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THE MINIMAL GENERATING SETS OF THE
MULTIPLICATIVE MONOID OF A

FINITE COMMUTATIVE RING

DAVID E. DOBBS AND BRIAN C. IRICK

ABSTRACT. For any finite commutative multiplicative
monoid S with an element 0 such that S0 = {0} �= S, some
decompositions of S are given as the disjoint union of a sub-
monoid of S and some prime ideals of some submonoids of S.
These decompositions lead to an algorithm producing all the
minimal generating sets of S in terms of semigroup-theoretic
generating sets of minimal prime ideals of some submonoids
of S and minimal generating sets of the group of invertible
elements of S. This algorithm is applied in case S is the mul-
tipicative monoid of a finite nonzero commutative ring R. For
any such R, each application of the algorithm terminates in
the same number of steps, namely, the number of prime ideals
of R, that is, the number of minimal prime ideals of S.

1. Introduction. All rings considered below are commutative with
identity; all semigroups and monoids considered below are commu-
tative. Our interest is in developing some semigroup- and monoid-
theoretic results that have applications to ring theory. Perhaps the
most useful monoid associated to a ring R is the multiplicative monoid
of R, i.e., the structure consisting of the underlying set of R and its
binary operation of multiplication. One sees this topic in the cur-
rent renaissance in factorization theory, but it was already apparent
in Jacobson’s approach to unique factorization domains via Gaussian
monoids [7, pp. 115 127].

In dealing with the semigroup-ring interface, one must exercise cau-
tion, as the semigroup-theoretic ideal theory of S may differ from the
ring-theoretic ideal theory of R. A result of Aubert [3] characterizes
the rings R such that each (semigroup-theoretic) ideal of S is an (ring-
theoretic) ideal of R. One such class of rings consists of the special
principal ideal rings, or SPIRs; this follows from a well-known factor-
ization result [10, Example, p. 245]. (Recall from [10, p. 245] that a ring
R is called an SPIR in the case where R is a quasilocal principal ideal
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ring whose unique maximal ideal is nilpotent.) As Bullington [4] has
recently determined the minimal generating sets of submodules of any
free module over a finite SPIR, we are motivated to seek the minimal
generating sets of S in case R is a finite SPIR. More generally, Corollary
2.6 (b), see also the commentary following Proposition 2.4, constructs
all the minimal generating sets of the multiplicative monoid S of any
finite local ring R. This is generalized in Theorem 4.2 (a), which shows
that we have constructed all the minimal generating sets of the multi-
plicative monoid of any finite nonzero ring that is not a field.

There is a ring-theoretic reason to be interested in determining
the minimal generating sets of the multiplicative monoid of a ring.
According to a result of Isbell [6], cf. alternate proofs in [1, Corollary
1 and Remark 3], [2, Theorem 2.3], a ring is finite if (and only if) its
multiplicative monoid is finitely generated, and hence if and only if its
multiplicative monoid has a finite minimal generating set. One is thus
led to ask for the structure of all the minimal generating sets of the
multiplicative monoid of a finite ring R. Apart from the trivial cases
in which R is either 0 or a finite field, this question is answered in
Theorem 4.2.

Our work is couched more generally than may be apparent from the
above summary. Our main context is a nontrivial finite semigroup
with zero, in the sense of [9, p. 49], i.e., a (multiplicatively written)
finite monoid S containing an element 0 such that 0S = {0} �= S.
(An example of such an S is provided by the multiplicative monoid
of any finite nonzero ring.) In Algorithm 2.5, we construct a family of
minimal generating sets of S in terms of semigroup-theoretic generating
sets of minimal prime ideals of some submonoids of S and minimal
generating sets of the group of invertible elements of S. The case in
which {0} is a maximal ideal of S is dispatched in Proposition 2.4 and
the ensuing commentary; the associated ring-theoretic application of
Proposition 2.4 reduces to the context of a finite field.

Section 3 is devoted to proving the converse of Algorithm 2.5. In
Theorem 3.3, we establish that every minimal generating set of a
nontrivial finite semigroup with zero can be obtained by applying the
algorithm in Algorithm 2.5. To facilitate this proof, Section 3 begins
by introducing some standing hypotheses and giving some technical
lemmas. The most general ring-theoretic applications of Theorems
2.5 and 3.3 are given in Theorem 4.2. The purpose of Remark 4.3
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is twofold. Its part (a) gives two examples that underscore the need
for care in the earlier proofs in case the given semigroup with zero does
not arise as the multiplicative monoid of a finite ring. Remark 4.3 (b)
indicates that it is not straightforward to develop a direct proof of the
ring-theoretic applications in Theorem 4.2 that would avoid some of
the semigroup-theoretic complexities in the proof of Theorem 3.3.

Some of the supporting technical details that we develop may seem
counterintuitive to a ring-theorist accustomed to the fact that any
finite nonzero ring has Krull dimension 0, cf. [10, Theorem 2, p.
203] and Lemma 2.2 (b). However, some noteworthy semigroup-ring
compatibility is established in Lemma 4.1, namely, the fact that if R is
a finite nonzero ring with multiplicative monoid S, then the minimal
(semigroup-theoretic) prime ideals of S coincide with the (minimal ring-
theoretic) prime ideals of R.

The proof of Theorem 4.2 depends on the decomposition [10, The-
orem 3, p. 205] of any nonzero Artinian ring R as an internal direct
product of finitely many, say k, local rings. One upshot, in Theorem
4.2 (d), is that if R is any nonzero finite ring, other than a field, with
multiplicative monoid S and k is as above, then any application to S
of the algorithm in Algorithm 2.5 that constructs minimal generating
sets of S must terminate in exactly k steps. In particular, the process
terminates in just one step if and only if the finite nonzero nonfield R
is a local ring. Another application, in Theorem 4.2 (c), is that the
internal direct product decomposition of any finite nonzero nonfield R
determines much of the data in any application of the algorithm in Al-
gorithm 2.5 to the multiplicative monoid of R. Theorem 4.2 (d) shows
that some of that data need not be so determined, even if R is an SPIR.

To avoid confusion when considering both a ring R and its multiplica-
tive monoid S, we refer to ideals or prime ideals or maximal ideals of S,
respectively of R, to mean the corresponding semigroup- (respectively,
ring-) theoretic concept. As to our other notational conventions, ⊂ de-
notes proper inclusion. If n is a positive integer, then [n] := {1, . . . , n};
and [0] := {0}. Also, if A is a ring, we let Spec (A) denote the set of
prime ideals of A; Max (A) the set of maximal ideals of A; Min (A) the
set of minimal ideals of A; and U(A) the group of units of A. Any
unexplained material is standard, as in [5, 9, 10].
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2. Minimal prime ideals lead to minimal generating sets. All
semigroups considered below are written multiplicatively. Rather than
seeking maximum generality, we tailor the assertions in Lemmas 2.1 2.3
to facilitate the proofs of Theorems 2.5 and 3.3 and the ring-theoretic
applications in Corollary 2.6 and Theorem 4.2.

We recall some semigroup-theoretic notation and terminology, cf. [5,
pp. 2, 3], [9, pp. 91, 138]. Let S be a (commutative) semigroup. If
H, K are nonempty subsets of S, then HK := {g ∈ S | there exist
h ∈ H, k ∈ K such that g = hk}; H2 := HH; and if h ∈ H, then
hK := {h}K. A nonempty subset H of S is said to be an ideal of S
if SH ⊆ H; and a proper ideal of S if H is an ideal of S such that
H ⊂ S. A proper ideal H of S is said to be a prime ideal of S if
x, y ∈ S, xy ∈ H implies that either x ∈ H or y ∈ H, i.e., if S \ H is a
subsemigroup of S; and a maximal ideal of S in case no ideal K of S
satisfies H ⊂ K ⊂ S.

