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Abstract: One of the main challenges for protein redesign is the efficient evaluation of a combinatorial number of
candidate structures. The modeling of protein flexibility, typically by using a rotamer library of commonly-observed
low-energy side-chain conformations, further increases the complexity of the redesign problem. A dominant algorithm
for protein redesign is dead-end elimination (DEE), which prunes the majority of candidate conformations by eliminating
rigid rotamers that provably are not part of the global minimum energy conformation (GMEC). The identified GMEC
consists of rigid rotamers (i.e., rotamers that have not been energy-minimized) and is thus referred to as the rigid-GMEC.
As a postprocessing step, the conformations that survive DEE may be energy-minimized. When energy minimization is
performed after pruning with DEE, the combined protein design process becomes heuristic, and is no longer provably
accurate: a conformation that is pruned using rigid-rotamer energies may subsequently minimize to a lower energy than
the rigid-GMEC. That is, the rigid-GMEC and the conformation with the lowest energy among all energy-minimized
conformations (the minimized-GMEC) are likely to be different. While the traditional DEE algorithm succeeds in not
pruning rotamers that are part of the rigid-GMEC, it makes no guarantees regarding the identification of the minimized-
GMEC. In this paper we derive a novel, provable, and efficient DEE-like algorithm, called minimized-DEE (MinDEE),
that guarantees that rotamers belonging to the minimized-GMEC will not be pruned, while still pruning a combinatorial
number of conformations. We show that MinDEE is useful not only in identifying the minimized-GMEC, but also as a filter
in an ensemble-based scoring and search algorithm for protein redesign that exploits energy-minimized conformations.
We compare our results both to our previous computational predictions of protein designs and to biological activity assays
of predicted protein mutants. Our provable and efficient minimized-DEE algorithm is applicable in protein redesign,
protein-ligand binding prediction, and computer-aided drug design.
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Introduction

Computational Protein Design

The ability to engineer proteins has many biomedical applications.
A number of computational approaches to the protein redesign
problem have been reported. To improve the accuracy of the
redesign, protein flexibility has been incorporated into most previous
structure-based algorithms for protein redesign.1–7 A study of

bound and unbound structures found that most structural changes
involve only a small number of residues and that these changes
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are primarily side-chains, and not backbone.8 Hence, many pro-
tein redesign algorithms use a rigid backbone and model side-chain
flexibility with a rotamer library that consists of a discrete set of
low-energy commonly-observed side-chain conformations.9, 10 The
major challenge for redesign algorithms is the efficient evaluation of
the exponential number of candidate conformations, resulting not
only from mutating residues along the peptide chain, but also by
employing rotamer libraries. The development of pruning condi-
tions capable of eliminating the majority of mutation sequences and
conformations in the early, and less costly, redesign stages has been
crucial.

GMEC-based algorithms for protein redesign are based on the
assumption that protein folding and binding can be accurately pre-
dicted by examining the global minimum energy conformation
(GMEC). Since identifying the GMEC using a model with a rigid
backbone, a rotamer library, and a pairwise energy function is known
to be NP-hard,11, 12 different heuristic approaches have been pro-
posed.1–4, 13–15 A provable and efficient deterministic algorithm,
which has become the dominant choice for GMEC-based protein
design, is dead-end elimination (DEE).16 DEE reduces the size of
the conformational search space by eliminating rigid rotamers that
provably are not part of the GMEC. Most important, since no pro-
tein conformation containing a dead-ending rotamer is generated,
DEE provides a combinatorial factor reduction in computational
complexity.

When energy minimization is performed after pruning with DEE,
the process becomes heuristic, and is no longer provably accurate:
a conformation that is pruned using rigid-rotamer energies may
subsequently minimize to a structure with lower energy than the
rigid-GMEC. Therefore, the traditional DEE conditions are not valid
for pruning rotamers when searching for the lowest-energy confor-
mation among all energy-minimized rotameric conformations (the
minimized-GMEC, or minGMEC).

NRPS Redesign and K*

Traditional ribosomal peptide synthesis is complemented by non-
ribosomal peptide synthetase (NRPS) enzymes in some bacteria and
fungi. NRPS enzymes consist of several domains, each of which has
a separate function. Substrate specificity is generally determined
by the adenylation (A) domain.17–19 Among the products of NRPS
enzymes are natural antibiotics (penicillin, vancomycin), antifun-
gals, antivirals, immunosuppressants, and antineoplastics. The main
techniques for NRPS enzyme redesign are domain-swapping,20–23

signature sequences,17, 18, 24 and active site manipulation from a
structure-based mutation search utilizing ensemble docking (the K*

method).25

The NRPS system discussed in this article is the phenylala-
nine adenylation domain of Gramicidin Synthetase A (GrsA-PheA),
which, together with Gramicidin Synthetase B (GrsB), produces the
natural antibiotic gramicidin S. The K* algorithm has recently been
used to gain new insights into the enzyme’s mechanism and selec-
tivity.26 Redesigning GrsA-PheA to switch its specificity from the
wildtype phenylalanine to a different substrate (e.g., Leu or Tyr) may
produce a modified version of gramicidin. Thus, structure-based
computational protein redesign can play a role in engineering com-
binatorial biosynthesis for small-molecule diversity. The redesign

of NRPS enzymes can lead to the synthesis of novel NRPS prod-
ucts, such as new libraries of antibiotics.27 More generally, novel
molecular function can be achieved by redesigning an enzyme’s
active site so that it will perform its chemical reaction on a novel
substrate.

The K* algorithm25 has been demonstrated for NRPS redesign,
but is a general algorithm that is, in principle, capable of redesign-
ing any protein. K* is an ensemble-based scoring technique that
uses a Boltzmann distribution to compute partition functions for
the bound and unbound states of a protein. The ratio of the bound
to the unbound partition function is used to compute a provably-
good approximation (K*) to the binding constant for a given design
sequence. A volume and a steric filter are applied in the initial stages
of a redesign search to prune the majority of the conformations from
more expensive evaluation. The number of evaluated conformations
is further reduced by a provable ε-approximation algorithm. Pro-
tein flexibility is modeled for both the protein and the ligand using
energy-minimization and rotamers.25 In a recent study by Stevens
et al.,26 the K* software was successfully applied in a redesign of
GrsA-PheA: in vitro experiments showed that the top K*-predicted
mutations improved the enzyme’s specificity for a novel substrate.

Contributions of the Paper

Boltzmann probability implies that low-energy conformations are
more likely to be assumed than high-energy conformations. The
motivation behind energy minimization is therefore well-established
and algorithms that incorporate energy minimization often lead to
more accurate results. However, if energy minimization is performed
after pruning with DEE, then the combined protein design process
is heuristic, and not provable. We show that a conformation pruned
using rigid-rotamer energies may subsequently minimize to surpass
the putative rigid-GMEC.

We derive a novel, provable, and efficient DEE-like algorithm,
called minimized-DEE (MinDEE), that guarantees that no rotamers
belonging to the minGMEC will be pruned. We show that our
method is useful not only in (a) identifying the minGMEC (a
GMEC-based method), but also (b) as a filter in an ensemble-
based scoring and search algorithm for protein redesign that exploits
energy-minimized conformations. We achieve (a) by implementing
a MinDEE/A* algorithm in a search to switch the binding affinity of
the Phe-specific adenylation domain of the NRPS Gramicidin Syn-
thetase A (GrsA-PheA) towards Leu. The latter goal (b) is achieved
by implementing MinDEE as a combinatorial filter in a hybrid
algorithm,† combining A* search and our previous work on K*.25

The experimental results, based on a 2-point mutation search on the
9-residue active site of the GrsA-PheA enzyme, confirm that the
new Hybrid MinDEE-K* algorithm has a much higher pruning effi-
ciency than the original K* algorithm. Moreover, it takes only 30 s
for MinDEE to determine which rotamers can be provably pruned.
We make the following contributions in this paper:

1. Derivation of MinDEE, a novel, provable, and efficient DEE-
like algorithm that incorporates energy minimization, with
applications in both GMEC- and ensemble-based protein design.

†For brevity, we will henceforth refer to this algorithm as the Hybrid
MinDEE-K* algorithm.
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2. Introduction of a MinDEE/A* algorithm that identifies the
minGMEC and returns a set of low-energy conformations;

3. Introduction of a Hybrid MinDEE-K* ensemble-based scoring
and search algorithm, improving on our previous work on K*25 by
replacing a constant-factor with a combinatorial-factor provable
pruning condition; and

4. The use of our novel algorithms in a redesign mutation search
for switching the substrate specificity of the NRPS enzyme
GrsA-PheA; we compare our results to previous computational
predictions of protein designs and to biological activity assays
of predicted protein mutants.

A preliminary version of this work was presented at a confer-
ence.28 In ref. 29, nonoverlapping improvements to the current work
and other algorithmic DEE enhancements are presented.

