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THE MINIMAL ENTROPY MARTINGALE MEASURE AND

NUMERICAL OPTION PRICING FOR THE BARNDORFF-NIELSEN -

SHEPHARD STOCHASTIC VOLATILITY MODEL

FRED ESPEN BENTH AND MARTIN GROTH

Abstract. We develop and apply a numerical scheme for pricing options for the stochastic
volatility model proposed by Barndorff-Nielsen and Shephard. This non-Gaussian Ornstein-
Uhlenbeck type of volatility model gives rise to an incomplete market, and we consider the
option prices under the minimal entropy martingale measure. To price numerically options
with respect to this risk neutral measure, one needs to consider a Black & Scholes type of
partial differential equation, with an integro-term arising from the volatility process. We
suggest finite difference schemes to solve this parabolic integro-partial differential equation,
and derive appropriate boundary conditions for the finite difference method. As an applica-
tion of our algorithm, we consider price deviations from the Black & Scholes formula for call
options, and the implications of the stochastic volatility on the shape of the volatility smile.

1. Introduction

Barndorff-Nielsen and Shephard proposed in [6] to model the price dynamics of finan-
cial assets as a geometric Brownian motion where the (squared) volatility process follows
a non-Gaussian Ornstein-Uhlenbeck (OU) process. This stochastic dynamics gives rise to
an incomplete financial market, where there exist a continuum of risk-neutral probabilities
for arbitrage-free valuation of options. Nicolato and Venardos [15] have applied structure
preserving martingale measures to price European options in terms of Laplace transforms,
being suitable for numerical inversion techniques. In the present paper we study the problem
of pricing European options under the minimal entropy martingale measure (MEMM), and
propose a numerical method for solving the associated parabolic integro-partial differential
equation.

The BNS-model assumes that the squared volatility is given as an Ornstein-Uhlenbeck pro-
cess reverting to zero, with the stochastic innovations given by a subordinator process. This
modeling perspective has the advantage of capturing both the heavy tails and the dependency
structure observed in financial return data. Furthermore, it allows for an easy way to achieve
this empirically by separating the modelling of the return distribution and the autocorrelation
function of the returns. The reader is directed to [6] for more details.

Based on utility indifference pricing, it is known that for an issuer of an option with
exponential risk preferences, the lowest acceptable price will be given by the discounted
expected payoff with respect to the MEMM. Mathematically, we reach this price as the
indifference price when risk aversion tends to zero. On the other hand, this price is the
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highest acceptable price for the buyer, which gives us a rationale for choosing a pricing
measure in the family of all equivalent martingale measures. In Benth and Meyer-Brandis [7]
the density process for the MEMM is derived for the BNS-model, together with the associated
parabolic integro-partial differential equation giving the price dynamics of options. A crucial
ingredient is a function which rescales the Lévy jump measure of the subordinator process for
the volatility dynamics under the MEMM, turning the Lévy dynamics into a state dependent
Markov jump process.

The option price dynamics satisfies a parabolic integro-partial differential equation (integro-
PDE, for short) which consists of a standard Black & Scholes operator together with a non-
local integral operator. Discretizing this equation using finite differences, leads to the problem
of finding suitable boundary conditions on the finite solution domain. Given the detailed
description of the state dynamics of the price process under the MEMM, we are able to
derive asymptotics for the option price which yields boundary conditions for the numerical
algorithm, arbitrary far out from the solution domain. This enables us to consider the integral
term even outside the solution domain, a convenient feature when considering the integral-
part of the problem. We suggest to use operator splitting on the two dimensional problem and
derive finite difference schemes, i.e. Lax-Wendroff schemes. For the integral-part we consider
it as a source term and use a simple trapezoidal rule to numerically evaluate the integral.

Approaching the problem of pricing options by solving the associated integro-PDE allows
for a simple way to consider sensitivity measures like the delta or the gamma of the option
by numerical differentiation. Other methods, like inversion of Laplace transforms and Monte
Carlo methods, provide us with a price only for specified values of the volatility and the
underlying asset.

Using our numerical algorithm, we analyze the price difference between the Black & Scholes
formula and the MEMM option price, for comparable models. The BNS-model is supposed to
be driven by an inverse Gaussian subordinator, leading to normal inverse Gaussian distributed
returns, and we collected parameter estimates from Nicolato and Venardos [15]. It turns out
that the difference depends crucially on the moneyness of the option, and that the Black
& Scholes price can be both greater and less than the MEMM option price. For far-out
and -in-the-money options the difference is negligible, while it is crucial for options close to
at-the-money. A further analysis reveals that pricing options under the MEMM produces a
volatility smile.

