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The minimal period problem of classical Hamiltonian

systems with even potentials

Yiming LONG (*)
Nankai Institute of Mathematics, Nankai University

Tianjin 300071, P.R. China

Ann. Inst. Henri Poincaré,

Vol. 10, n° 6, 1993, p. 605-626. Analyse non linéaire

ABSTRACT. - In this paper, we study the existence of periodic solutions
with prescribed minimal period for even superquadratic autonomous
second order Hamiltonian systems defined on R" with no convexity
assumptions. We use a direct variational approach for this problem on a
W1,2 space of functions invariant under the action of a transformation

group isomorphic to the Klein Fourgroup find symmetric
periodic solutions, and prove a new iteration inequality on the Morse
index by iterating such functions properly. Using these tools and the
Mountain-pass theorem, we show that for every T > 0 the abobe mentioned
system possesses aT-periodic solution x (t) with minimal period T or T/3,
and this solution is even about t = 0, T/2 and odd about t = T /4, 3 T/4.

Key words : V4-symmetry, direct variational method,- Morse index, iteration inequality,
minimal period, even potential, even solution, superquadratic condition, non-convexity,
second order Hamiltonian systems.

RESUME. - Dans cet article, on etudie l’existence de solutions perio-
diques avec la periode minimale prescrit pour les systemes hamiltoniens.
pairs autonomes d’ordre secondaire a croissance super-quadratique, définis

A.M.S. Classification : 58 F 05, 58 E 05, 34 C 25.

(*) Partially supported by and YTF of the Edu, Comm. of China.

Annales.de l’Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol:. 10/93/06/$4.00/® Gauthier-Villars



606 Y. LONG

dans Rn sans hypothese de convexite. Pour trouver des solutions perio-
diques symétriques, on utilise une approche directe variationnelle pour ce
probleme dans W1,2, espace de fonctions invariantes sous l’action d’un
groupe de transformation, qui est isomorphe avec le Quatre-groupe de
Klein V4 = Z2 p Z2, et prouve les nouvelles inégalités d’itération sur les
indices de Morse pour Fiteration propre de telles fonctions. En utilisant
ces outils et le theoreme de Col de Montagne, on montre que pour chaque
T>0 le système ci-dessus possède une solution T-période x (t) avec la
période minimale T ou T/3, et que cette solution est paire sur t = 0, T/2 et
impaire sur t = T/4, 3 T/4.

1. INTRODUCTION AND MAIN RESULTS

We consider the existence of non-constant periodic solutions with

prescribed minimal period for the following autonomous second order
Hamiltonian systems,

where n is a positive integer. V : Rn -+ R is a function, and V’ denotes its
gradient. In his pioneering work [21] of 1978, P. Rabinowitz proved that
if the potential function V is non-negative and superquadratic at both the
infinity and the origin, then the system (1.1) possesses a non-constant
periodic solution with any prescribed period T>O. Because a T/k-periodic
function is also a T-periodic function for every k E N, Rabinowitz conjectu-
red that ( 1. 1 ) or the first order Hamiltonian system

possesses a non-constant solution with any prescribed minimal period
under his conditions. Since then, a large amount of contributions on this
minimal period problem have been made by many mathematicians. Among
all these results, a significant progress was made by Ekeland and Hofer
in 1985 (cf. [10]). They gave an affirmative answer to Rabinowitz’ conjec-
ture for strictly convex Hamiltonian systems ( 1 . 2). Their proof is based
upon the dual action principle for convex Hamiltonians, Ekeland index
theory and Hofer’s topological characterization of mountain-pass points.
Their work was extended to the case of system ( 1.1 ) when V is strictly
convex by Coti Zelati, Ekeland, and P. L. Lions (cf. Theorem IV. 5 . 3 [9]).
Generalizations of their results under different or weaker convexity
assumptions can be found in [9], [14], [15], [16]. Most of these results deal
with convex Hamiltonian functions. As far as the author knows, there are
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607MINIMAL PERIOD PROBLEM