Derivation of the Minimized-DEE Criterion

The Original DEE Criterion

In this section we briefly review the traditional-DEE theo-
rem.16, 30–32 Traditional-DEE refers to the original DEE, which is not
provably correct when used in a search for the minimized-GMEC.
Our notation is chosen to remain consistent with previous work.
The total energy, ET, of a given rotameric-based conformation can
be written as ET = Et′ + ∑

i E(ir) + ∑
i

∑
j>i E(ir , js), where Et′

is the template self-energy (i.e., backbone energies or energies of
rigid regions of the protein not subject to rotamer-based modeling),
ir denotes rotamer r at position i, E(ir) is the self energy of rotamer
ir (the intra-residue and residue-to-template energies), and E(ir , js)
is the non-bonded pairwise interaction energy between rotamers
ir and js. The rotamers assumed in the rigid-GMEC are written
with a subscript g. Therefore ig is the rotamer assumed in the rigid-
GMEC at position i. The following two bounds are then noted: for
all i, j(i �= j), max

s∈Rj

E(it , js) ≥ E(it , jg), and min
s∈Rj

E(ig, js) ≤ E(ig, jg),

where Rj is the set of allowed rotamers for residue j. For clarity, we
will not include Rj in the limits of the max and min terms, since it
will be clear from the notation from which set s must be drawn. The
DEE criterion for rotamer ir is defined as:

E(ir) +
∑
j �=i

min
s

E(ir , js) > E(it) +
∑
j �=i

max
s

E(it , js). (1)

Any rotamer ir satisfying the DEE criterion (eq. 1) is provably not
part of the rigid-GMEC (ir �= ig), and is considered “dead-ending”
(Fig. 1). Extensions to this initial DEE criterion allow for additional
pruning while maintaining correctness with respect to identifying
the rigid-GMEC.16, 30–33

DEE with Energy Minimization: MinDEE

We now derive generalized DEE pruning conditions which can be
used when searching for the minimized-GMEC. The fundamental
difference between traditional-DEE and MinDEE is that the for-
mer enjoys significant independence among multiple energy terms
during a rotamer swap. For example, when conformations are not
energy-minimized, changing rotamer ir to it does not affect the

Figure 1. Rotamer pruning by dead-end elimination. A cartoon of the
protein’s conformational energy for all conformations of residues j (j �=
i) assuming the presence of rotamer r (orange, top) and rotamer t (blue,
bottom) at position i. In this example, the lowest (best) conformational
energy achievable with rotamer ir is indicated by the dotted line and
the highest (worst) conformational energy achievable with rotamer it is
indicated by the dashed line. Since the energy of all conformations is
reduced in switching from ir to it , rotamer ir can be pruned as dead-
ending. In practice, the use of eq. (1) avoids the requirement of having
to enumerate the exponential number of possible conformations for all
residues j (j �= i). [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

energy term E(js); however, when energy minimization is allowed,
the value of this energy term may change as the rotameric conforma-
tions ir and js minimize from their initial rotameric conformations
(Fig. 2). Therefore, to be provably correct, one must account for
a range of possible energies. The conformation of a residue may
change during energy minimization, however we constrain this
movement to a region of conformation space called a voxel34, 35

to keep one rotamer from minimizing into another. In this frame-
work, the voxel V(ir) for rotamer ir is simply all conformations
of residue i within a ±θ range around each rotamer dihedral when
starting from the rotamer‡ ir . We similarly define the voxel V(ir , js)
for the pair of rotamers ir and js to be the region of conformation
space V(ir) × V(js). Next, we can define the maximum, minimum,
and range of voxel energies:

E⊕(ir) = max
z∈V(ir )

E(z), E�(ir) = min
z∈V(ir )

E(z),

E�(ir) = E⊕(ir) − E�(ir).

Analogous definitions exist for pairwise terms:

E⊕(ir , js) = max
z∈V(ir ,js)

E(z), E�(ir , js) = min
z∈V(ir ,js)

E(z),

E�(ir , js) = E⊕(ir , js) − E�(ir , js).

‡The voxel space for each rotamer can be multi-dimensional, depending on
the number of dihedrals. The largest number of dihedrals for a single rotamer
is 4 (Arg and Lys).
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Figure 2. Energy-minimized DEE. Without energy minimization the swapping of rotamer ir for it (Panel
A to Panel B) leaves unchanged the conformations and self and pairwise energies of residues j and k. When
energy minimization is allowed, the swapping of rotamer ir for rotamer it (Panel C to Panel D) may cause the
conformations of residues j and k to minimize (i.e., move) to form more energetically favorable interactions
(from the faded to the solid conformations in Panels C and D).

We now define the MinDEE criterion for rotamer ir to be:

E�(ir)+
∑
j �=i

min
s

E�(ir , js) −
∑
j �=i

max
s

E�(js)

−
∑
j �=i

∑
k �=i,k>j

max
s,u

E�(js, ku) > E⊕(it) +
∑
j �=i

max
s

E⊕(it , js). (2)

Proposition 1. When eq. (2) holds, rotamer ir is provably not part
of the minimized-GMEC.

The proof of Proposition 1 is given in Appendix A.
The most significant difference between traditional-DEE and

MinDEE is the accounting for possible energy changes during min-
imization, which are incorporated through the introduction of the
terms

∑
j max

s
E�(js) and

∑
j

∑
k max

s,u
E�(js, ku). Using precom-

puted energy bounds, the MinDEE pruning condition [eq. (2)] can
be computed as efficiently as the traditional-DEE pruning condition
[eq. (1)]. The complexity of deciding eq. (2) is O(q2n2), where n is
the number of residue positions and q is the maximum number of
rotamers per residue position. The MinDEE framework can be used
whenever a bound on a pairwise energy function can be obtained
and is therefore not critically dependent upon the particular energy
function or type of minimization employed.

In this section, we presented a generalization of traditional-
DEE, to obtain an initial pruning criterion for MinDEE. Extensions
to the traditional-DEE pruning conditions have made them more
efficient.16, 30–33 An excellent review of these advanced pruning
techniques appears in ref. 30. These methods allow more individual
rotamers to be pruned during DEE and extend the DEE criterion to
identify dead-ending rotamer pairs. Analogously to section “DEE
with energy minimization: MinDEE”, we have derived MinDEE
equivalents to four extensions to traditional DEE for increased
pruning efficiency.29

Two Applications of MinDEE

The MinDEE criterion can efficiently reduce the search space for a
given protein design problem by pruning rotamers that are provably
not part of the minimized-GMEC. We have applied MinDEE as a
pruning filter in two different protein design algorithms. The details
of these algorithms are described in the following two sections. In

section “MinDEE/A∗ search algorithm (GMEC-based Redesign)”,
we use MinDEE as a part of MinDEE/A*, a provably-accurate
GMEC-based protein design algorithm. In the MinDEE/A* algo-
rithm, MinDEE is first used to provably prune the majority of the
candidate conformations; the minimized-GMEC and all low-energy
conformations (and thus sequences) within a specified threshold
from the minimized-GMEC energy are then generated and energy-
minimized using the A* search technique.36 MinDEE/A* ranks
mutation sequences¶ based on the energy of the single best confor-
mation for each mutation sequence (hence, the term GMEC-based
algorithm). In section “MinDEE/A∗ search algorithm (GMEC-based
redesign)”, we first review the traditional-DEE/A* GMEC-based
algorithm proposed in ref. 36 (section “Traditional-DEE with A∗”);
we then derive the MinDEE/A* algorithm that, in contrast to
traditional-DEE/A*, is provably-accurate with rotameric energy
minimization (section “MinDEE with A∗”).

In section “Hybrid MinDEE-K∗ algorithm (ensemble-based
redesign)”, we describe how MinDEE can be used as a pruning
filter in Hybrid MinDEE-K*, an ensemble-based protein design
algorithm. For a given protein-ligand complex, Hybrid MinDEE-K*

computes a provably-accurate approximation, K*, to the associa-
tion binding constant by computing Boltzmann-weighted partition
functions over rotameric ensembles of conformations. Given a
set of candidate mutation sequences and a target ligand, Hybrid
MinDEE-K* computes the K* scores for each sequence and ranks
sequences in order of their computed scores (higher scores imply
better binding). In the beginning of section “Hybrid MinDEE-
K∗ algorithm (ensemble-based redesign)”, we discuss the general
motivation behind the Hybrid MinDEE-K* algorithm. In section
“Efficient partition function computation using A∗ search”, we
derive a provably-accurate algorithm for partition function com-
putation over conformational ensembles that also exploits MinDEE
pruning and the A* search; in Appendix B, we present an improve-
ment to the partition function computation algorithm of section
“Efficient partition function computation using A∗ search”. In par-
ticular, the efficient partition function computation is generalized
to prune rotamers and sequences, so that in protein redesign the
optimal sequences (in terms of K* score) are computed. Finally,
in section “Algorithm”, we describe the application of the partition

¶A mutation sequence specifies an assignment of amino-acid type to each
residue position in a protein.
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function computation algorithms in Hybrid MinDEE-K*, as well as
the complete sequence of Hybrid MinDEE-K* algorithmic steps.

