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Abstract. We study the Mordell-Weil lattices of elliptic fibrations with sections on
algebraic surfaces over complex numbers. In this paper, we obtain the minimum of the
height pairing of such fibrations on K3 surfaces.

1. Introduction. Let @: X' > C be a Jacobian fibration on an algebraic surface
X, i.e., @ is an elliptic fibration on X with a global section. Then Shioda [8] defined a
symmetric bilinear form on the Mordell-Weil group of @, which is called the height
pairing. Moreover, Oguiso-Shioda [6] classified all Jacobian fibrations on rational
surfaces. It follows from this classification that the minimum of the height pairing is
not less than 1/30, and by Shioda [9], it is equal to 1/30.

In this paper, we consider this problem in the case of K3 surfaces. We do not know
the classification of all Jacobian fibrations on K3 surfaces. However, it follows from
Shioda [9] that this value is at least 1/120. Here, we obtain the following:

MAIN THEOREM 1.1. The minimal height of all Jacobian fibrations on K3 surfaces
is equal to 11/420.

In the same method as in [5, §6], we prove the existence of such a Jacobian fibra-
tion. In fact, we give the following:

THEOREM 1.2. Let X be a K3 surface with the transcendental lattice

2 1
T=
X(lé)

(for the existence of X and the representation of Ty, see Shioda-Inose [10]). Then, there
exists a Jacobian fibration ®: X — P! whose minimal height is equal to 11/420 (the type
of its singular fibres is Ds@ Ag® A, D A,).

To prove the minimality, suppose that there exists a Jacobian fibration on a K3
surface, whose minimal height is less than 11/420. Let .S be a section with 0 <o <11/420
where o : =<{(S), (S))> (see Shioda [8]). By using the properties of the root lattices A4,,,
D, and E,, and using computer, we see that there are 30 types of such a section S. It
follows from this classification that the minimal height is at least 1/120. However all S
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are torsions of the Mordell-Weil groups. This contradicts o #0.

ReMmark. From the above, we give a new lower bound for the minimal height of
Jacobian fibrations on algebraic surfaces.

We remark here that the Jacobian fibration with the minimal height 11/420 is not
unique.

COROLLARY 1.3. Let Z be a K3 surface on which there exists a Jacobian fibration
with the minimal height 11/420.

(i) The Picard number p of Z is equal to 19 or 20.

(ii) If p=19, then the type of singular fibres is Ag@ A, D A; P A, D A,.

(iii) If p=20, then the type of singular fibres is Ds@ A A, D A,;, Ag@ A, D
A; DA, AP or A;P A, DA; DA, DA,

ACKNOWLEDGEMENT. The author would like to express his thanks to Professor
Tetsuji Shioda for suggesting this problem, to Doctor Hisashi Usui for showing him
his notes, and to Professor Shigeyuki Kondo for encouragement.

2. Lattices. By a lattice (L, b) we mean a finitely generated free Z-module L,
endowed with a non-degenerate symmetric bilinear form b: L x L — Z. An even lattice
is a lattice whose associated quadratic form x? : =b(x, x) takes even values. Simply, we
say a lattice L instead of (L, b) when there is no fear of confusion.

If {e,, €5, . .., €,} is a Z-basis for a lattice L, we define a non-degenerate symmetric
matrix I=(b(e;, €;)); <jx<»- Then the determinant and the signature of a lattice L are
defined as

detL:=|det/|>0 and sgnL:=sgnl.

A lattice L is unimodular if det L=1. We define the positive- (negative-) definiteness of
a lattice L by that of the matrix I. Frequently, a lattice L is expressed by the matrix I.
The hyperbolic lattice H is defined by

(23)

If (L, b) is a lattice, then (L, —b) is also a lattice. We denote this lattice by — L.

A sublattice T of L is a submodule of L such that (7, b|, ;) is a lattice. A lattice
M is an overlattice of L if L becomes a sublattice of M such that the index [M: L] is
finite.

By S® T, we denote the orthogonal direct sum of lattices S and 7. A lattice is
indecomposable if it cannot be obtained as an orthogonal direct sum of two non-trivial
sublattices. The orthogonal complement T+ of T is defined as

T+={xeL|b(x, y)=0 for all yeT}.
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A sublattice T of L is said to be primitive if the quotient L/T is torsion-free. The
primitive closure of T in L is:

T={xeL|mxeT for some positive integer m} .
The dual lattice L* of L is defined by
L*={xe L Q|b(x,y)e Z for all yeL}.

The canonical bilinear form on L* induced by 5 is denoted by the same letter 5. Now
let G, :=L*/L. If L is an even lattice, then ¢, : G, — Q/2Z is defined by

q(x+L)=x*mod2Z.