only three papers ([12], [13], [20]) dealing with the Hamiltonian functions
with no convexity assumptions. In [12] and [13], by an a priori estimation
method Girardi and Matzeu obtained T-periodic solutions of (1.2) with
a lower bound on the minimal period by assuming Rabinowitz’ conditions
hold globally on R2" and additional assumptions that H (z) and H’ (z) are
sufficiently close to functions and with /3 > 2, and also obtained
T-minimal periodic solutions of ( 1. 2) under further assumption that H is
homogeneous of degree P or a pinching condition holds. In the recent
paper [20] of the author, by using the natural Z2-symmetry possessed
by the system ( 1.1 ) and a Morse index theory method, under precisely
Rabinowitz’ superquadratic condition, it was proved that for every T > 0
there exists an even T-periodic solution of ( 1.1 ) with minimal period not
smaller than T/(n + 2). The key observation made in [20] is that certain
Morse indices do increase by iterating an even periodic solution without
any particular assumptions on V", and that this phenomenon can be used
to get lower bounds for the minimal period of this solution.

In this paper, we further develop the ideas used in [20], and study the
minimal period problem of ( 1.1 ) when the potential function V is even.
In thid case we observe that the usual direct variational formulation of
the system (1.1) possesses a natural V 4-symmetry, where V4 = Z2 Q Z2 is
the Klein Fourgroup, and that this symmetry can be used to reach the
following purposes:

1 ° To eliminate the subspace R" from L2 (ST, R") so that the mountain-
pass theorem can be applied to get a T-periodic solution x of ( 1.1 ) with
its symmetric Morse index defined in this paper not larger than 1, and its
derivative x is anti-symmetric in the sense of the Definition 2.1 below.

2° To eliminate the possibility that this x is a 2 m-th iteration of some
Tperiodic function for every natural integer m.
2m

3° To show the symmetric Morse index does increase by iterating this
solution.

Our argument depends on the mentioned V 4-symmetry of the problem
inherited from the natural Z2-symmetry of the system ( 1.1 ) and the
evenness as of V, but does not depend on any particular property of the
second derivative V" of the potential function V (for example, convexity
type property). To realize the point 1°, we work on a W 1 ° 2-space SET of
V4-symmetric T-periodic functions, which are even about the time t = 0
and odd about t = T/4. By using the Mountain-Pass theorem, we then
get a non-constant T-periodic V 4-symmetric solution x of ( 1. 1 ) with its
symmetric Morse index defined on SET being not larger than 1. The
symmetry possessed by x automatically realizes the point 2°. To prove 3°,
we noticed that the derivative x of this solution we found is anti-symmetric,
and is not in our working space SET. We then constructed a sequence of

Vol. 10, n° 6-1993.



608 Y. LONG

symmetric functions from this x to show that an iteration inequality of
the symmetric Morse index holds, and that can be used to reduce the
minimal period of x to not smaller than T/3. Then combining with 2° we
conclude that this solution x must possess its minimal period T or T/3.
The main results we obtained in this paper are the following theorems.

In the text of this paper, we denote by a . b and I a the usual inner product
and norm in Rn respectively.

THEOREM 1. l. - Suppose V satisfies the following conditions.
(VI) V E C2 (Rn, R).
(V2) There exists constants 2 and ro > 0 such that

Then, for every T > o, the system ( 1 . 1 ) possesses a non-constant T-periodic
solution with minimal period T or T/3, and which is even about t = 0, T/2,
and odd about t = T/4, 3 T/4.
Next we consider the potential functions which are quadratic at the

origin, i. e. satisfying the following condition (V6) at the origin.
(V6) There exists constants ~ > 0 and rl > 0 such that

A similar result is also true.

THEOREM 1. 2. - Suppose V satisfies conditions (Vl)-(V3), (V5) and

(V6). Then, for every positive T1 03C9, the conclusion of Theorem 1. 1

holds.

