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Abstract We compute the minimal and the maximal bound on the number of generators of

a minimal smooth monomial Togliatti system of forms of degree d in n + 1 variables, for

any d ≥ 2 and n ≥ 2. We classify the Togliatti systems with number of generators reaching

the lower bound or close to the lower bound. We then prove that if n = 2 (resp. n = 2, 3) all

range between the lower and upper bound is covered, while if n ≥ 3 (resp. n ≥ 4) there are

gaps if we only consider smooth minimal Togliatti systems (resp. if we avoid the smoothness

hypothesis). We finally analyze for n = 2 the Mumford–Takemoto stability of the syzygy

bundle associated with smooth monomial Togliatti systems.
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1 Introduction

The classification of the smooth projective varieties satisfying at least one Laplace equation

is a classical problem, still very far from being solved. We recall that a projective variety

X ⊂ PN is said to satisfy a Laplace equation of order d, for an integer d ≥ 2, if its

d-osculating space at a general point has dimension strictly less than expected. The most

famous example is the Togliatti surface, a rational surface in P5 parametrized by cubics,

obtained from the third Veronese embedding V (2, 3) of P2 by a suitable projection from

four points: the Del Pezzo surface obtained projecting V (2, 3) from three general points on

it admits a point which belongs to all its osculating spaces, so projecting further from this

special point one obtains a surface having all osculating spaces of dimension ≤ 4 instead

of the expected 5. This surface is named from Eugenio Togliatti who gave a classification

of rational surfaces parametrized by cubics and satisfying at least one Laplace equation of

order 2. For more details, see the original articles of Togliatti [25,26] or [10,14,27] for

discussions of this example. In [16], the two authors of this note and Ottaviani described

a connection, due to apolarity, between projective varieties satisfying at least one Laplace

equation and homogeneous artinian ideals in a polynomial ring, generated by polynomials

of the same degree, and failing the weak Lefschetz property (WLP for short). Let us recall

that a homogeneous ideal I ⊂ R := K [x0, . . . , xn] fails the weak Lefschetz property in

some degree j if, for any linear form L , the map of multiplication by L from (R/I ) j to

(R/I ) j+1 is not of maximal rank (see [18]). Thanks to this connection, explained in detail

in Sect. 2, they obtained in the toric case the classification of the smooth rational threefolds

parametrized by cubics and satisfying a Laplace equation of order 2, and gave a conjecture

to extend it to varieties of any dimension. This conjecture has been recently proved in [17].

Note that the assumption that the variety is toric translates in the fact that the related ideals

are generated by monomials, which simplifies apolarity and allows to exploit combinatorial

methods. This point of view had been introduced by Perkinson in [22] and applied to the

classification of toric surfaces and threefolds satisfying Laplace equations under some rather

strong additional assumptions on the osculating spaces.

In this note, we begin the study of the analogous problems for smooth toric rational

varieties parametrized by monomials of degree d ≥ 4, or equivalently for artinian ideals of

R generated by monomials of degree d . The picture becomes soon much more involved than

in the case of cubics, and, for the moment, a complete classification appears out of reach.

We consider mainly minimal smooth toric Togliatti systems of forms of degree d in R, i.e.,

homogeneous artinian ideals generated by monomials failing the WLP, minimal with respect

to this property, and such that the apolar linear system parametrizes a smooth variety.

The first goal of this note is to establish minimal and maximal bounds, depending on n

and d ≥ 2, for the number of generators of Togliatti systems of this form and to classify

the systems reaching the minimal bound or close to reach it. We then investigate whether all

values comprised between the minimal and the maximal bound can be obtained as number of

generators of a minimal smooth Togliatti system. We prove that the answer is positive if n = 2,

but negative if n ≥ 3. If we avoid smoothness assumption, the answer becomes positive for
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n = 3 but is still negative for n ≥ 4, even though we detect some intervals and sporadic values

that are reached. Finally, as applications of our results, we study the Mumford–Takemoto

stability of the syzygy bundle associated with a minimal smooth Togliatti system with n = 2.

Next we outline the structure of this note. In Sect. 2, we fix the notation and we collect the

basic results on Laplace equations and the Weak Lefschetz Property needed in the sequel.

Section 3 contains the main results of this note. Precisely, after recalling the results for

degree 2 and 3, in Theorem 3.9 we prove that the minimal bound μs(n, d) on the number of

generators of a minimal smooth Togliatti system of forms of degree d in n + 1 variables, for

d ≥ 4, is equal to 2n + 1, and classify the systems reaching the bound. Then in Theorem

3.17, we get the complete classification for systems with number of generators μs(n, d)+ 1.

We also compute the maximal bound ρs(n, d) and give various examples. In Sect. 4, we

prove that for n = 2 and any d ≥ 4 all numbers in the range between μs(n, d) and ρs(n, d)

are reached (Proposition 4.1), while for n ≥ 3 the value 2n + 3 is a gap (Proposition 4.4 ).

We then prove that, avoiding smoothness, for n = 3 the whole interval is covered. Finally,

Sect. 5 contains the results about stability of the syzygy bundle for minimal smooth monomial

Togliatti systems in 3 variables.

Notation Throughout this work, k will be an algebraically closed field of characteristic

zero and Pn = Proj(k[x0, x1, . . . , xn]). We denote by V (n, d) the Veronese variety image

of the projective space Pn via the d-tuple Veronese embedding. (F1, . . . , Fr ) stands for the

ideal generated by F1, . . . , Fr , while 〈F1, . . . , Fr 〉 denotes the k-vector space they generate.

2 Background and preparatory results

In this section, we recall some standard terminology and notation from commutative algebra

and algebraic geometry, as well as some results needed later on. In particular, we briefly recall

the relationship between the existence of homogeneous artinian ideals I ⊂ k[x0, x1, . . . , xn]

which fail the weak Lefschetz property and the existence of (smooth) projective varieties

X ⊂ PN satisfying at least one Laplace equation of order s ≥ 2. For more details, see [16]

and [17].

2.1 The weak Lefschetz property

Let R := k[x0, x1, . . . , xn] = ⊕t Rt be the graded polynomial ring in n + 1 variables over

the field k.

Definition 2.1 Let I ⊂ R be a homogeneous artinian ideal. We say that R/I has the weak

Lefschetz property (WLP, for short) if there is a linear form L ∈ (R/I )1 such that, for all

integers j , the multiplication map

×L : (R/I ) j → (R/I ) j+1

has maximal rank, i.e., it is injective or surjective. We will often abuse notation and say that

the ideal I has the WLP. In this case, the linear form L is called a Lefschetz element of R/I .

If for the general form L ∈ (R/I )1 and for an integer number j the map ×L has not maximal

rank, we will say that the ideal I fails the WLP in degree j .

The Lefschetz elements of R/I form a Zariski open, possibly empty, subset of (R/I )1. Part

of the great interest in the WLP stems from the ubiquity of its presence (See, e.g., [2,4,8,9,15–

21]) and the fact that its presence puts severe constraints on the possible Hilbert functions,
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which can appear in various disguises (see, e.g., [23]). Though many algebras are expected to

have the WLP, establishing this property is often rather difficult. For example, it was shown by

Stanley [24] and Watanabe [28] that a monomial artinian complete intersection ideal I ⊂ R

has the WLP. By semicontinuity, it follows that a general artinian complete intersection ideal

I ⊂ R has the WLP, but it is open whether every artinian complete intersection of height ≥ 4

over a field of characteristic zero has the WLP. It is worthwhile to point out that the weak

Lefschetz property of an artinian ideal I strongly depends on the characteristic of the ground

field k, and in positive characteristic, there are examples of artinian complete intersection

ideals I ⊂ k[x0, x1, x2] failing the WLP (see, e.g., Remark 7.10 in [20]).

In [16], Mezzetti, Miró-Roig and Ottaviani showed that the failure of the WLP can be

used to construct (smooth) varieties satisfying at least one Laplace equation of order s ≥ 2

(see also [1,17]). Let us review the needed concepts from differential geometry in order to

state this result.

2.2 Laplace equations

Let X ⊂ PN be a projective variety of dimension n and let x ∈ X be a smooth point. We

choose a system of affine coordinates and an analytic local parametrization φ around x where

x = φ(0, . . . , 0) and the N components of φ are formal power series. The s-th osculating

space T
(s)
x X to X at x is the projectivized span of all partial derivatives of φ of order ≤ s.

The expected dimension of T
(s)
x X is

(

n+s
s

)

−1, but in general dim T
(s)
x X ≤

(

n+s
s

)

−1; if strict

inequality holds for all smooth points of X , and dim T
(s)
x X =

(

n+s
s

)

− 1 − δ for a general

point x , then X is said to satisfy δ Laplace equations of order s.

Remark 2.2 It is clear that if N <
(

n+s
s

)

− 1 then X satisfies at least one Laplace equation

of order s, but this case is not interesting and will not be considered in the following.

Let I be an artinian ideal generated by r homogeneous polynomials F1, . . . , Fr ∈ R of

degree d . Associated with Id there is a morphism

ϕId
: Pn −→ Pr−1.

Note that ϕId
is everywhere regular because I is an artinian ideal. Its image Xn,Id

:=

Im(ϕId
) ⊂ Pr−1 is the projection of the n-dimensional Veronese variety V (n, d) from the

linear system 〈(I −1)d〉 ⊂| OPn (d) |= Rd where I −1 is the ideal generated by the Macaulay

inverse system of I (See [16], Sect. 3 for details). Analogously, associated with (I −1)d there

is a rational map

ϕ(I −1)d
: Pn

��� P(n+d
d )−r−1.

The closure of its image Xn,(I −1)d
:= Im(ϕ(I −1)d

) ⊂ P(n+d
d )−r−1 is the projection of the

n-dimensional Veronese variety V (n, d) from the linear system 〈F1, . . . , Fr 〉 ⊂| OPn (d) |=

Rd . The varieties Xn,Id
and Xn,(I −1)d

are usually called apolar. In the following Xn,(I −1)d

will simply be denoted by X .