We shall call (G, q;) the discriminant form of L.
Recall the following lemma:

LeEMMA 2.1 (e.g., Barth-Peters-Van de Ven [1, Lemma 1.2.1]). Let L be a lattice.
(i) detL=[L*: L]1=4%G,.
(i) If M is an overlattice of L, then det L=(det M)-[M: L]>.

An isometry of a lattice L is an isomorphism as a Z-module compatible with the
bilinear form b.

Let L be a negative-definite even lattice. We call ee L a root if e*=—2. Put
A(L):={ee L|e*= —2}. Then the sublattice of L spanned by A(L) is called the root
type of L and is denoted by L,,,.

The lattices 4,, (n=>1), D, (n>4), E, (p=6, 7, 8) defined by the Dynkin diagrams
in the Figure are called root lattices:

O0—O0—0—-—O0
Am= <a1a az, ey am> al a2 ‘13 am
d
Dn=<d19d2,-'-9dn> I
o0—O0—0—:-—0
d, d, d, d,
€y

E,=es, €3 ..., € i
P P O ®) —_— e —0
e, ey €4 e,

FIGURE.

where the vertices a;, d, and e, satisfy (a;)>=(d,)*=(e,)*=—2 and two vertices, for
example a; and a;., are jointed by an r-tuple line if and only if b(a;, a;)=r. We denote
by a;, §, or ¢ the dual base associated with a;, d; or e, respectively.

Let us recall the following facts:
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LemMMa 2.2 (Bourbaki [2, pp. 250-270]). Let L be a root lattice.
(i) L is an indecomposable negative-definite even lattice.
(ii) Gy and q; are as given in Table 1.

TABLE 1.
D,
Am n: even n: odd Es E Es
G, Zim+1)Z (Z/2Z2)? Z/AZ Z/3Z ZRZ 0
generators O 44, 0, I3 &6 £
—njf4d  —1/2
9L (—m/(m+1)) ( 1 _{ ) (—nf4) (—4/3)  (=3/2)

LemMma 2.3 (Nikulin [4, Proposition 1.4.1]). Let L be an even lattice. Then, for
an even overlattice M of L, we have an isotropic subgroup M/L of G, = L*/L with respect
toq, ie., qLI ML =0. This determines a bijective correspondence between even overlattices
of L and isotropic subgroups of G, with respect to qy.

LEMMA 2.4 (e.g., Nikulin [4, Proposition 1.6.1]). Let L be an even unimodular
lattice and let T be a primitive sublattice. Then we have

Gr=Gr:=L(T®T), gri=—4r.
In particular, det T=det T*=[L: T® T*].

THEOREM 2.5 (Nikulin [4, Corollary 1.6.2]). Let S and T be even lattices such
that Gy= Gy and qs= — qr. Then there exists an even unimodular lattice L which satisfies
the following:

(1) L is an overlattice of S® T.

(2) The embeddings of both S and T into L are primitive.

(3 S=TtinL T=S'inlL.

3. Jacobian fibrations on K3 surfaces.

3.1. Jacobian fibrations and the Mordell-Weil groups. Let X be an algebraic K3
surface, i.e., #x=0yx and dim H*(X, Ox)=0. Then the second cohomology group
H*(X, Z) equipped with the cup product is an even unimodular lattice of signature
(3, 19) isometric to H®3 @ E®2 (cf. [1, Proposition VIII.3.2]). The primitive sublattice

Sy :=H"Y(X, R)n H(X, Z)

of H¥(X, Z) is called the Picard lattice of X. Then, by the definition of K3 surfaces, Sy
is isomorphic to the Néron-Severi group of X. The sublattice

Ty:=St in H¥X, Z)
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is called the rranscendental lattice of X.

THEOREM 3.1 (Shioda-Inose [10]). (i) Let Q be a positive-definite even lattice
of rank 2. Then there exists a singular K3 surface X with Ty=Q.

(il) Suppose Q = H®*@® E®? is a primitive sublattice of signature (2, 20— p). Then
there exists an algebraic K3 surface X with Ty=Q.

(1i) follows from the surjectivity of the period map.

Let @: X— P! be a Jacobian fibration on X, i.e., @ is an elliptic fibration on X
with a global section O. Let F,= &~ !(v) denote the fibre over ve P*. For each ve P?, let

m,—1

Fv=@v,0+ Z ﬂv,j@u,j >
ji=1

where @, ; (0<j<m,—1) are the irreducible components of F,, being m, in number,
such that @, , is the unique component of F, meeting O. Then we define the following
sublattices of Sy:

U :=<{c,(0), c,(F) (F : the fibre of @)
T,:={c,(0,)|1<j<m,—1) (veP?)

