
The Minimum-Area Spanning Tree Problem

Paz Carmi1?, Matthew J. Katz1??, and Joseph S. B. Mitchell2? ? ?

1 Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva
84105, Israel

{carmip,matya}@cs.bgu.ac.il
2 Department of Applied Mathematics and Statistics, Stony Brook University, Stony

Brook, NY 11794, USA
jsbm@ams.sunysb.edu

Abstract. Motivated by optimization problems in sensor coverage, we
formulate and study the Minimum-Area Spanning Tree (mast) problem:
Given a set P of n points in the plane, find a spanning tree of P of mini-
mum “area,” where the area of a spanning tree T is the area of the union
of the n − 1 disks whose diameters are the edges in T . We prove that
the Euclidean minimum spanning tree of P is a constant-factor approx-
imation for mast. We then apply this result to obtain constant-factor
approximations for the Minimum-Area Range Assignment (mara) prob-
lem, for the Minimum-Area Connected Disk Graph (macdg) problem,
and for the Minimum-Area Tour (mat) problem. The first problem is a
variant of the power assignment problem in radio networks, the second
problem is a related natural problem, and the third problem is a variant
of the traveling salesman problem.

1 Introduction

We introduce and study the Minimum-Area Spanning Tree (mast) problem.
Given a set P of n points in the plane, find a spanning tree of P of minimum
area, where the area of a spanning tree T of P is defined as follows. For each
edge e in T draw the disk whose diameter is e. The area of T is then the area
of the union of these n− 1 disks. Although this problem seems natural (see also
applications below), we are not aware of any previous work on it.

One of the main results of this paper (presented in Section 2) is that the
minimum spanning tree of P is a constant-factor approximation for mast. This
is an important property of the minimum spanning tree as is shown below. (See,
e.g., [7, 9] for background on the minimum spanning tree.)

? P. Carmi is partially supported by a Kreitman Foundation doctoral fellowship, and
by the Lynn and William Frankel Center for Computer Sciences.

?? M. Katz is partially supported by grant No. 2000160 from the U.S.-Israel Binational
Science Foundation.

? ? ? J. Mitchell is partially supported by grant No. 2000160 from the U.S.-Israel Bina-
tional Science Foundation, NASA Ames Research (NAG2-1620), the National Sci-
ence Foundation (CCR-0098172, ACI-0328930, CCF-0431030), and Metron Avia-
tion.



We apply the result above to three problems from a class of problems that
has received considerable attention. The first problem is a variant of the power
assignment problem (also called the range assignment problem). Let P be a set
of n points in the plane, representing n transmitters-receivers (or transmitters
for short). In the standard version of the power assignment problem one needs
to assign transmission ranges to the transmitters in P, so that (i) the resulting
communication graph is strongly connected (that is, the graph in which there
exists a directed edge from pi ∈ P to pj ∈ P if and only if pj lies in the
disk Dpi

is strongly connected, where the radius of Dpi
is the transmission

range, ri, assigned to pi), and (ii) the total power consumption (i.e., the cost
of the assignment of ranges) is minimal, where the total power consumption is∑

pi∈P
area(Dpi

).

The power assignment problem is known to be NP-hard (see Kirousis et
al. [10] and Clementi et al. [6]). Kirousis et al. [10] also obtain a 2-approximation
for this problem, based on the minimum spanning tree of P, and this is the best
approximation known.

Consider now the variant of the power assignment problem in which the
second requirement above is replaced by (ii’) the area of the union of the disks
Dp1

, . . . , Dpn
is minimum. We refer to this problem as the Minimum-Area Range

Assignment (mara) problem. In general, the presence of a foreign receiver (whether
friendly or hostile) in the region Dp1

∪ · · · ∪Dpn
is undesirable, and the smaller

the area of this region, the lower the probability that such a foreign receiver is
present. In Section 3 we prove that the range assignment of Kirousis et al. (that
is based on the minimum spanning tree) is also a constant-factor approximation
for mara.

Another related and natural problem for which we obtain a constant-factor
approximation (in Section 4) is the following. Let P be a set of n points in the
plane. For each point p ∈ P, draw a disk Dpi

of radius 0 or more, such that (i)
the resulting disk graph is connected (that is, the graph in which there exists an
edge between pi ∈ P and pj ∈ P if and only if Dpi

∩Dpj
6= ∅ is connected), and

(ii) the area of the union of the disks Dp1
, . . . , Dpn

is minimized. We refer to
this problem as the Minimum-Area Connected Disk Graph (macdg) problem.
(See, e.g., [8, 11] for background on intersection graphs and on disk graphs in
particular.)

