which case it is
equal to (i, gh, I). Thus every 3S-class Ds of S is isomorphic to a Brandt
groupoid of the form I x G x I. Here G is isomorphic to any of the maximal
subgroups of Ds, for example, G ~ 77„-i, where 77„-i is the ^-class of S
that contains 55-1 (that is, TT^-i is the maximal subgroup of S whose identity
element is ss~x). The cardinality of the set 7 equals the cardinality of the set
of all idempotents of Ds because idempotents of 7 x G x I are precisely the
triples of the form (i, e, i), where e is the identity element of C7. Let i(D)
denote the cardinality of the set of all idempotents in a i^-class D.

A Ü?-class D is called join-irreducible if it contains a join-irreducible ele-
ment. It is proved in Lemma 2 that all elements of a join-irreducible ¿^-class
are join-irreducible. In the sequel D denotes the set of all join-irreducible
3¡ -classes of S.

Let He be the maximal subgroup of S with e as its identity element. Define
the following subset Se of He : h e Se if and only if / < h for all f in S such
that f < e . Thus h £ Se if hh~x — h~xh — e and e and h have precisely the
same strict minorants in S. For example, if « £ Se and h ^ e, then e and «
have the same strict minorants, and hence e is not the l.u.b. of the set of its
strict minorants. Thus, if Se ^ {e} , then e is join-irreducible. It is proved in
Lemma 3 that Se is a normal subgroup of 77e.

Let e £ D, where D is a join-irreducible i^-class of S. Define p(D) —
ÖHe(Se) ■ We prove in Lemma 4 that p(D) is well defined, that is, it does not
depend on the choice of e in D. It follows from our definition of SG(H) that
p(D) > 1 . Obviously, p(D) = 1 if and only if Se is a trivial group.
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Now we are ready to state our main result.

Theorem. If S is a finite inverse semigroup, then

5(S) = 5>(7>)./*(/)) :Z>eD}.
Proof. Our equality follows from Lemmas 6 and 7.

Lemma 1. If G is a group, then S(G) is the minimal degree of faithful repre-
sentations of G by permutations.
Proof. Let 7? be a representation of G by one-to-one partial transformations
of a set A. Then R(e) is the identity mapping of a subset B of A. For
every g £ G, gg~x = e and eg = g . It follows that R(g)R(g~x) = R(e) and
R(e)R(g) — R(g). Therefore, the domains of R(g) and R(e) coincide, that
is, B is the domain of R(g). Analogously, B is the range of R(g). Thus
R(g) is a permutation of B. Restricting R(g) to B for all g £ G we obtain
a representation 7?# by permutations of B. If R is faithful, so is 7?B, and
hence if R is minimal (that is, it is faithful and S(G) = \A\), then B = A and
R is a representation of G by permutations of a set.   D

Lemma 2. All elements of a join-irreducible 3¡-class of an inverse semigroup are
join-irreducible.
Proof. Let s , t £ D. There are u, v £ D such that 5 = utv and / = u~xsv~x.
If t is the l.u.b. of elements r,, I < i < n, then t¡ < t, and so s¡ = ut¡v <
utv = s for all i. Let s¡ < w for all /'. Then t¡ = u~xutiW~x < u~xs¿v~x <
u~xwv~x for all i, so that t < u~xwv~x. Now 5 = utv < uu~xwv~xv < w .
Thus 5 is the l.u.b. of elements s¡, 1 < i < n. If s is join-irreducible, s = s¡
for some /'. It follows that t = u~xsv~x = u~xs¡v~x = t¡, and hence t is
join-irreducible.    □

Lemma 3. Se is a normal subgroup of He.
Proof. Let u, v £ Se. If / < e, then f < u and f < v. Since / is
idempotent, f < v~x, and hence f = f2 < uv~x , where uv~x £ He. Thus
/ t¿ uv~x, so that / < uv~x. It follows that uv~x £ Se. Also, e £ Se, so that
Se / 0. Therefore, Se is a subgroup of He .