MinDEE/A* Search Algorithm
(GMEC-Based Redesign)

Traditional-DEE with A*

In ref. 36, an A* branch-and-bound algorithm was developed to com-
pute a number of low-energy conformations for a single mutation
sequence (i.e., a single protein). In this algorithm, traditional-DEE
was first used to reduce the number of side-chain conformations,
and then surviving conformations were enumerated in order of con-
formation energy by expanding sorted nodes of a conformation tree
(Fig. 3).

The following derivation of the DEE/A* combined search closely
follows.36 The A* algorithm scores each node in a conformation
tree using a scoring function f = g + h, where g is the cost of
the path from the root to that node (the energy of all self and pair-
wise terms assigned through depth d) and h is an estimate (lower
bound) of the path cost to a leaf node (a lower bound on the sum
of energy terms involving unassigned residues). The value of g (at
depth d) can be expressed as g = ∑d

i=1(E(ir) + ∑d
j=i+1 E(ir , js)).

The lower bound h can be written as h = ∑n
j=d+1 Ej , where n

is the total number of flexible residues and Ej = min
s

(E(js) +∑d
i=1 E(ir , js) + ∑n

k>j min
u

E(js, ku)). The A* algorithm maintains

a list of nodes (sorted by f ) and in each iteration replaces the node
with the smallest f value by an expansion of the children of that
node. This process of expansion is continued until the node with
the smallest f value is a leaf node. This leaf node corresponds to
a fully-assigned conformation and is returned by the algorithm. To
reduce the branching factor of the conformation tree, the DEE algo-
rithm is used to preprocess the set of allowed rotamers. If more
than one low-energy conformation is to be extracted from the A*
search, the DEE criterion must be modified. If low-energy confor-
mations within Ew of the GMEC are to be returned by the DEE/A*
search, then the DEE criterion must be modified to only eliminate
rotamers that are provably not part of any conformation within Ew

of the GMEC. The original DEE criterion [eq. (1)] is thus changed
to: E(ir) − E(it) + ∑

j �=i min
s

E(ir , js) − ∑
j �=i max

s
E(it , js) > Ew.

MinDEE with A*

The traditional-DEE/A* algorithm36 can be extended to include
energy minimization by substituting our newly derived MinDEE
(section “DEE with energy minimization: MinDEE”) for traditional-
DEE. So that no conformations within Ew of the energy-minimized
GMEC are pruned, the MinDEE equation [eq. (2)] becomes:

E�(ir) +
∑
j �=i

min
s

E�(ir , js) −
∑
j �=i

max
s

E�(js)

−
∑
j �=i

∑
k �=i,k>j

max
s,u

E�(js, ku) − E⊕(it) −
∑
j �=i

max
s

E⊕(it , js) > Ew.

(3)

Figure 3. An example conformation tree. In a conformation tree, the
rotamers of flexible residue i are represented by the branches at depth i.
Internal nodes of a conformation tree represent partially-assigned con-
formations and each leaf node represents a fully-assigned conformation.
Nodes marked with ×s have been pruned from further consideration.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

We modify the definition of the A* functions g and h to use the
minimum energy terms E�(ir) and E�(ir , js) in place of E(ir) and
E(ir , js). Thus, we have:

g =
d∑

i=1

(
E�(ir) +

d∑
j=i+1

E�(ir , js)

)
, h =

n∑
j=d+1

Ej , (4)

where

Ej = min
s

(
E�(js) +

d∑
i=1

E�(ir , js) +
n∑

k=j+1

min
u

E�(js, ku)

)
. (5)

A lower bound on the minimized energy of the partially-assigned
conformation is given by g, while a lower bound on the minimized
energy for the unassigned portion of the conformation is given by h.
Thus, the MinDEE/A* search generates conformations in order of
increasing lower bounds on the conformation’s minimized energy.

We combine our modified MinDEE criterion [eq. (3)] with the
modified A* functions [eqs. (4) and (5)] in a provable search algo-
rithm for identifying the minimized-GMEC and obtaining a set of
low-energy conformations. First, MinDEE prunes the majority of
the conformations by eliminating rotamers that are provably not
within Ew of the minimized-GMEC. The remaining conformations
are then generated in order of increasing lower bounds on their mini-
mized energies. The generated conformations are energy-minimized
and ranked in terms of increasing actual minimized energies. The
single best conformation for each unique mutation sequence is then
used to rank the mutation sequence predictions.

The MinDEE/A* search must guarantee that upon completion,
all conformations within Ew of the minimized-GMEC are returned.
Since in the A* algorithm conformations are returned in order of
increasing lower bounds on the minimized energies, the minimized-
GMEC may not be among the top conformations if the lower bound

Journal of Computational Chemistry DOI 10.1002/jcc
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on its energy does not rank high. We therefore derive the follow-
ing condition for halting the MinDEE/A* search. Let B(s) be the
lower bound on the energy of conformation s (see Appendix C,
which describes how lower energy bounds are precomputed for all
rotamer pairs) and let Em be the current minimum energy among
the minimized conformations returned so far in the A* search.

Proposition 2. The MinDEE/A* search can be halted once the
lower bound B(c) on the energy of the next conformation c returned
by A*, satisfies B(c) > Em + Ew. The set of returned conformations
is guaranteed to contain every conformation whose energy is within
Ew of the energy of the minimized-GMEC. Moreover, at that point
in the search, the conformation with energy Em is the minimized-
GMEC.

Proof. Let E(s) be the actual energy of a minimized con-
formation s. Let Y be the set containing conformation c (the
next conformation returned by A*) and all conformations not yet
returned. Since A* returns conformations in order of increasing
lower bounds on the energy, we know that E(s) ≥ B(s) ≥ B(c)
for any conformation s ∈ Y . Thus, if B(c) > Em + Ew holds, then
E(s) > Em+Ew. Hence, no conformations in Y have energies within
Ew of the energy of the minimized-GMEC, proving that all confor-
mations within Ew of the minimized-GMEC energy have already
been returned. Moreover, note that at that point in the search, the
conformation with energy Em is actually the minimized-GMEC. ■

Using both MinDEE and A* search together, our algorithm
obtains a combinatorial pruning factor by eliminating the majority
of the conformations, which makes the search for the minimized-
GMEC computationally feasible. The MinDEE/A* algorithm incor-
porates energy minimization with provable guarantees, and is thus
more capable of returning conformations with lower energy states
than traditional-DEE.

Hybrid MinDEE-K* Algorithm
(Ensemble-Based Redesign)

We now present an extension and improvement to the original K*

protein design algorithm25 by using a version of the MinDEE cri-
terion plus A* branch-and-bound search. The K* ensemble-based
scoring function approximates the association binding constant
for a given protein-ligand complex with the following quotient:
K∗ = qPL

qP qL
, where qPL , qP , and qL are the partition functions for

the protein-ligand complex, the free (unbound) protein, and the free
ligand, respectively. For a given protein design problem, partition
functions and K* scores are efficiently computed for all candidate
mutation sequences with the target ligand; sequences are then ranked
in order of their computed K* scores (higher scores imply better
binding). In this section, we describe how our MinDEE pruning cri-
terion and the A* search can be exploited for the partition function
and K* computation.

A partition function q over a set (ensemble) of conformations
S is defined as q = ∑

s∈S exp(−Es/RT), where Es is the energy
of conformation s, T is the temperature in Kelvin, and R is the
gas constant. In a naive K* implementation, each partition function

would be computed by a computationally-expensive energy min-
imization of all rotamer-based conformations. However, because
the contribution to the partition function of each conformation
is exponential in its energy, only a subset of the conformations
significantly contribute to the partition function value. By iden-
tifying and energy-minimizing only the significantly-contributing
conformations, a provably-accurate ε-approximation algorithm sub-
stantially improved the algorithm’s efficiency25. In this section
we illustrate how the newly-derived MinDEE and A* algorithms
(section “MinDEE with A∗”) can be used to generate and min-
imize only those conformations that contribute significantly to
the partition function, and hence, for which energy minimiza-
tion is required. The MinDEE criterion must be used in this
algorithm because the K* scoring function is based on energy-
minimized conformations. Since pruned conformations never have
to be examined, the Hybrid MinDEE-K* algorithm provides a com-
binatorial improvement in runtime over the previously-described
constant-factor ε-approximation algorithm25 (where a lower-bound
on each conformation’s minimum energy was quickly examined to
determine if full energy minimization was required).

Efficient Partition Function Computation Using A* Search

Here, we present an efficient algorithm for computing the qPL , qP ,
and qL partition functions used to compute a K* approximation
score for a given mutation sequence. Using the A* algorithm with
MinDEE, we can generate the conformations of a rotamerically-
based ensemble in order of increasing lower bounds on the confor-
mation’s minimized energy. We can efficiently compute the lower
bound on a conformation’s energy as a sum of precomputed pairwise
minimum energy terms (see Appendix C). As each conformation c is
generated from the conformation tree, we compare its lower bound
B(c) on the conformational energy to a moving stop-threshold and
halt the A* search once B(c) becomes greater than the threshold.
The A* algorithm guarantees that all remaining conformations will
have minimized energies above the stop-threshold. We now prove
that a partial partition function q∗ computed using only those con-
formations with energies below (i.e., better than) the stop-threshold
will lie within a factor of ε of the true partition function q. Note
that, by definition, q ≥ q∗. Thus, q∗ is an ε-approximation to q, i.e.,
q∗ ≥ (1 − ε)q.