This paper is organized as follows. In section 2, we describe the men-
tioned V 4-symmetric W1,2-approach for Hamiltonian systems. In sec-

tion 3, we establish the new iteration inequalities of Morse indices for
linear second order Hamiltonian systems without convexity type assump-
tion. Finally in section 4, we estimate the order of the isotropy subgroup
of periodic symmetric solutions of ( 1.1 ) in terms of their Morse indices,
study the minimal period problem for the system (1.1), and prove :the
above mentioned theorems.
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609MINIMAL PERIOD PROBLEM

2. A VARIATIONAL APPROACH ON A V 4-SYMMETRIC
FUNCTION SPACE

In his pioneering work [21], Rabinowitz introduced the following varia-
tional formulation for the system (1.1),

where T > 0 and and proved the existence of T-periodic
solutions of (1.1) via the saddle point theorem. When the potential
function V is even, this problem possesses a V 4-symmetry as explained
below. In this section we describe a variational formulation for this

problem on 2-spaces of the V 4-invariant functions.
For T>O, we define the mentioned V 4-action for any T-periodic measur-

able function x : ST -+ Rn with V~ _ ~ bo, S1, S2, S3 ~ by

They are commutative and satisfy 6 ) = ~2 = S3 = ~o = id and ~1 b2 = ~3. We
define another transformation group by V4 = ~ bo, - ~ 1, S2, - b3 ~ . It pos-
sesses similar properties as the first one. Note that both these groups are
isomorphic to the Klein Fourgroup 

DEFINITION 2 . 1. - For T>0, a T-periodic measurable function

x : ST  R" is symmetric. if it satisfies

a T-periodic measurable function x : ST  Rn is anti-symmetric, if it satis-
fies

Note that for T>O, a T-periodic function is symmetric (anti-symmetric)
if and only if it is even (odd) about t = 0 and T/2, and is odd (even) about
t = T/4 and 3 T/4.

Let ET = W 1, 2 (ST, R") with the usual norm

Then ET is a Hilbert space. We denote by ( . , . )T the corresponding inner
product in ET.

Define

Vol. 10, n° 6-1993.



610 Y. LONG

SET is a closed subspace of ET. Note that for given T > 0, and x E ET, if
x (t) is odd (or even) about t = to, it is also odd (or even) about t = T/2 + to.

LEMMA 2. 2. - For T > 0, let x E SET. Then
1 
° 

x is symmetric and satisfies x (0) = - x (T /2), x (T/4) = x (3 T/4) = 0 and

x T = x]T/2 = o, where Its derivative x is anti-symmetric.

2° If then x is not T/(2 m)-periodic for any m E N, where N is
the set of all positive integers.

3° If then it can not be viewed as a symmetric 2mT-periodic
function for any m E N.

4° If (V 1 ) holds and V’ (0) = 0, and if this x is a non-constant solution of
the system ( 1.1 ), then x (o) ~ 0.

5° On SET, the is equivalent to the L2-norm of the deri-

vative .x, i. e. ( ~T0 | .x (t) |2 dt )1/2 .

Proof. - 1 ° follows from the definition; 2° follows from the fact

x (0) = - x (T/2) ~ 0. Let y be the function x viewed as a 2 m T-periodic
function. Since x is even about t = 0 and t = T/2, y is even about t = m T/2.
So if y is symmetric, then it must be odd about t = m T /2, therefore y ! 0
and so is x. This proves 3°. In the case of 4°, x is smooth and x (o) = o.
So by the uniqueness theorem for initial value problems of ( 1.1 ) we obtain
x (o) ~ 0. Since x (T/4) = 0, we obtain for every t E [0, T]

This implies the equivalence between the norms claimed in 5°. The proof
is complete..

PROPOSITION 2.3. - Suppose V satisfies the condition (Vl). Then for
every T > 0 we have

1 ° 03C8 E C2 (ET, R), i, e. 03C8 is continuously 2-times Fréchet differentiable on
ET.