Lemma 2.1 shows that in discussing the notions of “prime ideal”
and “maximal ideal,” we must specify whether we are working in the
ring-theoretic or the semigroup-theoretic context. Lemmas 2.2 and
2.3 then give useful semigroup-theoretic analogues of the facts that
Max (R) ⊆ Spec (R) for any ring R, with the reverse inclusion holding
if R is finite.

Lemma 2.1. Let R be a ring and H a subset of R. Let S denote
the multiplicative monoid of R. Then:

(a) If H ∈ Spec (R), then H is a prime ideal of S.

(b) If H is a prime ideal of S, then it need not be the case that
H ∈ Spec (R).

(c) If H ∈ Max (R), then it need not be the case that H is a maximal
ideal of S.

(d) If H is a maximal ideal of S, then it need not be the case that
H ∈ Max (R).

Proof. (a) H ∈ Spec (R) ⇒ K := R \ H is a multiplicatively closed
subset of R that contains 1 ⇒ K is a submonoid of S ⇒ H is a prime
ideal of S.
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(b) Consider R := Z, and let H := 2Z∪ 3Z. Then H is a prime ideal
of S, but H /∈ Spec (R) since H is not closed under addition.

(c) Consider R := Z, and let H := 2Z. Of course, H ∈ Max (R).
However, H is not a maximal ideal of S since K := 2Z∪ 3Z is an ideal
of S such that H ⊂ K ⊂ S.

(d) Consider R := Z, and let H := Z\{1,−1}. Then H is a maximal
ideal of S, since H is the set of all the nonunits of R, but H /∈ Max (R)
since H + H �⊆ H.

The reasoning in the proof of Lemma 2.1 (d) applies if R is any
nonzero nonlocal ring and H is the set of nonunits of R. In such an
example, R can be taken finite. When combined with Lemma 2.1 (a),
the assertions in Lemma 2.2 (b) imply that any finite nonzero nonlocal
ring illustrates the phenomena in parts (b), (c) and (d) of Lemma 2.1.

If S is a (commutative) monoid, let U(S) := {x ∈ S | there
exists y ∈ S such that xy = 1}, the group of invertible elements
of S. This terminology follows usage in [5, p. 4], rather than the
contemporary ring-theoretic usage of “units,” in view of the different
meaning accorded to the word “unit” in some of the literature on
semigroups, cf. [9, item 2.6].

Lemma 2.2. (a) Let S be a commutative semigroup such that S2 = S
(for instance, a commutative monoid). If H is a maximal ideal of S,
then H is a prime ideal of S.

(b) Let S be a commutative monoid consisting of more than one
element and suppose that S contains a (uniquely determined) element
0 such that 0S = {0}. Then S has a unique maximal ideal, namely,
S \ U(S), the set of all the noninvertible elements of S.

Proof. (a) Since H is a maximal ideal of S, H is a proper ideal of
S. It suffices to show that if x, y ∈ S satisfy xy ∈ H, then either
x ∈ H or y ∈ H. Suppose not. Since x /∈ H and H is a maximal
ideal of S, the ideal of S generated by H ∪ {x} is all of S; that is,
H ∪ {x} ∪ (H ∪ {x})S = S, cf. [5, p. 3]. As HS ⊆ H, it follows that
H ∪ {x} ∪ xS = S. Similarly, H ∪ {y} ∪ yS = S. Then

S = S2 = (H ∪ {x} ∪ xS)(H ∪ {y} ∪ yS).
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Since SH = HS ⊆ H and xy ∈ H, we have the (desired) contradiction:

S ⊆ H2 ∪ yH ∪ ySH ∪xH ∪{xy}∪xyS ∪xSH ∪xyS ∪xyS2 ⊆ H ⊂ S.

(b) Any factor of an invertible element is an invertible element; and
1 is invertible. It follows that S \ U(S) is a proper ideal of S. It
suffices to show that this ideal contains each proper ideal H of S.
Suppose not, and choose h ∈ H ∩ (S \ (S \ U(S))) = H ∩ U(S). Then
S = h−1hS ⊆ SHS = H ⊂ S. This (desired) contradiction completes
the proof of (b).

Lemma 2.3. Let (R, M) be a finite local ring and S the multiplicative
monoid of R. Then:

(a) M is the only prime ideal of S.

(b) M is the only maximal ideal of S.

(c) A subset H of S is a prime ideal of S if and only if H is a maximal
ideal of S.

Proof. Note that 0S = {0} �= S. By Lemma 2.2 (b), S has a unique
maximal ideal, S\U(S) = R\U(R) = M , proving (b). Also, by Lemma
2.2 (a), M is a prime ideal of S.

Next, note, as in the proof of Lemma 2.2 (b), that no proper ideal of
S can contain an element of U(S). Thus, if H is any prime ideal of S,
then H ⊆ S \ U(S). To complete the proof, it suffices to establish the
reverse inclusion.

Define a binary relation ∼ on S via: if s1, s2 ∈ S, then s1 ∼ s2 if and
only if H + s1 = H + s2. (If s ∈ S and V ⊆ S, then V + s := {x ∈ S |
there exists v ∈ V such that x = v + s}.) Clearly, ∼ is an equivalence
relation on S. For each s ∈ S, let [s] denote the ∼ -equivalence class of
s; put T := {[s] | s ∈ S}, the set of all the ∼ -equivalence classes.

If the prime ideal H is not a maximal ideal of S, the above claim
allows us to choose m ∈ M \ H. Define a function f : T → T by
f([s]) = [sm] for each s ∈ S. To show that f is well-defined, we prove
that if s1, s2 ∈ S satisfy H+s1 = H+s2, then H+s1m = H+s2m. We
next take advantage of the fact that each element of S has an additive
inverse in S. In fact, by considering s := s1 − s2, we see that it is
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enough to prove that if s ∈ S satisfies H + s = H, then H + sm = H.
Since m − 1 ∈ U(R) and H is an ideal of S, we have H = H(m − 1).
It follows that f is a well-defined function, since

H + sm = H(m − 1) + s(m − 1) + s = (H + s)(m − 1) + s

= H(m − 1) + s = H + s = H.

In fact, f is an injection. To see this, our task is to show that if
s1, s2 ∈ S satisfy H + s1m = H + s2m, then H + s1 = H + s2. By
considering s := s1 − s2, we see that it is enough to prove that if s ∈ S
satisfies H + sm = H, then H + s = H. Since h �→ h + s establishes
a bijection H → H + s and H is finite, it follows from the pigeonhole
principle that we need only prove that H + s ⊆ H. Observe that
(H + s)m ⊆ Hm + sm ⊆ H + sm = H. Since H is a prime ideal of S
and m ∈ S \ H, it follows that H + s ⊆ H, as desired.

By the pigeonhole principle, f is a bijection. In particular, there
exists y ∈ S such that f([y]) = [1]. In other words, ym ∼ 1; that
is, H + ym = H + 1. As 0 ∈ 0H ⊆ SH = H, it follows that
1 ∈ H + ym ⊆ M + M = M . This (desired) contradiction completes
the proof.

We pause to isolate a limiting case of the situation that is to be
treated in Algorithm 2.5.

Proposition 2.4. Let S be a commutative monoid consisting of more
than one element and suppose that S contains an (uniquely determined)
element 0 such that 0S = {0}. Then {0} is a (the) maximal ideal of
S if and only if there exists a group G such that S is the (necessarily
disjoint) union of {0} and G.

Proof. If {0} is a maximal ideal of S, then by Lemma 2.2 (b),
{0} = S \ U(S), whence G := S \ {0} = U(S), a group. Clearly, S
is the disjoint union of {0} and G.