If u £ Se and v £ He, then / < w for every / such that f < e. It follows
that vfv~x < vev~x = e. If vfv~x = e, then / = efe = v~xvfv~xv =
î;-1^ = e, and hence vfv~x < e. Therefore, vfv~x < u, so that / =
v~xvfv~xv < v~xuv . Thus v~xuv £ Se and 5«. is a normal subgroup of
77e.    D

Lemma 4. /i(7)) ¿foes not depend on the choice of e in D.
Proof. Let e and f be idempotents in a join-irreducible ü^-class D. Then
the groups 77«, and 77^ are isomorphic, for there exists v £ D such that the
mapping iv(x) = v~xxv for all x £ He is an isomorphism of 77e onto Hf. To
see that iv(Se) = Sf, assume that u e Se. If k < f, then vkv~x < vfv~x = e ,
so that vkv~x < u. Thus k - fkf - v~xvkv~xv < v~xuv = iv(u) and
iv(u) £ Sf, i.e., iv maps Se into Sf. The inverse isomorphism of Sf onto
Se maps S'y into Se, so that iv maps S<, onto Sy, and hence groups Se and
Sf are isomorphic.   D
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The reader is supposed to be familiar with the theory of representations of
inverse semigroups by one-to-one partial transformations of sets as developed
in [6]. Those readers who are not as fluent in Russian as they undoubtedly
wish they were, can find an exposition of this theory in English in Chapter 7
of [1], Chapter V of [4], or Chapter IV of [5]. To make this paper reasonably
self-contained, we give a very brief description of some concepts of this theory
here.

A subset T of an inverse semigroup S is called majorantly closed if s £ T
and 5 < t imply t £ T for all 5 , t £ S. If U is a subset of S, then U denotes
its majorant closure, that is, t £ U if and only if s < t_for some s £ U. If F
is an inverse subsemigroup of S, its majorant closure F is a majorantly closed
inverse subsemigroup of S.

Let T be a majorantly closed inverse subsemigroup of S, s £ S and ss~x £
T. The subset Ts of S is called a right coset of T. If ss~x £ T, the right
coset of T is not defined. The set of all right cosets of T is denoted by S/T.
If s~xs £ T, then sT. is called a left coset of T. Right (left) cosets of T
either are disjoint or coincide, and they need not cover S. The number of right
cosets of T is called the index of T in S And denoted by [S : T]. Thus
[S : T] = \S/T\. If Ts is a right coset of T, then s~^T is a left coset. This
gives a one-to-one correspondence between right and left cosets of T, so that
[S : T] is the number of left cosets of T.

Let T be a majorantly closed inverse subsemigroup of an inverse semigroup
S. The transitive representation of S by one-to-one partial transformations of
the set S/ T is denoted by TV. For every s £ S and every right coset Tt of
T, Tt belongs to the domain of Pt(s) precisely if the right coset Tts exists
(that is, if (ts)(ts)~x £ T), in which case the image of Tt under Pt(s) is
Tts. Thus S(PT) = [S :T]. Also PT(s) = PT(t) for s, teS if and only if
(Vx, y £ S)[xsy £ T¡ & xty £ T¡].

If S is finite, every majorantly closed inverse subsemigroup T of S is a
majorant closure of a subgroup of S. Indeed, if e is the least idempotent of T
and F the maximal subgroup of T that contains e, then F c T. If « e T,
then ehe £ T. It follows from e(ehe) = (ehe)e = ehe that ehe £ F. The
inequality ehe < h shows that h £ F . Thus T = F .
Lemma 5. Let T = F be a majorantly closed inverse subsemigroup of an inverse
semigroup S, where F is a maximal subgroup of T. Let G be the maximal
subgroup of S that contains F, and D the 3-class of S that contains G.
Then S(PT) = [G : F]-i(D).
Proof. Clearly, Ô(PT) = [S : T]. Let Ts £ S/T. Then F s C T^andjf
ts £Ts for t £ T, then g < t for some g £ F and gs < ts . Thus Ts = F s .
Since ss~x e T, we see that (es)(es)~x = ess~xe = e, and hence es £ D and
Fes = (Fe)s — F s. Therefore, all right cosets of T have the form Tu = Fu
with u £ D. If Tu = Tv for u, v £ D, then uv~x £ T, so that uu~x ,
vv~x £ T and uu~x = vv~x = e. If g < uv~x for g £ F, then gv <
uvv~x < u . Now,

(gv)(gv)~x = gvv~xg~x = geg~x = e = uu~x,

so that gv = u or, equivalently, Fu = Fv . Conversely,
Fu — Fv => uv~x £ F => uv~x £ T => Tu = Tv.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE MINIMAL DEGREE OF A FINITE INVERSE SEMIGROUP 881

Thus Tu — Tv if and only if Fu - Fv . It follows that the number of right
cosets of T in S equals the number of right cosets of F in D.