Since the application of the MinDEE criterion (Eq. 2) for each
rotamer ir requires that the corresponding minimum energy terms
be accessed, we can easily piggyback the computation of a lower
bound Bir on the energy of all conformations that contain a pruned
rotamer ir :

Bir = Et′ + E�(ir) +
∑
j �=i

min
s

E�(js) +
∑
j �=i

min
s

E�(ir , js)

+
∑
j �=i

∑
k �=i,k>j

min
s,u

E�(js, ku).

Let E0 be the minimum lower energy bound among all confor-
mations containing at least one pruned rotamer, E0 = minir∈S Bir ,
where S is the set of pruned rotamers. E0 can be precomputed dur-
ing the MinDEE stage and prior to the A* search. Let p∗ be the
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partition function computed over the set P of pruned conforma-
tions, so that p∗ ≤ k exp(−E0/RT), where |P| = k. Also, let X
be the set of conformations not pruned by MinDEE and let q∗ be
the partition function for the top m conformations already returned
by A*; let q′ be the partition function for the n conformations that
have not yet been generated, all of which have energies above Et ,
so that q′ ≤ n exp(−Et/RT); note that |X| = m + n. Finally, let
ρ = ε

1−ε
. We can then guarantee an ε-approximation to the full

partition function q using:

Proposition 3. If the lower bound B(c) on the minimized energy
of the (m + 1)st conformation returned by A* satisfies B(c) ≥
−RT(ln(q∗ρ − k exp(−E0/RT)) − ln n), then the partition func-
tion computation can be halted, with q∗ guaranteed to be an
ε-approximation to the true partition function q, that is, q∗ ≥
(1 − ε)q.

Proof. The full partition function q is computed using all
conformations in both P and X:

q = q∗ + q′ + p∗. (6)

Thus,

q ≤ q∗ + n exp(−Et/RT) + k exp(−E0/RT). (7)

Hence, if

q∗ ≥ (1 − ε)(q∗ + n exp(−Et/RT) + k exp(−E0/RT)), (8)

then q∗ ≥ (1 − ε)q. Solving Eq. (8) for Et , we obtain the desired
stop-threshold:

−RT(ln(q∗ρ − k exp(−E0/RT)) − ln n) ≤ Et . (9)

We can halt the search once a conformation’s energy lower bound
becomes greater than the stop-threshold [eq. (9)], since then q∗ is
already an ε-approximation to q. ■

The application of the MinDEE criterion gives a combinatorial-
factor speedup by caching the minimum lower energy bound for the
set of all pruned conformations. Since the conformations pruned
by MinDEE can potentially contribute significantly to the parti-
tion function, we bound their contribution, thus guaranteeing a
provably-accurate approximation to the full partition function. The
conformation tree could, in principle, be reduced by pruning an
arbitrary subset of the rotamers, so long as a guarantee on the
accuracy is still maintained through a bound on the contribution
of the pruned conformations. However, in practice, the amount
of pruning and the resulting approximation accuracy depend on
which rotamers are chosen for pruning. Using MinDEE to determine
the set of pruned rotamers guarantees that the pruned confor-
mations will have high lower energy bounds by requiring that
no conformations within Ew of the minimized-GMEC energy are
pruned [eq. (3)], whereas an arbitrary rotameric set could easily

contain conformations with very good (i.e., low) energies. Propo-
sition 3 turns pruning with MinDEE into a provable heuristic.
Note that: (1) the magnitude of p∗ is determined by the lower
energy bounds of the pruned conformations, and (2) the number
of conformations that A* must extract to guarantee a provably-
accurate approximation to the partition function depends on the
magnitude of p∗. By using MinDEE pruning instead of an arbi-
trary set of rotamers, we increase the pruning efficiency. Since
conformations that contain steric clashes do not contribute to the
partition function for the given mutation sequence, we can fur-
ther reduce p∗ by including in P only the pruned conformations
whose lower energy bound does not contain a rotamer that always
clashes sterically (such a reduction in P, and hence, k, can be com-
puted during the MinDEE phase, since rotamers whose precomputed
minimum-energy bounds indicate steric clashes, necessarily imply
that all conformations containing these rotamers are also steric
clashes).

If at some point in the search, the stop-threshold condition has
not been reached and there are no remaining conformations for A* to
extract (n = 0), then q′ = 0 by definition, and q = q∗ + p∗. Hence,
if q∗ρ ≥ k exp(−E0/RT), then q∗ ≥ (1−ε)(q∗ +k exp(−E0/RT)),
so q∗ ≥ (1 − ε)q is already an ε-approximation to q; otherwise, we
have

q∗ ≥ (1 − δ)(q∗ + k exp(−E0/RT)), (10)

for some approximation accuracy δ > ε. Thus, the set of pruned
rotamers must be reduced to guarantee the desired approximation
accuracy. To assure that an ε-approximation is achieved when the
search is repeated, a subset of the k pruned conformations in P
must be reintroduced into the computation. Let l be the number of
conformations from P (the set of pruned conformations) that are
not to be pruned, such that p∗ ≤ (k − l) exp(−E0/RT). We will
conservatively assume that the l conformations do not contribute to
q∗, although they no longer contribute to p∗ either. At the end of the
second mutation search, we must have

q∗ ≥ (1 − ε)(q∗ + (k − l) exp(−E0/RT)). (11)

Solving for l, we obtain the following condition, which guarantees
the desired ε-approximation accuracy:

l ≥ k − q∗ρ
exp(−E0/RT)

, (12)

where again ρ = ε
1−ε

. Note that an ε-approximation may be
achieved before all conformations have been extracted; eq. (12)
guarantees such an accuracy when all non-pruned conformations
have been extracted by A*. To guarantee that at least l out of the k
pruned conformations will be allowed during the repeated computa-
tion, we can choose a subset Q of the rotamers pruned by MinDEE,
such that not pruning Q keeps at least l additional conformations.

In the algorithm for partition function computation described
in this section, conformation pruning is performed only within a
mutation sequence (Fig. 4). In Appendix B, we derive an improve-
ment to this partition function algorithm that further improves the
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Figure 4. Efficient partition function computation with energy min-
imization using the A* search. q∗ is the running approximation to
the partition function. The function B(·) computes the energy lower
bound for the given conformation (see Appendix C). The function
ComputeMinEnergy(·) returns a conformation’s energy after energy
minimization. The function GetNextAStarConf() returns the next
conformation from the A∗ search. The functionRepeatSearch(·) sets
up and repeats the mutation search if an ε-approximation is not achieved
after the generation of all A* conformations; the search is repeated at
most once. Upon completion, q∗ represents an ε-approximation to the
true partition function q, such that q ≥ q∗ ≥ (1 − ε)q.

efficiency of the partition function computation by allowing confor-
mation pruning across mutation sequences. The improved algorithm
in Appendix B also yields a provably-good approximation (see
Proposition 4 therein).

Algorithm

We now have all the necessary tools for our ensemble-based Hybrid
MinDEE-K* algorithm. The volume filter (see Methods section)
in the original K* is applied first to eliminate under- and over-
packed mutation sequences. For each of the remaining unpruned
sequences, the K∗ = qPL

qP qL
scores are computed, using the partition

function algorithms of section “Efficient partition function compu-
tation using A∗ search” and Appendix B to efficiently compute the
qPL , qP , and qL partition functions. The application of the MinDEE
and A* algorithms in the partition function computation improves
on the mere constant-factor speedup provided by the energy filter
in the original K* algorithm.25 By implementing a steric filter (see
Methods section), similar to the one in ref. 25, as a part of the A*

search, we prevent some high-energy conformations (corresponding
to steric clashes) with good lower bounds from being returned by
A*, gaining an additional combinatorial speedup. Only the confor-
mations that pass all of these filters are energy-minimized and used
in the computation of the partition function for the conformational
ensemble. In contrast to the original K* algorithm25 where, for a
given mutation sequence, pruning was performed during the (worst-
case exponential) conformation enumeration, Hybrid MinDEE-K*

uses the polynomial-time MinDEE criterion before the enumeration
occurs. Our Hybrid MinDEE-K* algorithm efficiently prunes the
majority of the mutation sequences and conformations from more
expensive evaluation, while still giving provable guarantees about
the accuracy of its binding score predictions [eq. (A21) below].
Finally, the unpruned mutation sequences are ranked in order of
their computed K* scores.