We have:

Theorem 2.3 Let I ⊂ R be an artinian ideal generated by r homogeneous polynomials

F1, . . . , Fr of degree d. If r ≤
(

n+d−1
n−1

)

, then the following conditions are equivalent:

(1) the ideal I fails the WLP in degree d − 1;
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(2) the homogeneous forms F1, . . . , Fr become k-linearly dependent on a general hyper-

plane H of Pn;

(3) the n-dimensional variety X = Xn,(I −1)d
satisfies at least one Laplace equation of order

d − 1.

Proof See [16, Theorem 3.2]. ⊓⊔

In view of Remark 2.2, the assumption r ≤
(

n+d−1
n−1

)

ensures that the Laplace equations

obtained in (3) are not obvious. In the particular case n = 2, this assumption gives r ≤ d +1.

The above result motivates the following definition:

Definition 2.4 Let I ⊂ R be an artinian ideal generated by r forms F1, . . . , Fr of degree d ,

r ≤
(

n+d−1
n−1

)

. We introduce the following definitions:

(1) I is a Togliatti system if it satisfies the three equivalent conditions in Theorem 2.3.

(2) I is a monomial Togliatti system if, in addition, I (and hence I −1) can be generated by

monomials.

(3) I is a smooth Togliatti system if, in addition, the n-dimensional variety X is smooth.

(4) A monomial Togliatti system I is said to be minimal if I is generated by monomials

m1, . . . , mr and there is no proper subset mi1 , . . . , mir−1 defining a monomial Togliatti

system.

The names are in honor of Eugenio Togliatti who proved that for n = 2 the only smooth

Togliatti system of cubics is I = (x3
0 , x3

1 , x3
2 , x0x1x2) ⊂ k[x0, x1, x2] (see [2,25,26]). The

main goal of our note is to determine a lower bound μ(n, d) (resp. μs(n, d)) for the minimal

number of generators μ(I ) of any (resp. smooth) minimal monomial Togliatti system I ⊂

k[x0, x1, . . . , xn] of forms of degree d ≥ 2 and classify all (resp. smooth) minimal monomial

Togliatti systems I ⊂ k[x0, x1, . . . , xn] of forms of degree d ≥ 2 which reach the bound, i.e.,

μ(I ) = μ(n, d) (resp. μ(I ) = μs(n, d)). These results will be achieved in the next section.

3 The minimal number of generators of a smooth Togliatti system

From now on, we restrict our attention to monomial artinian ideals I ⊂ k[x0, . . . , xn] (i.e.,

the ideals invariants for the natural toric action of (k∗)n). Recall that when I ⊂ R is an

artinian monomial ideal, the homogeneous part I −1
d of degree d of the inverse system I −1 is

spanned by the monomials in Rd not in I . It is also worthwhile to recall that for monomial

artinian ideals to test the WLP there is no need to consider a general linear form. In fact, we

have

Proposition 3.1 Let I ⊂ R := k[x0, x1, . . . , xn] be an artinian monomial ideal. Then R/I

has the WLP if and only if x0 + x1 + · · · + xn is a Lefschetz element for R/I .

Proof See [20], Proposition 2.2. ⊓⊔

Given an artinian ideal I ⊂ k[x0, x1, . . . , xn], we denote by μ(I ) the minimal number of

generators of I . We define

μ(n, d) := min{μ(I ) | I ∈ T (n, d)},

μs(n, d) := min{μ(I ) | I ∈ T
s(n, d)},

ρ(n, d) := max{μ(I ) | I ∈ T (n, d)} and

ρs(n, d) := max{μ(I ) | I ∈ T
s(n, d)}
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where T (n, d) is the set of all minimal monomial Togliatti systems I ⊂ k[x0, x1, . . . , xn] of

forms of degree d and T
s(n, d) is the set of all minimal smooth monomial Togliatti systems

I ⊂ k[x0, x1, . . . , xn] of forms of degree d . By definition, we have T
s(n, d) ⊂ T (n, d).

Our first goal is to provide a lower bound for μ(n, d) and μs(n, d). First, we observe

that all artinian monomial ideals I ⊂ k[x0, x1, . . . , xn] generated by forms of degree d ≥ 2

contain xd
i for i = 0, . . . , n and the ideals (xd

0 , . . . , xd
n ) do satisfy WLP. Therefore, we always

have

n + 2 ≤ μ(n, d) ≤ μs(n, d) ≤ ρs(n, d) ≤ ρ(n, d) ≤

(

n + d − 1

n − 1

)

. (1)

Let us start analyzing the cases d = 2, 3.

Remark 3.2 The minimal smooth monomial Togliatti systems I ⊂ k[x0, x1, . . . , xn] of

quadrics were classified in [17], Proposition 2.8. It holds:

(1) T
s(2, 2) = ∅.

(2) For n ≥ 3, we have

μs(n, 2) =

{

λ2 + 2λ + 1 if n = 2λ

λ2 + 3λ + 2 if n = 2λ + 1.

(3) For n ≥ 3, ρs(n, 2) =
(

n
2

)

+ 3.

In particular, for n = 3 we have n + 2 < μs(n, 2) = ρs(n, 2) =
(

n+1
2

)

; for n = 4 we have

n + 2 < μs(n, 2) = ρs(n, 2) <
(

n+1
2

)

; and for all n > 4 the inequalities in (1) are strict, i.e.,

n + 2 < μs(n, 2) < ρs(n, 2) <

(

n + 1

2

)

.

We also have μ(n, 2) = 2n + 1 for n ≥ 4 (since we easily check that μ(n, 2) ≥ 2n + 1

and I = (x2
0 , x2

1 , . . . , x2
n , x0x1, x0x2, . . . , x0xn) fails weak Lefschetz property from degree

1 to degree 2) and μ(3, 2) = 6 (since μ(3, 2) > 5 and I = (x2
0 , x2

1 , x2
2 , x2

3 , x0x1, x2x3) fails

weak Lefschetz property in degree 1).

Remark 3.3 The minimal smooth monomial Togliatti systems I ⊂ k[x0, x1, . . . , xn] of

cubics were classified in [16], Theorem 4.11 and [17], Theorem 3.4. It holds:

(1) ρs(2, 3) = μs(2, 3) = 4,

(2) ρs(3, 3) = μs(3, 3) = 8,

(3) 13 = μs(4, 3) < 15 = ρs(4, 3), and

(4) For all n ≥ 4, we have ρs(n, 3) =
(

n+1
3

)

+ n + 1,

μs(n, 3) = min

⎧

⎨

⎩

s
∑

i=1

(

ai + 2

3

)

+
∑

1≤i< j<k≤s

ai a j ak | n + 1 =

s
∑

i=1

ai and

n − 1 ≥ a1 ≥ · · · ≥ as ≥ 1}

=

{

2
(

λ+3
3

)

if n = 2λ + 1
(

λ+2
3

)

+ 2
(

λ+3
3

)

if n = 2λ

and, hence

n + 2 < μs(n, 3) < ρs(n, 3) <

(

n + 2

3

)

.
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We may also check that μ(n, 3) = 2n + 1 for n ≥ 3 (since μ(n, 3) ≥ 2n + 1 and

I = (x3
0 , x3

1 , . . . , x3
n , x2

0 x1, x2
0 x2, . . . , x2

0 xn) fails weak Lefschetz property in degree 2) and

μ(2, 3) = 4 (since μ(2, 3) ≥ 4 and I = (x3
0 , x3

1 , x3
2 , x0x1x2) fails weak Lefschetz property

from degree 2 to degree 3). Notice that μs(n, 2) ≥ 2n + 1 unless n = 2, 3 and μs(n, 3) ≥

2n + 1 unless n = 2, 3.

From now on, we assume d ≥ 4 and n ≥ 2. We will prove that μs(n, d) = μ(n, d) =

2n + 1. In addition, we will classify all (resp. smooth) minimal monomial Togliatti systems

I ⊂ k[x0, x1, . . . , xn] of forms of degree d ≥ 4 with μ(I ) = 2n + 1 and all smooth

minimal monomial Togliatti systems I ⊂ k[x0, x1, . . . , xn] of forms of degree d ≥ 4 with

μ(I ) = μs(n, d) + 1 = 2n + 2, revealing how the power of combinatorics tools can allow

us to deduce pure geometric properties of projections of n-dimensional Veronese varieties

V (n, d). To prove it, we will associate with any artinian monomial ideal a polytope and

the toric variety X = Xn,(I −1)d
introduced in Sect. 2.2. Hence, we will be able to tackle

our problem with tools coming from combinatorics. In fact, when we deal with artinian

monomial ideals I ⊂ k[x0, x1, . . . , xn], the failure of the WLP can be established by fairly

easy combinatoric properties of the associated polytope PI . To state this result, we need to

fix some extra notation.

Let I ⊂ k[x0, x1, . . . , xn] be an artinian monomial ideal generated by monomials of

degree d and let I −1 be its inverse system. We denote by �n the standard n-dimensional

simplex in the lattice Zn+1, we consider d�n , and we define the polytope PI as the convex

hull of the finite subset AI ⊂ Zn+1 corresponding to monomials of degree d in I −1. As usual

we define the sublattice AffZ(AI ) in Zn+1 generated by AI as follows:

AffZ(AI ) :=

⎧

⎨

⎩

∑

x∈AI

nx · x | nx ∈ Z,
∑

x∈AI

nx = 1

⎫

⎬

⎭

.

We have:

Proposition 3.4 Let I ⊂ k[x0, x1, . . . , xn] be an artinian monomial ideal generated by r

monomials of degree d. Assume r ≤
(

n+d−1
n−1

)

. Then, I is a Togliatti system if and only if there

exists a hypersurface of degree d − 1 containing AI ⊂ Zn+1. In addition, I is a minimal

Togliatti system if and only if any such hypersurface F does not contain any integral point

of d�n \ AI except possibly some of the vertices of d�n .

Proof It follows from Theorem 2.3 and [22], Proposition 1.1. ⊓⊔

Let us illustrate the above proposition with a precise example.