Since D is finite, it is a Brandt groupoid under the partial multiplication
induced by that of S. Therefore, D is isomorphic to a Brandt groupoid of
the form I x K x I, where 7 is a nonempty set, K is a group, the prod-
uct of triples (i, g, j) and (k, h, I) is defined precisely when j = k, and
(i, g> j)(j, h,l) = (i, gh, I). The group K is isomorphic to any maximal
subgroup of the groupoid, and so we assume that K = G. Idempotents of
I x K x I have the form (i, e, i), where e is the identity element of K, and
hence there are precisely as many idempotents in D as there are elements in 7,
so that i(D) = |7|. Every subgroup of 7 x G x I is of the form M - {i}xFx{i} ,
where F is a subgroup of G and i £ I. If u £ IxGxI, then uu~x £ M means
that u = (i, g, j) for some g £ G and j £ I. Also, Mu ^ 0 if and only if
u = (i, g, j) for some g £ G and j £ I ,so that Mu = {/'} xFgx {j} . Thus,
ifw, v £ I x G x I and both Ai m and Mv are not empty, then Mu = Afv
exactly if u = (i, g, j) and v = (i, h, j) for some g, h £ G and y e 7, in
which case F g = F h . Therefore, the number of different nonempty sets Mu
is the number of different right cosets of F in G multiplied by the number
of all elements j in 7. In other words, this number is the index of F in G
multiplied by the cardinality of 7, that is, [G : F] • i(D). The number of Mu
in I x G x I equals the number of Fu in D, which, in its own turn, equals
the number of right cosets of 7 in 5.   D

Lemma 6. S(S) < £{/(£>) • n(D) : D £ D} .
Proof. We will construct a representation P of S. Choose a collection of
subgroups of S in the following way. From each D £ D choose an idempotent
e £ D and consider the group Se. Let Re be a minimal representation of Se
in He by permutations. Then Re is a sum of ne transitive representations
of He, and each of these representations is similar to a representation 7?, by
permutations of right cosets of a subgroup F¿ of He, i = 1, 2, ... , ne. The
degree S(Re) of Re is the sum of degrees of these representations 7?,, and thus
it is the sum of indexes of F¡ in He . Let T¡ = F¡. The transitive representation
Pt¡ of S by one-to-one partial transformations of the set S/ T¡ of right cosets
of' Ti will be denoted by P,. By Lemma 5, S(P¡) = i(D) ■ [S : T¡]. Let Pe be
the sum of representations P¡•, 1 < i <ne . Then

à(Pc) = ¿2{S(ñ) :l<i<ne} = l{i(D) • [S : T¡] : 1 < i < ne} = i(D) • p(D).
Let P be the sum of Pe for all D £ D. Then S(P) = £{/(£) • p(D) :

D £ D}. If P is faithful, then S(S) < S(P). Thus it suffices to prove that
P is faithful. We do that in a few steps. It suffices to prove the implication
P(s) = P(t) =* s < t for s, t £ S. Indeed, if it holds and P(s) = P(t), then
s < t and, interchanging 5 and t, we obtain t < s, so that s = t and P is
faithful.

Therefore, assume that P(s) = P(t). If z < s for no join-irreducible ele-
ments z £ S, then s is the join of an empty set of join-irreducible elements,
i.e. s — 0, so that s < t. Let z < s for some join-irreducible element z £ S.
Our goal is to prove that z < t. Since z < 5, we obtain z = zz~xs, and hence

P(z) = P(zz~xs) = P(zz~x)P(s) = P(zz-x)P(t) = P(zz~xt).
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Let D be the ^-class of S that contains z . Obviously, D £ D. Let e be the
idempotent of D chosen in our construction of P. Clearly, Pe(z) = Pe(zz~xt).
Since Pe is the sum of representations P,, i = 1,..., ne, we obtain P¡(z) =
Pi(zz~xt) for all i. This means that (Vx, y 6 S)[xzy £ T¡ «• xzz~xty £ T¡].