T: =@ T,.
veP!
We shall call T the rype (of singular fibres) of the Jacobian fibration @.
In view of this embedding, let W :=U" in Sy. Then W becomes a negative-definite
even lattice. Since U is unimodular, Sy=U&@ W.

LemMA 3.2 (Nishiyama [S5]). (i) U is isometric to the hyperbolic lattice H.
(ii) The type T of a Jacobian fibration is isometric to the root type W .

The Mordell-Weil group of a Jacobian fibration @ is the subgroup of Aut(X)
consisting of all automorphisms acting on a general fibre as translations. In this paper,
we use the following description of the Mordell-Weil group of @.

THEOREM 3.3 (Shioda [8, Theorem 1.3]). The Mordell-Weil group of a Jacobian
fibration @ is isomorphic to the quotient Sy/(U® T)= W/T.

3.2. The Mordell-Weil lattices. In order to define a good pairing on the
Mordell-Weil group W/T, we first define a homomorphism ¢: W— W® Q, which
satisfies p(w)=w (mod T® Q) and ¢(w)e T+ in W® Q. (These conditions guarantee the
uniqueness of ¢.)

In particular, let {#;} be a Z-basis for a lattice 7, and let {r;} be the associated
dual basis. Then

p(w)=w—2 bw, t)1;.
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LemMMA 3.4 (Shioda [8, Lemma 8.3]). Let N:=T" in W, and let
I:=L.C.M.{det T,| T, 0}

be the least common multiple of det T,. Then ¢ induces an injection

1 1
@ (WT )ree Q,TN:={TW weN}CN®Q.
The non-degenerate symmetric bilinear form {*, ) : = —b(¢’(*), ¢'(+)) is called the

height pairing. We now define the Mordell-Weil lattice of a Jacobian fibration & as the
pair (W/T)gee, <*, *)). Similarly, for w, w' e W, we use the notation {w, w').

THEOREM 3.5. The determinant of the Mordell-Weil lattice is equal to
det W/det T=(det Ty) - [T : T]?/det T,
where T is the primitive closure of T in W.

Proor. In the first place, we have G5, =G, by Lemma 2.4. Since Sy=UD W,
det W=det Ty. By Lemma 2.1, det T=det T+ [T : T]?. Therefore det W/det T=(det T)"
[T: T7]%/detT.

Secondly, let {7;} be a Z-basis for the lattice T, and let {7,} be the associated dual
basis. Take w;e W so that {w;, #;} is a Z-basis for the lattice W. For all j, there exist
A€ Q such that Y b(w), 1,)T, =) M, ie., A=), bW, [,)b(Z,, 7). Then we have

(P(Wj) = Wj*z b(wj9 L) Tm= Wj_z }“{fl s
m 1
b(wj, 1) — 3. Mb(F, F,) = b(Wj— Y M1, fm> =b(p(w)), tm) =0,
7 1

b(Wj, Wi) "ZI: b, W) = b(‘P(Wj), wy) = b(‘P(Wj)a o(wy) -
By using these equations, we can transform the matrix W as follows:

W=< (b(Wj, wk))j,k (b(wj’ fm))j,m )_’< V: =(b(‘P(Wj)> (P(Wk)))j,k 0 >
(b(E, Wk | T=(B(1, )hm 0 T)

Note that — V is nothing but the Mordell-Weil lattice. Thus the determinant of the
Mordell-Weil lattice is equal to det W/det T. g.e.d.

3.3. The minimal height. The minimal height of a Jacobian fibration @ is
(@) :=min{{w, w) | p(w) #0} .
Therefore the main theorem means

min{u(P) | @: Jacobian fibrations on K3 surfaces}=11/420.



JACOBIAN FIBRATIONS ON K3 SURFACES 507

REMARK. On the other hand, for any positive integer m, there exists a Jacobian
fibration with u(®)=4+2m (cf. [6, Appendix 1]).

4, Proof of the main theorem.
4.1. Existence. To prove the main theorem, we first of all show the existence of
a Jacobian fibration with u(®)=11/420.

THEOREM 4.1. Let X be a singular K3 surface with

2 1
Ty= .
¥ ( ! 6)
Then, there exists a Jacobian fibration ® on X the type of whose singular fibres is
D@ A DA, D A,, with u(d)=11/420.
Theorem 3.1 guarantees that there exists such an X. We use the following lemma

to prove Theorem 4.1.

Lemma 4.2 (Nishiyama [5]). Let X' be a K3 surface. Let T, be a negative-definite
even lattice such that Gp,= Gy, 97, =qr,, and rank Ty =rank Ty. +4. Assume that there
exists a primitive embedding of T, into a negative-definite even unimodular lattice L of
rank 24. Then there exists a Jacobian fibration on X' whose W is isometric to the lattice
Ty in L (as for W, see §3).