Methods

Structural Model

Our structural model is the same as the one used in the original
K*.25 In our experiments, the structural model consists of nine active
site residues (D235, A236, W239, T278, I299, A301, A322, I330,
C331) of GrsA-PheA (PDB id: 1AMU),37 a steric shell (30 residues
with at least one atom within 8 Å from the substrate), the amino
acid substrate, and the AMP cofactor. The steric shell facilitates
the computation of the energy between the active site residues and
neighboring regions of the protein (the residue-to-template energy)
and constrains the movement of the active site residues to only
sterically-allowable conformations relative to the body of the GrsA-
PheA protein. All nine active site residues are modeled as flexible
using rotamers and are subject to energy minimization. The steric
shell includes residues 186Y, 188I, 190T, 210L, 213F, 214F, 230A,
234F, 237S, 238V, 240E, 243M, 279L, 300T, 302G, 303S, 320I,
321N, 323Y, 324G, 325P, 326T, 327E, 328T, 329T, 332A, 333T,
334T, 515N, and 517K. In 1AMU,37 and also in ref. 25, residues
235D and 517K make H-bonds to the amino acid backbone of the
ligand, thereby stabilizing the substrate in a productive orientation
for catalysis. Flexible residues are represented by rotamers from
the Richardsons’ rotamer library.9 The energy function consists
of the amber electrostatic, vdW, and dihedral energy terms,38, 39

and the EEF1 pairwise solvation energy term.40 A dielectric of
20 and a solvation energy scaling factor of 0.05 was used for the
computational experiments. Each rotameric-based conformation is
minimized using steepest-descent minimization (see Appendix C).

Energy Precomputation for Lower Bounds, B(·)
The MinDEE criterion [eq. (2)] uses both min and max precom-
puted energy terms to determine which rotamers are not part of
the minimized-GMEC. There is no need to recompute the min and
max energies every time eq. (2) is evaluated. See Appendix C for a
detailed discussion.

Approximation Accuracy

We use an ε-value of 0.03, thus guaranteeing that the computed
partial partition functions will be not less than 97% of the corre-
sponding full partition functions. We use a value of 0.01 for γ (see
Appendix B), which requires that correct K* scores be computed
for all mutation sequences whose score is at most two orders of
magnitude less than the best score.

Filters

Volume Filter

Mutation sequences that are over- or under-packed by more than
30Å3 compared to the wildtype PheA are pruned.

Steric Filter

Conformations in which a pair of atoms’ vdW radii overlap by more
than 1.5 Å prior to minimization are pruned.
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Sequence-Space Filter

The active site residues are allowed to mutate to the set (GAVLI-
FYWM) of hydrophobic amino acids.

MinDEE

We use an implementation of the MinDEE analog29 to the simple
coupled Goldstein criterion.33

Results and Discussion

In this section, we compare the results of GMEC-based pro-
tein redesign without (traditional-DEE/A*) and with (MinDEE/A*)
energy minimization. We also compare the redesign results when
energy minimization is used without (MinDEE/A*) and with
(Hybrid MinDEE-K*) conformational ensembles. We further com-
pare our ensemble-based redesign results both to our previous
computational predictions of protein designs and to biological
activity assays of predicted protein mutants.

Comparison to Biological Activity Assays

Similarly to ref. 25, we simulated the biological activity assays
of L-Phe and L-Leu against the wildtype PheA enzyme and the
double mutant T278M/A301G.17 In ref. 17, T278M/A301G was
shown to have decreased specificity for Phe and increased speci-
ficity for Leu, as compared to the wildtype enzyme. The computed
Hybrid MinDEE-K* scores qualitatively agreed with these results:
the Hybrid MinDEE-K* score for wildtype with Phe was 17-fold
higher than T278M/A301G with Phe; the Hybrid MinDEE-K*

score for wildtype with Leu was 12-fold lower than T278M/A301G
with Leu.

Comparison to Traditional-DEE

For comparison, the simple coupled Goldstein traditional-DEE cri-
terion33 was used in a redesign search for changing the specificity
of the wildtype PheA enzyme from Phe to Leu, using the exper-
imental setup in section “Methods”. A comparison to the rotamer
assignments in the minimized-GMEC A236M/A322M MinDEE/A∗
section revealed that A301, the minimized-GMEC identity at residue
position 301, was in fact pruned by traditional-DEE. We then
energy-minimized A236M/A301G, the rigid-GMEC obtained by
traditional-DEE/A* and determined that its energy was higher (by
∼ 6 kcal/mol) than the energy for the minimized-GMEC obtained by
MinDEE/A*. Moreover, a total of 396 different conformations min-
imized to an energy lower than the minimized rigid-GMEC energy
(see Fig. 6). These results confirm our claim that traditional-DEE
is not provably-accurate with energy-minimization; they also show
that conformations pruned by traditional-DEE may minimize to a
lower energy state than the rigid-GMEC.

Redesign for Leu

Hybrid MinDEE-K*

The experimental setup for Leu redesign with Hybrid MinDEE-K*

is as described in section “Methods”. The 2-point mutation search

Table 1. Conformational Pruning with Hybrid MinDEE-K*.

Conf. remaining Pruning factor (%)

Initial 6.8 × 108 –
Volume Filter 2.04 × 108 3.33 (70.0)
MinDEE Filter 4.13 × 106 49.43 (98.0)
Steric Filter 3.86 × 106 1.07 (6.5)
A* Energy Filter 7.82 × 104 49.41 (98.0)

The initial number of conformations for the GrsA-PheA 2-residue Leu muta-
tion search is shown with the number of conformations remaining after the
application of volume, MinDEE, steric, and energy (with A*) pruning. The
A* energy filter is based on the ε-approximation algorithms in section “Effi-
cient partition function computation using A∗ search” and Appendix B. The
pruning factor represents the ratio of the number of conformations present
before and after the given pruning stage. The pruning-% (in parentheses) rep-
resents the percentage of remaining conformations eliminated by the given
pruning stage.

took ∼ 9 hr on a cluster of 24 processors. Only 30% of the mutation
sequences passed the volume filter, while MinDEE pruned 98%
of the remaining conformations. The use of the ε-approximation
algorithms reduced the number of conformations that had to be sub-
sequently generated and energy-minimized by an additional factor
of 50 (see Table 1). A brute-force version of Hybrid MinDEE-K*

that did not utilize any of the filters, would take ∼ 8700 times longer
(∼ 3, 262 days) for the same experimental setup for redesign.

To determine the per-sequence pruning efficiency of Hybrid
MinDEE-K*, we further computed the fraction of fully-evaluated
conformations (the number of conformations that pass all of the
Hybrid MinDEE-K* filters, divided by the total number of confor-
mations) separately for each sequence. Figure 5 shows the fraction
of fully-evaluated conformations versus the computed log K* scores
for each of the unpruned sequences, for the protein-ligand bound-
state partition function computation. As expected, the fraction of
fully-evaluated conformations that contribute significantly to the
computation of the provably-accurate ε-approximation to the par-
tition function is very small (less than 0.5%) for all sequences,
confirming again the efficiency of Hybrid MinDEE-K*. However,
there is no correlation between the magnitude of the sequence scores
and the fraction of fully-evaluated conformations.

The two top-scoring sequences are A301G/I330W and
A301G/I330F for both Hybrid MinDEE-K* and the original-K*.
These novel mutation sequences were tested in the wetlab and were
shown to have the desired switch of specificity from Phe to Leu
(for details of the wetlab experiments, see ref. 25). Moreover, the
other known successful redesign T278M/A301G17 is ranked 3rd by
Hybrid MinDEE-K* (this sequence was ranked 12th by the original-
K* in ref. 25). Furthermore, all of the top 13 Hybrid MinDEE-K*

sequences contain the mutation A301G, which is found in all known
native Leu adenylation domains.18 These results show that our
algorithms can give reasonable predictions for redesign.

Comparison to Original-K*. An initial comparison to the original-
K* results showed only a small overlap between the top-ranking
mutations for Hybrid MinDEE-K* and the original-K*.25 To facil-
itate a fair comparison between the two algorithms, we used
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Figure 5. Fraction of fully-evaluated conformations for the Hybrid
MinDEE-K* bound-state ensembles (GrsA-PheA active site redesign).
For each of the unpruned mutation sequences, the log of the computed
K* score is shown vs. the fraction of fully-evaluated conformations
used to compute an ε-approximation to the partition function for
the bound protein-ligand complex. The fraction of fully-evaluated
conformations for a given sequence is the ratio of the number of con-
formations that pass all of the Hybrid MinDEE-K* pruning filters (see
Table 1) divided by the total number of conformations for that sequence.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

the same energy function (as described in Methods section, but
without solvation energies) and energy-minimization module (see
Appendix C) for both Hybrid MinDEE-K* and the original-K*. This
comparison revealed that both the mutation-sequence rankings and
the scores for a given mutation sequence are very similar for the
two algorithms: the top 19 sequences are identical, while all of the
top 40 sequences for Hybrid MinDEE-K* can be found in the top
40 sequences for K*, and vice versa; the trend is similar for the
remaining sequences, as well. This fact shows that, all other factors
being equal, both algorithms converge to very similar results, despite
the different (but still provably-accurate) filters used. To compare
the efficiency of the two algorithms, we measured the number
of fully-evaluated conformations, since the full energy minimiza-
tion of the conformations is the most computationally-expensive
part of both algorithms. The original-K* algorithm fully-evaluated
∼ 30% more conformations than Hybrid MinDEE-K*. Thus,
Hybrid MinDEE-K* is much more efficient at obtaining the desired
results.