Example 3.5 The artinian ideal I = (x0, x1)
3 + (x2, x3)

3 ⊂ k[x0, x1, x2, x3] defines a

minimal monomial Togliatti system of cubics. In fact, the set AI ⊂ Z4 is:

AI = {(2, 0, 1, 0), (1, 0, 2, 0), (2, 0, 0, 1), (1, 0, 0, 2), (0, 2, 1, 0), (0, 1, 2, 0),

(0, 2, 0, 1), (0, 1, 0, 2), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)}.

There is a hyperquadric, and only one, containing all points of AI and no integral point of

3�3 \ AI , namely

Q(x0, x1, x2, x3)=2
(

x2
0 +x2

1 +x2
2 +x2

3

)

+ 4(x0x1+x2x3)− 5(x0x2 + x0x3 + x1x2 + x1x3).

For sake of completeness, we also recall the following useful combinatorial criterion which

will allow us to check whether a subset A of points in the lattice Zn+1 defines a smooth toric

variety X A or not.
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2084 E. Mezzetti, R. M. Miró-Roig

Fig. 1 Non-smooth Togliatti systems with n = 2 and d = 5

Proposition 3.6 Let I ⊂ k[x0, x1, . . . , xn] be an artinian monomial ideal generated by

monomials of degree d. Let AI ⊂ Zn+1 be the set of integral points corresponding to

monomials in (I −1)d , SI the semigroup generated by AI and 0, PI the convex hull of AI and

X AI
the projective toric variety associated with the polytope PI . X AI

is smooth if and only

if for any non-empty face Ŵ of PI the following conditions hold:

(1) The semigroup SI /Ŵ is isomorphic to Zm
+ with m = dim(PI ) − dim Ŵ + 1.

(2) The lattices Zn+1 ∩ AffR(Ŵ) and AffZ(AI ∩ Ŵ) coincide.

Proof See [6] Chapter 5, Corollary 3.2. Note that in this case X AI
= Xn,(I −1)d

. ⊓⊔

Figure 1 illustrates two examples of minimal Togliatti systems which are non-smooth.

The points of the complementary of AI are marked with a cross.

The condition (1) of Proposition 3.6 is verified if and only if translating each vertex v of

the polygon to the origin of Z2, and considering for each edge coming out of v the first point

with integer coordinates, these form a Z-basis of Z2. The condition (2) is equivalent to each

point of Z2 which lies on an edge of the polygon being also a point of AI . Therefore, the first

figure violates condition (1) and the second one violates condition (2).

In order to achieve the classification of minimal (resp. smooth) monomial Togliatti systems

I ⊂ k[x0, . . . , xn] of degree d ≥ 4 with μ(I ) as small as possible, we need to introduce one

more definition.

Definition 3.7 A Togliatti system I ⊂ k[x0, x1, . . . , xn] of forms of degree d is said to be

trivial if there exists a form F of degree d − 1 such that I contains x0 F, . . . , xn F .

The following remark justifies why we call them trivial.

Remark 3.8 (1) Let F be a homogeneous form of degree d − 1. Since x0 F, x1 F, . . . , xn F

become linearly dependent on the hyperplane x0 + · · · + xn = 0, using Proposition 3.1, we

conclude that any artinian ideal of the form I = (x0, . . . , xn)F + (F1, . . . , Fs) is a (trivial)

Togliatti system. In the monomial case, looking at the inverse system that parameterizes the

surface X , we can observe that it satisfies a Laplace equation of the simplest form, given by

the annihilation of the partial derivative of order d − 1 corresponding to the monomial F .

(2) Let I ⊂ k[x0, x1, . . . , xn] be a monomial Togliatti system of cubics. If I is trivial,

then it is not smooth.

Theorem 3.9 For any integer n ≥ 2 and d ≥ 4, we have μs(n, d) = μ(n, d) = 2n + 1. In

particular, if I ⊂ k[x0, x1, . . . , xn] is a minimal (resp. smooth minimal) monomial Togliatti

system of forms of degree d, then μ(I ) ≥ 2n + 1.

In addition, all minimal monomial Togliatti systems I ⊂ k[x0, . . . , xn] of forms of degree

d ≥ 4 with μ(I ) = 2n + 1 are trivial unless one of the following cases holds:
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A
0

I
A

1

I
A

2

I
A

3

I

Fig. 2 AI with I = (x4
0 , x4

1 , x4
2 , x2

0 x1x2)

(1) (n, d) = (2, 5) and, up to a permutation of the coordinates, I = (x5
0 , x5

1 , x5
2 , x3

0 x1x2,

x0x2
1 x2

2 ).

(2) (n, d) = (2, 4) and, up to a permutation of the coordinates, I = (x4
0 , x4

1 , x4
2 , x0x1x2

2 ,

x2
0 x2

1 ).

Furthermore, (1) is smooth and (2) is not smooth.

Proof First of all, we observe that I = (xd
0 , xd

1 , . . . , xd
n )+xd−1

0 (x1, . . . , xn) ⊂ k[x0, . . . , xn]

is a minimal monomial Togliatti system of forms of degree d , and by Proposition 3.6, being

d ≥ 4, it is smooth. Thus, μ(n, d) ≤ μs(n, d) ≤ 2n + 1 .

To prove that μ(n, d) = 2n + 1, we have to check that any monomial artinian ideal

I = (xd
0 , . . . , xd

n , x
a1

0

0 x
a1

1

1 . . . x
a1

n
n , . . . , x

an−1
0

0 x
an−1

1

1 . . . x
an−1

n
n ) with

∑n
i=0 a

j
i = d ≥ 4, 1 ≤

j ≤ n − 1 has the WLP at the degree d − 1. According to Proposition 3.4, to prove the last

assertion it is enough to prove that no hypersurface of degree d − 1 contains all points of

AI ⊂ Zn+1, where, as before, AI ⊂ Zn+1 is the set of all integral points corresponding to

monomials of degree d in I −1. For any integer 0 ≤ i ≤ d , we set Hi = {(a0, . . . , an) ∈

Zn+1 | a0 = i} and Ai
I := AI ∩ Hi ; we have AI = ∪d

i=0 Ad
I .

To illustrate this method, in Fig. 2 we show the pictures of the sets AI , and A0
I , A1

I , A2
I ,

A3
I , when I = (x4

0 , x4
1 , x4

2 , x2
0 x1x2).

We will prove now the theorem proceeding by induction on n. Let us start with the case

n = 2. We take a monomial artinian ideal I = (xd
0 , xd

1 , xd
2 , x

a1
0

0 x
a1

1

1 x
a1

2

2 ) with a1
0 + a1

1 + a1
2 =

d ≥ 4, and we show that no plane curve of degree d −1 contains all points of AI ⊂ Z3. Since

4 ≤ d = a1
0 +a1

1 +a1
2 , we can assume wlog that 2 ≤ a1

0 . We assume that there is a plane curve

Fd−1 of degree d − 1 containing all points of AI and we will get a contradiction. Since Fd−1

contains the d points of A1
I , it factorizes as Fd−1 = L1 Fd−2. Since Fd−2 contains the d − 1

points A0
I , it factorizes as Fd−1 = L0 L1 Fd−3. Now, if a1

0 = 2, then A2
I contains d −2 points,

if a1
0 > 2, then A2

I contains d − 1 points; in any case Fd−3 = L2 Fd−4 for a suitable form
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Fd−4 of degree d − 4. Repeating the argument, we get that Fd−1 = L0 L1 . . . Ld−2, so Fd−1

does not contain the points of Ad−1
I , which is non-empty by assumption. This contradicts the

existence of a plane curve of degree d − 1 containing all integral points of AI .

Let now n ≥ 3 and assume that the claim is true for n−1. Let us prove that no hypersurface

of degree d − 1 contains all points of AI ⊂ Zn+1, where

I =

(

xd
0 , . . . , xd

n , x
a1

0

0 x
a1

1

1 . . . x
a1

n
n , . . . , x

an−1
0

0 x
an−1

1

1 . . . x
an−1

n
n

)

with
∑n

i=0 a
j
i = d ≥ 4, 1 ≤ j ≤ n − 1. Wlog we can assume a1

0 ≥ a1
1 ≥ . . . ≥ a1

n ≥ 0

and also a1
0 ≥ a2

0 . Therefore a1
0 > 0, so x0 appears explicitly in the monomial x

a1
0

0 x
a1

1

1 . . . x
a1

n
n

and A0
I is equal to d�n−1 minus the n vertices and at most n − 2 other points. By inductive

assumption, no hypersurface in n variables of degree d − 1 contains A0
I , so Fd−1 factorizes

as L0 Fd−2, where Fd−2 is a hypersurface of degree d − 2 containing all points of AI \ A0
I .

If the n−1 monomials have a1
0 =a2

0 = . . .=an−1
0 ≤1, then A2

I = (d−2)�n−1, . . . , Ad−1
I =

�n−1 and we deduce that Fd−1 = L0 L2 . . . Ld−1, because for j =2, . . . , d − 1 the simplex

(d− j)�n−1 is not contained in any hypersurface in n−1 variables of degree d− j . This gives

a contradiction because Fd−1 misses all points of A1
I �= ∅. Otherwise, A1

I = (d − 1)�n−1

minus at most n −2 points. Then by inductive assumption, there is no hypersurface of degree

d − 1 in n − 1 variables containing A1
I . Then we repeat the argument until we reach a

contradiction.