Conversely, suppose that S is the union of {0} and some group
G. Then this a disjoint union, for otherwise, 0 ∈ S = G and
S = 1S = 0−10S = 0−1{0} = {0}, contrary to hypothesis. Moreover,
as in the proofs of Lemmas 2.2 (b) and 2.3, no proper ideal H of S can
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contain an invertible element of S, whence H ⊆ S \ G = {0}. As the
hypotheses ensure that {0} is a proper ideal of S, it follows that {0} is
the maximal ideal of S.

If S, 0 and G satisfy the equivalent conditions in the statement of
Proposition 2.4, the typical minimal generating set of S is of the form
{0}∪W , where W is a minimal generating set of G as a monoid. Since
each element in a finite group has finite order, it follows that if S is
finite and contains more than one element, then the typical minimal
generating set of S is of the form {0} ∪ W , where W is a minimal
generating set of G as a group. Note also that if R is a finite nonzero
ring, then the multiplicative monoid S of R satisfies the equivalent
conditions in the statement of Proposition 2.4 if and only if R is a finite
field. The comments in this paragraph are generalized in Algorithm
2.5 (e) and Corollary 2.6.

Henceforth, if H is a nonempty subset of a semigroup S, we let 〈H〉
denote the subsemigroup of S generated by H. We next present our
first main result.

Algorithm 2.5. Let S be a commutative nontrivial finite semigroup
with zero. Suppose that {0} is not a maximal ideal of S. Put S0 := S.
Choose P1 to be a minimal prime ideal of S0; consider the monoid
S1 := S0 \P1. Choose B1 to be minimal among nonempty subsets of P1

such that 〈B1S1〉 = P1. If S1 is not a group, choose P2 to be a minimal
prime ideal of S1, and consider the monoid S2 := S1 \ P2. Choose B2

to be minimal among nonempty subsets of P2 such that 〈B2S2〉 = P2.
Iterate, so that if i ≥ 1 and Si is not a group, then Pi+1 is chosen
to be a minimal prime ideal of Si, the monoid Si+1 := Si \ Pi+1, and
Bi+1 is chosen to be minimal among nonempty subsets of Pi+1 such
that 〈Bi+1Si+1〉 = Pi+1. Then:

(a) For any choice of the Pi and Bi as above, the process terminates;
that is, there exists a positive integer n such that Sn is a group and, in
fact, Sn = U(S).

(b) If 1 ≤ i ≤ j ≤ n (where n is as in (a)), then PiPj ⊆ Pi and
PiSn = Pi.
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(c) If 1 ≤ i ≤ n (where n is as in (a)), then S can be expressed as
the disjoint union S = Qi ∪ Si, where Qi := ∪{Pj | 1 ≤ j ≤ i} is a
prime ideal of S.

(d) If n is as in (a), then S \U(S), the set of noninvertible elements
of S, is the prime ideal (indeed, the unique maximal ideal) Qn that can
be described as the disjoint union Qn := ∪{Pj | 1 ≤ j ≤ n}.

(e) If n is as in (a) and B is any minimal generating set of U(S) as
a semigroup (respectively, as a group if U(S) �= {1}), then

⋃
{Bi | 1 ≤

i ≤ n} ∪ B is a minimal generating set of S.

Proof. (a) Since S is finite, each proper ideal (in particular, each
prime ideal) of S is contained in a (the) maximal ideal of S. Therefore,
by Lemma 2.2, we can choose a minimal prime ideal P1 of S. Since P1

is a prime ideal of S, S1 := S0 \ P1 is a subsemigroup of S. As 1 /∈ P1,
it follows that S1 is a monoid. Consequently, 〈P1S1〉 = P1, and so since
P1 is finite, we can choose a minimal nonempty subset B1 of P1 such
that 〈B1S1〉 = P1.

If S1 is not a group, then S1 has a proper ideal cf. [9, item 1.8, p. 142],
[5, Theorem 1.1 (1)], hence a maximal ideal, hence a prime ideal, by
Lemma 2.2 (a), hence a minimal prime ideal (since S1 is finite). Choose
P2 to be a minimal prime ideal of S1. Since P2 is prime, reasoning as
above shows that S2 := S1 \P2 is a monoid. For much the same reason
that B1 existed, we can choose B2 to be minimal among the nonempty
subsets of P2 such that 〈B2S2〉 = P2. Iterating leads to sequences
{Si}, {Pi} and {Bi} as in the assertion.

It is easy to prove by mathematical induction on i that Qi := ∪{Pj |
1 ≤ j ≤ i} is expressed as a disjoint union; and that S = Qi ∪Si is also
a disjoint union. In particular, {Qi} is a strictly increasing sequence
of subsets of the finite set S. Therefore, this sequence is finite (as are
the other sequences noted above); that is, the process terminates, as
asserted.

(b) The first assertion follows since PiPj ⊆ PiSj−1 ⊆ PiSi−1 = Pi.
(In detail, the first inclusion holds because Pj is an ideal of Sj−1;
the second inclusion holds because Sj−1 ⊆ Si−1; and the equality
holds because Pi is an ideal of the monoid Si−1.) In addition, the
assertion that PiSn = Pi follows from the facts that Pi is an ideal of
Si−1, Sn ⊆ Si−1, and 1 ∈ Sn.
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(c) It follows from the comments in the final paragraph of the proof of
(a) that S = Qn∪Sn. Therefore, (b), together with the definition of the
Qj , yields that each Qi is an ideal of S. It remains only to show that
each Qi is a prime ideal of S. We proceed by mathematical induction
on i. The induction basis is clear, for Q1 = P1 was chosen to be a
certain kind of prime ideal of S0 = S. Suppose inductively that Qi−1

is a prime ideal of S, for some i ≥ 2. If the assertion fails, there exist
x, y ∈ S \ Qi = Si such that xy ∈ Qi. By the inductive hypothesis, we
may suppose that xy ∈ Qi \Qi−1 = Pi. As Pi is a prime ideal of Si−1,
we may assume without loss of generality that x ∈ S \ Si−1 = Qi−1.
But then xy ∈ Qi−1S ⊆ Qi−1. This (desired) contradiction completes
the induction step and finishes the proof of (c).

(d) It was shown in the proof of (a) that Qn := ∪{Pj | 1 ≤ j ≤ n} is a
disjoint union. Moreover, by (c), Qn is a prime ideal of S. In addition,
by (a) and (c), S \ U(S) = S \ Sn = Qn. Finally, the parenthetical
assertion is now a consequence of Lemma 3.2 (b).

(e) We begin by noting two facts that will be important later in
the proof. The first of these, which follows easily from the definitions
of the Pj and the Sj , states that if 0 ≤ i ≤ n − 1, then we have
Si = ∪{Pj | i + 1 ≤ j ≤ n} ∪ Sn, expressed as a disjoint union.

Second, by (a) and the choice of B, we have that 〈B〉 = Sn = U(S).
Indeed, if U(S) �= {1}, there is no difference in considering the
generation of U(S) by B as a semigroup or as a group, since every
element of U(S) has finite order.

Next, we claim Pi ⊆ 〈∪{Bj | i ≤ j ≤ n}∪B〉 for all i = 1, . . . , n. This
will be proved by decreasing induction on i. The case i = n is clear,
for Pn = 〈BnSn〉 ⊆ 〈Bn ∪ Sn〉 = 〈Bn ∪ B〉, the final step following
from the second fact noted above. For the induction step, suppose that
1 ≤ i ≤ n − 1 and ∪{Pj | i + 1 ≤ j ≤ n} ∪ Sn ⊆ 〈∪{Bj | i + 1 ≤
j ≤ n} ∪ B〉. Then, by the first fact noted above and the induction
hypothesis, Pi = 〈BiSi〉 ⊆ 〈Bi ∪ Si〉 = 〈Bi ∪ ∪{Pj | i + 1 ≤ j ≤
n} ∪ Sn}〉 ⊆ 〈∪{Bj | i ≤ j ≤ n} ∪ B〉. This completes the induction
step and finishes the proof of the above claim. By (c),

S = Qn ∪ Sn =
⋃

{Pj | 1 ≤ j ≤ n} ∪ Sn ⊆
〈⋃

{Bj | 1 ≤ j ≤ n} ∪B
〉
.
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As the reverse inclusion is trivial, it follows that T := ∪{Bi | 1 ≤ i ≤
n}∪B is a generating set of S. It remains only to prove the minimality
of T as a generating set of S.