The last problem for which we obtain a constant-factor approximation (in
Section 5) is a variant of the well-known traveling salesman problem. Given a
set P of n points in the plane, find a tour of P of minimum area, where the
area of a tour T is the area of the n disks whose diameters are the edges of the
tour. We refer to this problem as the Minimum-Area Tour (mat) problem. The
constant-factor approximation that we obtain for this problem is also based on
results concerning the traveling salesman problem with a parameterized triangle
inequality.

A potentially interesting property concerning the area of the minimum span-
ning tree that is obtained as an intermediate result in Section 2 is that the depth
of the arrangement of the disks corresponding to the edges of the minimum span-



ning tree is bounded by some constant. Notice that this property does not follow
immediately from the fact that the degree of the minimum spanning tree is at
most 6, as is shown in Figure 2.

Finally, all the above results hold in any fixed dimension d (with small mod-
ifications).

2 mst is a Constant-Factor Approximation for mast
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Fig. 1. A minimum spanning tree is not necessarily a minimum-area spanning tree. (a)
The minimum spanning tree. (b) A minimum-area spanning tree.

Let T be any spanning tree of P. For an edge e in T , let D(e) denote the disk
whose diameter is e. Put D(T ) = {D(e) | e is an edge in T },

⋃
T

=
⋃

e∈T
D(e),

and σT =
∑

e∈T
area(D(e)). Let mst be a minimum spanning tree of P. mst is

not necessarily a solution for the Minimum-Area Spanning Tree (mast) problem;
see Figure 1. In this section we prove that mst is a constant-factor approximation
for mast, that is, area(

⋃
mst

) = O(area(
⋃

opt
)), where opt is an optimal

spanning tree, i.e., a solution to mast.

We begin by showing another interesting property of mst, namely, that the
depth of any point p in the interior of a cell of the arrangement of the disks in
D(mst) is bounded by a small constant. This property does not follow directly
from the fact that the degree of mst is bounded by 6; see Figure 2. Let mstp be
a minimum spanning tree for P ∪ {p}. We need the following known and easy
claim.

Claim 1 We may assume that there is no edge (a, b) in mstp, such that (a, b)
is not in mst and both a and b are points of P.
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Fig. 2. A spanning tree T of degree 3, and a point q (in the interior of a cell of the
arrangement of the disks in D(T )) of depth O(n).

Proof. Assume there is such an edge (a, b) in mstp. Consider the path in mst

between a and b. At least one of the edges along this path is not in mstp. Let
e be such an edge. |e| ≤ |(a, b)|, since otherwise (a, b) would have been chosen
by the algorithm that computed mst (e.g., Kruskal’s minimum spanning tree
algorithm [5]). Therefore, we may replace the edge (a, b) in mstp by e, without
increasing the total weight of the tree.

An immediate corollary of this claim is that we may assume that if e is an
edge in mstp but not in mst, then one of e’s endpoints is p.

Lemma 1. σmst ≤ 5 area(
⋃

mst
).

Proof. We prove that p belongs to at most 5 of the disks in D(mst). Let D(q1, q2)
be a disk in D(mst), such that p ∈ D(q1, q2). (Notice that p is not on the
boundary of D(q1, q2), since p is in the interior of a cell of the arrangement of
the disks in D(mst).) We show that the edge (q1, q2) is not in mstp. If it is,
then either the path from q1 to p or the path from q2 to p includes the edge
(q1, q2) (but not both). Assume, e.g., that the path from q1 to p includes the
edge (q1, q2). Then, since (q1, p) is shorter than (q1, q2), we can decrease the total
weight of mstp by replacing (q1, q2) in mstp by (q1, p). We conclude that (q1, q2)
is not in mstp.

Thus, by the corollary immediately preceding the lemma, each disk D ∈
D(mst) such that p ∈ D, induces a distinct edge in mstp that is connected to
p. But the degree of p is at most 6 (this is true for any vertex of any Euclidean
minimum spanning tree), so there can be at most 5 disks covering p, since one of
the edges connected to p is present due to the increase in the number of points
(i.e., p was added to P).

Remark. Ábrego et al. [1] have shown that the constant 5 can be improved to
a constant 3, with a significantly more delicate argument. Their result appeared
in an earlier (unpublished) draft of their manuscript.