ProoF oF THEOREM 4.1. The notation used from now on is as given in §2. Let

-4 0 1

Ty:=
0 1 1 =2 1
1 -2 1
1 =2

Consider the primitive embedding of T, given by T, {es+eg, €y, €5, €4, €3, €;) < Eg.
An elementary calculation shows that

T3 in Eg > (e, +eq, —a7>=< _? —; )g ~Tx,

where —e&,=6e,+4e, +8e3+ 12¢e,+ 10es+ 8eg + 6e, + 3eg. Note that det(—Tx)=11 is
square-free. It follows from Lemma 2.1 that T3 in Eg=<{e;+eg, —&;>= — Ty. Since
Ejg is unimodular, by Lemma 2.4, we have Gy, =G_;,=Gr,, 97,= —q_r,=4qr, and
rank Tp=rank Ty +4.

Put L':=D{P ®DP D AV ® AP, where DY and AY are copies of Ds or 4.,
respectively. Let {d{’} be a Z-basis for DY and let {6{’} be the associated dual basis as
in §2. Similarly, we define a Z-basis {a{’} for AY and the associated dual basis {«{’}.
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Let G=Z/4AZ® Z/8Z be the subgroup of G, generated by 65"+ 6% +af and 69 +
a +af?. Then G is isotropic with respect to g;.. Hence from Lemma 2.3, there exists
an overlattice L such that L/L’'=G. Moreover by Lemma 2.1, L is a negative-definite
even unimodular lattice of rank 24. It follows from the classification of negative-definite
even unimodular lattices of rank 24 (cf. Niemeier [3]) that L, =L'.

Consider the primitive embedding of T, into L given by

To= (69 +a) +o, DPS < L.

Then by Lemma 4.2, there exists a Jacobian fibration & such that W= Ty in L. Now
put M:=T4 in L, ,=DP ®<aM, ad, ad, aP, ad, a, a?, a?, ..., a?, P —a?>.
Thus T= W0 = Moo =D @ {al", a3, a0, a> @ (al), a)) ® <P, af, ..., dP) =
D,®ADA, DA,

Note that {xe G|g{x)=0mod 2Z} =0 (cf. Lemma 2.2). Hence, from Lemma 2.3,
T=T, i.e., the Mordell-Weil group is torsion-free. Therefore the Mordell-Weil group
W/|T is isomorphic to Z.

Moreover, by Theorem 3.5, the determinant of the Mordell-Weil lattice is equal
to det W/det T=det Ty/det T=11/420. Hence the Mordell-Weil lattice is isometric to
the (Q-valued) lattice (11/420) of rank 1. Thus, there exists a Jacobian fibration @ on
X with w(®)=11/420. g.e.d.

REMARK. Putw =389+ (@ — o + o)+ (— P + «4?). Then it is easy to see that
W={w, W,,> and p(w)=ad/15—a'?/7. Therefore

. 5-3 1 17 1 1 11

w, wh= —p(w)>= —_—t———=— .
oWy = o) = gt Ty 10 T 6 420
A Jacobian fibration with u(®)=11/420 is not unique. Here is another example:

ProroSITION 4.3. Let Y be a K3 surface with

21
Ty=<1 6)69(—2)-

Then, there exists a Jacobian fibration @ on Y the type of whose singular fibres is
AP A, DA B A, D Ay, with u(d')=11/420.

Proor. By Theorem 2.5, there exists a primitive embedding of T, into H®3 @ E®?
such that (Ty)t=(—Ty) ® E$2. Then by Theorem 3.1, there exists such a Y.

The notation used from now on is as given in the proof of Theorem 4.1. Let
Ty : =T, ®(—2). Then Gr,=Gr,, 97,=9r, and rank Ty =rank T, +4.

Consider the primitive embedding of Ty into L given by

Ty={8) +a" +af, DY @ dPy < L.
Then by Lemma 4.2, there exists a Jacobian fibration @’ such that W=(Tg)* in L. Thus
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T= ((T(),)l in Lroot)root = (<d(12)>l in M)root = (<d(12)>l in D(S)Z))root @ A6 @ A4 @ AZ = A6 @
A, ®A;® A, ® A, because A7 in Ds=A,® A, (cf. [5, Corollary 4.4)).

In the same method as in the proof of Theorem 4.1, we can show the existence
of a Jacobian fibration @' with u(®’)=11/420. g.e.d.

REMARK. Note that Ty~ H ® (22). Indeed, let {¢,, ¢,, 3} be a Z-basis for Ty where
t2=2,12=6,1t2=—2,b(t;, t,)=1 and b(t,, t3)=>b(t,, t;)=0. Then

2 1
TY=<1 6)(—9(—2)=<11,t2,t3>§<t1+t3,t2—3(t1+t3),12t1—2t2+11t3>

~HO(22).