If the assertion fails, choose x ∈ T such that 〈T \{x}〉 = S. There are
two cases. Suppose first that x ∈ B. By the choice of B, we have that
x /∈ 〈B \ {x}〉. However, it follows from (c) and (d) that no element of
Sn can be expressed as a product of elements in T at least one of whose
factors lies in Qn. Thus, x /∈ 〈T \ {x}〉, the desired contradiction.

If x ∈ T \B = ∪{Bj | 1 ≤ j ≤ n}, there exists i, 1 ≤ i ≤ n, such that
x ∈ Bi ⊆ Pi. As Bi+1, Bi+2, . . . , Bn, Sn ⊆ Si, it follows from (b), (c),
and the first fact noted above that

Pi = Pi ∩ 〈T \ {x}〉 ⊆ 〈((T \ {x}) ∩ Bi) · Si〉 = 〈(Bi \ {x}) · Si〉.

However, it is clear that 〈(Bi \ {x}) · Si〉 ⊆ 〈BiSi〉 = Pi. Hence,
〈(Bi\{x})·Si〉 = Pi, contradicting the minimality of Bi. This (desired)
contradiction completes the proof.

The most important application of Algorithm 2.5 arises for S the
multiplicative monoid of a finite nonzero ring R that is not a field. For
this context, Corollary 2.6 (a) establishes, i.e., that the case n = 1 of
Algorithm 2.5 corresponds to R being local.

Corollary 2.6. Let R be a finite nonzero ring which is not a field,
and let S be the multiplicative monoid of R. Then:

a) The following five conditions are equivalent:

(1) Each application of the algorithm in Algorithm 2.5 terminates at
n = 1;

(2) Some application of the algorithm in Algorithm 2.5 terminates at
n = 1;

(3) S has a unique nonzero prime ideal;

(4) S has a unique prime ideal;

(5) R is a local ring.

(b) If R is a local ring, for instance, an SPIR, then each minimal
generating set of S can be obtained as an application of the algorithm
in Algorithm 2.5.
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Proof. (a) Since R is not an integral domain, {0} /∈ Spec (R). As
{0} is closed under addition, {0} is not a prime ideal of S. Therefore,
(4) ⇔ (3). Moreover, (1) ⇒ (2) because the beginning of the proof of
Algorithm 2.5 (a) showed that the algorithm can be realized.

(2) ⇒ (4). Assume (2). By Algorithm 2.5 (d), the set of noninvertible
elements of S form a minimal (nonzero) prime ideal, say Q, of S. We
show that if P is a prime ideal of S, then P = Q. In fact, P cannot
contain any element h ∈ U(S) (lest S = h−1hS ⊆ h−1P = P ⊂ S, a
contradiction), whence P ⊆ S\U(S) = Q and P = Q by the minimality
of Q.

(4) ⇒ (5). Apply Lemma 2.1 (a).

It now suffices to prove that (5) ⇒ (1). Assume (5), with M denoting
the unique maximal ideal of R. Since R is local, R\M = U(R) = U(S).
By Lemma 2.3 (a), M is the only prime ideal of S. Thus, in any
application of the algorithm in Algorithm 2.5, P1 = M , whence
S1 := S \ P1 = R \M = U(S) is a group and the algorithm terminates
at n = 1.

(b) Any factor of an invertible element is invertible; and any product
of invertible elements is invertible. Thus, the set B of the invertible
elements in any given generating set V of S generates U(S) as a
semigroup; since S �= {1} and every element of U(S) has finite order,
this generation is actually as a group. As above, let M denote the
maximal ideal of R, and now suppose that V is a minimal generating
set of S. By (a) and the above comments, it suffices to observe that
B1 := V ∩ M is minimal with the property that 〈B1U(S)〉 = M .

Remark 2.7. The referee has suggested that it would be of interest
to illustrate the algorithm in Algorithm 2.5 with an example at this
point. We consider here the multiplicative monoid S of R := Z/6Z.
(In Example 4.3 (a), the algorithm is illustrated for some monoids
S that do not arise as multiplicative monoids of rings.) It turns
out that 6 is the smallest n such that applications of the algorithm
to the multiplicative monoid of Z/nZ require (at least) two steps
before terminating. In applying the algorithm to this example, one
can choose P1 to be either {0, 2, 4} or {0, 3}. The first of these
choices can be followed by choosing B1 to be either {2} or {4}; then
P2 = {3}, B2 = {3}, B = {5} and, in this way, one obtains the minimal
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generating sets {2, 3, 5} and {4, 3, 5} of S. On the other hand, the
choice P1 = {0, 3} is followed by B1 = {3} and P2 = {2, 4}, with
B2 either {2} or {4}, and B = {5}, and the algorithm thus produces
the same two minimal generating sets as before, namely, {3, 2, 5} and
{3, 4, 5}, albeit with their elements permuted. For a more general
explanation of this example, apply Theorem 4.2 (a) (d) to the canonical
isomorphism Z/6Z → Z/2Z × Z/3Z. The reader can check directly
that in this example, S has exactly two minimal generating sets. Thus
(in anticipation of Theorems 3.3 and 4.2 (a)), each such set has been
obtained by a suitable application of the algorithm in Algorithm 2.5.
The diligent reader can verify directly that the same conclusion holds if
R := Z/30Z and that 30 is the smallest value of n such that applications
of the algorithm to the multiplicative monoid of Z/nZ require (at least)
three steps before terminating.

Corollary 2.6 left open the case of R a finite field, with multiplicative
monoid S. In this case, one can apply the algorithm in Algorithm 2.5
with P1 := {0}, with the result that such R and S then satisfy analogues
of the assertions in Corollary 2.6. The details of these analogues were
essentially given in the comments following the proof of Proposition 2.4.

Corollary 2.6 also left open the interpretation of the algorithm in
Algorithm 2.5 in case n > 1, equivalently, if R is nonlocal. Theorem 4.2
settles such matters in general by relating the number of steps (n)
in an application of that algorithm to the intrinsic structure of R as
an Artinian ring. One may view Theorem 4.2 as a generalization of
Corollary 2.6 (a). First, we devote Section 3 to proving the underlying
semigroup-theoretic result, Theorem 3.3.

3. Minimal generating sets come from minimal prime ideals.
The main result of this section, Theorem 3.3, is essentially the converse
of Algorithm 2.5 (e). It is convenient now to set up the following stand-
ing hypotheses and notation for Section 3. S denotes a commutative
finite nontrivial semigroup with zero. There are exactly m, semigroup-
theoretic, prime ideals of S, and these are denoted A1, . . . , Am. (Note
that Lemma 2.2 (a) ensures that m is a positive integer.) W is a given
minimal generating set of S. For each permutation σ on [m], that is,
for each permutation σ in the symmetric group on m letters, we have
the following six sets of definitions:
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1) B := W ∩ U(S).

(2) Pk := Aσ(k) \ ∪{Aσ(μ) | μ < k} for each k ∈ [m].

(3) Sk := U(S) ∪ ∪{Pμ | μ > k} for each k ∈ {0} ∪ [m].