Let v~xv = e and vv~x = z~xz, so that v £ D. If x = (zv)~x and y = v,
then

(zv)~xzv £ Ti & (zv)-xzz~xtv £ Tj.

But (zv)~xzv = e £T¡, and hence v~xz~xtv = (zvYxzz~xtv £ T¡. Clearly,

v~xz~xtv = e(v~xz~xtv)e £ eT¡e = F,,

where F¡ is a maximal subgroup of T¡ such that e £ F¡. A straightforward
argument shows that R¡(v~xz~xtv) = 7?,(e) for all v such that u-1t; = e and
w1 = z~xz , where 7?, is a representation of the group He by permutations
of the right cosets of F¡ in 77,,. This holds for all i = I, ... , ne , and hence
Re(v~xz~xtv) = Re(e) for all v suchthat v~xv = e and vv~x = z~xz.

To prove that z < t we use an inductive procedure over join-irreducible
idempotents e.

(1) If e is a minimal element in the set of all join-irreducible idempotents,
then Se = He . Indeed, the implication f < e => f < g holds for all g £ He
and all join-irreducible idempotents /, because f < e is always false. Since
Re is a minimal representation of the group Se in He and Se = He , we see
that Re is a minimal representation of He by permutations, and hence Re
is faithful. It follows that uzv = wzz^'/v. Therefore, z = m^'mzdv-1 =
u~xuzz~xtvv~x < t.

(2) Let z <s => z < t for all z £ Df and all idempotents / such that £>y <
De. Here 7)y < De means that Df ^ Á. and Dy < De in the sense of the usual
ordering on Ü?-classes of S. Let g be a join-irreducible idempotent such that
g < e . Then Dg < De and, since vgv~l is idempotent, z(vgv~x) < z < s,
so that

[z(v gv~x)]~x[z(v gv~x)] = (vgv~x)z~x z(vgv~x)
= (v gv~x)vv~x (v gv~x) = (vg)(vg)~x

and (vg)~x(vg) = gv~xvg = geg = g. Therefore, z(vgv)~x £ Dg, and
hence

z(vgv~x) < t   and     [z(vgv~x)]"xt = [z(vgv~x)]~x[z(vgv~x)] = vgv~x.

Thus
gv~x z~xtv = g(v~xv)v~xz~xtv — (v~xv)gv~xz~xtv

- v~x[z(vgv~x)]~xtv = v~xvgv~xv = ege - g.

It follows that g <v~xz~xtv . However, v~xz~xtv £ He and g £ He , so that
g < v~xz~xtv .

Thus g < v~xz~xtv for all join-irreducible g such that g < e. Let / be
an idempotent such that f < e. Then Df < De. Obviously, each element
of S is a join of join-irreducible elements. Let / be a join of join-irreducible
elements gx, ... , gk . Clearly, g¡ < f < e , and hence g¡ < e and g¡ is a join-
irreducible idempotent for every i = 1, ... , k. It follows that g¡ < v~xz~xtv
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for all i, and hence / < v~xz~xtv . Thus v~xz~xtv £ He , and if f <e then
f <v~xz~xtv . Therefore, v~xz~xtv £ Se.

We proved earlier that Re(vxz~xtv) = Re(e). Now we see that both
v~xz~xtv and e belong to Se. Since 7?«, is a minimal representation of Se in
He , it is faithful on Se. Thus v~xz~xtv — e, and hence

z = zz~xzz~xz = zvv~xvv~x — zvev~x = zvv~xz~xtvv~x < t.