4.2. Minimality. In the following, we use the notation as in §3. To prove the
minimality, we show that there does not exist we W such that {w, w) = — @(w)? < 11/420

and @(w)+£0, for any Jacobian fibration on any K3 surface.

Step 1. Let T, be the orthogonal components of T, i.e., T=W,,,,;= @ T,. Put
n,:=rank T,. Then T,=A4,, D, or E, .

DEFINITION 4.4. Let we W. w is said to be normalized if w satisfies, for each v,
one of the following conditions:

(i) weT}t

(i) There exists j, such that b(w, t5)=1 and b(w, t;)=0 for all j' #j,, where {t}}
is a Z-basis for T,.

LEMMA 4.5. For any w' € W, there exists we W such that w is normalized and w=w'
(mod T). (In particular, p(w)=p(w').)

ProoF. Let {7}} be the dual basis associated with {¢;}. We may assume that 7} = o,
d; or g. From the properties G,, = {0, 0y, 0, ..., 0, }, Gp, =1{0, 9y, 6, 0y}, Gg,=
{0, &5, &6}, Gg,={0, &,} and Gy, =0 of G, we can directly see that

;b(w’, t)=0 or 1} (modT,) (for somej,) .

Let ¢ :=), b(w, tf)tp—(0 or 73). Then t°e T,. Thus w:=w'—) " q.ed.

ALTERNATIVE PROOF. From Shioda [8], the sections of a Jacobian fibration be-
come the representative vectors of the Mordell-Weil group. Then there exists a section
S such that ¢,(S)=w(mod U@ T). Thus w=c(S)—c,(0)—(S - 0 —0?%)c(F). g.e.d.

Step 2. Suppose that, for a Jacobian fibration on a K3 surface, there exists a
normalized we W such that (w, w> = —pw)?<11/420 and ¢(w)#0. If w satisfies the
condition (i) in Definition 4.4 for all v, then ¢(w)=w. On the other hand, the assumption
@(w)#0 implies w¢ T and hence w?# —2, i.e., —w?>4. Therefore there exists v for
which w satisfies the condition (ii). Assume that {1, 2, ..., r} is the set of all v’s satisfying
the condition (ii). Put T¥:=@’ _, T,. Then
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M-~

n,=rank T¥ <rank T<rank W—1<(rank Sy—2)—1<20-3=17.

v=1

Let {t;} be a Z-basis for T, and let {t}} be the associated dual basis. Now, for each
v<r, there exists j, such that b(w, t)=1 and b(w, t}) =0 for all j’ #j,. Then

pw)y=w— Y 9 .
v=1
Moreover, 1% =Y, b(t%, tp) 1. Then b(w, 15)=3, b(t%,, th)b(w, 1}) =(z},)*. Thus
PWy=w2—=2 Y b(w, )+ Y (15 =w?— ) (19)*.
v=1 v=1 v=1

Step 3. Suppose T"=@’ _, 4,,. Let {a(4,)} be a Z-basis for 4, and let
{o(A,,)} be the associated dual basis as in §2. Then we may assume that 1% =«; (4, ).
Therefore (¢%)* =a;,(4,,)> = —j,(n,+1—j,)/(n,+1). Then

r . 1—i 1
Z .]v(nv+ Ju) €—~Z
=1 n,+1 l

(w, wh=—p(w)> = —w?— ,
where [ is the least common multiple of n,+ 1. Then {(w, w)>1// because {(w, w)>0.
Thus

420
I=LCM.{n, +1]1<v<r}>—=>38.

Since o; (A,,)* =0, +1-;,(4,,)? we may suppose that 1<j,<[(n,+1)/2] where [+] is
the greatest integer not more than *. We now look for a triple ({n,}, {j,}, —w?) satisfying
the following conditions:

() my=2n>---2nand)’_ n,<I17.

(2) I=LCM.{n,+1]|1<v<r}>38.

() 1<j,<[(n,+1)/2] such that 0< —w?—Y"_ j(n,+1—j,)/(n,+1)<11/420,
where —w?>4.

Remark. If the triple satisfies (3), then it satisfies (2), too. However, the condition
(2) is useful to determine the triples.

Using computer, we have the following lemma (the program is given in the
appendix).

LemMA 4.6. (i) There are 337 types of T =@ A, satisfying (1) and (2). (In
particular 2<r<11.)