(4) B(k) := B ∪ ∪{W ∩ Pμ | μ > k} for each k ∈ [m].

(5) V (k) := W \ B(k) for each k ∈ [m].

(6) Bk := V (k) ∩ Pk for each k ∈ [m].

Each of the above definitions (2) (6) depends on σ, which does not
appear explicitly in the above notation. For instance, Pk should be
understood as Pσ,k. In view of context clues, we trust that the less
cumbersome notation in (2) (6) above will not lead to confusion.

Lemmas 3.1 and 3.2 establish some useful technical facts about the
above-defined items. To prove Lemma 3.1, repeat the beginning of the
proof of Corollary 2.6 (b).

Lemma 3.1. Under the above standing hypotheses and notation, B
is a minimal generating set of U(S).

Lemma 3.2. Under the above standing hypotheses and notation,
including the given permutation σ, one has the following conclusions
for the above-defined items.

(a) ∪{Pk | 1 ≤ k ≤ μ} = ∪{Aσ(k) | 1 ≤ k ≤ μ} for each μ ∈ [m].

(b) Pk ∩ Pj = ∅ if k �= j.

(c) ∪{Pk | i + 1 ≤ k ≤ m} = ∪{Aσ(k) | 1 ≤ k ≤ m} \ ∪{Aσ(k) | 1 ≤
k ≤ i} for each i ∈ [m − 1].

(d) S0 = S.

(e) Sm = U(S).

(f) Sk = S \ ∪{Aσ(μ) | 1 ≤ μ ≤ k} is a monoid for each k ∈ [m].

(g) Sk−1 = Sk ∪ Pk, expressed as a disjoint union, for each k ∈ [m].

(h) If Pk is nonempty, then it is a prime ideal of Sk−1 for each
k ∈ [m].

(i) If Pk is nonempty, then 〈BkSk〉 = Pk for each k ∈ [m].

(j) W = V (k) ∪B(k), expressed as a disjoint union, for each k ∈ [m].
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(k) 〈Sk ∪ (W ∩ Pk)〉 = Sk−1 for each k ∈ [m].

(l) 〈B(k)〉 = Sk for each k ∈ [m].

(m) Bk ∩ Bj = ∅ if k �= j.

(n) ∪{Bk | 1 ≤ k ≤ m} = W \ B and ∪{Bi | 1 ≤ i ≤ m} ∪ B = W .

Proof. (a) Induct on μ. The induction basis (the case μ = 1) follows
easily from (2) above, since a union indexed by the empty set is empty.
For the induction step, suppose that ∪{Pk | 1 ≤ k ≤ μ} = ∪{Aσ(k) |
1 ≤ k ≤ μ}, and observe that ∪{Pk | 1 ≤ k ≤ μ + 1} = Pμ+1 ∪ ∪{Pk |
1 ≤ k ≤ μ} = Pμ+1 ∪ ∪{Aσ(k) | 1 ≤ k ≤ μ} = (Aσ(μ+1) \ ∪{Aσ(k) | 1 ≤
k ≤ μ}) ∪ ∪{Aσ(k) | 1 ≤ k ≤ μ} = ∪{Aσ(k) | 1 ≤ k ≤ μ + 1}.

(b) Without loss of generality, Pk and Pj are each nonempty and
j < k. Using (2), observe that Pk ∩ Pj = (Aσ(k) \ ∪{Aσ(μ) | μ <
k})∩(Aσ(j)\∪{Aσ(μ) | μ < j}) ⊆ (Aσ(k)\∪{Aσ(μ) | μ < k})∩Aσ(j) = ∅.
The assertion follows.

(c) The assertion follows directly from (a) and (b).

(d) In view of (3) with k := 0, we need only show that each nonunit
x of S lies in some Pμ. Thus, by (a), it suffices to show that x lies in
some Aj . This, in turn, follows from the consequence of parts (b) and
(a) of Lemma 2.2 that S \ U(S) is a prime ideal of S.

(e) Apply (3) with k := m and the convention about unions indexed
by the empty set.

(f) By (3), (c) and the proof of (d), Sk := U(S) ∪ ∪{Pμ | k + 1 ≤
μ ≤ m} = U(S) ∪ (∪{Aσ(μ) | 1 ≤ μ ≤ m} \ ∪{Aσ(μ) | 1 ≤ μ ≤ k}) =
(U(S)∪∪{Aσ(μ) | 1 ≤ μ ≤ m}) \ ∪{Aσ(μ) | 1 ≤ μ ≤ k} = S \ ∪{Aσ(μ) |
1 ≤ μ ≤ k}. The assertion follows, as 1 ∈ Sk and the complement in S
of any union of prime ideals of S is closed under multiplication.

(g) The definitions of Sk and Sk−1 in (3) easily lead to the fact that
Sk−1 = Sk ∪ Pk. To see that Pk is disjoint from Sk, combine (3) and
(2).

(h) By (g), Pk ⊆ Sk−1. Suppose Pk is nonempty. By combining (2),
(3) and (b), one verifies that Pk is an ideal of Sk−1. Also, it follows
from (f) and (g) that a product of two elements of Sk cannot lie in Pk,
and so it follows from (g) that Pk is a prime ideal of Sk−1.
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(i) By (a) and (b), it follows from (5) and (1) that V (k) = W ∩
⋃
{Pμ |

1 ≤ μ ≤ k}. Hence, by (b), Bk = W ∩ Pk. Moreover, Sk ⊆ Sk−1, by
(g). Then (h) ensures that 〈BkSk〉 ⊆ Pk. It remains only to prove the
reverse inclusion.

Note that if x, y ∈ S \ U(S) are such that xy ∈ Pk, then both
x and y belong to Sk−1. (Otherwise, either x or y would be in
∪{Pμ | 1 ≤ μ ≤ k − 1} and, hence by (a), in Aσ(j) for some j < k, a
contradiction to (2) since Aσ(j) is an ideal of S.) Hence, by (h) and
(g), at least one of x, y is in Pk, while the other is in either Pk or
Sk−1 \ Pk = Sk. Now, by the hypothesis on W , each element of Pk is
either in W or is a product of elements of W . As we saw above that
W ∩ Pk = Bk, it now follows easily that Pk ⊆ 〈BkSk〉, as required.

(j) By (4) and (1), B(k) ⊆ W . The assertion now follows from (5).

(k) If Pk is empty, the assertion is immediate from (g), (f) and
(d). Assume henceforth that Pk is nonempty. Then, by (j) and (6),
〈Sk ∪ (W ∩Pk)〉 = 〈Sk ∪Bk ∪ (B(k) ∩Pk)〉 = 〈Sk ∪BkSk ∪ (B(k) ∩Pk)〉.
By (i), this simplifies to 〈Sk ∪ Pk〉; and by (g), (f) and (d), this is just
〈Sk−1〉 = Sk−1.

(l) By (4), Lemma 3.1 and (e), 〈B(k)〉 = 〈〈B〉 ∪ ∪{W ∩ Pμ | μ >
k}〉 = 〈U(S) ∪ ∪{W ∩ Pμ | μ > k}〉 = 〈Sm ∪ ∪{W ∩ Pμ | k + 1 ≤
μ ≤ m}〉 = 〈Sm ∪ (W ∩ Pm) ∪ ∪{W ∩ Pμ | k + 1 ≤ μ ≤ m − 1}〉. By
(k), this simplifies to 〈Sm−1 ∪ ∪{W ∩ Pμ | k + 1 ≤ μ ≤ m − 1}〉.
By iterating the argument, we further simplify this expression to
〈Sm−2∪∪{W ∩Pμ | k +1 ≤ μ ≤ m−2}〉 = · · · = 〈Sk+1∪ (W ∩Pk+1)〉,
which, by (k), is just 〈Sk〉 = Sk.