The paper is organized as follows: In the next section we recall some background on the
model and the minimal entropy martingale measure. Section three concerns the boundary
conditions of the finite solution domain of the linked system of PDEs. Finite difference
schemes are proposed in Section four and finally in Section five we apply the numerical solver
to some test problems and discuss the results.

2. An integro-Black & Scholes PDE for the MEMM price

Consider a market consisting of two assets, a bond and a risky asset with price processes
denoted R(t) and S(t), respectively. We assume that the bond yields a risk-free rate of r, and
thus has the standard price dynamics,

dR(t) = rR(t) dt ,

with initial value R(0) = 1. The risky asset is evolving according to the stochastic volatility
model proposed by Barndorff-Nielsen and Shephard [6], where the squared volatility is given
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by a non-Gaussian Ornstein-Uhlenbeck process:

dS(t) = (µ + βY (t)) S(t) dt +
√

Y (t)S(t) dB(t), S(0) = s > 0(2.1)

dY (t) = −λY (t) dt + dL(λt), Y (0) = y > 0,(2.2)

where B(t) is a Brownian motion and L(t) is a pure-jump subordinator (that is, an increasing
pure-jump Lévy process with no drift). We let {Ft}t≥0 be the completion of the filtration
σ(B(s), L(λs); s ≤ t) generated by the Brownian motion and the subordinator such that
(Ω,F ,Ft, P) becomes a complete filtered probability space. The Lévy measure of the sub-
ordinator is denoted ℓ(dz), and satisfies by definition

∫ ∞

0 min(1, z)ℓ(dz) < ∞. We impose a
stronger exponential integrability condition on the Lévy measure, given by

(2.3)

∫ ∞

1
{ecz − 1}ℓ(dz) < ∞ ,

for the constant

c =
β2

λ
(1 − e−λT ) .

Remark here that under this integrability condition, the moment generating function of L(1)
exists for all |θ| ≤ c, being defined as

E [exp(θL(1))] = exp(φ(θ))

where

φ(θ) =

∫ ∞

0
{eθz − 1} ℓ(dz) .

Benth and Meyer-Brandis [7] derived the density process of the MEMM for the stochastic
volatility model described above under the exponential integrability condition (2.3). We now
recall some results from their paper which will be useful in our context, and note that these
results have been extended by Rheinländer and Steiger [16] to the BNS-model with leverage.
Denoting the MEMM by QME, the density process Z(t) can be represented as

Z(t) := ZB(t)ZL(t)

where ZB(t) and ZL(t) are defined as the stochastic exponentials

ZB(t) = exp

(
−

∫ t

0

µ + βY (s)√
Y (s)

dB(s) −
∫ t

0

1

2

(µ + βY (s))2

Y (s)
ds

)
,

ZL(t) = exp

(∫ t

0

∫ ∞

0
ln δ(Y (s), z, s)N(dz,ds) +

∫ t

0

∫ ∞

0
(1 − δ(Y (s), z, s)) ℓ(dz) ds

)
.

Here, N(dz,dt) is the Poisson random measure of L and the function δ(y, z, t) is defined as

δ(y, z, t) :=
H(t, y + z)

H(t, y)
.

where

(2.4) H(t, y) = E

[
exp

(
−1

2

∫ T

t

{
µ2

Y (s)
+ 2µβ + β2Y (s)

}
du

) ∣∣∣∣Y (t) = y

]
,
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for (t, y) ∈ [0, T ]× R+. This function will play a key role in the derivations of MEMM prices
for claims, since it gives the jump characteristics of the subordinator under QME. In fact,
the dynamics of the processes S(t) and Y (t) under QME are given by

dS̃(t) =

√
Ỹ (t)S̃(t) dB̃(t),(2.5)

dỸ (t) = −λỸ (t) dt + dL̃(λt),(2.6)

where B̃(t) is a Brownian motion. The subordinator is transformed to a pure jump Markov

process L̃(t), having jump measure

ℓ̃(ω,dz,dt) =
H(t, Ỹ (t, ω) + z)

H(t, Ỹ (t, ω))
ℓ(dz) dt.

We observe that the function H(t, y) rescales the jumps of the subordinator process. Moreover,

the jump measure becomes time-inhomogeneous and state-dependent, thus L̃ is not even an
independent increment (or Sato) process under the MEMM, except for the case µ = 0.