(ii) The pairs (T" =D A, , p(w)) satisfying (1), (2) and (3) are classified in Table
2, where o™ :=0,(A,,) and ™™ : =, (A™)) (A™ is a copy of A,,), and —w?=4.
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TABLE 2.
No. Cw, ) Tw=@:=1 T, (P(W)=W—z:=1r§v
1 1/120 A, BA,DA; DA, DA, w— (@ + o + o® + o2 + 41
2 1/105 ADAs DA DA w— (o8 + o) + o 11 4 {142
3 4D A, DA D AF? w— (@ + ol + oD + oV + f2-2)
4 A DA D AP B AP? WP +aP+ Y2 P4 o)
5 1/ 84 A22DA; DA, W— (@) + a2 + o) + o)
6 /.70 A* @A, @4, w— (@ + o2 + o + i)
7 1/ 63 Ag DA @ A4,y w— (' + o +o§)
8 As® A ® AP w— (o + P + V) +afl?)
9 1/ 60 4, @45 D 4, w— (@ + o +a)
10 AsDA’D A, w— (@ + oV + o2 + o)
1 1/ 56 404,04, 4, w— (o + o+ o +alh)
12 1/ 55 A10® A, DA, w— (a4 +a® + o)
13 Ap® 4,0 4F? w—(a$'? +a® + ot + o)
14 2/105 A, BAcDA, w— (0 +o® + o)
15 A, DA D A, w— (o8 + V) + oD )
16 1/ 52 A1, DA, w—(@{d? +ad)
17 3/140 As@ A, D AP? w— (o + ol + oV + o3 2)
18 AsD A4, © 4,0 477 w— (0 +aP + o + iV + o)
19 1/ 44 4109 4,04, w— (O +aP +ait)
20 1/ 42 AS2@ A, w— (@51 4 252 ()
21 1/ 40 Ay DA, DA, w— (@) + o + o))
22 A;D A, w— (@9 + o)
2 4,© 492D 4, w— (@) + a1+ a2 4 o)
24 1/ 39 A, DA; DA, w— (4P + o +a?)
25 A, DA, DAP? w— (0D + 02 4 oD o2
26 2/ 7 A1 @ A4 w— (o9 + o)
27 11/420 A BA DA DA, DA, w— (o8 + o + & + o + o)
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TABLE 3.
No. Cw, w) ™=0,.,T oW =w—3"_ 7,
18.1 3/140 A @A, DA ®D, w— (088 + &l + a3+ 5
18.2 As@A, DA, @ D; w— (8 + & + o + 6)
18.3 As®DA, DD, w— (@ + ¥ + 5
19.1 1/ 44 A y® D w—(a® +55))
27.1 11/420 A DA, DA, DD, w— (o8 + o + af® + 5

Step 4.

PROPOSITION 4.7. Suppose that T* has D, or E, as an orthogonal component. Then
Table 3 lists up the pairs (TY= :=1 T,, o(w)) satisfying {w, w) = —@(w)*><11/420,
where 8™ :=6, in D,, and —w*=4 (up to symmetries of A,, and D,,).

Proor. First, consider the case where T*¥=@ :;11 A, ®Es (T,:=Eg). Since
Gg, ={0, ¢,, 66} and &} =¢Z= —4/3, we may assume that (p(w)=w—z;l1 o; (A,,)—€s

(7 :=¢,). Hence

r—1 r—1 4
(P(W)2=W2_ Zl o‘j.,(An.,)z_3%:“’2_ Z ajv(An.,)2+?'
v= v=1

Let

r—1 2
T’:=< ® A,,v)(-B< @ Ag’").
v=1 k=1

Consider the abstract vector w’ such that (w)>=w?, b(w/, a; (4, ))=1 and b(w, a;(4,)) =
0 for all v and j' #j,, while b(w', a;(AP))=1 and b(w', a,(4¥))=0 for all k=1, 2. Let
W’ be the lattice spanned by w' and T'. Thus, in W’, we may assume that T* =T’ and

r—1 2
pW)=w— 21 aj.,(An.,)_kZ @y (49) .
v= =1
Then rank T* <rank T*<17 and
r—1 2 r=1 4
WP =W)?— ) 0 (4,)2— D o0,(AP2=w?— ) a;(4,)+ 3= Pp(w)? .
v=1 k=1 v=1

By the hypothesis on w, a pair (T"', ¢(w')) satisfies the conditions (1), (2) and (3) except
n,>2=rank AP for any v <r. Therefore the pair is one of those in Table 2.

Note that only the lattices Nos. 3 and 4 in Table 2 have two orthogonal components
A, Hence TY =A, @A, DA D AP? where A'=A, 0r AP2. Thus T"= A, DA, DA D
E4 and hence rank T* > 18. Therefore there does not exist such a w in the case where
™=@, 4, ® Es.
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TABLE 4.
Tr - (T;, 2 ‘C;-r ®k An(k) Zk al(An(k)) v

Eq 0 0
E, 3/2 & 493 X, ) 4
Eg 4/3 €2, &g A%? a, (AD) + o, (4%) 2
Dy K2 81,9, AR¥ DM AC D) K

1 Sope 492 2 (A) + o, (AP) 2% =2
Dy QK +1)/4 81,9, A @ APF a(A)+ ¥, i (4d) k-1

1 Saw+1 492 oy (A +a, (AD) 2k —1

Next, assume that 7%= :;11 A, ®T, with T,# A4, . Then we can replace T, by
@, A, asin Table 4 and find a pair (T*, p(w')) as in Table 2. (v : =rank T* —rank T*).