MinDEE/A*

We now discuss results from our GMEC-based experiments using
MinDEE/A*. To redesign the wildtype PheA enzyme so that its sub-
strate specificity is switched towards Leu, we used the experimental
setup described in section “Methods”. The MinDEE filter on the
bound protein:ligand complex pruned 206 out of the 421 possible
rotamers for the active site residues, reducing the number of confor-
mations that were subsequently supplied to A* by a factor of 2,330.
We then extracted and minimized all conformations over the 2-point

mutation sequences using the A* search until the halting condition
defined in Proposition 2 was reached, for Ew = 12.5 kcal/mol.
A total of 7261 conformations, representing 221 unique mutation
sequences, had actual minimized energies within 12.5 kcal/mol of
the minimized-GMEC energy (see Fig. 6), which confirms that
a mutation sequence can be found in multiple low-energy states.
The top-ranked MinDEE/A* mutation sequence is A236M/A322M;
the minimized-GMEC is obtained from this sequence. The entire
redesign process took ∼ 4 days on a single processor (the MinDEE
pruning stage took less than a minute, and the remainder of the time
was spent in the A* enumeration stage), with more than 60, 000
extracted conformations before the search could be provably halted.
Thus, the provable accuracy of the results comes at the cost of
this computational overhead, since the number of extracted con-
formations is much larger than the actual number of conformations
within Ew of the minimized-GMEC energy. Note, however, that a
redesign effort without a MinDEE filter and a provably-accurate
halting condition would be computationally infeasible.

Since a mutation sequence can be found in multiple low-
energy states (see above), it is interesting to determine how similar
these states are. We therefore selected the set of conformations
generated by MinDEE/A* for the minimized-GMEC sequence
A236M/A322M for further analysis. For this sequence, Figure 7
shows the all-atom RMSD (active site residues only) for the
minimized-GMEC with each of the 337 conformations within 12.5
kcal/mol of the minimized-GMEC energy. As Figure 7 shows, the
similarity of the structures varies significantly, with 75% of the struc-
tures clustered within the range 0.6–1.1 RMSD (average of 0.83).
Although the correlation between the RMSD values and the confor-
mational energies is weak (R2 of 0.24), there is a general trend for

Figure 6. Energies of all conformations within 12.5 kcal/mol of the
minimized–GMEC energy. The energies (after minimization) of the
minimized–GMEC (red cross) and the rigid–GMEC (yellow circle) are
shown. The minimized–GMEC A236M/A322M is (by definition) the
lowest–energy conformation, while the rigid–GMEC is ranked 397th.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Figure 7. All-atom RMSD (active site residues only) versus energy
for all A236M/A322M conformations generated by MinDEE/A*. A
total of 337 conformations for the A236M/A322M sequence have
energies within 12.5 kcal/mol of the MinDEE/A* minimized-GMEC.
The all-atom RMSD with the minimized-GMEC (red cross) for each
of these conformations is shown versus the corresponding computed
conformational energy.

conformations with a larger deviation from the minimized-GMEC
structure to also have higher energies.

As another measure of similarity between the low-energy con-
formations for the A236M/A322M sequence, we computed the
frequency for each observed rotamer identity at each active site
residue position (Fig. 8). As Figure 8 shows, with the exception of

Figure 8. Rotamer diversity for the A236M/A322M conformations
generated by MinDEE/A*. For each active site residue, the normalized
frequency for each observed rotamer (number of occurrences divided by
the total number of structures) is shown: the highest-occurring rotamer
is in blue, the second-highest is in red, followed by yellow, green, and
light blue. For clarity, A301 is not shown here since Ala has only one
rotamer.

T278 and C331 which assume all allowed rotamers for the corre-
sponding amino acid types from the Richardsons’ rotamer library,
all other residues preferentially assume only a small subset of the
possible rotamers (cf. ref. 9), thus indicating some (though not high)
rotamer diversity between the different structures. This rotamer
diversity, in combination with the rotameric energy minimization
allowed in our model, are the reasons for the structure variability
observed in Figure 7.

Only 2 of the top 40 MinDEE/A* mutation sequences can be
found in the top 40 Hybrid MinDEE-K* sequences, and vice versa,

Figure 9. Distribution of mutations. The distribution of the mutation types for the top 40 mutation sequences
for (A) MinDEE/A* and (B) Hybrid MinDEE-K* algorithms is shown as the fraction of each mutating type
for each active site residue. The types and frequencies for the mutations are quite different for the two
methods, which indicates that the difference in the information content for GMEC- and ensemble-based
algorithms can be substantial.
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indicating that ensemble-scoring yields substantially different pre-
dictions from single-structure scoring using the minimized-GMEC,
where only the minimized bound state of a single conformation is
considered (see Fig. 9).

Limitations and Extensions

The MinDEE criterion can efficiently prune a large number of the
possible conformations (see section “Redesign for Leu”). However,
because of the use of min and max energy terms, the pruning effi-
ciency of MinDEE cannot be as high as that of traditional-DEE.
This trade-off in efficiency results from the provable guarantees
that MinDEE can (but traditional-DEE cannot) make when energy
minimization is employed. An increase of the pruning capabili-
ties of MinDEE would require the derivation and computation of
tighter upper and lower energy bounds. Since (with a rigid back-
bone) the conformational changes due to switching the identity of a
single rotamer should decrease in magnitude as the proximity to the
modified rotamer decreases, it may also be possible to increase the
pruning factor by scaling the terms in the MinDEE condition [eq.
(2)], depending on the proximity of the residues involved.

The goal of our ensemble-based Hybrid MinDEE-K* algorithm
is to find mutation sequences with better binding constants for the
novel substrate than the wildtype enzyme. An assessment of cat-
alytic activity is not explicitly included in the algorithm. In general, it
would be interesting to generalize K* to stabilize the transition state.
Since the transition state is not known structurally, K* maintains
backbone contacts of the substrate in proximity to the nucleotide
cofactor. As was shown in ref. 26, the top K*-predicted mutations in
a GrsA-PheA redesign improved the catalytic specificity (kcat/KM)

as well.
Several limitations of our computational model warrant a dis-

cussion. Since using a continuous representation for the partition
functions is currently not feasible, our algorithm discretizes the
conformational space. Rotamer discretization has been shown to
work well in practice.6, 7, 14, 41–43 A further limitation of our model
is the use of a rigid backbone. However, our algorithm aims to
simultaneously find the best mutations and to stabilize the sidechain
placements for the given backbone, rather than assuming the back-
bone will remain rigid. All dead-end elimination algorithms, and the
majority of structure-based protein design algorithms in general, use
a model with a rigid backbone. The incorporation of backbone flex-
ibility, however, will likely improve the computational predictions,
and thus represents interesting future work.44

Conclusions

When energy-minimization is required, the traditional-DEE crite-
rion makes no guarantees about pruning rotamers belonging to the
minimized-GMEC. In contrast, a rotamer is only pruned by MinDEE
if it is provably not part of the minimized-GMEC. We showed
experimentally that the minimized-GMEC can minimize to lower
energy states than the rigid-GMEC, confirming the feasibility and
significance of our novel MinDEE criterion. When used as a filter
in ensemble-based redesign, MinDEE efficiently reduced the con-
formational and sequence search spaces, leading both to predictions
consistent with previous redesign efforts and novel sequences that

are unknown in nature. Our Hybrid MinDEE-K* algorithm showed
a significant improvement in pruning efficiency, as compared to the
original K* algorithm. Redesign searches for two other substrates,
Val and Tyr, have also been performed, confirming the generality of
our algorithms.

Protein design using traditional-DEE uses neither ensembles nor
rotamer minimization. In our experiments, we reported the rela-
tive benefits of incorporating ensembles and energy-minimization
into a provable redesign algorithm. A major challenge for protein
redesign algorithms is the balance between the efficiency and accu-
racy with which redesign is performed. While the ability to prune
the majority of mutation/conformation search space is extremely
important, increasing the accuracy of the model is a prerequisite
for successful redesign. It would be interesting to implement finer
rotamer sampling and more accurate (and hence more expensive)
energy functions, and remove bias in the rotamer library by fac-
toring the Jacobian into the partition function over torsion-angle
space. MinDEE can also be generalized to incorporate backbone
flexibility.44 An accurate and efficient algorithm for redesigning the
enzymes that synthesize natural products should prove useful as a
technique for drug design.
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Appendix

In Appendix A, we present a detailed proof of Proposition 1 from
section “DEE with energy minimization: MinDEE”. Appendix B
presents an improvement to the algorithm of section “Efficient par-
tition function computation using A∗ search” for more efficient
partition function computation. Appendix C provides details on the
energy precomputation for computing the lower energy bounds B(·).

Appendix A: MinDEE Derivation

In this section, we present a detailed proof of Proposition 1. For
clarity, we restate Proposition 1 here:

Proposition 1. When Eq. (2) holds, rotamer ir is provably not part
of the minimized-GMEC.