Finally we will classify all minimal monomial Togliatti systems I ⊂ k[x0, . . . , xn] of

forms of degree d ≥ 4 with μ(I ) = 2n + 1. First we assume that n = 2 and we will show

that all of them are trivial unless d = 5 and I = (x5
0 , x5

1 , x5
2 , x3

0 x1x2, x0x2
1 x2

2 ) or d = 4

and I = (x4
0 , x4

1 , x4
2 , x0x1x2

2 , x2
0 x2

1 ). Take I = (xd
0 , xd

1 , xd
2 , m1, m2) ⊂ k[x0, x1, xn] with

mi = x
ai

0

0 x
ai

1

1 x
ai

2

2 and
∑2

j=0 ai
j = d a minimal Togliatti system. If there exists 0 ≤ i ≤ 2 such

that a1
i , a2

i ≥ 2 (wlog we assume i = 0), then the plane curve Fd−1 containing all integral

points of AI factorizes Fd−1 = L0 L1 . . . Ld−2, and since Fd−1 cannot miss any point of AI ,

we must have Ad−1
I = ∅ which forces m1 = xd−1

0 x1, m2 = xd−1
0 x2. Assume now that for any

0 ≤ i ≤ 2, there exists 1 ≤ j ≤ 2 with a
j
i ≤ 1. Since d ≥ 4, we may assume a1

0, a1
1 ≤ 1 and

a2
2 ≤ 1. Therefore, m1 ∈ {x0x1xd−2

2 , x0xd−1
2 , x1xd−1

3 } and m2 ∈ {xa
0 xd−1−a

1 x2, xα
0 xd−α

1 |

0 ≤ a, α ≤ d −1}. But none gives a minimal Togliatti system because xd
0 , xd

1 , xd
2 , m1, m2 are

linearly independent on a general line of P2 (see Theorem 2.3) unless d = 5 and m1 = x0x1x3
2

and m2 = x2
0 x2

1 x2 or d = 4 and m1 = x2
0 x1x2 and m2 = x0x2

1 x2
2 . Furthermore, applying

Proposition 3.6, we easily check that only I = (x5
0 , x5

1 , x5
2 , x3

0 x1x2, x0x2
1 x2

2 ) defines a smooth

variety.

Assume now n ≥ 3 and d ≥ 4 and let I = (xd
0 , xd

1 , . . . , xd
n , m1, . . . , mn) ⊂ k[x0, . . . , xn]

with mi = x
ai

0

0 x
ai

1

1 . . . x
ai

n
n and

∑n
j=0 ai

j = d be a Togliatti system. There is an integer j , 0 ≤

j ≤ n such that #{i | ai
j ≥ 1} ≥ 2. Therefore, wlog we can assume a1

0, a2
0 ≥ 1. Arguing as in

the previous part of the proof, any hypersurface Fd−1 of degree d − 1 containing all integral

points of AI factorizes Fd−1 = L0 L1 . . . Ld−2, and since Fd−1 cannot miss any point of AI ,

we must have Ad−1
I = ∅ which forces m1 = xd−1

0 x1, m2 = xd−1
0 x2, . . . , mn = xd−1

0 xn and

hence I is trivial, which proves what we want. ⊓⊔

Remark 3.10 Minimal monomial Togliatti systems I ⊂ k[x0, x1, x2] of forms of degree

d ≥ 4 with μ(I ) = 5 were also classified by Albini in [1], Theorem 3.5.1. So, our results

can be seen as a generalization of his result to the case of an arbitrary number of variables.
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Fig. 3 Smooth non-trivial Togliatti system with n = 2 and d = 5

Remark 3.11 Up to permutation of the variables, the trivial Togliatti systems with μ(I ) =

2n + 1 are of the form (xd
1 , . . . , xd

n ) + xd−1
0 (x0, . . . , xn).

Figure 3 illustrates the only smooth non-trivial example of minimal Togliatti system of

forms of degree 5 with μ(I ) = 5.

Remark 3.12 In the case of the non-trivial minimal smooth monomial Togliatti system

I =
(

x5
0 , x5

1 , x5
2 , x3

0 x1x2, x0x2
1 x2

2

)

all 4-osculating spaces to X have dimension lower than 14, which is the expected dimension,

but the dimension of the previous osculating spaces is not constant. Some points of X have

2-osculating space or 3-osculating space of dimension less than the general one (they are

flexes of X ).

This follows from [22], where it is proved that the dimension of the s-osculating space

at a point x ∈ X , corresponding to a vertex vx of the polytope PI , is maximal if and only

if (PI ∩ Z2) \ AI contains all points out to level s − 1 with respect to vx . This means that,

after translating vx to the origin and using the first lattice points lying along the two edges of

PI emanating from vx as basis for the lattice, (PI ∩ Z2) \ AI contains all points (a, b) with

a +b ≤ s −1. This remark explains why this example is not included in the list of Perkinson

[22], Theorem 3.2.

To better understand its geometry, let us note that the surface X is the projection, from a line

L, of the blowing up of P2 at three general points E0, E1, E2, embedded in P17 by the linear

system of the quintics through them. The line L is chosen so to meet all 4-osculating spaces

of this surface. We observe that there are three lines of this type, obtained by interchanging

the variables. Every such line meets also the 3-osculating space at one of the three points

Ei and the 2-osculating spaces at the other two. This gives rise to the flexes. Any curve on

X corresponding to a general line through one of the blown up points is a smooth rational

quartic. One can check that the flexes result to be singular points of intersection of two

irreducible components of some reducible quartics obtained after the projection from L . It

would be nice to have a precise geometric description of the inflectional loci of X , but this

goes beyond the scope of this article, and we plan to return on this topic in a forthcoming

paper.

Remark 3.13 The hypersurface Fd−1 of degree d − 1 that contains the integral points AI of

a minimal monomial Togliatti system

I =
(

xd
0 , xd

1 , . . . , xd
n , m1, . . . , mn

)

⊂ k[x0, . . . , xn]
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with μ(I ) = 2n + 1 can be described. It turns out that if I is trivial then Fd−1 is the union

of d − 1 hyperplanes.

If n = 2, d = 4 and I = (x4
0 , x4

1 , x4
2 , x0x1x2

2 , x2
0 x2

1 ), then F3 = (x0 + x1 − 3x2)(3x2
0 −

10x0x1 + 3x2
1 − 4x0x2 − 4x1x2 + x2

2 ). In this example, the surface X ⊂ P9 is the closure of

the image of the parametrization φ = φ(I −1)4
defined by the monomials of degree 4 not in I ,

i.e.,
(

x3
0 x1, x3

0 x2, x2
0 x1x2, x2

0 x2
2 , x0x3

1 , x0x2
1 x2, x0x3

2 , x3
1 x2, x2

1 x2
2 , x1x3

2

)

.

One computes that its partial derivatives of order 3 satisfy the Laplace equation

(

x0φx0 + x1φx1 − x2φx2

)

(

x2
0φx2

0
− 2x0x1φx0x1 + x2

1φx2
1

+ x2
2φx2

2

)

= 0.

If n = 2, d = 5 and I = (x5
0 , x5

1 , x5
2 , x3

0 x1x2, x0x2
1 x2

2 ), then F4(x0, x1, x2) = 24(x4
0 +

x4
1 + x4

2 ) − 154(x3
0 x1 + x0x3

1 − x3
0 x2 + x3

1 x2 + x0x3
2 + x1x3

2 ) + 269(x2
0 x2

1 + x2
0 x2

3 + x2
1 x2

2 ) +

288(x2
0 x1x2 + x0x1x2

2 ) − 337x0x2
1 x2 which is irreducible.

Similarly, the Laplace equation satisfied by the parametrization of the surface X ⊂ P15 is

x4
0φx4

0
+ x4

1φx4
1

+ x4
2φx4

2
− x3

0 x1φx3
0 x1

− x3
0 x2φx3

0 x2
− x0x3

1φx0x3
1

− x0x3
2φx0x3

2
− x3

1 x2φx3
1 x2

−x1x3
2φx1x3

2
+ x2

0 x2
1φx2

0 x2
1
+ x2

0 x2
2φx2

0 x2
2
+ x2

1 x2
2φx2

1 x2
2
− 3x2

0 x1x2φx2
0 x1x2

+ 2x0x2
1 x2φx0x2

1 x2

+2x0x1x2
2φx0x1x2

2
= 0.

Corollary 3.14 Fix integers d ≥ 4 and n ≥ 2. Let I = (F1, . . . , Fr ) ⊂ k[x0, . . . , xn]

be a monomial artinian ideal of forms of degree d. If r ≤ 2n then, for any s ≤ d − 1,

the s-osculating space to X at a general point x ∈ X has the expected dimension, namely
(

n+s
s

)

− 1.

In next Theorem, we will classify all smooth minimal monomial Togliatti systems I ∈

T
s(n, d) whose minimal number of generators exceeds by one the possible minimum. We

start with a lemma.

Lemma 3.15 Let I = (xd
0 , xd

1 , . . . , xd
n , m1, . . . , mh) ⊂ k[x0, . . . , xn] with h ≥ n, mi =

x
ai

0

0 . . . x
ai

n
n for i = 1, . . . , h, be a minimal Togliatti system of forms of degree d ≥ 3. Assume

a1
0 ≥ a2

0 ≥ . . . ≥ ah
0 . If ah−n+2

0 > 0, then ai
0 > 0 for all index i .

Proof Since I is a Togliatti system, there exists a form Fd−1 of degree d−1 in x0, . . . , xn pass-

ing through all points of AI . Its restriction to H0, Fd−1(0, x1, . . . , xn), vanishes at all points of

A0
I . By assumption, to get A0

I we have to remove from the simplex d�n−1 the n vertices and at

most n −2 other points. We denote by I ′ ⊂ K [x1, . . . , xn] the ideal generated by xd
1 , . . . , xd

n

and the monomials not containing x0 among m1, . . . , mh . If Fd−1(0, x1, . . . , xn) �= 0, I ′ is a

Togliatti system in n variables with μ(I ′) ≤ 2n − 2, which contradicts Theorem 3.9. Hence

Fd−1(0, x1, . . . , xn) = 0 and Fd−1 = L0 Fd−2. But I is minimal, so by Proposition 3.4 L0

does not contain any point of d�n \ AI except the vertices, which implies that ai
0 > 0 for

any index i . ⊓⊔

Remark 3.16 Recall that, when I is a monomial Togliatti system, the projective variety X

defined by the apolar linear system of forms of degree d has all (d − 1)-osculating spaces

of dimension strictly less than expected, i.e., X satisfies a Laplace equation of order d − 1.