It now follows from Tables 2 and 4 that rank 7" > 18 except in the cases in Table
3.

Finally, consider the other case where T¥=(p" o1 A,,u) G—) @ vy 4 Iv) with
r—r'>22and T,# A4, forallv>r'. As above, we can replace (—B , T, by @D, Ay as
in Table 4 and ﬁnd a lattice T* as in Table 3. Since the lattlces in Table 3 do not
have E, as an orthogonal component, we may assume that 7,=D, for all v>r". By
Table 4, T* has A$? or A, @® A, as orthogonal components. However there does not
exist such a lattice in Table 3. Thus we complete the proof of Proposition 4.7.

Step 5. Let W" be the lattice spanned by w and T”. Sincewe Wand T < T < W,
we have W' < W. Then W, = W,,,,=T. In this final step, we shall see that rank W/, =
rank W” except in the cases No. 27 in Table 2 and No. 27.1 in Table 3. This implies
that w is a torsion element in the Mordell-Weil group W/T, i.e., this contradicts the
assumption @(w)#0.

First, we shall see that rank W =rank W” in the case No. 1 in Table 2. Let
z:=8a{" + (8ot — (M) + 8o + (80 — x?) + 8l Then ze T*. Moreover, put y:=
8w—z=8¢p(w)+a¥+a). Then ye W” and y* = —8%(1/120) —4/5—2/3 = — 2. Therefore
3 TW=A4,®, Ay DA DA, DA, =AP>D A, ® A,. Hence

rank W, >rank{y, T*)> =rank W” .

Thus there does not exist w in the case No. 1.

In the same way, we can deal with the other cases and we get the results in Table
5, where ye W" such that y¢ T and y?>= —2, and x : = @(w).

From Table 5, we can see that rank W), =rank W” except in the cases Nos. 27
and 27.1. We remark that No. 27 (resp. No. 27.1) corresponds to w in Proposition 4.3
(resp. Theorem 4.1). Hence there does not exist we W such that {w, w)> <11/420 and

o(w)#£0, for any Jacobian fibration on any K3 surface. q.e.d.



514 K. NISHIYAMA
TABLE §.

No. {w, wd T ¥ T

1 1/120 A; DA, DA DA, DA, 8x+ i +aP A2 A DA,
2 1/105 AsDAsD A, D AR? 6x+0® +al® A, DA D AP?
3 A DA, DA D AP? 6x +o® + o A DA, DAP?
4 AcD A, @ AP D 4P 6x+ ol 4 ol A, DAF*@ A2
5 1/ 84 A’ A, DA, Tx+aP +af? A23

6 1/ 70 A2@A, DA, Tx 4+l + ol A8

7 1/ 63 Ag@ A A4, dx+ ol + o A s@®A;

8 Ag @A D AP? 4x+oP +al® Ay @ AP

9 1/ 60 Ag@AsD A, Sx+of +a A$?

10 AsD AP D A, Sx+ o) +af¥ A, DAL

11 1/ 56 A, DAD A DA, 8x+a® A2 DA, DA,
12 1/ 55 Ao ®A,D A, 4x + 10 o A s® A,

13 A @A, DAR? 4x + ol + af¥ A s AP?

14 2/105 A, DA DA, 5x+a® +a A$?

15 AsDA*® 4, 5x 4+ oS +aP Ay ® A2

16 1/ 52 A, DA, 2x + o2 + ¥ D¢

17 3/140 AcDA, @ AP? 4x + oS + ol A, @A

18 AP A, DA; DAP? 4x 4+ o0 + P A BA; D AR
18.1 Ac®A, DA, DD, 4x+a +ofP A, @A @D,
18.2 A A DA, DD 4x + o + ol A A, ®D;
18.3 AD A, DD, 4x +a® + ol A, ®D,

19 1/ 44 Ao @A DA, 2x +allD + o D,,®A,

19.1 A, 0@ Dy 2x + ol + 6 Dy

20 1/ 42 A D A, Tx+of® A®3

21 1/ 40 A, DA, DA, S5x+af 4ol 492

22 A, ® 4, 3x+of +af? A,

23 A, DA’ DA, 5x+a+al A AD?

24 1/ 39 A, DA, DA, 4x +af2 + o A s DA,

25 A, DA, DAP? 4x +allP +afP A s DA

26 2/ 77 Ao @ Ag 3x+alt® 448 Aq

27 11/420 AsDA DA DA, DA,

27.1 A DA, DA, D Ds
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5. Remark. Here, we classify all possible types of singular fibres of the Jacobian
fibrations @ with u(®)=11/420.
Let X and Y be K3 surfaces with

Tx=<? ;) and Ty=<? ;)@(—2)=H@(22)

as in §4.1. For a Jacobian fibration & with u(P)=11/420, put
Wy:=U"in Sy and Wy:=U'in Sy.
Then (Wy)root =Ds @ As @ A, @ 4, and (Wy)oqu =Ac D A, D A3 D A, D 4.