Proof. For a given protein, we define a rotamer vector A =
(A1, A2, · · · , An) to specify the rotamer at each of the n residue
positions; Ai = r when rotamer r is assumed by residue i. We then
define the conformation vector A• = (A•

1, A•
2, · · · , A•

n) such that A•
i

is the conformation of residue i in the voxel-constrained minimized
conformation, i.e., A•

i ∈ V(Ai) and

A• = (
A•

1, A•
2, · · · , A•

n

) = argmin
B=(B1,B2,··· ,Bn)∈∏n

i=1 V(Ai)

E(B) (A1)
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where E(B) is the energy of the system specified by conforma-
tion vector B. For the energy-minimized conformation starting
from rotamer vector A, we define the self-energy of rotamer ir as
E�(ir |A) = E(A•

i ) and the pairwise interaction energy of the rotamer
pair ir , js as E�(ir , js|A) = E(A•

i , A•
j ) where E(A•

i ) is the self-energy
of residue i in conformation A•

i and E(A•
i , A•

j ) is the pairwise energy
between residues i and j in conformations A•

i and A•
j . We can then

express the minimized energy of A, ET (A) as:

ET (A) = Et′ +
∑

i

E�(ir |A) +
∑

i

∑
j>i

E�(ir , js|A). (A2)

Let G represent the rotamer vector that minimizes into the
minimized-GMEC and ET (G) be the energy of the minimized-
GMEC. Let Gig→it be the rotamer vector G where rotamer ig is
replaced with it . We know that ET (Gig→it ) ≥ ET (G), so we can pull
residue i out of the two summations, obtaining:

Et′ + E�(it |Gig→it ) +
∑
j �=i

E�(it , jg|Gig→it ) +
∑
j �=i

E�(jg|Gig→it )

+
∑
j �=i

∑
k �=i,k>j

E�(jg, kg|Gig→it ) ≥ Et′ + E�(ig|G)

+
∑
j �=i

E�(ig, jg|G) +
∑
j �=i

E�(jg|G) +
∑
j �=i

∑
k �=i,k>j

E�(jg, kg|G).

(A3)

The Et′ terms (section “The original DEE criterion”) correspond
to the rigid portion of the molecule; they are independent of rotamer
choice, are equal, and can be canceled. We make the following trivial
upper and lower-bound observations (the E�(·), E⊕(·), and E�(·)
terms are as defined in section “DEE with energy minimization:
MinDEE”):

E�(it |A) ≤ E⊕(it); E�(it , jg|A) ≤ max
s∈Rj

E⊕(it , js); (A4)

E�(jg|A) ≤ E⊕(jg); E�(jg, kg|A) ≤ E⊕(jg, kg); (A5)

E�(ig) ≤ E�(ig|A); min
s∈Rj

E�(ig, js) ≤ E�(ig, jg|A); (A6)

E�(jg) ≤ E�(jg|A); E�(jg, kg) ≤ E�(jg, kg|A). (A7)

Substituting eqs. (A4–A7) into eq. (A3), we obtain:

E⊕(it) +
∑
j �=i

max
s

E⊕(it , js) +
∑
j �=i

E⊕(jg) +
∑
j �=i

∑
k �=i,k>j

E⊕(jg, kg) ≥

E�(ig) +
∑
j �=i

min
s

E�(ig, js) +
∑
j �=i

E�(jg) +
∑
j �=i

∑
k �=i,k>j

E�(jg, kg).

(A8)

When the MinDEE pruning condition eq. (2) holds, we can sub-
stitute the left-hand side of eq. (2) for the first two terms of eq. (A8),

and simplify the resulting equation to:

E�(ir) +
∑
j �=i

min
s

E�(ir , js) −
∑
j �=i

max
s

E�(js)

−
∑
j �=i

∑
k �=i,k>j

max
s,u

E�(js, ku) +
∑
j �=i

E�(jg) +
∑
j �=i

∑
k �=i,k>j

E�(jg, kg)

> E�(ig) +
∑
j �=i

min
s

E�(ig, js). (A9)

We then substitute the following two bounds
∑

j �=i max
s

E�(js) ≥∑
j �=i E�(jg) and

∑
j �=i

∑
k �=i,k>j max

s,u
E�(js, ku) ≥ ∑

j �=i

∑
k �=i,k>j

E�(jg, kg) into eq. (A9) and reduce:

E�(ir) +
∑
j �=i

min
s

E�(ir , js) > E�(ig) +
∑
j �=i

min
s

E�(ig, js).

(A10)

Thus, when the MinDEE pruning condition eq. (2) holds, ir �= ig
and we can provably eliminate rotamer ir as not being part of the
energy-minimized GMEC. ■

Appendix B: Improved Partition Function Computation

We now describe an improvement to the algorithm of section “Effi-
cient partition function computation using A∗ search” for more
efficient partition function computation. In section “Efficient par-
tition function computation using A∗ search”, provably-accurate K*

scores are computed for all mutation sequences. However, since
we are only interested in mutation sequences with high K* scores
(i.e., sequences that are good binders), we need only require that
a provably-accurate score be computed for the top fraction of
the mutation sequences. To achieve this, we will allow conforma-
tional pruning across mutation sequences. Hence, for clarity, we
will refer to the partition function computation described in this
Appendix as inter-mutation, while the computation described in
section “Efficient partition function computation using A∗ search”
(where conformational pruning could be performed only within a
sequence) will be referred to as intra-mutation. Below, we use the
following idea (cf ref. 25). When using K* to perform a mutation
search, we can bootstrap the pruning condition for improved effi-
ciency (by caching partition functions, we can exploit K* bounds
from other mutations in the same search). Our search algorithm
has the desirable property that provably-accurate ε-approximations
are computed for top-ranking mutations, while the bounds we can
prove on the quickly-computed K* values for lower-ranked muta-
tions do not enjoy the same degree of accuracy. This idea is briefly
formulated and then exploited below.

We first review some of the definitions from ref. 25. We let γ ∈
[0, 1] be a parameter that defines the set of mutation sequences
for which an ε-approximation is to be computed. We require that
an ε-approximation be guaranteed for a mutation sequence i only
when K∗

i ≥ γ K∗
o , where K∗

i is the score for sequence i and K∗
o is
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the best score observed so far in the search. When γ = 1.0, an ε-
approximation is guaranteed only for the best-scoring K* mutation
sequence; γ = 0.0 computes an ε-approximation for all K* mutation
sequences. Let us assume that A* has already generated the first m
conformations and that there are n remaining conformations that
have not been generated yet. We use the definitions for q′, p∗, E0,
and k from Proposition 3 above. We assume that we have already
computed qP using the intra-mutation filter only (Proposition 3), and
now describe how to efficiently compute qPL .

We define the score for the ith mutation sequence to be K∗
i =

qPL
qP qL

, while K∗
o = oqPL

oqP
oqL

. We let q∗
PL

be the partial partition function

for the bound protein-ligand state, computed from the m already-

generated conformations. We define K†
o = oqPL

oqP
. Finally, let ψ =

max (γ εK†
o qP , q∗

PL
ρ) and ρ = ε

1−ε
.

Proposition 4. If the lower bound B(c) on the minimized energy
of the (m + 1)st conformation returned by A* satisfies B(c) ≥
−RT(ln(ψ − k exp(−E0/RT)) − ln n), then the partition func-
tion computation can be halted, with q∗

PL
guaranteed to be an

ε-approximation to the true partition function qPL for a mutation
sequence whose score K∗

i satisfies K∗
i ≥ γ K∗

o .

Proof. Since the ligand is invariant throughout the search,
qL = oqL . Let us assume that we have a sequence for which K∗

i ≥
γ K∗

o holds. Thus,

qPL

qP qL

≥ γ
oqPL

oqP
oqL

,

qPL ≥ γ K†
o qP . (A11)

First, we note again that

q′ ≤ n exp(−Et/RT); (A12)

p∗ ≤ k exp(−E0/RT). (A13)

From the definition of qPL , we obtain

qPL = q∗
PL

+ q′ + p∗. (A14)

Now, if

n exp(−Et/RT) + k exp(−E0/RT) ≤ εK†
o γ qP , (A15)

then by eqs. (A12) and (A13) we have

q′ + p∗ ≤ εK†
o γ qP , (A16)

and by eq. (A11),

q′ + p∗ ≤ εqPL , (A17)

and finally, by eq. (A14), we obtain

q∗
PL

≥ (1 − ε)qPL , (A18)

which is the definition of the partition function ε-approximation.
Thus, if eq. (A15) holds, then we will have an ε-approximation to
the true partition function qPL . Solving eq. (A15) for Et , we obtain
the stop-threshold:

Et ≥ −RT
(

ln
(
γ εK†

o qP − k exp(−E0/RT)
) − ln n

)
. (A19)

The first conformation that has an energy above the stop-
threshold (eq. A19) halts the partition function computation, since
we already have an ε-approximation. Thus, combining eq. (A19) and
the intra-mutation stop-threshold (eq. 9), our stopping condition for
the computation of qPL becomes

B(c) > −RT(ln(ψ − k exp(−E0/RT)) − ln n), (A20)

where ψ = max(γ εK†
o qP , q∗

PL
ρ) and B(·) is the lower bound on the

minimized energy of a conformation. ■

If the desired approximation accuracy is not achieved at the end
of the mutation search, after all conformations have been extracted
by A*, we can modify eq. (12) to incorporate the inter-mutation
filter, obtaining the number of conformations l from P (the set of
pruned conformations) that must be allowed in the repeated search:

l ≥ k − ψ

exp(−E0/RT)
.