Since the (d − 1)-osculating spaces of V (n, d) have the expected dimension, this means

that the space that I determines meets the (d − 1)-osculating space T(d−1)
x V (n, d) for all
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x ∈ V (n, d). As pointed out in [16], §4, when I is as in Lemma 3.15, i.e., all monomials in

I except xd
0 , . . . , xd

n are multiple of one variable, there is a point p ∈ V (n, d) such that the

intersection of I with the (d −1)-osculating space at p meets all the other (d −1)-osculating

spaces. These Togliatti systems are called in [16] trivial of type B.

For instance, if t =
(

n+d−2
n−1

)

and F1, . . . , Ft are any general monomials of degree d − 1,

the ideal

I =
(

xd
0 , . . . , xd

n , x0(F1, . . . , Ft )

)

is a minimal Togliatti system of the type just described.

Theorem 3.17 Let I ⊂ k[x0, x1, . . . , xn] be a smooth minimal monomial Togliatti system

of forms of degree d ≥ 4. Assume that μ(I ) = 2n + 2. Then I is trivial unless n = 2, and

up to a permutation of the coordinates, one of the following cases holds:

(1) d = 5 and I = (x5
0 , x5

1 , x5
2 , x3

0 x1x2, x2
0 x2

1 x2, x0x3
1 x2) or I = (x5

0 , x5
1 , x5

2 , x3
0 x1x2,

x0x3
1 x2, x0x1x3

2 ) or I = (x5
0 , x5

1 , x5
2 , x2

0 x2
1 x2, x2

0 x1x2
2 , x0x2

1 x2
2 ).

(2) d = 7 and I = (x7
0 , x7

1 , x7
2 , x3

0 x3
1 x2, x3

0 x1x3
2 , x0x3

1 x3
2 ) or I = (x7

0 , x7
1 , x7

2 , x5
0 x1x2,

x0x5
1 x2, x0x1x5

2 ) or I = (x7
0 , x7

1 , x7
2 , x0x1x5

2 , x3
0 x3

1 x2, x2
0 x2

1 x3
2).

Proof Let us first assume that n = 2 and let I = (xd
0 , xd

1 , xd
2 , m1, m2, m3) ⊂ k[x0, x1, x2]

with mi = x
ai

0

0 x
ai

1

1 x
ai

2

2 and
∑2

j=0 ai
j = d be a minimal smooth Togliatti system. We distinguish

several cases:

Case 1 We assume that there is 0 ≤ j ≤ 2 such that a1
j , a2

j , a3
j ≥ 2. Wlog we can assume

j = 0 and a1
0 ≥ a2

0 ≥ a3
0 ≥ 2. Let Fd−1 be a plane curve containing all points of AI . Since

Fd−1 contains the d points of A1
I and the d−1 points of A0

I , it factorizes as Fd−1 = L0 L1 Fd−3.

Let 2 ≤ i < d , then Hi contains d − i + 1 integral points of d�2; to get Ai
I , we have

to remove three points, the first one from Ha3
0
, the second one from Ha2

0
and the third one

from Ha1
0
. First of all, we want to exclude that a3

0 < a2
0 . Otherwise Fd−3 has as factors

L2, . . . , La3
0
, but in view of minimality Ha3

0
must be contained in AI , which gives a contra-

diction. Therefore, a3
0 = a2

0 and there are two subcases to analyze separately:

(1.1) a1
0 = a2

0 = a3
0 := s ≥ 2. In this case, Fd−1 factorizes as Fd−1 =

L0 . . . Ls−1Ls+1 . . . Ld−1 and the plane curve Fd−1 contains all points of AI if and

only if s = d − 2. But in this case m1 = xd−2
0 x2

1 , m2 = xd−2
0 x1x2, m3 = xd−2

0 x2
2 ,

and applying Proposition 3.6, we deduce that I = (xd
0 , xd

1 , xd
2 , m1, m2, m3) is not a

smooth Togliatti system since it violates condition (ii) of Proposition 3.6.

(1.2) u := a1
0 > a2

0 = a3
0 := s ≥ 2. In this case, Fd−1 = L0 L1 Fd−3 and Fd−3 con-

tains all integral points in ∪d−1
ℓ=2 Aℓ

I if and only if u = s + 1 and (m1, m2, m3) =

x s
0xa

1 xd−1−a−s
2 (x0, x1, x2) for a suitable a ≥ 0. Therefore, I is a trivial smooth Togli-

atti system.

Case 2 We assume ai
j ≥ 1 for all i, j and that for all 0 ≤ j ≤ 2 there exists 1 ≤ i j ≤ 3

such that a
i j

j = 1. We distinguish 4 subcases, and a straightforward computation allows us

to conclude:

(2.1) (xd
0 , xd

1 , xd
2 , xd−2

0 x1x2, x0xd−2
1 x2, x0x1xd−2

2 ) is a smooth minimal Togliatti system if

and only if d = 5 or 7.
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(2.2) (xd
0 , xd

1 , xd
2 , xd−2

0 x1x2, x0xd−2
1 x2, xa

0 xb
1 xc

2) with (a, b, c) �= (1, 1, d − 2) is a smooth

minimal Togliatti system if and only if d = 5 and (a, b, c) = (2, 2, 1).

(2.3) (xd
0 , xd

1 , xd
2 , x0x1xd−2

2 , xa
0 xb

1 x2, xe
0 x

f
1 x

g
2 ) with a, b ≥ 2 and (e, f, g) �= (d −

2, 1, 1), (1, d − 2, 1), (1, 1, d − 2) is a smooth minimal Togliatti system if and only

if d = 7, (a, b) = (3, 3) and (e, f, g) = (2, 2, 3).

(2.4) (xd
0 , xd

1 , xd
2 , x0xa

1 xb
2 , xc

0 x1xe
2, x

f
0 x

g
1 x2) is a smooth minimal Togliatti system if and

only if d = 5 and a = b = c = e = f = g = 2 or d = 7 and a = b = c = e = f =

g = 3.

Case 3. We assume that there exists a
i0

j0
= 0, ai

j ≥ 1 for all (i, j) �= (i0, j0) and that for all

0 ≤ j ≤ 2 there exists 1 ≤ i j ≤ 3 such that a
i j

j = 1. The smoothness criterion (Proposition

3.6) implies that, up to permutation of the coordinates, we have m1 = xd−1
1 x2 and we can

assume m2 = xa
0 x1xb

2 and m3 = xu
0 xv

1 xw
2 with a, b, u, v, w ≥ 1 and I is never a smooth

minimal Togliatti system.

Case 4. We assume that there exists a
i0

j0
= a

i1

j1
= 0 and that for all 0 ≤ j ≤ 2 there exists

1 ≤ i ≤ 3 such that ai
j ≤ 1. The smoothness criterion (Proposition 3.6) implies that, up to

permutation of the coordinates, we have m1 = xd−1
1 x2, m2 = xd−1

0 x2 and m3 = xa
0 xb

1 xc
2

which does not correspond to a smooth minimal Togliatti system.

Let us now assume that n ≥ 3. We want to prove that all minimal smooth monomial

Togliatti systems I ⊂ k[x0, . . . , xn] of forms of degree d ≥ 4 with μ(I ) = 2n +2 are trivial.

This time we distinguish two cases:

Case 1. For all 0 ≤ j ≤ n, #{i | ai
j ≥ 1} ≤ 2. This implies that each variable x j appears

explicitly in exactly two of the monomials m1, . . . , mn+1. Equivalently, looking at the sim-

plex, the n + 1 integral points to remove from d�n to get AI are all on the exterior facets,

and on each facet, there are exactly n − 1 points. We consider now the restriction of the

hypersurface Fd−1 to a facet, we apply Theorem 3.9, and we get that the corresponding n −1

monomials, together with the dth powers of the corresponding variables, form a trivial Togli-

atti system in n variables of the form described in Remark 3.11. This gives a contradiction,

so this case is impossible.

Case 2. There exists 0 ≤ j ≤ n such that #{i | ai
j ≥ 1} ≥ 3. Wlog we can assume

a1
0 ≥ a2

0 ≥ · · · ≥ an+1
0 ≥ 0 and a3

0 ≥ 1. Therefore, in view of Lemma 3.15 an+1
0 > 0.

This means that all monomials m1, . . . , mn+1 contain x0. We consider the restrictions of

xd
0 , . . . , xd

n , m1, . . . , mn+1 to the hyperplane xn = x0 + · · · + xn−1, and they are linearly

dependent by assumption. But in (x0+· · ·+xn−1)
d , there is some monomial not containing x0

that cannot cancel with the others, so its coefficient in a null linear combination must be 0, and

by consequence, also the coefficients of xd
1 , . . . , xd

n−1 are 0. This implies that the monomials

m1, . . . , mn+1 divided by x0, together with xd−1
0 , . . . , xd−1

n , form again a Togliatti system

but of degree one less, with the same properties. So we can proceed by induction on the

degree, until we arrive to d = 4. Now we have to prove that there is no hypersurface F3 of

degree 3 containing all points of AI unless I is a trivial monomial Togliatti system. Since

an+1
0 > 0, F3 = L0 F2 and F2 contains all points of AI \ A0

I . This is possible if and only

if I is trivial of type (xd
0 , . . . , xd

n ) + (x0, . . . , xn)m where m is a monomial of degree d − 1

involving at least 2 variables. ⊓⊔

Remark 3.18 In Theorem 3.17, we did not use the smoothness assumption in the cases with

n ≥ 3.
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To complete the results of Theorems 3.9 and 3.17, in next Proposition we give a criterion to

distinguish the smooth ones among the trivial Togliatti systems. To have a complete picture,

we also include systems with number of generators bigger than ρ(n, d).

Proposition 3.19 Let I be a trivial Togliatti system of the form (x0, . . . , xn)m+(xd
0 , . . . , xd

n ),

where m is a monomial. Then I is smooth if and only if one of the following happens (up to

permutation of the variables):

(1) d = 2 and n = 2 or n = 3;

(2) d = 3, n = 2, m = x2
0 ;

(3) d ≥ 4, n = 2, m = xd−1
0 or m = x

i0

0 x
i1

1 x
i2

2 with i0 ≥ i1 ≥ i2 > 0;

(4) d ≥ 4, n ≥ 3, m = xd−1
0 or m = x

i0

0 x
i1

1 . . . x
in
n with i0 ≥ i1 ≥ · · · ≥ in ≥ 0 and i2 > 0.