2° There holds

3° There holds

4° If in addition, (V5) holds, then ~r is V 4-invariant, i. e.
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611MINIMAL PERIOD PROBLEM

5° All the above conclusions still hold, if we substitute ET by SET.
Proof - 1 °-3° are well-known.
4° We only need to prove the invariance under b 1 and b2, since b3 is a

composition of them. For x E ET, we have

and by the condition (V5) we obtain

Note that the 61-symmetry is naturally possessed by ~r without using (V5)
as we have noticed in [20]. Thus 4° holds, and then 5° follows..

It is well-known that critical points of 03C8 on ET corresponds to

C2 (ST, R")-solutions of (1.1).
PROPOSITION 2 . 4. - Suppose V satisfies (V 1 ) and (V5). Then the follow-

ing holds
1 ° If x E SET is a critical point of 03C8 on SET, then it is a symmetric

C3 (ST, R")-solution of ( 1.1 ).
2° Conversely, if x E C3 (ST, R") is a solution of (1. 1), and is symmetric,

then x E SET, and it is a critical point of ~r on SET.
Proof. - 1 ° Suppose x E SET is a critical point of 03C8 on SET. By (2. 3)

there holds

Since V E C2, we have R"), and so it is in C (ST, R").
By (V5), it is symmetric, since so is x. Therefore [w]T = [W~T~2 = o. The
linear system

Vol. 10, n° 6-1993.
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possesses a unique solution (Q, P) E C2 (R, Rn) x C 1 (R, Rn) satisfying
P(0)=0 and Q(T/4)=0. Since P is T-periodic. Since w is symme-
tric, P is anti-symmetric. So we have [P]T = 0 and P (T) = P (o) = o. Thus
Q is T-periodic and symmetric. So Q E SET, From (2. 6) we obtain that
for every y E SET there holds

Combining with (2.5) it yields

Letting y = x - Q, by the fact x (T/4) = (~ (T/4) = 0 we obtain

Thus x = Q E C2 (ST, Rn) and is a solution of (I , I) by (2. 6). Then by (VI)
and the system (1.1), x is C3.

2° is clear and the proof is complete..
Remark 2. 5. - The proof of 1° uses an idea. of Rabinowitz given in

[24].

DEFINITION 2 . 6. - Given a C 1 real functional. f defined on a real Hilbert
space E. A sequence is said to be a (PS)-sequence, 
is bounded as k - ~. The functional f is said to satisfy
the Palais-Smale condition (PS) on E, if every (PS) sequence ( c E pos-
sesses a subsequence convergent in E.

PROPOSITION 2 . 7. - Suppose V satisfies (V 1 ) and (V 2). Then 03C8 satisfies
(PS) on ET. Suppose V further satisfies (V5). Then 03C8 satisfies (PS) on SET.
Proof - It is well-known that B)/ satisfies the (PS) condition on ET.

For a proof we refer to [21], [23]. When (V5) holds, is a (PS)
sequence in SE, it is also a (PS) sequence in ET. Therefore it possesses a
subsequence which converges to some element u E ET. Since SET is a closed
subspace of ET, we obtain u E SET, and the proof is complete..

3. A INDEX THEORY AND ITS ITERATION

INEQUALITY

In section 4, we shall find a critical point xo of ~.n on SET. By
Proposition; 2 ..4, x©~ is: a; symmetric C2 (ST’ Resolution of (1.1). Let

Annales de l’Institut Henri. Poincaré - Analyse non linéaire



613MINIMAL PERIOD PROBLEM

A (t) = V" (xo (t)). Since V is even, so- is V" on R". Therefore A (t) is

continuous, T-periodic, and is even about t = 0. By Proposition 2. 3,
(xo) defines the following bilinear form on SET