Let opt be an optimal spanning tree of P, i.e., a solution to mast. We use
opt to construct another spanning tree, st, of P. Initially st is empty. Let e1



be the longest edge in opt. Draw two concentric disks C1 and C3
1 around the

mid point of e1 of diameters |e1| and 3|e1|, respectively. Compute a minimum
spanning tree of the points of P lying in C3

1 , using Kruskal’s algorithm [5].
Whenever an edge is chosen by Kruskal’s algorithm, it is immediately added to
st. See Figure 3. Let S1 denote the set of edges that have been added to st in
this (first) iteration.

C1

C3

1

e1

Fig. 3. st after choosing e1.

Next, let e2 be the longest edge in opt, such that at least one of its endpoints
lies outside C3

1 . As for e1, draw two concentric disks C2 and C3
2 around the mid

point of e2 of diameters |e2| and 3|e2|, respectively. Apply Kruskal’s minimum
spanning algorithm to the points of P lying in C3

2 with the following modification.
The next edge in the sorted list of potential edges is chosen by the algorithm if
and only if it is not already in st and its addition to st does not create a cycle in
st. Moreover, when an edge is chosen by the algorithm it is immediately added
to st; see Figure 4 (a) and (b). Let S2 denote the set of edges that have been
added to st in this iteration.

In the i’th iteration, let ei be the longest edge in opt, such that there is
no path yet in st between its endpoints. Draw two concentric circles Ci and
C3

i around the mid point of ei, and apply Kruskal’s minimum spanning tree
algorithm with the modification above to the points of P lying in C3

i . Let Si

denote the set of edges that have been added to st in this iteration. The process
ends when for each edge e in opt there already exists a path in st between the
endpoints of e.

Claim 2 For each i, Si is a subset of the edge set of the minimum spanning tree

msti that is obtained by applying Kruskal’s algorithm, without the modification

above, to the points in C3
i .

Proof. Let e be an edge that was added to st during the i’th iteration. If e is
not chosen by Kruskal’s algorithm (without the modification above), it is only
because, when considering e, a path between its two endpoints already existed
in msti. But this implies that e could not have been added to st, since, any edge
already in msti was either also added to st or was not added since there already
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Fig. 4. st after choosing e1 and e2. (a) One of the end points of e2 is in C3

1 . (b) Both
endpoints of e2 are not in C3

1 .

existed a path in st between its two endpoints. Thus, when e was considered by
the modified algorithm it should have been rejected. We conclude that e must
be in msti.

Claim 3 st is a spanning tree of P.

Proof. Since only edges that do not create a cycle in st were added to st, there
are no cycles in st. Also, st is connected, since otherwise there still exists an
edge in opt that forces another iteration of the construction algorithm.

Let C denote the set of the disks C1, . . . , Ck, and let C3 denote the set of the
disks C3

1 , . . . , C3
k , where k is the number of iterations in the construction of st.

Claim 4 For any pair of disks Ci, Cj in C, i 6= j, it holds that Ci ∩ Cj = ∅.

Proof. Let Ci be any disk in C. We show that for any disk Cj ∈ C such that
j > i, Ci ∩Cj = ∅. From the construction of st it follows that |ej |, the diameter
of Cj , is smaller or equal to |ei|, the diameter of Ci. Moreover, at least one of
the endpoints of ej lies outside C3

i (since if both endpoints of ej lie in C3
i , then,

by the end of the i’th iteration, a path connecting between these endpoints must
already exist in st). Therefore, Cj whose center coincides with the mid point of
ej , cannot intersect Ci.



Claim 5 σst = O(area(
⋃

opt
)).

Proof. Recall that σst = ΣiσSi
, where σSi

= Σe∈Si
area(D(e)). We first show

by the sequence of inequalities below that σSi
= O(area(Ci)).

σSi
≤1 σmsti

≤2 5 area(
⋃

msti

) =3 O(area(C3
i )) =4 O(area(Ci)) .

The first inequality follows immediately from Claim 2. The second inequality is
true by Lemma 1. Consider Equality 3. Since all edges in msti are contained in
C3

i , it holds that
⋃

msti
is contained in a disk that is obtained by expanding

C3
i by some constant factor. It follows that area(

⋃
msti

) = O(area(C3
i )) =

O(area(Ci)).
Therefore,

σst = ΣiσSi
= ΣiO(area(Ci)) .

But according to Claim 4, the latter expression is equal to O(area(
⋃

C
)), and,

since C is a subset of D(opt), we conclude that σst = O(area(
⋃

opt
)).

We are now ready to prove the main result of this section.

Theorem 1. mst is a constant-factor approximation for mast, i.e., area(
⋃

mst
) ≤

c · area(
⋃

opt
), for some constant c.