Proof If d = 2, we may assume that m = x0. If n = 2, then X is a point. Hence, the system

I is smooth. Assume n ≥ 3. After cutting the points of I from �, it remains AI = A0
I ,

which is the (n − 1)-dimensional simplex minus the n vertices. Through each vertex of the

polytope PI , there are 2(n − 2) edges. Then the system is singular unless n = 3. Indeed by

Proposition 3.6, (1), for X to be smooth the number of edges emanating from each vertex

must be equal to n − 1.

If d = 3, then m can be x2
0 , or x0x1. If n = 2, the first case is smooth, because PI is a

trapezium, and the second one is singular: indeed, we cut from � the whole edge x3
0 − x3

1 . So

an edge of PI is x2
0 x2 − x2

1 x2, but the central point x0x1x2 does not belong to AI . Therefore

this edge gives a singularity. If n ≥ 3 both cases are singular: the first one because through

the vertices of PI adjacent to x3
i there are more than n edges and the second one because PI

contains the 1-dimensional faces for n = 2.

Now assume d ≥ 4 and n = 2. If m = xd−1
0 , then the system is clearly smooth. If

m = xd−2
0 x1, then it is singular because the situation is as in Fig. 1. If m = xd−i

0 x i−1
1 with

i > 2, the system is singular because in the edge xd
0 − xd

1 of PI we have to cut two points

in the middle. Finally if m = x
i0

0 x
i1

1 x
i2

2 , with i0, i1, i2 all strictly positive, we get a smooth

system because the points of I are all inner points in PI .

If d ≥ 4 and n ≥ 3, then if m is xd−1
0 , the system is smooth; if m = xd−2

0 x1 or

m = xd−i
0 x i−1

1 with i > 2 the system is singular, because PI has a 2-dimensional face which

is singular. Finally if m contains at least 3 of the variables, the system is smooth: indeed, on

the 1-dimensional edges of PI , there are no points of I , while on the faces of PI of dimension

at least 2 the points of I are in the interior. ⊓⊔

4 Number of generators of a minimal Togliatti system

We consider now the range comprised between μs(n, d) and ρs(n, d) (resp. μ(n, d) and

ρ(n, d)) and ask whether all values are reached.

Next Proposition gives a rather precise picture in the case n = 2.

Proposition 4.1 With notation as in Sect. 3, we have:

(1) For any d ≥ 4, μs(2, d) = μ(2, d) = 5.

(2) For any d ≥ 4, ρs(2, d) = ρ(2, d) = d + 1.

(3) For any d ≥ 4 and any 5 ≤ r ≤ d + 1, there exists I ∈ T
s(2, d) with μ(I ) = r .
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Proof (1) It follows from Theorem 3.9. (2) By definition, we have ρ(2, d) ≤ d + 1 for any

d ≥ 4. The inequality ρs(2, d) ≥ d +1 (and, hence, ρs(2, d) = ρ(2, d) = d +1) will follow

from (3). (3) For any d ≥ 4 and for any 5 ≤ r ≤ d + 1, we consider the ideals

I5 =
(

xd
0 , xd

1 , xd
2

)

+ xd−1
0 (x1, x2), and for r > 5

Ir =
(

xd
0 , xd

1 , xd
2

)

+ xd−r+3
0 x1x2

(

xr−5
0 , xr−6

0 x1, . . . , x0xr−6
1 , xr−5

1 , xr−5
2

)

.

We have μ(Ir ) = r and it follows from Propositions 3.4 and 3.6 that Ir ∈ T
s(2, d) ⊂

k[x0, x1, x2], which proves what we want. ⊓⊔

Remark 4.2 Proposition 4.1 does not generalize to the case n ≥ 3, i.e., not all values of

r, μs(n, d) ≤ r ≤ ρs(n, d), occur as the minimal number of generators of a smooth Togliatti

system I ∈ T
s(n, d). The first case is illustrated in next Lemma for the case d = 3 and next

Proposition for the general case d ≥ 4.

Lemma 4.3 Assume n ≥ 4 and let I be a minimal Togliatti system of cubics. Then, μ(I ) ≥

2n + 1. In addition, we have:

(1) μ(I ) = 2n + 1 if and only if I is trivial, i.e., up to permutations of the coordinates,

I = (x3
0 , . . . , x3

n ) + x2
0 (x1, . . . , xn). In particular, I ∈ T (n, 3) \ T

s(n, 3).

(2) μ(I ) = 2n + 2 if and only if I is trivial, i.e., up to permutations of the coordinates,

I = (x3
0 , . . . , x3

n ) + xi x j (x0, . . . , xn) with i �= j . In particular, I ∈ T (n, 3) \ T
s(n, 3).

(3) μ(I ) �= 2n + 3.

Proof We proceed by induction on n. With Macaulay2 ([7]), we easily check that μ(I ) ≥ 9

for any I ∈ T (4, 3). Assume now n ≥ 5 and suppose that the result is true for n − 1. We

take I = (x3
0 , . . . , x3

n , m1, . . . , mn−1) with mi = x
ai

0

0 . . . x
ai

n
n , ai

0 + · · · + ai
n = 3, and we

will see that there is no hyperquadric F2 containing all points of AI . Assume it exists and we

will get a contradiction. Wlog we can assume that x0 appears explicitly in the monomial m1

and A0
I is equal to 3�n−1 minus n vertices and at most n − 2 other points. By induction, no

hyperquadric in x1, . . . , xn contains A0
I . So F2 decomposes as F2 = L0 F1, and since there

is no hyperplane F1 containing all the points of AI \ A0
I , we get a contradiction.

Let us now classify all Togliatti systems I ∈ T (n, 3), n ≥ 4, with 2n+1 ≤ μ(I ) ≤ 2n+3.

(1) Assume n = 4, I ∈ T (4, 3) and μ(I ) = 2n + 1. Using Macaulay2 we get that I

is trivial. Suppose now n ≥ 5, let I = (x3
0 , . . . , x3

n , m1, . . . , mn) ∈ T (n, 3) with mi =

x
ai

0

0 x
ai

1

1 . . . x
ai

n
n and

∑n
j=0 ai

j = 3, and let F2 be a hyperquadric passing through the points of

AI . Wlog we can assume a1
0, a2

0 ≥ 1. Therefore, F2 factorizes as F2 = L0 L1, and since F2

cannot miss any point of AI , we must have A2
I = ∅ which forces m1 = x2

0 x1, . . . , mn = x2
0 xn ,

and hence, I is trivial.

(2) Using Macaulay2, we prove that if n = 4, I ∈ T (4, 3) and μ(I ) = 2n+2 then I is triv-

ial. Suppose now n ≥ 5 and let I = (x3
0 , . . . , x3

n , m1, . . . , mn+1) with mi = x
ai

0

0 x
ai

1

1 . . . x
ai

n
n

and
∑n

j=0 ai
j = 3. Wlog we can assume a1

0 ≥ . . . ≥ an+1
0 ≥ 0 and a1

0 > 0. If a3
0 > 0, then

an+1
0 > 0 by Lemma 3.15 and F2 = L0 F1 where F1 is a hyperplane containing all points of

AI \ A0
I . This is possible if and only if I is trivial of type I = (x3

0 , . . . , x3
n )+xi x j (x1, . . . , xn)

with i �= j . If a3
0 = 0, then using hypothesis of induction together with the fact

that a1
0 > 0 we get that the restriction of x3

0 , . . . , x3
n , m1, . . . , mn+1 to the hyperplane

x0 = 0 is trivial of type (x3
1 , . . . , x3

n ) + x2
1 (x2, . . . , xn) or (x3

1 , . . . , x3
n ) + xi x j (x1, . . . , xn)

with 1 ≤ i < j ≤ n. Therefore, either I = (x3
0 , x3

1 , . . . , x3
n ) + x2

1 (x2, . . . , xn) or
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I = (x3
0 , x3

1 , . . . , x3
n ) + xi x j (x1, . . . , xn) with 1 ≤ i < j ≤ n, and none of them belongs to

T (n, 3).

(3) Again using Macaulay 2, we prove that the result is true for n = 4. Suppose now

n ≥ 5 and let I = (x3
0 , . . . , x3

n , m1, . . . , mn+2) with mi = x
ai

0

0 x
ai

1

1 . . . x
ai

n
n and

∑n
j=0 ai

j = 3.

Wlog we can assume a1
0 ≥ . . . ≥ an+2

0 ≥ 0 and a1
0 > 0. If a4

0 > 0, then an+1
0 > 0

by Lemma 3.15 and F2 = L0 F1, but this is impossible since there is no a hyperplane

containing all points of AI \ A0
I and no point of 3�n \ AI a part from the vertices. If

a4
0 = 0, then using hypothesis of induction together with the fact that a1

0 > 0 we get

that the restriction of x3
0 , . . . , x3

n , m1, . . . , mn+2 to the hyperplane x0 = 0 is trivial of type

(x3
1 , . . . , x3

n ) + x2
1 (x2, . . . , xn) or (x3

1 , . . . , x3
n ) + xi x j (x1, . . . , xn), 1 ≤ i < j ≤ n, or

(x3
1 , . . . , x3

n ) + x2
1 (x2, . . . , xn) + (xi1 xi2 xi3), 1 ≤ i1 ≤ ı2 ≤ i3 ≤ n or (x3

1 , . . . , x3
n ) +

xi x j (x1, . . . , xn) + (xi1 xi2 xi3), 1 ≤ i < j ≤ n, 1 ≤ i1 ≤ ı2 ≤ i3 ≤ n. Therefore,

I = (x3
0 , x3

1 , . . . , x3
n )+ x2

1 (x2, . . . , xn) or I = (x3
0 , x3

1 , . . . , x3
n )+ xi x j (x1, . . . , xn), 1 ≤ i <

j ≤ n or I = (x3
0 , x3

1 , . . . , x3
n ) + x2

1 (x2, . . . , xn) + (xi1 xi2 xi3), 1 ≤ i1 ≤ ı2 ≤ i3 ≤ n or

I = (x3
0 , x3

1 , . . . , x3
n )+xi x j (x1, . . . , xn)+(xi1 xi2 xi3), 1 ≤ i < j ≤ n, 1 ≤ i1 ≤ ı2 ≤ i3 ≤ n,

and none of them belongs to T (n, 3). ⊓⊔

Proposition 4.4 Let n ≥ 3 and d ≥ 4. Then there is no I ∈ T
s(n, d) with μ(I ) = 2n + 3.