We find that (2.4) is the Feynman-Kac representation of the integro-PDE

(2.7) ∂tH(t, y) − 1

2

(
µ2

y
+ 2µβ + β2y

)
H(t, y) + LY H(t, y) = 0 , (t, y) ∈ [0, T ) × R+

with

(2.8) LY H(t, y) = −λy∂yH(t, y) + λ

∫ ∞

0
{H(t, y + z) − H(t, y)} ℓ(dz) ,

and terminal data H(T, y) = 1, y ∈ R+. We have used the notation ∂x for partial differenti-
ation with respect to the argument x of a function.

In general, it is hard to derive an explicit expression for the expectation in (2.7) defining
the function H. However, for the special case when µ = 0 we can derive a solution, as proved
in Benth and Meyer-Brandis [7]. Since we will need this later,, we include the result here:

Lemma 2.1. Assume µ = 0. Then it holds,

(2.9) H(t, y) = exp(b(t)y + c(t)),

where b(t) and c(t) are defined as

(2.10) b(t) = −β2

2λ
(1 − exp(−λ(T − t))), c(t) = λ

∫ T

t
φ(b(u)) du .

We proceed further to discuss the price of claims under the MEMM. Consider a contingent
claim of European type with payoff f(S(T )) at the exercise time T . We suppose that f is of
linear growth in order to assure integrability under MEMM. Let Λ(t, y, s) denote the minimal
entropy price of the contingent claim at time t conditioned on S(t) = s and Y (t) = y,

(2.11) Λ(t, y, s) = e−r(T−t)EQME
[f(S(T )) |Y (t) = y, S(t) = s] .

Since S(t) is a martingale with respect to QME , we easily see that the above price is well-
defined due to the linear growth of f . We may rewrite the price as

(2.12) Λ(t, y, s) = e−r(T−t)E[f(S̃(T )) | Ỹ (t) = y, S̃(t) = s] ,

which is the Feynman-Kac representation of the following Black & Scholes integral equation

(2.13) ∂tΛ(t, y, s) + rs∂sΛ(t, y, s) +
1

2
ys2∂ssΛ(t, y, s) + LMEMM

Y Λ(t, y, s) = rΛ(t, y, s) ,
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with (t, y, s) ∈ [0, T ) × R2
+,

(2.14) LMEMM
Y Λ(t, y, s) = −λy∂yΛ(t, y, s)+λ

∫ ∞

0
(Λ(t, y+z, s)−Λ(t, y, s))

H(t, y + z)

H(t, y)
ℓ(dz) ,

and terminal condition

(2.15) Λ(T, y, s) = f(s), (y, s) ∈ R+ × R+.

We shall approach the calculation of option prices under MEMM by solving numerically the
integro-PDE above. We remark that to solve for Λ, knowledge of H is required, which also
solves an integro-PDE. Thus, we must consider a coupled system of two integro-PDEs when
calculating the option prices for the BNS-model under the MEMM.

3. Boundary conditions for the integro-PDEs on the solution domains

The coupled system of integro-PDEs (2.7) and (2.13) is defined on the positive half plane
for both s and y. Applying a finite difference method to solve this system numerically requires
that we constrain the problem to a finite solution domain, where we must impose conditions
on the solution along the boundary of the domain. Furthermore, the integral terms in both
PDEs will naturally extend beyond any finite truncation of the y-direction, and we need to
find conditions which enable us to analyze this integral also outside the solution domain.
In this section we derive the necessary boundary conditions required to use finite difference
methods to find Λ.

3.1. Boundary conditions for H. We start with deriving some asymptotic results for the
function H(t, y) when y becomes large and small. These results will give us the correct
boundary conditions when truncating the solution domain in the spatial dimension y.

Lemma 3.1. It holds,

(3.1) lim
y→∞

|H(t, y;µ) − H(t, y; 0)| = 0 ,

where the notation H(t, y;µ) is introduced in order to emphasize the dependency on µ in (2.4).

Proof. When y → ∞, we see that µ2/Y t,y → 0 a.s.. The result holds by dominated conver-
gence. �

From this Lemma we see that for large values of y, we have that H(t, y;µ) ≈ H(t, y; 0),
and an explicit representation for H(t, y; 0) is given in Lemma 2.1. Thus, after truncation the
solution domain in y to the interval [0, ymax], we impose the condition H(t, y;µ) = H(t, y; 0)
for y ≥ ymax in the numerical approximation procedure. Observe that the asymptotics in the
Lemma also gives us a condition on the integrand in the integral expression in (2.7) whenever
the argument y + z is outside the solution domain [0, ymax].