It follows that z <t.
We proved that z < s => z < t for all join-irreducible z in S. If 5

is the l.u.b. of join-irreducible elements zx, z2, ... , z^, then z, < s for all
i=\,2,... ,k, and hence z, < t for all /. Therefore, s < t.   D

Lemma 7.  £{/(7)) • p(D) :öeD}< S(S).
Proof. Let 7? be a faithful representation of S by one-to-one partial transfor-
mations of a finite set. Then 7? is a sum of transitive representations and every
transitive representation is similar to Pj, where T is a majorantly closed in-
verse subsemigroup of S (see [6]). We can assume that 7? is a sum of a family
{Pr,}iei of transitive representations. Also, assume that T,■■ = F,-, where F¡ is
a subgroup of T¡. Let e¡ denote the identity element of F¡, and let e¡ belong
to a 3 -class D¡ of S.

Suppose that D £ D and e2 = e £ D. Let s £ S be such that x~xe¡x <
e => x~xe¡x < s for all i £ I and x £ S such that x~xe¡x £ D¡. If xey £ T¡
for some i £ I, then xey < xy and (xey)~x(xey) < y~xey, so that xy,
y_1ey e 7/. Also, y_1ey € 7", implies e¡ < y~xey < y~xy. It follows that
ye¡y~x £ D¡ and ye¡y~x < yy~xeyy~x < e . By our assumption, ye,y~x < s, so
that e, = y~xye¡y~xy < y~xsy and y_l5y £ T¡. Clearly, (xy)(y~xsy) < xsy,
and so xsy £ T¡. Thus (V«' G 7)(Vx, y £ S)[xey £ T¡ => xsy £ T¡], which
implies R(e) c R(s) (see [6]). Since R is faithful, we obtain e < s. It follows
that e is the l.u.b. of elements of the form x~xe¡x for all x e S such that
x~xe¡x £ D,. Since e is join-irreducible, we have e = x~xe¡x £ D¡ for some
¿67, and so D = D¡. Let ID = {i £ I: D = D¡}.

Suppose that D¡ = D¡. Then e¡ = uu~x and e; = u~xu for some u £
S. The representation TV, is similar to the representation corresponding to
the majorantly saturated inverse subsemigroup u~xTjU (see [6]), and so we
can replace PT¡ by this similar representation. It follows from T, = F¡ that
u~xT¡u = u~lF¡u. But ej = u~xe¡u £ u~lF¡u. Thus, without loss of generality,
we can assume that e¡ = ej for all /, j £ I such that D¡ — D¡.

Choose D £ D and consider a sum 7?ö of all representations Pji, i £ Id ■
All idempotents ej £ D considered above are equal, and so we skip the index
j and write just e¡■ = e . Restricting Rd to the subgroup 77^ of S, we obtain
a representation PD of He that is the sum of transitive representations of 77,,
corresponding to all subgroups F¡• c D. Let h £ Se and Po(h) = Po(e). Then
7?D(«) = Ro(e) and 7V,(/z) = Pf,(^) f°r au" i £ h, where PF¡ denotes the
representation of He over the right cosets of its subgroup F¡. Let xey £ T¡
for some i £ I. Since xey < xy and (xey)~x(xey) < y~xey, we obtain
xy, y~xey e T,. Thus e, < y~xey. As we have seen above, ye¡y~l < e,
where ye¡y~x e 7),. If ye¡y~x < e, then ye¡y~x < h, because h £ Se. Then
e¡ - y~xyziy~xy < y~xhy , and so y~xhy £ T¡. Since (xy)(y~xhy) < xhy, we
obtain xhy £ T¡. Now let ye¡y~x - e. Then e £ D¡, D¡ = D, and e,■ — e. It

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



884 B. M. SCHEIN

follows from yey  ' = e that
y~xe = y~xyey~x = ey~xyy~x = ey~x £ He,    and

ey~ly = (ye)~xy = (ey)~x(ey) = e,

so that (F¡ey~x)e = (F¡y~x)e = (F¡ey~x) for every i £ ID. Since Po(h) =
Pd(^) , we obtain (F¡ey~x)h = (F¡ey~x). Thus

F¡y~xhy = (F¡e)y~xhy = (F¡ey-X)hy = (F¡ey-X)y = F¡(ey~ly) = F¡e = F¡

and yxhy £ F¡ c T¡. Therefore, xhy £ T¡.
We proved that (Vi 6 7)(Vx, y £ S)[(xey £ T¡ => xhy £ T¡]. Therefore (see

[6]), R(e) C R(h). Since 7? is faithful, we obtain e < h , so that e = eh — h .
Thus Pd is faithful on Se. Then

p(D) = SHe(Se) < Ô(PD) = £{[77, : Ft] : i e ID}.