Proof We distinguish two cases:

(1) For all 0 ≤ j ≤ n, #{i | ai
j ≥ 1} ≤ 3, i.e., every variable appears in at most three of the

monomials m1, . . . , mn+2.

If one of the monomials contains all the variables, the other n + 1 monomials contain

two variables each, and we are in the same situation of Theorem 3.17, Case 1, which

is impossible. Therefore no monomial contains all variables, and at least two variables

appear in three monomials. Assume that x0 appears in three monomials; then Fd−1

passes through the integral points of A0
I . Recall that A0

I is equal to d�n−1 minus the n

vertices and n − 1 other points. So the removed points form a Togliatti system I ′ in the

n variables x1, . . . , xn with μ = 2n − 1 and we can apply Theorem 3.9. There are two

possibilities:

(1.1) n = 3 and I ′ is one of the two special Togliatti systems of degree 5 or 4 of

Theorem 3.9. If d = 5, up to permutation of the variables the only possibility

is I = (x5
0 , . . . , x5

3 , x4
0 x2, x4

0 x3, x3
1 x2x3, x1x2

2 x2
3 , xa

0 xb
1 ) with a, b > 0. But it is

easy to check that this is not a Togliatti system. In the case d = 4, there are two

possibilities: I = (x4
0 , . . . , x4

3 , x3
0 x2, x3

0 x3, x1x2x2
3 , x2

1 x2
2 , xa

0 xb
1 xc

3) with a, b > 0,

c ≥ 0, or (x4
0 , . . . , x4

3 , x2
0 x1x2, x1x2x2

3 , x2
1 x2

2 , xa
0 xb

3 , xc
0 xd

3 ) with a, b, c, d > 0.

Both systems are not Togliatti.

(1.2) I ′ is of the form (xd
1 , . . . , xd

n ) + xd−1
1 (x2, . . . , xn). In this case x1 appears in at

least n − 1 monomials, therefore n = 3 or n = 4.

If n = 3, the other three monomials in I are either of the form xd−1
0 (x2, x3), xa

0 xb
1 xc

2 ,

or of the form xd−1
0 (x1, x3), xa

0 xb
2 xc

3 , with a > 0, b > 0, c ≥ 0. It is immediate

to check that they are not Togliatti systems. If n = 4, then the six monomials

m1, . . . , m6 are of the form xd−1
0 (x2, x3, x4), xd−1

1 (x2, x3, x4). Also in this case

the system is not Togliatti.

(2) There exists an index j such that #{i | ai
j ≥ 1} ≥ 4, i.e., one of the variables appears

in at least 4 monomials. We can assume j = 0. Therefore, by Lemma 3.15, x0 appears

in all monomials m1, . . . , mn+2. Let m′
i = mi/x0, i = 1, . . . , n + 2. As in the proof
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of Theorem 3.17, case 2, we observe that m′
1, . . . , m′

n+2, together with xd−1
0 , . . . , xd−1

n ,

form a Togliatti system I1 of degree d − 1. We distinguish the following possibilities:

(2.1) at least one of the monomials m′
i is the (d − 1)th power of a variable, so μ(I1) <

2n + 3; or

(2.2) μ(I1) = μ(I ) = 2n + 3.

In case (2.1), if d > 4, I1 is trivial, which implies that I contains a trivial Togliatti system

and therefore is non-minimal: contradiction. If d = 4, I1 ∈ T (n, 3) and μ(I1) ≤ 2n +2.

In case (2.2), we can apply the above argument to I1, and so on, by induction.

In any case, applying repeatedly this procedure, possibly involving different variables,

we arrive at a Togliatti system I1 of degree d = 3 with μ ≤ 2n + 3, which is obtained

from I dividing the monomials m1, . . . , mn+2 by a common monomial factor M . If

n = 3, we conclude with the help of Macaulay2. If n ≥ 4, by Lemma 4.3, I1 is trivial of

type (x3
0 , . . . , x3

n ) + x2
0 (x1, . . . , xn) or (x3

0 , . . . , x3
n ) + xi x j (x0, . . . , xn). In both cases,

I is not minimal and we are done.

⊓⊔

Remark 4.5 If n = 3 and d = 4, one can check with the help of Macaulay2 that there

exist two types of minimal Togliatti systems I with μ(I ) = 2n + 3 = 9, both non-

smooth, precisely (x4
0 , x4

1 , x4
2 , x4

3 ) + x2
0 (x0x2, x0x3, x2

1 , x1x2, x1x3) and (x4
0 , x4

1 , x4
2 , x4

3 ) +

x2
0 (x2

1 , x1x2, x2
2 , x0x3, x2

3 ).

We note that if d = 2 the ideal I = (x0, x1)
2+(x2, x3, x4, x5)

2, with μ(I ) = 2n+3 = 13,

belongs to T
s(5, 2), while if d = 3 then 2n + 3 < μs(n, 3) for any n ≥ 4.

Computations made with Macaulay2 illustrate the complexity of the general case. How-

ever, some ranges and some sporadic values can be covered. For example:

Example 4.6 For any d > n ≥ 3 and for any r ,
(

d+n−2
n−2

)

+n+2 ≤ r ≤
(

d+n−2
n−2

)

+d +1, there

exists I ∈ T
s(n, d) with μ(I ) = r . (Notice that when n = 3 we have d + 6 ≤ r ≤ 2d + 2).

In fact, it is enough to take

I = (x0, x1, . . . , xn−2)
d + (xd

n−1, xd
n ) + (xn−1, xn)d−hm′

where 2 ≤ h ≤ d − n + 1 and m′ is a monomial of degree h containing only x0, . . . , xn−2.

Nevertheless if we delete the smoothness hypothesis, we can generalize Proposition 4.1

and we get

Proposition 4.7 With the above notation, we have:

(1) For any d ≥ 4, μ(n, d) = 2n + 1.

(2) For any d ≥ 4, ρ(n, d) =
(

n+d−1
n−1

)

.

(3) For any d ≥ 4, n = 3 and any integer r with μ(3, d) = 7 ≤ r ≤ ρ(3, d) =
(

d+2
2

)

, there

exists I ∈ T (3, d) with μ(I ) = r .

Proof (1) It follows from Theorem 3.9.

(2) By definition we have ρ(n, d) ≤
(

n+d−1
n−1

)

for any d ≥ 4. Let us prove that ρ(n, d) ≥
(

n+d−1
n−1

)

, i.e., there exists I ∈ T (n, d) with μ(I ) =
(

n+d−1
n−1

)

. Consider

I = (xd
0 , xd

1 , . . . , xd
n ) + x1(x1, . . . , xn)d−1 + x2(x2, . . . , xn)d−1 + ... +

xn−2(xn−2, xn−1, xn)d−1 + x3
0 (xn−1, xn)d−3.
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We have

μ(I ) = n + 1 +
∑n−1

i=2 [
(

d−1+i
i

)

− 1] + d − 2

= d + 1 +
∑n−1

i=2

(

d−1+i
i

)

=
∑n−1

i=0

(

d−1+i
i

)

=
(

d−1+n
n−1

)

.

When we substitute x0 by x1 + x2 + · · · + xn , the μ(I ) generators of I become k-linearly

dependent; so I fails WLP in degree d −1 (Theorem 2.3) and I is minimal because no proper

subset of the generators of I defines a Togliatti system. Therefore, I ∈ T (n, d).

(3) Assume n = 3. For r = 7 we take I = (xd
0 , xd

1 , xd
2 , xd

3 ) + xd−1
0 (x1, x2, x3), for

r = 8 we take I = (xd
0 , xd

1 , xd
2 , xd

3 ) + xd−2
0 x1(x0, x1, x2, x3) and for r = 9 we take I =

(xd
0 , xd

1 , xd
2 , xd

3 ) + xd−2
0 (x2

1 , x0x1, x2
2 , x2x3, x2

3 ).

We will now proceed by induction on d . In the case d = 4, we exhibit an explicit example

for any 10 ≤ r ≤ 14 (note that the case r = 15 is covered by the example given in (2)):

• r = 10: (x0, x1)
4 + (x2, x3)

4 (smooth);

• r = 11: (x0, x1)
4 + (x4

2 , x3
2 x3, x2

2 x2
3 , x4

3 , x0x2x2
3 , x1x2x2

3 );

• r = 12: (x0, x1)
4 + (x4

2 , x3
2 x3, x2x3

3 , x4
3 , x2

0 x2
3 , x0x1x2

3 , x2
1 x2

3 );

• r = 13: (x0, x1)
4 + (x4

2 , x3
2 x3, x2x3

3 , x4
3 , x3

0 x3, x2
0 x1x3, x0x2

1 x3, x3
1 x3);

• if r = 14: the systems described in Remark 3.16 work in this case.

We suppose now d > 4 and we will prove that for any 7 ≤ r ≤
(

d+2
2

)

there exists I ∈ T (3, d)

with μ(I ) = r .

Indeed, for any 7 ≤ s ≤
(

d+1
2

)

we take J ∈ T (3, d − 1) with μ(J ) = s and we define

I = (xd
0 , xd

1 , xd
2 ) + x3 J . Note that I ∈ T (3, d) and 10 ≤ μ(I ) = μ(J ) + 3 ≤

(

d+1
2

)

+ 3.