The following holds for the case y = 0:

Lemma 3.2. Suppose µ �= 0. Then H(t, 0) = 0.

Proof. We have that

H(t, y) ≤ cE

[
exp

(
−µ2

2

∫ T−t

0

1

Y y(s)
ds

)]
,
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for some positive constant c, where

Y y(s) = ye−λs + e−λs

∫ s

0
eλs dL(λu) .

Letting y ↓ 0, we see that

0 ≤ lim
y↓0

H(t, y) ≤ cE

[
exp

(
−µ2

2

∫ T−t

0

1

Y 0(s)
ds

)]
,

if the limit exists. We prove that the right-hand side of this expression is equal to zero,
from which we can conclude the claim. This is shown by demonstrating the the integral with
respect to s inside the exponential is diverging to infinity. The singularity is obtained for the
lower integration limit. For ǫ > 0 sufficiently small we have that for s ≤ ǫ,

Y 0(s) =

∫ s

0
e−λ(s−u) dL(λu) ≈ L(λs) a.s .

Furthermore, from Prop. 8, p. 84 in Bertoin [8], we know that for a subordinator L it holds
limt↓0 t−1L(t) = d, a.s., where d is the drift of L. Thus, for s ≤ ǫ, it holds approximately

1

Y 0(s)
=

s−1

s−1Y 0(s)
≈ s−1

dλ
,

which is singular when integrating from zero. Thus, the Lemma holds. �

In our numerical calculations, we impose the boundary condition H(t, 0) = 0 for t ∈ [0, T )
when µ �= 0.

Note that for µ = 0, we find from Lemma 2.1 that

H(t, 0) = exp

(
λ

∫ T

t
φ(b(u)) du

)
,

which is not equal to zero. Hence, the two cases µ = 0 and µ �= 0 lead to completely different
boundary conditions. In most practical situations, µ �= 0, and this is also the case we shall
focus on when applying our numerical solution algorithm in the next Section.

3.2. Boundary conditions for Λ. The domain of the integro-PDE (2.13) is (t, y, s) ∈
[0, T ) × R2

+. Introducing a finite difference approximation, we shall consider the truncated
domain (t, y, s) ∈ [0, T ) × [0, ymax] × [0, smax], which requires conditions on the solution Λ at
the boundaries s = 0, s = smax, y = 0 and y = ymax.

Observing that when S(t) = s = 0, we have S(u) = 0 for all u ∈ [t, T ). Hence, we find that

Λ(t, y, 0) = e−r(T−t)f(0) ,

which we use as a boundary condition for s = 0 in the integro-PDE (2.13). Let us consider
the boundaries s = smax and y = ymax, where the stock price and/or the volatility is large. It
turns out that the MEMM price Λ behaves like a Black & Scholes price with time dependent
volatility when the volatility becomes large. We know from the Black-Scholes framework that
as the volatility tends to infinity and S → ∞, the price of a European call option will converge
to the stock price. Similarly, for a European put option the price of the option will approach
the strike price. See Lewis [14] for a discussion of large volatility asymptotica for stochastic
volatility models where the volatility is driven by Brownian motions. For large stock prices,
the asymptotics of Λ is the same as the one we would get for constant volatility, that is, the
Black & Scholes model. We give the details in the following Lemma and Proposition.
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First, let us prove the following lemma

Lemma 3.3. It holds that

(3.2) lim
y→∞

∫ T
0 Ỹ y(t) dt

∫ T
0 ye−λt dt

= 1 , a.s .