COROLLARY 5.1. Let Z be a K3 surface on which there exists a Jacobian fibration
& with (P)=11/420.

(i) The Picard number p=rank S; of Z is at least 19.

(ii) If p=19, then the type of singular fibres is Ag@ A, @A; P A, DA,. In
particular, S;=H® Wy.

(iii) If Z is a singular K3 surface (p=20), then there exist three types of singular
fibres Ds @ Ag@ A, D Ay, AgPA, DA DA, DA and Ac@ A, DA DA, D A,.

ProoF. Forsucha &, put W:=U'in S,, ie., S;,=UD W.

(i) From the classification of T" in §4.2, W > W, or Wy. Hence p=2+rank W>
19.

(ii) If p=19, then Wis an overlattice of Wy. Since det Wy =det Ty =22 is square-
free, by Lemma 2.1, W=W,. Thus S,=U® W,>~H® W, (Lemma 3.2).

(iii) Suppose that Z is a singular K3 surface. Since rank T< 17, the type of singular
fibres of such a @ is isometric t0 (Wx)rootr (W1)root OF (Wy)root ® A;. By Theorem 4.1,
there exists such a @ with the first type. The following lemma shows that there exists
such a @ with the other types.

LeMMA 5.2. Let Z' be a singular K3 surface with T, =(22) ® (2n) (n is a positive
integer). Then S;.= H® Wy @ (—2n). In particular, there exists a Jacobian fibration with
WD) =11/420 (the type of its singular fibres is Ag@® A, D A; D A, ® AP? for n=1 or
As @A, D A; D A, D A, otherwise).

Proor. By Lemma 2.4, gy, =¢5,= —qr,= —(1/22). Then

1 1
qu:=<2—2>® <Z>= —dwya(-2m™ THHOWyB(-2n) -

It follows from [7, Theorem 1 in Appendix to §6] that any primitive embeddings of
T, into H®* @ E®? are isometric. Therefore, by Theorem 2.5,

S,=Tf in H®ES 2HO W, ®(—2n).

By [5], there exists a Jacobian fibration whose W is isometric to Wy @ (—2n). q.ed.
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K. NISHIYAMA

Appendix. To prove Lemma 4.6, we used the computer language UBASIC (ver.
8.41 for NEC Personal Computers PC9801 by Yuji Kida). Here is the program we used
for Lemma 4.6 (ii).

T=17 280
dim N(T),R(T),L(T),H(T),I(T),s(T) 290
clr V,No 300
N(0)=T 310
L(0)=1 320
*NextN1 330
V=V+1 340
N(V)=N(0) 350
*NextN2 360
R(V)=R(V-1)+N(V) 370
L(V)=lem(L(V-1) ,N(V)+1) 380
H(V)=int ((N(V)+1)/2) 390
N(0)=min(N(V),T-R(V)) 400
if N(0)>0 goto *NextN1i 410
*NextN3 420
if L(V)<38 goto *NextN4 430
clr J 440
I(0)=H(1) 450
*NextI1 460
J=J+1 470
if N(J-1)=N(J) then H(J)=I(J-1) 480
I(3)=H(D) 490
*NextI2 500
5(I)=8(J-1)+(I(I)*(N(I)+1-1(1)))//(N(I)+1) 510
if J<V goto *NextIl 520
W=int (S(V))+2-int (S(V))e@2 530
M=W-5(V)
REFERENCES

if M>1//38 goto *NextI3
No=No+1
if V>6 then print M;V:goto *NextI3
D=M
for P=1 to V
D=D*(N(P)+1)
next
for P=1 to V
lprint using(3),N(P);
next
lprint spc(18-3%V);using(4),M;spc(5)
for P=1 to V
lprint using(3),I(P);
next
Iprint spc(23-3*V);using(4) ,R(V);W;D
*NextI3
I(H=I(3)-1
if I(J)>0 goto *NextI2
J=J-1
if J>0 goto *NextI3
*NextN4
N(V)=N(V)-1
if N(V)>0 goto *NextN2
if V>1 then V=V-1:goto *NextN3
print No
end
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