Observe also that I = (xd
0 , xd

1 , xd
2 , xd

3 )+x0(x1, x2, x3)
d−1 ∈ T (3, d) and μ(I ) =

(

d+1
2

)

+4.

So, it only remains to cover the values of r ,
(

d+1
2

)

+ 4 < r ≤
(

d+2
2

)

. To this end, for any

3 ≤ i ≤ d − 1 we define

Ii = (xd
0 , xd

1 , xd
2 , xd

3 ) + (x
i1

1 x
i2

2 x
i3

3 | i1 + i2 + i3 = d, 1 ≤ i1 < d) + x i
0(x2, x3)

d−i .

First of all we observe that μ(Ii ) =
(

d+2
2

)

+ 3 − i . Therefore, when i ranges from i = 3 to

d −1, we sweep the interval [
(

d+1
2

)

+5,
(

d+2
2

)

]. By Proposition 3.4 to prove that Ii ∈ T (3, d),

it is enough to show that there is a surface Fd−1 of degree d −1 containing all integral points

of AIi
. Since A1

Ii
= (d−1)�2, . . . , Ai−1

Ii
= (d−i +1)�2, we have Fd−1 = L1 . . . L i−1 Fd−i

where Fd−i is a surface of degree d − i containing all integral points of AIi
\ ∪i−1

j=1 A
j
Ii

. The

surfaces Fd−i of degree d − i are parametrized by a k-vector space of dimension
(

d−i+3
3

)

.

On the other hand, to contain the aligned d −1 points of A0
Ii

imposes d − i +1 conditions on

the surfaces of degree d − i , to contain the points of Ai+1
Ii

= (d − i −1)�2, . . . , Ad−1
Ii

= �2

imposes
(

d−i+1
2

)

, . . . , 3 conditions, respectively, and finally to contain the points of Ai
Ii

imposes
(

d−i+2
2

)

− (d − i + 1) conditions. Summing up we have
(

d−i+3
3

)

− 1 conditions.

Therefore, there exists at least a surface Fd−i of degree d − i through all integral points of

AIi
\ ∪i−1

j=1 A
j
Ii

and, hence a surface Fd−1 = L1 . . . L i−1 Fd−i of degree d − 1 containing all

integral points of AIi
. ⊓⊔

Remark 4.8 For n = 3, d = 4, with Macaulay2 we have obtained the list of all minimal

Togliatti systems with μ(I ) ≤ 13. The computations become too heavy for μ = 14, 15.
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5 On the stability of the associated syzygy bundles

In this section, we restrict our attention to the case n = 2 and we will analyze whether

the syzygy bundle E I on P2 associated with a minimal smooth monomial Togliatti system

I ∈ T (2, d) is μ-(semi)stable.

Definition 5.1 A syzygy bundle Ed1,...,dr on Pn is a rank r − 1 vector bundle defined as the

kernel of an epimorphism

( f1, . . . , fr ) : ⊕r
i=1OPn (−di ) −→ OPn

where ( f1, . . . , fr ) ⊂ k[x0, x1 . . . , xn] is an artinian ideal, and di = deg( fi ). When d1 =

d2 = . . . = dr = d , we write Ed,n instead of Ed1,...,dr .

Definition 5.2 Let E be a vector bundle on Pn and set

μ(E) :=
c1(E)

rk(E)
.

The vector bundle E is said to be μ-semistable in the sense of Mumford–Takemoto if μ(F) ≤

μ(E) for all nonzero subsheaves F ⊂ E with rk(F) < rk(E); if strict inequality holds, then

E is μ-stable.

Note that for a rank s vector bundle E on Pn , with (c1(E), s) = 1, the concepts of μ-stability

and μ-semistability coincide.

Using Klyachko results on toric bundles ([11–13]), Brenner deduced the following nice

combinatoric criteria for the (semi)stability of the syzygy bundle Ed1,...,dr in the case where

the associated forms f1, . . . , fr are all monomials. Indeed, we have

Proposition 5.3 Let I = (m1, . . . , mr ) ⊂ k[x0, . . . , xn] be a monomial artinian ideal. Set

di = deg(mi ). Then the syzygy bundle Ed1,...,dr on Pn associated with I is μ-semistable

(resp. μ-stable) if and only if for every J = (mi1 , . . . , mis ) � I , s ≥ 2, the inequality

dJ −
∑s

j=1 d ji

s − 1
≤

−
∑r

i=1 di

r − 1
(resp. <) (2)

holds, where dJ is the degree of the greatest common factor of the monomials m ji ∈ J .

Proof See [3] Proposition 2.2 and Corollary 6.4. ⊓⊔

Example 5.4 (1) If we consider the monomial artinian ideal I := (x5
0 , x5

1 , x5
2 , x2

0 x2
1 x2) ⊂

k[x0, x1, x2], inequality (2) is strictly fulfilled for any proper subset J � {x5
0 , x5

1 , x5
2 , x2

0 x2
1 x2}.

Therefore the syzygy bundle E associated with I is μ-stable.

(2) If we consider the monomial artinian ideal I := (x5
0 , x5

1 , x5
2 , x4

0 x1) ⊂ k[x0, x1, x2],

then for the subset J :=
{

x5
0 , x4

0 x1

}

inequality (2) is not fulfilled. Therefore the syzygy

bundle E I associated with I is not μ-stable. In fact, the slope of E I is μ(E I ) = −20/3 and

the syzygy sheaf F associated with J is a subsheaf of E I with slope μ(F) = −6. Since

μ(F) � μ(E I ), we conclude that E is not μ-stable.

Remark 5.5 Let I be a monomial artinian ideal generated by r monomials m1, . . . , mr of

degree d . It easily follows from the above proposition that the syzygy bundle Ed,n on Pn

associated to I is μ-(semi)stable if and only if for every subset J = {mi1 , . . . , mis } �
{m1, . . . , mr } with s := |J | ≥ 2,

(d − dJ )r + dJ − sd > 0 (resp. ≥ 0), (3)

where dJ is the degree of the greatest common factor of the monomials in J .

123



The minimal number of generators of a Togliatti system 2097

Theorem 5.6 Let I ⊂ k[x0, x1, x2] be a smooth minimal monomial Togliatti system of forms

of degree d ≥ 4. Assume that μ(I ) ≤ 6. Let E I be the syzygy bundle associated with I . We

have:

(a) E I is μ-stable if and only if, up to a permutation of the coordinates, one of the following

cases holds:

(1) μ(I ) = 5, d = 5 and I1 = (x5
0 , x5

1 , x5
2 , x3

0 x1x2, x0x2
1 x2

2 ).

(2) μ(I ) = 6, d = 7 and I2 = (x7
0 , x7

1 , x7
2 , x3

0 x3
1 x2, x3

0 x1x3
2 , x0x3

1 x3
2 ) or I3 =

(x7
0 , x7

1 , x7
2 , x5

0 x1x2, x0x5
1 x2, x0x1x5

2 ) or I4 = (x7
0 , x7

1 , x7
2 , x0x1x5

2 , x3
0 x3

1 x2, x2
0 x2

1 x3
2 ).

(b) E I is properly μ-semistable if and only if, up to a permutation of the coordinates, one

of the following cases holds:

(1) μ(I ) = 6, d = 5 and I5 = (x5
0 , x5

1 , x5
2 , x3

0 x1x2, x0x3
1 x2, x0x1x3

2 ).

(2) μ(I ) = 6, d = 5 and I6 = (x5
0 , x5

1 , x5
2 , x3

0 x1x2, x2
0 x2

1 x2, x0x3
1 x2) or I7 =

(x5
0 , x5

1 , x5
2 , x2

0 x2
1 x2, x2

0 x1x2
2 , x0x2

1 x2
2 ).

(c) In all other cases, E I is unstable.

Proof First of all, by Theorem 3.9, we have μ(I ) =5 or 6. Using the classification of Togliatti

systems I ∈ T (2, d) with 5 ≤ μ(I ) ≤ 6 given in Theorems 3.9 and 3.17, it is enough to

check:

(1) Ii , 1 ≤ i ≤ 4 corresponds to μ-stable bundles.

(2) Ii , 5 ≤ i ≤ 7 corresponds to properly μ-semistable bundles.

(3) Trivial Togliatti systems I ∈ T (2, d) correspond to μ-unstable bundles.

To prove (1) it is enough to observe that inequality (3) is strictly fulfilled for any proper

subset Ji � Ii , 1 ≤ i ≤ 4, with |Ji | ≥ 2.

To prove (2) we check that inequality (3) is satisfied for any proper subset Ji � Ii , 5 ≤ i ≤

7, with |Ji | ≥ 2 and there is a subset J 0
i � Ii , 5 ≤ i ≤ 7, with |J 0

i | ≥ 2 and verifying (d −

dJ 0
i
)μ(Ii )+dJ 0

i
−dμ(J 0

i ) = 0. For instance, for I6 = (x5
0 , x5

1 , x5
2 , x3

0 x1x2, x2
0 x2

1 x2, x0x3
1 x2)

it is enough to take J 0
6 = (x3

0 x1x2, x2
0 x2

1 x2) ⊂ I6 since (d − dJ 0
6
)μ(I6) + dJ 0

6
− dμ(J 0

6 ) =

(5 − 4)6 + 4 − 2 × 5 = 0.

(3) Finally let us check that the syzygy bundle E I associated with trivial Togliatti systems

I = (x0, x1, x2)m + (m1, . . . , mr−3) ∈ T (2, d) is always μ-unstable. Note that m is a

monomial of degree d − 1 and mi , 1 ≤ i ≤ r − 3, are monomials of degree d . For the subset

J = (x0m, x1m, x2m) ⊂ I inequality (3) becomes (d − (d − 1))r + (d − 1) − 3d > 0 and

E I is μ-unstable. Indeed, the slope of E I is μ(E I ) = dr
r−1

and the syzygy sheaf F associated

with J is a subsheaf of E I with slope μ(F) =
3(d−1)

2
. Therefore, μ(F) � μ(E I ) and we

conclude that E I is μ-unstable. ⊓⊔
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