By Lemma 5,

i(D) • p(D) < £{i(7)) - [77, : F,] : i £ ID} = Ô(RD),

and hence
$>(/>) • ii(D) : D £ D} < £{r5(7îD) : 7) e D} < ¿(i?)

for every faithful representation R of S. Thus £{i(7)) • ¿¿(7)) : D e D} <
¿(S).    G

Using the Theorem, we may easily obtain all known results on ô(S). Con-
sider the following example. A (finite) inverse semigroup is called unruly if
Ô(S) = \S\. These inverse semigroups were described in [7]. We obtain this
result as Corollary 1. First we need a few known definitions. A semilattice of
groups is an inverse semigroup S that is a union of its maximal subgroups 77,,
e £ E, where E is the semilattice of idempotents of S. If e, f £ E and
f < e, then the mapping tpe y : 77, —» 77y defined by htpej — hf for every
h £ He is called a structural homomorphism of S. This structural homomor-
phism is called trivial if its range coincides with {/} , it is called injective if it
is one-to-one. An idempotent e is called isolated if 77, = {e}.

Corollary 1 [7]. A finite inverse semigroup S is unruly (that is, S(S) = \S\), if
and only if S satisfies the following conditions:

(1) S is a semilattice of groups of the following types: (i) cyclic groups of
prime power order; (ii) generalized quaternion groups; (iii) Klein's four-group ;
(iv) trivial group;

(2) no structural homomorphisms are injective except those defined on triv-
ial subgroups; all structural homomorphisms defined on Klein's four-groups are
trivial;

(3) S has no zero, and no isolated idempotent is a join of two of its strict
minorants. '
Proof. By our Theorem, S is unruly if and only if £{i(7)) • p(D) : D £ D} =
|S|. Clearly, p(D) < |77,|, where e£D. Thus i(D)-p(D) < i(D)2 • |77,| = \D\,
so that S is unruly if and only if |D| = i(D) • p(D) and every i^-class D of

This property corrects an inaccuracy in the statement of this result in [7].
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S is join-irreducible, which, by Lemma 2, means that all idempotents of S are
join-irreducible. The first condition means that i(D)2 • |77,| = i(D) • p(D), that
is, i(D) • \He\ = p(D) < |77,|. Equivalent^, p(D) = |77,|, and i(D) = 1, so that
D contains a single idempotent. Therefore, D = 77, and S is a semilattice of
groups 77,. Obviously, p(De) < ô(He) for 77, ^ {e}, and thus all nontrivial
groups 77, are unruly. Amazingly, unruly groups do not seem to be described
in the group literature. Their description was given in [7], and they are precisely
the groups of types (i), (ii), and (hi). If e, f £ E, f < e, and h £ S,, then
f < h, and hence etpej = ef = f — hf - htpe,f ■ If Ve,f is injective, then
e - h , and hence S, = {e} . Then |77,| = p(He) = 1, and hence 77, is trivial.
Now suppose that 77, is a Klein four-group. As we have just seen, S, ^ {e} .
For |S,| = 2 an easy computation shows that p(He) = 2 ^ S(He). Therefore,
|S,| = 4, and hence S, = 77,. This means that p(He) = |77,| and all structural
homomorphisms tpe,f f°r / < e are trivial. As the zero element is not join-
irreducible, S has no zero. Therefore, if S is unruly, it satisfies conditions
(l)-(3) of our corollary.