(m) By (6) and (b), Bk∩Bj = V (k)∩V (j)∩Pk∩Pj = V (k)∩V (j)∩∅ =
∅.

(n) It suffices to prove the first assertion. It was shown in the
proof of (i) that Bk = W ∩ Pk if Pk is nonempty; and it is clear
from (6) that this equation also holds if Pk is empty. Also, by (3)
and (d), ∪{Pk | 1 ≤ k ≤ m} = S0 \ U(S) = S \ U(S). Therefore,
∪{Bk | 1 ≤ k ≤ m} = W ∩ (∪{Pk | 1 ≤ k ≤ m}) = W ∩ (S \ U(S)) =
W \ (W ∩ U(S)) = W \ B.
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Theorem 3.3. Under the above standing hypotheses and notation,
W can be obtained as in Algorithm 2.5 (e). In other words, there exists
an application of the algorithm in Algorithm 2.5 to S so that, in the
notation of Algorithm 2.5, W = ∪{Bi | 1 ≤ i ≤ n} ∪ B.

Proof. It suffices to show that there exists a permutation σ on [m]
such that for each k for which Pk is nonempty, we have that Pk is a
minimal prime ideal of Sk−1 and Bk is minimal among the nonempty
subsets of Pk such that 〈BkSk〉 = Pk. Indeed, given such a permutation
σ, let k1 < · · · < kj denote the indexes of the nonempty Pk’s. (In the
notation developed below, j = m−η(σ).) Then, by defining Pi := Pki

,
Si := Ski

and Bi := Bki
, we obtain sequences of Pi’s, Si’s and Bi’s

behaving as described in Algorithm 2.5, as desired.

First, we claim that for each permutation σ on [m], if Pk is nonempty
for some k, then we have that Bk is minimal such that 〈BkSk〉 = Pk.
(Note that it was shown implicitly in the proof of Lemma 3.2 (i) that
Bk is nonempty whenever Pk is nonempty.) In view of Lemma 3.2 (i),
only the “minimality” assertion remains at issue.

Suppose that the above claim fails. Then, for some permutation σ
on [m] and some k such that Pk is nonempty, there exists a proper
nonempty subset B′ ⊂ Bk such that 〈B′Sk〉 = Pk. It follows from
Lemma 3.2 (j) that W ′ := (V (k) \ Bk) ∪ B′ ∪B(k) is a proper subset of
W . However, using parts (l), (f) and (j) of Lemma 3.2, we find that
〈W ′〉 = 〈(V (k) \ Bk) ∪ B′ ∪ Sk〉 = 〈(V (k) \ Bk) ∪ B′Sk ∪ Sk〉 = 〈(V (k) \
Bk)∪BkSk ∪Sk〉 = 〈(V (k) \Bk)∪Bk ∪Sk〉 = 〈(V (k) \Bk)∪Bk ∪B(k)〉 =
〈V (k) ∪B(k)〉 = 〈W 〉 = S. This contradicts the supposed minimality of
W , and so the above claim has been proved.

It remains only to show that there is a permutation σ on [m] such
that each nonempty Pk is a minimal prime ideal of Sk−1. For each
permutation σ on [m], let η(σ) denote the number of indexes k for
which Pk is empty, in the sequence determined by σ. We claim that
if the permutation σ is chosen such that η(σ) is minimal, then each
nonempty Pk, arising from σ, must be a minimal prime ideal of Sk−1.

Suppose, on the contrary, that despite η(σ) being minimal, we can
find an index i such that Pi is nonempty but not minimal as a
prime ideal of Si−1. Since S is finite, we can choose a minimal
prime ideal P ′ of Si−1 such that P ′ ⊂ Pi. It follows from (2) that
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D := P ′ ∪ ∪{Aσ(μ) | 1 ≤ μ ≤ i− 1} is expressed as a disjoint union,
and it is easy to use Lemma 3.2 (f) to verify that D is a prime ideal of
S. Therefore, D = Aσ(j) for some index j.

If j < i, then parts (a) and (b) of Lemma 3.2 would lead to a
contradiction to the fact that ∅ �= P ′ ⊆ Pi. Also, if j = i, then it
follows from (2) and the definition of D that Pi = D \ ∪{Aσ(μ) | 1 ≤
μ ≤ i − 1} = P ′, contradicting the choice of P ′. Therefore, j > i.
However, since Lemma 3.2 (a) and the definition of D ensure that
Aσ(j) ⊆ ∪{Aσ(μ) | 1 ≤ μ ≤ i}, we see that Pj = Aσ(j) \ ∪{Aσ(μ) | 1 ≤
μ ≤ j − 1} = ∅. In particular, there exists an index k such that k > i
and Pk is empty.

Define a permutation τ on [m] as follows:

τ (μ) =

⎧⎪⎪⎨
⎪⎪⎩

σ(μ) if 1 ≤ μ < i

σ(j) if μ = i

σ(μ − 1) if i < μ ≤ j

σ(μ) if j < μ ≤ m.

Then, with Pμ continuing to denote Pσ,μ as above, we claim that

Pτ,μ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pμ if 1 ≤ μ < i

P ′ if μ = i

Pi \ P ′ if μ = i + 1
Pμ−1 if i + 1 < μ ≤ j

Pμ if j < μ ≤ m.

Some of the five values that were just claimed may be verified without
too much difficulty. For instance, if 1 ≤ μ < i, then it follows from
(2) and the definition of τ that Pτ,μ = Aτ(μ) \ ∪{Aτ(k) | k < μ} =
Aσ(μ) \ ∪{Aσ(k) | k < μ} = Pμ. Similarly, for the case μ = i, we have
Pτ,i = Aσ(j) \ ∪{Aτ(k) | k < i} = D \∪{Aσ(k) | k < i} = P ′. Moreover,
using similar reasoning, it is routine to verify that if j < μ ≤ m, then
Pτ,μ = Pμ.

The verifications in the two remaining cases are more intricate.
Consider first the case μ = i+1. Then Pτ,i+1 = Aσ(i)\(Aσ(j)∪∪{Aσ(k) |
k ≤ i − 1}) = Aσ(i) \ D = (Aσ(i) \ P ′) ∩ Pi = Pi \ P ′. Finally, we
consider the case whose analysis is the most difficult, i + 1 < μ ≤ j.
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Then, by reasoning as above with (2) and the definition of τ , we find
that Pτ,μ = Aσ(μ−1) \ (Aσ(j) ∪ ∪{Aσ(k) | 1 ≤ k ≤ μ − 2}). On the
other hand, Pμ−1 = Aσ(μ−1) \ ∪{Aσ(k) | 1 ≤ k ≤ μ − 2}. Therefore,
to prove the claim that Pτ,μ = Pμ−1, it suffices to prove that Pμ−1 is
disjoint from Aσ(j). This, in turn, follows easily from parts (a) and (b)
of Lemma 3.2, when taken in conjunction with the above-proved fact
that Aσ(j) ⊆ ∪{Aσ(μ) | 1 ≤ μ ≤ i}. This completes the proof of all the
cases in the above claim regarding the values of Pτ,μ.

One may now use the above-displayed values of Pτ,μ to compare η(σ)
and η(τ ). In doing so, notice especially the following facts: Pi and
Pτ,i = P ′ are each nonempty; Pτ,i+1 = Pi \ P ′ is nonempty; and (as
proved above) Pj = ∅. The upshot is that η(σ) = η(τ ) + 1 > η(τ ),
contradicting the minimality of η(σ). Thus, no such i exists, and the
proof is complete.