Proof. Note that since
∫ T

0
Ỹ y(t) dt =

∫ T

0
ye−λt dt +

∫ T

0
e−λt

∫ t

0
eλs dL̃(λs) dt ,

and
∫ t
0 eλs dL̃(λs) ≥ 0, we find that limy→∞

∫ T
0 Ỹ y(t) dt = ∞, a.s. Moreover, since

lim
y→∞

H(t, y + z)

H(t, y)
= eb(t)z

(with b(t) as in equation (2.10))), we have

lim
y→∞

ℓ̃(ω,dz,dt) = eb(t)zℓ(dz) dt, a.s.

and the jump measure of L̃ under QME converges to the jump measure of a pure jump

independent increment process, denoted by L̂. It therefore holds that limy→∞ L̃(t) = L̂(t), a.s.
Thus, by dominated convergence we find

1

y

∫ t

0
eλs dL̃(λs) ≤ 1

y
eλtL̃(λt) → 0, a.s. ,

when y → ∞. Hence, we conclude that
∫ T
0 Ỹ y(t) dt

∫ T
0 ye−λt dt

= 1 +

∫ T
0 e−λt 1

y

∫ t
0 eλs dL̃(λs) dt

∫ T
0 e−λs ds

→ 1 a.s. ,

and the Lemma follows. �

We find the following asymptotics for Λ when y → ∞:

Proposition 3.4. We have

(3.3) lim
y→∞

Λ(t, y, s)

ΛBS(t, s;σ2
t,T (y))

= 1

where ΛBS(t, s;σ2) is the Black & Scholes price for an option with payoff function f written

on an underlying having volatility σ, and

σ2
t,T (y) =

y

λ(T − t)

(
1 − e−λ(T−t)

)
.

Proof. The jump process L̃ and the Brownian motion B̃ are independent under QME, and
we can express the option price as an integral with respect to the density of the integrated
variance as follows (see Hull and White [11] and Nicolato and Venardos [15]):

Λ(t, y, s) =

∫ ∞

0
ΛBS(t, s;x/T − t)qME(x) dx ,
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where qME is the density of
∫ T
t Y t,y(s) ds under the MEMM. Rewriting this in terms of the

density of ∫ T
t Y t,y(s) ds

∫ T
t y exp(−λ(s − t)) ds

which we denote by q̃ME, we get

Λ(t, y, s) =

∫ ∞

0
ΛBS(t, s;xσ2

t,T )q̃ME(x) dx .

Observe that by Lemma 3.3 we have that

q̃ME(x) dx → δ1(dx)

when y → ∞, where δ1 is the Dirac measure concentrated at 1. Hence, we find

Λ(t, y, s)

ΛBS(t, s;σ2
t,T )

=

∫ ∞

0

ΛBS(t, s;xσ2
t,T )

ΛBS(t, s;σ2
t,T )

q̃ME(x) dx

=

∫ ∞

0

ΛBS(t, s;xσ2
t,T )

ΛBS(t, s;σ2
t,T )

{q̃ME(x) dx − δ1(dx)} + 1 .

The first integral term converges to zero when y → ∞ since the ratio

ΛBS(t, s;σ2
t,T x)

ΛBS(t, s;σ2
t,T )

can be bounded and the signed measure q̃ME dx−δ1(dx) tends to zero. Hence, the Proposition
follows. �

The proposition above yields that for large values of y, Λ is given by the Black & Scholes
price when the underlying asset has a time dependent volatility given by

√
y exp(−λt/2). For

example, if we consider a call option, this price can be explicitly calculated, as stated in the
next Corollary:

Corollary 3.5. Assume f(x) = x−K. Then ΛBS defined in Prop. 3.4 is given by the Black

& Scholes pricing formula for a call option at time t written on an asset with price s and

volatility σt,T (y).

The knowledge of the asymptotic behaviour of Λ in y permits us to consider the integral
term in the integro-PDE (2.13) for values of y also outside of the solution domain. Hence,
we do not need to truncate the integral term in any unnatural way when we are close to the
boundary of the solution domain in the y-direction.

The next Proposition states the asymptotic behaviour when s → ∞:

Proposition 3.6. Suppose that f(s)/s → c for some constant c when s → ∞. Then

(3.4) lim
s→∞

Λ(t, y, s)

s
= c .

Proof. We have by dominated convergence

Λ(t, y, s)

s
= EQME

[
f(St,s,y(T ))

St,s,y(T )
St,1,y(T )

]
→ c EME

[
St,1,y(T )

]
= c ,

when s → ∞. �
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We now finish our study of the boundary behaviour of the solution Λ with analyzing the

case y = 0. First we note that the process Ỹ is not defined for the initial state y = 0, since
the jump measure explodes. Indeed, what we observe from a heuristic point of view is that
the closer we are to y = 0, the greater the ration H(t, y + z)/H(t, y) becomes, and thus the
stronger the process will be pushed away from this state. A reflecting boundary at y = 0
would imply a no-flow condition on Λ at this boundary, i.e. the Neumann condition that the
derivative of Λ in the direction of y vanishes at y = 0. To gain further understanding of the
boundary behaviour of Λ at y = 0, consider the following heuristic argument: Suppose that
Λ is analytical in y, having a series expansion

Λ(t, y + z, s) − λ(t, y, s) =
∞∑

n=1

∂n
y Λ(t, y, s)

n!
zn , n ≥ 1 .