Note that ~T is also defined on ET. The Morse index of B)/ at the critical
point xo in SET is defined to be the Morse index of the quadratic form

c~T (.~, x) in SET. The main goal in this section is to establish iteration

inequalities for such a Morse index theory. Note that c~T corresponds to
the following linear second order Hamiltonian system,

Let 2 s (Rn) denote the space of symmetric n x n matrices on the field R.
If the above mentioned xo has minimal period T/k for some integer k > 1,
we shall prove in section 4 that A (t) = V" (xo (t)) is T/(2k)-periodic and
is even about t=O and t = T/(4 k). Enlarging these numbers by k times, in
this section for given T>0, we always suppose the following condition
holds,

(AS) AeC(ST/2, and it is even about and T/4.

DEFINITION 3 .1. - We say that x and y E SET are 03C6T-orthogonal and
write if 03C6T(x,y)=0. Two subspaces F and G of SET are 03C6T-
orthogonal, for all x E F and all We write 

PROPOSITION 3 .2. - Suppose the condition (AS) holds.
1 ° SET possesses a 03C6T-orthogonal decomposition

such that 03C6T is positive, null, and negative definite on SET , SET, and SET
respectively.

2° SET = ker 03C6T, in SET,- and dim. SEz°.  + ~.

3 ° dim SET  + oo .

Proof - Define an operator SET by

/TSince the quadrate functional ~0 (A(t)x . y + x . y) dt I.s, weakly continu-
Jb

ous and uniformally Fréchet differentiable on its gradient AT is

compact by a theorem ofTsitlanadze (cf [18]). Then AT is a linear compact
self-adjoint operator on S.ET. Therefore by the spectral theory for such
operators m’ a Mlbert possesses at 

VoL t0, ~ 6-1993:



614 Y. LONG

corresponding eigenvalues { ~,m }, such that ~,m -~ 0 in R, and

and for any x E SET, there exists ( c R, such that x = ~ am em in L2.
i

Thus we have

Let

Notice that 1- ~,m --~ 1 in R, the proof if complete..

DEFINITION 3. 3. - Define

siT and svT are called the symmetric Morse index and the symmetric nullity
of ~T on SET respectively,

Let E~ be the kernel of ~T on ET, i. e. the set of all T-periodic solutions
of (3 . 2).

If x is a critical point of B)/ in SET with then x is a symmetric
solution of ( 1 . 1 ) by Proposition 2 . 4. Therefore x is an anti-symmetric
solution of the linear system (3 . 2) with A (t) = V" (x (t)) and satisfies
x (0) = o. Since x  0, we have Therefore we define the space of
such anti-symmetric solutions of (3 . 2) by

DEFINITION 3.4. - Define

avT is called the anti-symmetric nullity of ~T in ET.
Let y = x and z = ( y, x). Then the system (3 . 2) is equivalent to the

following first order Hamiltonian system,

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where B (t) is defined to be ( B0 A(~)/ ~ and J is the standard symplectic
matrix. Denote by M (t) the fundamental solution of (3.5), L e. it satisfies

The following result is well-known.

PROPOSITION 3 . 5. - Suppose the condition (AS) holds. Then

In order to further study these indices, we define the following maps
for given x : [0, T] -~ Rn and y : R - Rn. By Lemma 2. 2, we only need to
consider odd iterations of functions in ET. Fix an odd integer k >_ 3. Define

Then it is clear that r+ : ET, p : EkT~
The next lemma collects special properties of elements in AET.
LEMMA 3 . 6. - Suppose the condition (AS) holds. Let 

Then x is an anti-symmetric solution of (3. 2), satisfies x (0) = - x (T/2) ~ 0,
and r + xEET.

Proof. - By the definition of x E x (0) = x (T /2) = o. If x (0) = 0,
then by the uniqueness of the initial value problem of (3 . 2), x --- o. This

contradicts the assumption. Then x (T/2) _ - x (o) ~ 0. Other claims are
clear..
The following iteration inequality on the symmetric Morse indices is

the main result in this section.