Remark 3.4. The proof of Algorithm 2.5 goes thorough even if one
does not require that the prime ideal Pi+1 of Si is chosen to be minimal.
However, there is no real gain in doing so. Indeed, Theorem 3.3
shows that any minimal generating set that could be obtained from
a variant of Algorithm 2.5 in which the prime ideals Pi+1 are not
necessarily chosen to be minimal could also be obtained directly from
Algorithm 2.5.

4. Ring-theoretic applications. Recall that Max (R) = Min (R) =
Spec (R) for any nonzero finite ring R, cf. [10, Theorem 2, p. 203]. How-
ever, Lemmas 2.1 (a) and 2.2 (b) combine to show that the analogue
fails for semigroup-theoretic ideals of S, the multiplicative monoid of
R, if R is nonlocal. Moreover, we see by combining Lemmas 2.1 (a)
and 2.2 (a) that if R is nonlocal, then the prime ideals of S are not the
same as the prime ideals of R, in contrast to the situation for local rings
as described in Lemma 2.3. In particular, the restriction to local rings
in Lemma 2.3 is essential. Nevertheless, Lemma 4.1 identifies some
compatibility between the semigroup- and the ring-theoretic concepts
in the general case, by establishing that the set of minimal prime ideals
of S coincides with Min (R), for any nonzero finite ring R. Lemma 4.1
also provides the technical key to proving Theorem 4.2.
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Lemma 4.1. Let R be a finite nonzero ring and let S be the
multiplicative monoid of R. Then a subset H of S is a minimal prime
ideal of S if and only if H is a necessarily minimal, prime ideal of R.
In other words, Min (R) = Spec (R) is the set of minimal prime ideals
of S.

Proof. If R is a field, then {0} is the only semigroup- or ring-theoretic
proper ideal, whence it is the only semigroup- or ring-theoretic prime
ideal and the assertion follows in this case. Thus, we may assume
henceforth that R is not a field. In fact, because of Lemma 2.3, we
may often use notation below that tacitly assumes that R is nonlocal.

Since R is Artinian, it can be expressed uniquely as the internal direct
product of finitely many local, nonzero, rings (Rj , Jj), 1 ≤ j ≤ k,
[10, Theorem 3, p. 205]; identify R with the external direct product
R1× · · · ×Rk. By the above remarks, each prime ideal of R is minimal;
and it is well known that the typical such prime ideal is given by
Ij := R1 × · · · × Rj−1 × Jj × Rj+1 × · · · × Rk, where 1 ≤ j ≤ k.
For each j, let ej denote the multiplicative identity element of Rj .
Note that e1 + · · · + ek = 1 and Rej = Rj for each j.

We show first that if H is a minimal prime ideal of S, then H coincides
with some Ij . To do this, we show that there is a permutation of
{R1, . . . , Rk} such that H = Ik.

In fact, since Ik ∈ Spec (R), it follows from Lemma 2.1 (a) and the
minimality of H that it suffices to show that Ij ⊆ H. As a final
reduction of the task, it suffices to show that R1× · · · ×Rk−1×{0} ⊆ H.
Indeed, if ξ ∈ Jk, then ξν = 0 for some positive integer ν, cf. [10, Note
II, p. 151], whence the primeness of H ensures that any element of
the form x := (r1, . . . , rk−1, ξ) ∈ H since xν = (rν

1 , . . . , rν
k−1, 0) ∈

R1 × · · · × Rk−1 × {0} ⊆ H.

For any indexes i �= j, we have eiej = 0 ∈ H and so, since H is
a prime ideal of S, either ei ∈ H or ej ∈ H. Thus, some ei ∈ H
and, by permuting {R1, . . . , Rk}, we may suppose without loss of
generality that e1 ∈ H. Therefore, R1 × {0} × · · · × {0} = R1 =
Re1 ⊆ H. Next, consider the elements f2 := (e1, e2, 0, . . . , 0), f3 :=
(e1, 0, e3, 0, . . . , 0), . . . , fk := (e1, 0, . . . , 0, ek) of R. For all 2 ≤ i <
j ≤ k, we have that fifj ∈ R1 × {0} × · · · × {0} = R1 ⊆ H. As
H is a prime ideal of S, some fi ∈ H. By permuting {R2, . . . , Rk}
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(notice that R1 is unchanged), we may suppose that f2 ∈ H. Therefore,
R1 × R2 × {0} × · · · × {0} = Rf2 ⊆ H.

Repeating the argument, next consider the elements g3 := (e1, e2, e3, 0,
. . . , 0), g4 := (e1, e2, 0, e4, 0, . . . , 0), . . . , gk := (e1, e2, 0, . . . , 0, ek) of
R. For all 3 ≤ i < j ≤ k, we have that gigj ∈ R1×R2×{0}× · · · ×{0} ⊆
H. As H is a prime ideal of S, some gi ∈ H. By permuting
{R3, . . . , Rk} (notice that R1 and R2 are each unchanged), we may
suppose that g3 ∈ H. Therefore, R1 × R2 × R3 × {0} × · · · × {0} =
Rg3 ⊆ H. Iterating the argument, we see that there is a permutation of
{R1, . . . , Rk} such that R1× · · · ×Rk−1×{0} ⊆ H. As explained above,
this is enough to complete the proof that H ∈ Min(R) = Spec (R).

Conversely, it remains to show that if K is a necessarily minimal,
prime ideal of R, then K is a minimal prime ideal of S. By Lemma
2.1 (a), K is a prime ideal of S, and so, since S is finite, there exists
a minimal prime ideal H of S such that H ⊆ K. By the preceding
three paragraphs, H = Ij for some j. In other words, Ij ⊆ K. By the
minimality of K, it follows that K = Ij ; that is, K = H, a minimal
prime ideal of S.

We next give our most important ring-theoretic applications.

Theorem 4.2. Let R be a finite nonzero ring which is not a field, and
let S be the multiplicative monoid of R. Consider the unique expression
of R as the internal direct product of finitely many local, nonzero, rings
(Rj , Jj), 1 ≤ j ≤ k; for convenience, identify R with the external
direct product R1 × · · · ×Rk. The list of prime ideals of R is given by
I1, . . . , Ik, where Ij := R1 × · · · ×Ri−1 × Jj ×Rj+1 × · · · ×Rk for all
1 ≤ j ≤ k. Then:

(a) The set of all the minimal generating sets of S is the same as
the set of all the outputs resulting from applications of the algorithm in
Algorithm 2.5 to R and S.

(b) In each application of the algorithm in Algorithm 2.5 to R and
S, the integer n described in Algorithm 2.5 (a) as counting the number
of steps in the process is given by n = k.
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(c) For any application of the algorithm in Algorithm 2.5 to R and
S, it is possible to permute {Rj | 1 ≤ j ≤ k} so that, for all
1 ≤ i ≤ k, Si = U(R1) × · · · × U(Ri) × Ri+1 × · · · × Rk and
Pi = U(R1) × · · · × U(Ri−1) × Ji × Ri+1 × · · · × Rk.

(d) In the applications of the algorithm in Algorithm 2.5 to R and
S, there are exactly k! possible sequences of the form {Si | 1 ≤ i ≤ k}.
Each such sequence determines the associated sequence {Pi | 1 ≤ i ≤ k}
but need not determine the sequence {Bi | 1 ≤ i ≤ k}.

Proof. The list of, necessarily minimal, prime ideals of R was verified
in the second paragraph of the proof of Lemma 4.1. A proof of (a)
follows by combining Algorithm 2.5 (e) and Theorem 3.3. We turn
now to the proofs of (b) and (c). Consider any application of the
algorithm in Algorithm 2.5 to R and S. As P1 is a minimal (nonzero)
prime of S, Lemma 4.1 shows that, after a suitable permutation of
{R1, . . . , Rk}, we may assume P1 = I1 = J1×R2× · · · ×Rk. Therefore,
S1 := S\P1 = R\I1 = (R1\J1)×R2× · · · ×Rk = U(R1)×R2× · · · ×Rk.
This verifies the assertions in (c) for i = 1.