Inserting this into the integro-PDE (2.13), we see that the integral part will be a sum of terms
like

∂n
y Λ(t, y, s)

n!H(t, y)

∫ ∞

0
znH(t, y + z)ℓ(dz) .

Since H(t, y) → 0 when y ↓ 0, we must have that ∂n
y Λ(t, y, s) → 0, otherwise the integral

terms will diverge. Hence, all the derivatives of Λ should vanish at the boundary y = 0,
which shows the strong reflection at y = 0 of the volatility process under the MEMM. When
considering the numerical solution, we impose the condition that the derivatives up to a
certain order vanish at the boundary, the simplest choice being a Neumann condition at the
boundary y = 0, that is,

(3.5) ∂yΛ(t, 0, s) = 0 .

Such a choice may be defended by the work of Barles et.al. [3, 4, 5], which have analyzed
the sensitivity of boundary conditions related to finance problems. They found that artificial
boundary conditions have negligible impact on the solution outside a boundary layer. This
means that even wrongly stated conditions may be smoothed out when moving into the
solution domain of interest. In our case we have weakened the strong analyticity condition,
but believe that the true level of volatility is sufficiently far away from y = 0 that the impact
is relatively small. Note also that we do not have exact information about the solution for s
and y being large, requiring similar considerations for defending the appropriateness of the
numerical boundary conditions.

Based on the derived boundary conditions for the two integro-PDE problems, we now move
on to develop a finite difference scheme appropriate for our equations.

4. Derivation of finite difference schemes

In order to calculate the option price we need to solve (2.13) using a numerical method.
Applying the finite difference method we derive numerical schemes, which involves truncating
the infinite solution domain and solve the problem on an appropriate grid. We also have
to numerically approximate the involved integral, possibly involving a Lévy measure with a
singularity at zero. Let us first concentrate on the case with r = 0.

The function H(t, y) appears as a measure change in the integral part of the integro-PDE
for the option price. Hence, we need to solve (2.7) first, in order to arrive at the correct
option price. The non-local integral term in (2.7) need to be numerically approximated with
the information attainable. Since we only know the value of H(t, y) at the grid points we use
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a trapezoid integration scheme and treat the integral as a fully explicit source term. However,
if we use only the points in the grid we get less points to integrate over as we get closer to the
boundary y = ymax. The approximation of the integral would then be less accurate for large
y, which is a undesirable feature. By adding extra points in y and assigning Black & Scholes
prices beyond ymax, in accordance with Proposition 3.4, we can make sure we get a coherent
treatment of the integral. If the number of extra points n is large enough the decay of the
measure will make sure we capture the influence from the integral. It will then be unnecessary
to integrate over more than n points anywhere. Reducing the number of integration points
this way gives a clear speed up.

To solve the integro-PDE (2.7) we derive an implicit Lax-Wendroff scheme

R

2

(
−1 +

λ∆τ

2
+ g∆τ − R

)
Hn+1

k−1 +

(
1 + R2 − agy∆τ2

2
+ g∆τ

)
Hn+1

k

+
R

2

(
1 − λ∆τ

2
− g∆τ − R

)
Hn+1

k+1 = Hn
k + Fn

k(4.1)

where R = λyk∆τ/∆y, a = λy and Fn
k is the integral term. Furthermore, g is the function

(4.2) g(y) =
1

2

(
µ2

y
+ 2µβ + β2y

)

and gy the derivative of this function with respect to y.
We now turn our attention to equation (2.13). Since the option pricing is a problem in two

spatial dimensions we use Gudonov dimensional splitting [10] and following Strang [17] we
approximate the exact solution operator by successive use of one-dimensional operations, i.e.

S(T )Λ0 ≈
[
Ss

(
∆t
2

)
Sy(∆t)Ss

(
∆t
2

)]n
Λ0.

Here S(T ) is the exact solution operator of (2.13), approximated by one-dimensional oper-
ators, Ss(t) and Sy(t), and we iterate over n time steps. Since we treat the integral as a
non-homogeneous term and we integrate over y, it seems natural to include the integral oper-
ator LMEMM

Y in Sy. More information about dimensional splitting for conservation laws can
be found in Kröner [13].