THEOREM 3 . 7. - Suppose the condition (AS) holds. Then

Proof. - Supposse 1 and fix an odd integer k >_ 3. Other cases
follows from the proof immediately. We carry out the proof in several
steps.

Vol. 10, n° 6-1993.
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Step 1. - For 1  i  (k -1 )/2, we define

and

where r~ + _ ’~ ± ~ rl +, and (B means the direct sum. Note that M is simply
the space SET viewed as a subspace of SEkT (cf. Figures 1 and 2 in

Appendix for an illustration of functions in Ni’s and M). By the definition
and Lemma 3 . 6, all these spaces are subspaces of SEkT. Since T-periodic
symmetric and anti-symmetric functions are determined by their values on
[0, T/4], from the definitions (3 . 8) and (3 .10) we obtain

dim M = siT, and dim N; = avT for 1  i c k -1. (3.11)

We claim that for 1 _ i  (k -1 )/2,

We only prove the case when i is odd. The other case can be proved
similarly. In fact, since i is odd, for any 2, by the first formula
in (3 . 8), there exist 2, such that

Therefore by (3 . 8)-(3 . 10), (AS), and the evenness of the integrand, we

pick the first and the third terms in the integration and obtain

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Here we have used the fact So al a2 and (3 .12) is proved.
By the definition (3 . 8), when i ~ j, functions in 1~1 and have disjoint

supports, therefore we have_

We claim that

We only prove the case when. i is odd. The. other case can be proved
similarly. In fact, since i is odd., for any by the first formula in
(3 . 8), there exist u E AET such that

For any peM, by the definition of M, there exists v E SET such that
viewing v as a function in gives p. That is

Therefore by (3.8)-(3.10), (AS), and the evenness of the integrand, similar
to (3 .14) we obtain

Vol. 10, n° 6-1993.
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So This proves the claim (3 .16).
Thus these subspaces N/s and M are all mutually 03C6kT-orthogonal.
Since N~ and N~, i ~ j, contain functions with disjoint supports, they are

linearly independent. Since all the functions in N are identically zero on
the set [(k -1 ) T/4, (k + 1 ) T/4J U [(3 k -1 ) T/4, (3 k + 1 ) T/4], but all the
non-trivial functions in M are not identically zero on any non-empty
subinterval, M and N are linearly independent. Therefore from (3 .11 ), we
obtain

Step 2. - We claim that

and

In fact, for any fi E MB{ 0 ~, let v E SET such that viewing v as a function
in SEkT gives fi, i. e. (3 .18) holds. Then

For 1 - i _ (k -1 )/2, from (3 . 14) and a similar derivation when i is even,
we obtain

By the 03C6kT-orthogonalities we just proved among these subspaces, we
obtain the claims (3 . 21 ) and (3. 22).

Step 3. - We claim that

In order to prove (3. 25), we prove the following claim first:
The derivative of every a E NB{ 0 ~

is discontinuous somewhere in [0, k T]. (3 . 26)
In fact, by definition, a must have the form

Let j be the smallest subscript in { 1, ... , (k -1 )/2 ~ such that We

only prove the case when j is odd. The other case can be proved similarly.
By the definition (3 . 8) there exists u E AET such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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By Lemma 3. 6, we have u (o) ~ 0. Therefore the first and the fourth
terms in the right hand side of (3 . 28) are not C~ 1 at and
t = (2 k - i + 1 ) T/2 respectively, and therefore so is Since j is the smallest
subscript with by definition all the other ai’s are identically equal
to zero near these two times. Therefore a is discontinuous at these two
times. This proves the claim (3 . 26).
Now we prove the following claim which is stronger than (3.25), since

In fact, let x E N n Then by the definition of E° ., x is a C2 (SkT, Re-
solution of (3 . 2). Therefore x must be continuous everywhere. By (3 . 26),
this implies x _-- o. Thus (3. 29) and therefore (3 . 25) is true.
Here we give another proof of (3.29) using the following property of

functions in N in stead of (3 . 26). From the definition (3. 8), every x E N
satisfies

If then it is a solution of (3. 2). Then by the uniqueness
theorem of the initial value problem of (3 . 2), we must have x = 0 on R.
This proves (3. 29) and (3.25).