We have derived the stop-threshold that guarantees an ε-
approximation to the partition function when conformations are
generated in order of increasing lower bounds on the conformation’s
energy. This generalizes the inter-mutation proof in ref. 25 which
is valid when the energy lower bounds for all of the conformations
are evaluated. We should note that eq. (A20) was derived assum-
ing K∗

i ≥ γ K∗
o holds, so we can guarantee an ε-approximation to

qPL only for this case. When K∗
i < γ K∗

o , then we might not obtain
an ε-approximation for the given mutation sequence, but we do
not require a provably-good approximation for such low-scoring
sequences.

Similarly to ref. 25, we define K̃∗
i = q∗

PL
q∗

PqL
to be an ε-

approximation to the full score of a mutation sequence (the score
if the full partition functions are used, instead of the partial ones)
when K̃∗

i ∈ [K∗
i (1 − ε), 1

1−ε
K∗

i ]. If K∗
i ≥ γ K∗

o holds for a muta-
tion sequence i, then by Proposition 4, qPL > q∗

PL
≥ (1 − ε)qPL .

Also, since qP is already computed using Proposition 3, qP > q∗
P

≥
(1 − ε)qP . Since K∗

i = qPL
qP qL

, we have

[
K∗

i (1 − ε) ≤ K̃∗
i ≤ 1

1 − ε
K∗

i

]
. (A21)

Thus, the algorithm guarantees that an ε-approximation to the full
score is computed when K∗

i ≥ γ K∗
o .
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Appendix C: Energy Precomputation for Lower Bounds

We first derive a lower bound for the energy of a minimized con-
formation, closely following ref. 25. We then present improvements
on the energy precomputation algorithm, as compared to ref. 25.

Computing a Lower Bound on Minimized Energies

In our structural model, (section “Methods”), some residues are
treated as rigid, while others have a rigid backbone but flexible
side-chains. Let h be the number of flexible residues in our system.
Let A be a (h + 1) × (h + 1) precomputed residue-indexed energy
matrix that describes the energy interactions of a given residue i
within itself (Ai0), with the backbone (A0i), and with other residues
(Aij); the matrix element A00 is reserved for the energy interactions
between the atoms of the backbone only. We term A00 to be the
template energy, A0i is the residue-to-template energy, Ai0 is the
intra-residue energy, and Aij is the pairwise energy for residue i.
The energy of the system can be computed as

ES = A00 +
∑
i≤h

A0i +
∑
i≤h

Ai0 +
∑
i≤h

∑
i<j≤h

Aij . (A22)

To compute the energy of a minimized conformation, we use
a matrix M, whose elements are analogous to the elements of A,
but the precomputed energies correspond to the energy-minimized
structure. If we obtain the lower bounds on the energy terms in M
and store these bounds in a matrix D, then we can define the lower
bound Emin on the energy of a minimized system as

Emin = D00 +
∑
i≤h

D0i +
∑
i≤h

Di0 +
∑
i≤h

∑
i<j≤h

Dij . (A23)

The computation of Emin can be done in time O(h2) with a
precomputed pairwise energy matrix. The use of a precomputed
residue-indexed lower-bound pairwise energy matrix avoids the
computation of O(a2) energy terms, where a 
 h is the total number
of atoms in the system.

The precomputed energy matrix in the original K* is indexed
over all residues and over all rotamers for each reside. Thus,
for a system with h flexible residues and m rotamers for
each residue, we precompute a (hm + 1) × (hm + 1) residue-
indexed lower-bound pairwise energy matrix V whose ele-
ments V00, V0i, Vi0, and Vij are analogous to the elements
of D. To compute the lower bounds on the minimized template,
intra-residue, residue-to-template, and pairwise energy terms, we
allow rotamers to assume the best possible conformation for the
given relative system (template, self-, or pairwise). However, the
movement of the rotamer dihedrals is constrained to a hypercuboid
region of conformation space, called a voxel,34, 35 so that one rotamer
will not minimize into another. We use a voxel of ±9◦ for each χ

angle.

Application of the Pairwise Energy Matrix

Energy precomputation is employed both for pruning with MinDEE
(see section “DEE with energy minimization: MinDEE”) and for the

ε-approximation algorithms (see section “Efficient partition func-
tion computation using A∗ search” and Appendix B). The MinDEE
criterion (eq. 2) uses both the lower- and the upper-bound (see
Appendix section “Improved energy bounds computation”) precom-
puted energy terms to determine which rotamers are not part of the
energy-minimized GMEC. Thus, there is no need to re-compute the
minimum and maximum energies every time eq. (2) is evaluated.

Both the intra- and inter-mutation filters (Propositions 3 and 4,
respectively) require that a lower bound on the energy-minimized
conformation be computed. For this purpose, a lookup in the lower-
bound pairwise energy matrix is performed and the terms involved
in the given conformation are added, analogously to eq. (A23).
The computation of a lower bound on the energy of a conforma-
tion permits a subset of the conformations to be pruned before the
computationally-expensive full energy-minimization stage. The full
energy minimization of a given system requires the simultaneous
minimization of all of the flexible residues for the system, a much
more costly process than the pairwise minimization performed for
the precomputations. Moreover, once the pairwise matrices are pre-
computed, they can be used in any mutation search that involves the
same residues. Thus, in a protein-ligand system, a redesign for a dif-
ferent ligand requires the re-computation only of the terms involving
the ligand.

Improved Energy Bounds Computation

Analogously to the definition of matrix D in Appendix section
“computing a lower bound on minimized energies”, we define the
matrix F to be the residue-indexed upper-bound pairwise energy
matrix, which facilitates the computation of the upper-bound Emax

on the maximized energy of a system:

Emax = F00 +
∑
i≤h

F0i +
∑
i≤h

Fi0 +
∑
i≤h

∑
i<j≤h

Fij . (A24)

Analogously to the definition of V (see Appendix section
“computing a lower bound on minimized energies”), when we index
over all rotamers for all residues, we can define the (hm + 1) ×
(hm + 1) residue-indexed upper-bound pairwise energy matrix U,
whose elements U00, U0i, Ui0, and Uij are upper-bounds on the
corresponding energy terms.

The original K* algorithm25 used a steepest-descent mini-
mization scheme to precompute lower-bound energy matrices. To
improve the minimization results, we (1) refined the implementation
of the steepest-descent algorithm, and (2) implemented a random
sampling with steepest descent algorithm that explores the energy
landscape within a voxel better than the local steepest-descent
algorithm. Empirically, however, the computed minimum energy
bounds using multiple random-sampling starting points appear to
be over-optimistic and present a worse approximation to the actual
conformation energies. The resulting lower bounds lm from multi-
ple minimization starting points are necessarily at least as low as
the corresponding lower bounds ls computed by minimizing only
from the center of the voxels, lm ≤ ls. Choosing a good starting
point for the energy minimization of a full conformation that could
use the additional information of the pairwise lm bounds is a diffi-
cult task, since the different addends involved in the computation
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of lm [analogous to Eq. (A23)] may actually result from incompati-
ble starting points. Moreover, using multiple starting points for full
energy-minimization is computationally infeasible (see Appendix
section “Application of the pairwise energy matrix”). Thus, using
multiple minimization starting points for lower-bounds computation
in fact increases the gap between lower bounds and actual ener-
gies (i.e., the lower bounds are less achievable). As a result, the
ε-approximation algorithms (see section “Efficient partition func-
tion computation using A∗ search” and Appendix B) require the full
minimization of a larger number of conformations before the prov-
able halting conditions (Propositions 3 and 4) are reached. Hence,
we chose to compute the pairwise minimum energy bounds using
steepest-descent minimization starting at the center of the voxel
space.

While min energies may appear as a natural concept, the com-
putation of max energies (pairwise-computed maximum energy
bounds) presents both conceptual and practical challenges. A simple
maximization algorithm cannot be used, since most rotamer systems
will maximize into a steric clash, which would make max bounds
biophysically inapplicable. Moreover, energy functions, such as
amber,38, 39 are not well-defined for high energies. However, max
bounds are used only in the MinDEE framework, where, indirectly,
minimized conformations are compared to determine which ones
are provably not the minimized-GMEC. We can thus think of the
max energy for a given rotamer system as the worst minimization
this system can achieve. Hence, we chose to compute max energies
as max(M), where M is the set of energies obtained by steepest-
descent minimization from multiple starting points (max of mins).
In all our experiments we used 200 randomly-chosen starting points
per voxel.
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