Next, recall that P2 was chosen to be a minimal prime ideal of S1.
Given the above description of S1, the reader can easily verify that
P2 must take the form P2 = U(R1) × K, where K is necessarily
some minimal prime ideal of the multiplicative monoid of the ring
A := R2× · · · ×Rk. By applying Lemma 4.1 to A and its multiplicative
monoid, we see that there exists a permutation of {R2, . . . , Rk} such
that K = J2×R3× · · · ×Rk. Therefore, P2 = U(R1)×J2×R3× · · · ×Rk.
Moreover, S2 := S1 \ P2 = U(R1) × (R2 \ J2) × R3 × · · · × Rk =
U(R1)×U(R2)×R3 × · · · ×Rk. This verifies the assertions in (c) for
i = 2.

Assuming that k > 2, we provide the details for one more iteration of
the above argument. Recall that P3 was chosen to be a minimal prime
ideal of S2. Given the above description of S2, one can verify that P3

must take the form P3 = U(R1) × U(R2) × L, where L is necessarily
some minimal prime ideal of the multiplicative monoid of the ring
B := R3× · · · ×Rk. By applying Lemma 4.1 to B and its multiplicative
monoid, we see that there exists a permutation of {R3, . . . , Rk} such
that L = J3×R4× · · · ×Rk. Thus, P3 = U(R1)×U(R2)×J3×R4× · · · ×
Rk. Also, S3 := S2 \P3 = U(R1)×U(R2)× (R3 \J3)×R4× · · · ×Rk =
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U(R1) × U(R2) × U(R3) × R4 × · · · × Rk. This verifies the assertions
in (c) for i = 3.

Iterating the above argument, we obtain external direct product
descriptions of all the Pi and Si, thus completing the proof of (c). In
particular, by taking i = k, we have Sk = U(R1)× · · · ×U(Rk) = U(R),
which is a group. Therefore, by the description of the process in the
statement of Algorithm 2.5, the number of steps in the application is
n = k, thus completing the proof of (b). It remains only to prove (d).

(d) By Lemma 4.1, the typical minimal prime of S is of the form Ij ,
where 1 ≤ j ≤ k. It is easy to verify that each of the k! permutations of
{1, . . . , k} provides, via the prescriptions in (c), an implementation of
the algorithm in Algorithm 2.5. Different permutations of {1, . . . , k}
produce different sequences {Si}, because no Rj is a group under
multiplication; and we see via (b) that the sequence {Si} determines
the sequence {Pi}.

It remains only to give an example that establishes the final assertion.
Perhaps the simplest such example can be built by taking (R, M)
as an SPIR whose maximal ideal M = Rπ has index of nilpotency
3. (For a non-local example, see Remark 2.7.) For specificity, take
R := F2[X]/(X3) = {0, 1, x, 1 + x, x2, 1 + x2, x + x2, 1 + x + x2}, where
π := x := X + (X3). Since R is local, it follows from (c) that there
is only one possible sequence {Si} appearing in the applications of
the algorithm in Algorithm 2.5 to R. By Lemma 4.1, or the final
paragraph of the proof of Corollary 2.6 (a), any such application of
this algorithm involves choosing a minimal nonempty set B1 ⊆ M
such that 〈B1U(R)〉 = P1 = M ; that is, a minimal nonempty set
B1 ⊆ {0, x, x2, x + x2} such that 〈B1{1, 1 + x, 1 + x2, 1 + x + x2}〉 =
{0, x, x2, x + x2}. A routine calculation reveals that there are exactly
two such B1, namely, {x} and {x + x2}. The proof is complete.

Remark 4.3 (a). The semigroup-theoretic analogue of Theorem 4.2 (b)
is literally false. More precisely, the number of steps needed in an
application of the algorithm in Algorithm 2.5 to S, the given nontrivial
semigroup with zero, need not be the number of minimal prime ideals
of S. Perhaps the simplest nontrivial example that illustrates this
phenomenon is given by the three-element, commutative, monoid S :=
{0, a, 1}, where a2 = a and multiplication by 0 or 1 is as expected
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from the notation. Indeed, this S has exactly one minimal prime
ideal, namely, H := {0}, and so any application of the algorithm in
Algorithm 2.5 to S must involve the choice of P1 := H. In any such
application, the number of steps required is 2, as P2 is necessarily
chosen to be {a}, which is the complement of P1 in the unique maximal
ideal K := {0, a} of S. This example also shows that the method of
proof of Theorem 3.3 is efficient inasmuch as the number of steps needed
above, namely, 2, is precisely the number of prime ideals of S (which
was denoted m in the standing notation of Section 3).

There are several ways to see that the monoid S introduced above is
not the multiplicative monoid of any finite ring R. First, if such an R
existed, then Lemma 4.1 and Theorem 4.2 (b) would combine to show
that any application of the algorithm in Algorithm 2.5 to S terminates
in one step, contrary to the preceding paragraph. Second, if such an R
existed, then K = S \ U(S), by Lemma 2.2, would be the union of the
minimal prime ideals of R (since Spec (R) = Min (R)), which, in view
of Lemma 4.1, would contradict the fact that K �= H. Third, if such
an R existed, one would contradict Lagrange’s theorem, for the index
of K in, the additive group of, R would be |R|/|K| = 3/2, which is not
an integer.

One may object that the monoid S constructed above is quite special,
given that U(S) = {1}. Another, less trivial example illustrating
the points made above concerning S is the five-element commutative
monoid T := {0, a, b, 1, c}, where a2 = 0, b2 = b, c2 = 1, ab = 0,
ac = a, bc = b, and multiplication by 0 or 1 is as expected from the
notation. Indeed, U(T ) has cardinality 2; T has exactly one minimal
prime ideal, namely, {0, a}; T has exactly one nonminimal prime ideal,
namely, T \ U(T ) = {0, a, b}; and any application of the algorithm in
Algorithm 2.5 to T must terminate in exactly two steps.

(b) At first blush, it might seem possible to avoid some of the above
semigroup-theoretic reasoning if one is interested in only the ring-
theoretic applications in Theorem 4.2. For instance, suppose, to mix
the notations of Sections 3 and 4, that one takes {A1, . . . , Ak} to
be Min (R). (Such an ordering is permitted, thanks to Lemma 4.1.)
Then, taking σ to be the identity permutation (for simplicity), we find
via the prime avoidance lemma [8, Theorem 81] that Pi is nonempty
whenever 1 ≤ i ≤ k and Pi is empty whenever k + 1 ≤ i ≤ m. In
view of Theorem 4.2 (b), one may choose instead to proceed along a



MINIMAL GENERATING SETS 1189

related, but somewhat different, tack by seeking to modify the proof of
Theorem 3.3 in the ring-theoretic context by replacing {A1, . . . , Am}
and the meaning of m with Min (R) and k, respectively. Then, the
suitably redefined Pk are never empty, by virtue of Lemma 4.1 and the
prime avoidance lemma.

However, we next identify three obstacles that arise if one tries
to replace {A1, . . . , Am} with Min (R) in the above proofs. First,
the proof of Lemma 3.2 (d) would not carry over, as it depends on
Lemma 2.2. Thus, we find a second obstacle: the proof of Lemma
3.2 (n) would not carry over. Finally, a third obstacle would arise in
modifying the proof of Theorem 3.3 itself, for it can be shown that the
prime ideal D constructed there is not minimal.

In closing, we indicate a possible direction for future work. It would
be of interest to replace the restriction to finite semigroups, monoids
and rings in this paper by considering semigroups, monoids and rings
that satisfy suitable chain conditions.
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