Step 4. - Let D : SEkT be the linear operator associated to the
bilinear form ~kT (x, y), i. e.

Then D is linear, continuous, self-adjoint, and is actually the gradient of
the quadratic functional (x, x) on SEkT. Therefore when I h ] is suffi-

ciently small, F h = id + h D: SEkT is a linear homeomorphism.
Define

and

Because f,, (~, x) = f,, (x) holds for all ~, > 0, it is easy to see that

By elementary calculations we find that for every x~S~ (M E9 N),

Vol. 10, n° 6-1993.
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So

If and x) = o, (3 . 31 ) yields xESnN. By (3 . 25),
so This implies that Therefore

(3 . 32) yields

Since there also holds x) __ 0 for any by the com-
pactness of S n (M E9 N), there exists a constant E > 0 such that

Thus from (3 . 31 ), we obtain

Therefore kT is negative definite on and from (3 . 20) we get

The proof is complete. []

Remarks 3 . 8. - 1 ° For first order linear Hamiltonian systems (3 . 5)
with positive definite coefficients B (t), the following iteration inequality
was first proved by Ekeland in 1984 in terms of his index theory
(cf Theorem 1.5.1 [9] and [7], [8]).

Similar iteration inequalities on various Morse indices for general linear
second order Hamiltonian systems (3.2) without convexity type assump-
tions on the coefficients were proved in [20] by the author.

2° The proof of Theorem 3.7 uses ideas of Ekeland (cf. the proof of
Theorem 1.5.1 [9]) and the author (cf. the proof of Theorem 3.10 [20]).
As mentioned in the section 1, here special efforts are made in order to
construct functions with the required symmetry. Our arguments depend
on the T/2-periodicity, continuity and symmetry of A (t) given by the
condition (AS), but not on its positivity.
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4. THE EXISTENCE OF SOLUTIONS WITH PRESCRIBED

MINIMAL PERIOD

In this section, we prove theorems 1.1 and 1. 2.

DEFINITION 4 . 1. - Given T > O, for every non-constant T-periodic
solution x of the system ( 1.1 ), O (x) is defined to be the order of the

isotropy subgroup of x for the S1-action ae on T-periodic functions, where
as x (t) = x (t + 8 T). In another words, O (x) is the greatest positive integer
k such that x is T/k-periodic.
By Proposition 2. 4, every T-periodic solution x of ( 1 . 1 ) which is even

about t=0, odd about t = T/4 corresponds to a critical point of the
functional W on SET defined in (2.1) with the potential function V = V (x)
given in (1.1). In the discussion of the section 3, let A (t) =V" (x (t)). The
functional ~T defined by (3.1) is precisely the quadratic form of the second
Frechet differential of W on SET. We denote the corresponding symmetric
and anti-symmetric Morse indices defined in the section 3 of W at x by
siT (x) and a VT (x), etc. respectively. Our following theorem estimates 0 (x)
in terms of siT (x).

THEOREM 4 . 2. - Suppose 
that the conditions (V 1 ) and (V5) hold. For

T > 0, and every non-constant C3 (ST, Rn)-solution x of (1.1) which is even
about t = 0 and odd about t = T/4, there holds

Proof. - Let k = O (x). Since x is a non-constant T/k-periodic solution
of (1.1), and it is even about t=O and odd about t = T/4, we have
x (o) _ - x (T/2) ~ 0. Thus k is odd by Lemma 2 . 2. Then we must have
k = 4 m + 1 or k = 4 m + 3 for some integer m >_ o. Therefore T/4 can be
rewritten as one of the following forms:

Since x is odd about T/4 and T/k-periodic, the abobe equalities show that
it must be odd about T/(4 k). Then we have y=x is a non-trivial T/k-
periodic solution of .the lineat system (3 . 2) with A (t) = v" (x (t)), and y is
odd about even about t = T/(4 k). Therefore This shows

(x) >_ 1. From the symmetry of x and the evenness of V, A (t) is T/k-
periodic and even about all integer multiples of T/(4 k). Therefore it is

T/(2 k)-periodic and is even about times t=O and T/(4 k). So the
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condition (AS) holds. From Theorem 3. 7 we obtain

This yields (4 .1 ) and completes the proof..
Remark 4. 3. - For T-periodic solutions of the strictly convex Hamil-

tonian systems ( 1. 2), a similar estimate,

was first proved in 1985 by Ekeland and Hofer in terms of Ekeland
index theory (cf. Theorem III. 6 [11]). For the system (1.1) under only the
condition (VI), a similar estimate,

for even T-periodic solutions in terms of the symmetric Morse index
defined there was proved by the author in [20]. There are also other similar
estimates established in [20] in terms of various Morse indices.
For given T > 0, in order to find T-periodic solutions of ( 1. 1 ), we

use the following well-known Mountain-pass theorem of Ambrosetti and
Rabinowitz.

THEOREM 4 . 4. - Let E be a real Hilbert space suppose f E C2 (E, R),
satisfies the (PS) condition, and the following conditions.

(F 1 ) There exist p and a > 0 such that f (u) >_ a, for all u E aBP (0).
(F2) There exist R > p and eEE with such 

Then 1 
° 

f possesses a critical value c >_ oc, which is given by

where 1 ], h ( 1 ) = e } .
2° There exists an element uo --_ ~ u e E f ’ (u) = 0, f (u) = c ~ such that

the negative Morse index i (uo) of f at uo satisfies

Remark 4 . 5. - The proof of this theorem can be found in [4], [11],
[17], [19], ]23], [25], [26]. Combining theorems 4 . 2 and 4 . 4 together, we
obtain the proof of Theorems 1.1 and 1. 2.

Proof of Theorem 1 . 1. - Given T > 0, in Theorem 4. 4, let E = SET,
defined by (2.1) on SET for V = V (x). Propositions 2 . 3 and 2 . 7

show that W is C2 and satisfies the (PS) condition. Note that by
Lemma 2 . 2, on SET the ET is equivalent to the 
By the condition (V4), for any E > 0 small, there is a constant p > 0 such
that
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Then for x E SET with small, by (2 . 2) we obtain

Therefore if we choose E>O to be small enough, the condition (Fl) holds.
It is standard to show that under assumptions (VI) and (V2), the condition
(F2) holds. Since the proof of Rabinowitz given in the section 6 of his
book [23] works here with only minor notational modifications, we omit
the verification of this condition here.

So we get a critical point x E SET of 03C8 with 03C8(x)>0 and for this x the

inequality (4. 2) holds, that is

Since ~r (x) > o, x is not a constant function. By Proposition 2 . 4, x is a
non-constant T-periodic symmetric classical solution of (1.1). By
Theorem 4. 2 and (4. 3) we get

By Lemma 2 . 2, O (x) is odd. Thus O (x) = 3 or O (x) =1. The proof is
complete..
Proof of Theorem 1. 2. - For x E SET with ] x ~ being sufficiently small,

by the Sobolev imbedding Theorem and Lemma 2 . 2, we have ~x~C~r1
for r 1 defined in (V6). So by (V6) and (2.2), we have for such x,

Thus when 0T2014=, the condition (Fl) holds for the functional B)/
V~

resticted to Now the remaining part of the proof can be carried out
as that of Theorem 1.1, and therefore is omitted..
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APPENDIX

FIG. 1. Functions in N; defined by (3 . 8)
for the case of k = 9, where u E AE°.

FIG. 2. Functions in M defined by (3 . 10)
for the case of k = 5, where u E SEg . ..
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