Conversely, if S satisfies (l)-(3), we need to prove that p(He) = |77,| for ev-
ery maximal subgroup 77, and that all idempotents of S are join-irreducible.
Indeed, p(He) = |77,| for trivial groups 77,. If 77, belongs to one of the
types (i) or (ii), then it contains the least nontrivial subgroup. This subgroup is
normal, and hence it is contained in the kernel of every noninjective homomor-
phism of 77, . Since all structural homomorphisms of 77, are not injective, this
least subgroup is contained in all of them, and so it is contained in S, . This
shows that S, is not trivial, and hence e is join-irreducible. Also, it is easy to
check that p(He) = |77,| in this case. If e is the least idempotent of S, then
S, = 77, t¿ {e}, and hence e is join-irreducible and p(He) - |77,|. Now, if
77, is Klein's four-group, then all structural homomorphisms of 77, are trivial,
and hence 77, = S,, and again e is join-irreducible and p(He) = |77,|. Thus
p(He) = |77,| for all maximal subgroups 77, , and every idempotent that is not
isolated is join-irreducible. If an isolated idempotent e is not join-irreducible,
it is the l.u.b. of two of its strict minorants. Indeed, e is the l.u.b. of a set
{fi, ■■• , fk} of elements. Choose a maximal element e¡ in each of the sets
{t £ S : f < t < e} . If all e¡ are equal, then e cannot be the l.u.b. of f, and
hence e¡ ^ ej for some i ^ j. If e¡ < s and e¡ < s for some s £ S, then
e¡ < ss~xe and e¡ < ss~xe. If both inequalities are equalities, then e¡ = ej,
contrary to our assumption. Thus one of these inequalities is strict, and, by the
maximality of e¡ and e¡, we obtain ss~xe = e , whence e < ss~x. It follows
that es £ He, so that es = e and e < s. Thus e is the l.u.b. of e¡ and ej,
which contradicts condition (3). Therefore, e is joint-irreducible, and hence S
is unruly.   D

As we have seen in the proof of Corollary 1, if S is a semilattice of groups
and e is a join-irreducible idempotent of S, then S, is an intersection of the
kernels of structural homomorphisms <pe j for all f < e. Applying this remark
to our theorem, we immediately obtain a formula for the minimal degree of a
finite semilattice of groups that appeared in [2].

An inverse semigroup S is called noble if it has a faithful transitive repre-
sentation by one-to-one partial transformations of a set. For example, all subdi-
rectly irreducible inverse semigroups are noble, as it is easy to prove. Minimal
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nonzero idempotents of S are called primitive. It is known [8] that if S is a
finite noble inverse semigroup, then its subgroups 77, and 77y are isomorphic
for any two primitive idempotents e and /.
Corollary 2 [9]. If S is a finite noble inverse subgroup, then ô(S) = n(S) • S(G),
where n(S) is the number of primitive idempotents in S and G any maximal
subgroup of S which contains a primitive idempotent.
Proof. As proved in [8], a finite noble inverse semigroup S has the only join-
irreducible i^-class D. It contains all primitive idempotents of S, and hence
i(D) = n(D). It remains to observe that if S has no zero, then all idempotents
of D are minimal, and hence S, = 77, for every e £ D. If S has a zero,
S, = 77, . Thus p(D) = S(He). It remains to apply our Theorem.   O

An inverse semigroup S is fundamental if (Ve £ E)[ses~x = tet~x] =>■ s = t
for all s, t £S.
Corollary 3 [3]. 7/ S is a fundamental inverse semigroup, then S(S) is the
number of join-irreducible idempotents in S. Moreover, idempotents are join-
irreducible in the semilattice E of idempotents of S if they are join-irreducible
in S.
Proof. Clearly, Sf = {/} for every f £ E. Indeed, if h £ Sf, then heh~x -
hfeh~x = fef~x for every e £ E, for if fe < f then fe<h,so that
hfeh~x = feh~x = (hfe)~x = fe = fef~x ; and if fe = f then hfeh~x =
hfh~x = f = fef~x. Thus h = f. It follows that p(D) - 1 for every join-
irreducible .S'-class D. Our Theorem implies that ö(S) = YHl(D) : 7) e D} .
But Y,{i(D) : D £ D} is merely the number of join-irreducible idempotents of
S. To prove the last statement suppose that e is join-irreducible in S but not
in E. Then e is the l.u.b. of its strict minorants fi,..., fk in E. If f< s
for all i and some s £ S, then f < ess~x for all i, and hence e < ess~x, so
that e = ess~x . Thus es £ S, = {e} , and hence es — e and e < s . Therefore,
e is the l.u.b. of fx, ... , fk in S.   D