The modeling of the volatility will in most situations result in an infinite activity Lévy
process, having a singularity in the jump measure at zero. We run into numerical difficulties
if we try to numerically integrate around zero in such cases. Hence, we need to start the
integration at the first grid point larger than zero. Some of the pure jump Lévy process we
want to consider is dominated by the small jumps and a cut-off of the integral close to zero
may lead to a loss of significant parts of the integral. To make up for this we approximate
parts of the integral term by a drift in the integro-PDE for the price: Letting ǫ be the first
grid point larger than zero we do the approximation

∫ ε

0
(Λ(t, y + z, s) − Λ(t, y, s))

H(t, y + z)

H(t, y)
ℓ(dz) ≈ ξ(t, y)Λy(t, y, s)

where

ξ(t, y) =

∫ ε

0
z

H(t, y + z)

H(t, y)
ℓ(dz).

The Lévy measure integrates z close to zero, thus the integral makes sense. However, we need
to calculate ξ numerically, which we now discuss.
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Since we only have knowledge of the integrand at the grid points, there are only the two
end points available for numerical integration of ξ. To work around this problem we assume
that H(t, y) is close to linear between two grid points. Then we can use linear interpolation
between the points of the grid and evaluate the integrand in an arbitrary number of points.
However, we still need to avoid zero because of the singularity.

If we include the terms introduced by the risk free rate of return r > 0 in the Ss-operator,
we get the Black & Scholes PDE with Dirichlet boundary conditions. Using transformation
to dimensionless parameters we can always reduce this to the heat equation. We decide to
use the simple implicit finite difference scheme, here illustrated in the case r = 0 in which
case the equation is reduced to the heat equation immediately:

Λn+1
k,l − Λn

k,l

∆t
− σ2(yk)s

2
l

2

(
Λn+1

k,l+1 − 2Λn+1
k,l + Λn+1

k,l−1

∆s2

)
= 0.

where Λn
k,l is Λ(t, y, s) evaluated at the point (n, k, l) in the (t, y, s) grid. For the solution

operation Sy we use the same approach as for H(t, y) to derive a non-homogeneous Lax-
Wendroff scheme: Let a = a(y) = λy and Λn

k,l as above. A Lax-Wendroff scheme is then

R

2

(
−1 +

λ∆t

2
− R

)
Λn+1

k−1,l + (1 + R2)Λn+1
k,l +

R

2

(
1 − λ∆t

2
− R

)
Λn+1

k+1,l = Λn
k,l + Fn

k,l

with R = λyk∆τ/∆y and Fn
k,l is the integral term.

5. Numerical valuation of call options under MEMM

In this Section we apply our numerical pricing algorithm to the valuation of European call
option under the MEMM. The simulated prices are contrasted with those obtained from the
Black & Scholes formula based on a geometric Brownian motion with comparable parameters.
Further, we study the volatility smile in the context of our pricing approach.

We have proposed schemes to handle the partial differential equations for both integro-
PDEs in the coupled system. The finite difference schemes described above have been imple-
mented in C++ and run on designated simulation servers. The integrand is dependent on both
s and y and hence we need to do an integration for every grid point and time step, leading
to a significant increase in the simulation load compared to ordinary PDEs. Solving on a
100× 100 grid with 35 extra points in the y-direction and 50 time steps executes in about 11
seconds. We observed that making the grid finer in the y-variable gave a super-linear increase
in the simulation time.

Assume that the squared volatility have a stationary distribution being inverse Gaussian
IG(γ, δ). As noted by Barndorff-Nielsen and Shephard [6], this choice of volatility process im-
plies that the log-returns of S(t) become approximately normal inverse Gaussian distributed.
The Lévy measure of the subordinator L(t) is then

ℓ(dz) =
δ

2
√

2π
z
−3/2(1 + γz) exp

(
−1

2
γz

)
dz.

Below follows some results from the simulations, starting with the solution to (2.7). For the
volatility process we use the same parameters as Nicolato and Venardos [15]:

λ = 2.4958, γ = 11.98, δ = 0.0872.
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Figure 1. Simulations of H(t, y), with the parameter values from Nicolato
and Venardos [15].

For the option we let the strike be K = 200, and suppose zero interest rate, r = 0. We let
the constants in the market model (2.1) be

µ = 0.05, β = 0.5.

In most examples below we work with a grid of size 251×201 points, except for the comparison
with the Black & Scholes prices, where we chose a much finer grid of 1501 × 401 points.

Since H(t, y) occurs as a measure change in the integral of the partial differential equa-
tion (2.13), we need to simulate it before we can solve for the option price. Figure 1 shows a
plot of the function H(t, y) based on the chosen parameters.

In Figures 2-4 we show the resulting option prices as a function of t, s and y. Remark that in
neither of the figures we have plotted the whole solution area, which was (s, y) ∈ [0 600]×[0 1].
In Fig. 2 we have fixed y to be y = 0.1528, while in Fig. 4 the asset price is set to s = 340.
Not surprisingly, we see in Fig. 2 that the shape of the price surface as a function of s and
t resembles quite well the Black & Scholes price surface. However, an interesting question is
now to what extent the two pricing methodologies are differing.

To get a better picture of how the MEMM prices relate to prices from the Black & Scholes
formula we need first to determine what volatility we should use in the Black & Scholes for-
mula. We suggest the following procedure: We find the expectation of Yt for the stationary
distribution and let the squared volatility in Black & Scholes, σ2

BS , be equal to this expecta-
tion. We then choose the starting value y for the process Yt to be the point closest to σ2

BS
in the grid. This means that we compare Black & Scholes prices with constant volatility to
our indifference prices which have a volatility fluctuating around this constant level. As we
see in Fig. 5 the difference has a “W-shape” where MEMM prices are lower at-the-money
and higher for in-the-money and out-of-the money. This reflects the Black & Scholes model’s
inability to capture the risk of large price movements. The form of the difference is simi-
lar to results from Eberlein [9], who prices options in an exponential Lévy model with the
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Figure 2. Option prices under the MEMM as a function of time and under-
lying asset price.
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Figure 3. Option prices under the MEMM as a function of the underlying
asset price and squared volatility level.
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Figure 4. Option prices under the MEMM as a function of the squared
volatility level and time.
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Figure 5. Plot of the difference between the Black & Scholes price and the
MEMM price.
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Figure 6. Plot of the implied Black-Scholes volatility produced by the
MEMM prices.

hyperbolic distribution based on structure preserving risk-neutral measure obtained through
Esscher transformation.

Let us consider the implied volatility yielded by our MEMM prices. We simulated prices for
a range of strikes and calculated the implied Black & Scholes price given by these, assuming
the spot price is s = 200. As we see in Figure 6 we get a skewed volatility smile.

5.1. Pricing of the jump risk under MEMM. An interesting question is how the jump
risk is priced under the MEMM. We know that the MEMM is transforming the jump measure
of the subordinator L by a ratio of the function H. Thus, small and big jumps are rescaled
according to the time and state-dependent ratio H(t, y + z)/H(t, y). We have done some
numerical tests demonstrating how the jump measure is re-distributed under the MEMM. In
Figure 7 we have plotted the ratio for the parameters chosen in the numerical examples above
for two different values of y. We have fixed t = 1 and let y = 0.0317 (left) and y = 0.1650
(right). We see that smaller jumps are scaled up, before the ratio dampens the bigger jumps.
For small values of y the left pictures indicates that all jumps up to quite large jump sizes
are scaled up, while in the right picture jumps with size larger than 0.7 will be scaled down.
In fact, we observe here that the large jumps are less influential under the MEMM than
under the objective measure, showing that the MEMM puts less value to these. The positive
jump risk price is assigned to small jumps and we note that for very small y this upscaling is
substantial, increasing towards infinity as we approach zero from the right.

5.2. A discussion of convergence. We end this Section with a few words on convergence
of our numerical procedure. In the present paper we have not considered this question from a
theoretical point of view, but refer the reader to the works by Amadori [1], Amadori, Karlsen
and La Chioma [2] and Jakobsen and Karlsen [12], where convergence is analyzed for integro-
PDEs similar to ours. In order to justify that our numerical solution of Λ indeed converges,
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Figure 7. Plots of the ratio H(t, y+z)/H(t, y), illustrating the scaling of the
jumps. Here y = 0.0317 (left) and y = 0.165 (right).

we have tested the algorithm with step-wise refining of the grid. The relative distance of the
resulting numerical solution with respect to the obtained one for the finest grid is shown in
Figure 8. We see from this plot that the relative error decreases, indicating that we have
convergence. It is the goal in future studies to analyze the convergence and stability of the
numerical scheme from a mathematical point of view.
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