An inverse semigroup S is called E-unitary if e < s implies s £ E for all
e £ E and s £ S. Let K denote the Suschkewitsch kernel (that is, the least
ideal) of S. Obviously, K = 77,, where e is the least idempotent of S.
Corollary 4. If S is an E-unitary inverse semigroup, then ô(S) — ô(E) + ö(K).
Proof. Let e be a join-irreducible idempotent of S. Consider S,. If e is the
least idempotent of S, then Se = K, p(De) = max{l, ô(K)} and i(De) = 1 .
Observe that e is join-irreducible if and only if K is not trivial. Otherwise,
K = {e} and S(K) = 0. If e is not the least idempotent, then f < e for
some f £ E, and so / < « for every h £ S,. Therefore, h £ E, so that
Se = {e} and p(De) = 1. By our Theorem, S(S) = £'(£>) + S(K), where the
summation is over all join-irreducible .2?-classes D except K. Thus, ^i(D)
is the number of all join-irreducible idempotents of S, except the least one.
Every element of E, except the least one, is join-irreducible in E if and only
if it is join-irreducible in S. It follows that 0(E) = J2l(D) •   D
Corollary 5.  S(S x T) = Ô(S) + ô(T).
Proof. First, a few trivial remarks. Let a and b be the least idempotents of
S and T, respectively. Then EsxT = Es x Et and an idempotent is join-
irreducible in S x T exactly when it is of the forms (e, b) or (a, f) with
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e and / join-irreducible in S and T, respectively. If (s, t) £ S x T, then
■D(i,r) = DsxDt, and hence a Ü^-class of SxT is join-irreducible if and only if
it is of the forms DsxHb or 77a x Dt, where Ds and Dt are join-irreducible 3-
classes of S and T, respectively. Also, S(,¿,) = S, x {è} and S(a ^ = {a} xSf
for ail join-irreducible e £ Es and f £Ej.

Secondly, prove that p(D(e<b)) = MA>) and p(D{af)) = p(Df). Let P be
a representation of S(,è) in 77(, fc). Then P is a sum of transitive represen-
tations corresponding to subgroups F, of 77(, ft). Define pr, F, = {« e 77, :
(3i € F)(«, t) £ F¡}. Let (5, b) £ S(etb). Then P(s, b) = P(e, b) exactly
if (x, y)~x(s, b)(x, y)~x £ F¡ for all (x, y) e 77(,è) = 77, x KT and all i.
Therefore,

(x,y)-'(5, ¿)(x,y)_1 = (x_15x,y-1èy) = (x-15x,ô),

and so
P(s,b) = P(e, b) & (Vi)(Vx e 77,)[x-'5X £ pr, F,].

Clearly, pr! F¡ is a subgroup of 77, . If we replace each F, by pr, F, x KT, we
obtain a representation 7? of S(,¿,) in 77(, b), and

P(s, b) = P(e, b) # R(s, b) = R(e, b) «*• Rs(s) = 7?s(e),
where 7<5 is a representation of Se in 77, determined by subgroups pr] F, of
77, . Clearly, S(R$) = S(R) < S(P). Thus if P is a minimal representation of
S(,¿) in 77(,ft), then Rs is the minimal representation of S, in 77, , and hence
P-{D(e,b)) — ß{De) ■ The equality /i(D(fljy)) = //(Dy) is proved analogously.

By our Theorem,

6(S x T) = £{i(7J) • p(D) : D £ DSxT}

= ¿2{i(D(e,b))-ii(D(eib)):De £DS}

+ YJ{l(D(a,f))-ß(D{a,f))-Df£Y>T}

= X>(7),) • p(De) : De £ Ds} + £{/(Z)y) • p(Df) : Df £ DT}
= Ô(S) + 6(T).   a

Problems. (1) Study SG(H), where 77 is a (normal) subgroup of a group G.
(2) Suppose that a finite inverse semigroup S is a subdirect product of inverse

semigroups {S, : 1 < i < «}. Assume that this decomposition is irredundant
(no S, can be omitted). Then S(S) < â(Sx ) + Ô(S2) + ■■■ + ô(Sn). When is this
inequality an equality? Can it be strict?
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