Proof.

area(
⋃

mst

) ≤1 σmst ≤2 σst ≤3 c · area(
⋃

opt

) .

The first inequality is trivial. The second inequality holds for any spanning tree
of P; that is, for any spanning tree T , σmst ≤ σT . (Since if the lengths |e| of
the edges are replaced with weights π|e|2/2, we remain with the same minimum
spanning tree.) The third inequality is proven in Claim 5.

3 A Constant-Factor Approximation for mara

mst induces an assignment of ranges to the points of P. Let pi ∈ P and let ri be
the length of the longest edge in mst that is connected to pi, then the range that
is assigned to pi is ri. Put ra = {Dp1

, . . . , Dpn
}, where Dpi

is the disk of radius
ri centered at pi. In this section we apply the main result of the previous section
(i.e., mst is a constant-factor approximation for mast), in order to prove that
the range assignment that is induced by mst is a constant-factor approximation
for the Minimum-Area Range Assignment (mara) problem. That is, (i) the
corresponding (directed) communication graph is strongly connected, and (ii)
the area of the union of the disks in ra is bounded by some constant times the
area of the union of the transmission disks in an optimal range assignment, i.e.,
a solution to mara.

The first requirement above was already proven by Kirousis et al. [10], who
showed that the range assignment induced by mst is a 2-approximation for



the standard range assignment problem. Let opt
R denote an optimal range

assignment, i.e., a solution to mara. It remains to prove the second requirement
above.

Claim 6 area(
⋃

RA) ≤ 9 area(
⋃

mst
).

pk

pj

D(pi, pj)

Dpi (pi, pj)

D3(pi, pj)

Dpj (pj , pk)

pi

Fig. 5. (pi, pj) ∈ mst; D(pi, pj) ∈ D(mst); Dpi(pi, pj), Dpj (pj , pk) ∈ ra; D3(pi, pj) ∈
D3(mst).

Proof. We define an auxiliary set of disks. For each edge e in mst, draw a disk of
diameter |3e| centered at the mid point of e. Let D3(mst) denote the set of these
n − 1 disks; see Figure 5. We now observe that area(

⋃
RA) ≤ area(

⋃
D3(mst)).

This is true since for each pi ∈ P, Dpi
= Dpi

(pi, pj) for some point pj ∈ P that
is connected to pi (in mst) by an edge, and Dpi

(pi, pj) is contained in the disk of
D3(mst) corresponding to the edge (pi, pj). Finally, clearly area(

⋃
D3(mst)) ≤

9 area(
⋃

mst
).

Theorem 2. ra is a constant-factor approximation for mara, i.e., area(
⋃

ra
) ≤

c′ · area(
⋃

optR), for some constant c′.

Proof. The proof is based on the observation that the (directed) communication
graph corresponding to opt

R contains a spanning tree, and on the main result
of Section 2. Let p be any point in P. We construct a spanning tree T of P as
follows. For each point q ∈ P, q 6= p, compute a shortest (in terms of number of
hops) directed path from q to p, and add the edges in this path to T . Now make
all edges in T undirected. T is a spanning tree of P. For each edge (pi, pj) in T ,
the disk D(pi, pj) is contained either in the transmission disk of pi (in opt

R),
or in the transmission disk of pj (in opt

R). Hence,
⋃

T
⊆

⋃
optR .

The following sequence of inequalities completes the proof. (opt denotes a
solution to mast.)

area(
⋃

ra

) ≤1 9 area(
⋃

mst

) ≤2 9c · area(
⋃

opt

) ≤3 9c · area(
⋃

T

) ≤4 9c · area(
⋃

optR

) .



The first inequality follows from Claim 6; the second inequality follows from
Theorem 1; the third inequality follows from the definition of opt; the fourth
inequality was shown above.

4 A Constant-Factor Approximation for macdg

mst induces an assignment of radii to the points of P. Let pi ∈ P and let ri

be the length of the longest edge in mst connected to pi, then the radius that
is assigned to pi is ri/2. Put dg = {Dp1

, . . . , Dpn
}, where Dpi

is the disk of
radius ri/2 centered at pi. In this section we apply the main result of Section 2,
in order to prove that dg is a constant-factor approximation for the Minimum-
Area Connected Disk Graph (macdg) problem. That is, (i) viewing dg as an
intersection graph, dg is connected, and (ii) the area of the union of the disks
in dg is bounded by some constant times the area of the union of the disks in
an optimal assignment of radii, i.e., a solution to macdg.

The first requirement above clearly holds, since each edge in mst is also an
edge in dg. Let opt

D denote an optimal assignment of radii, i.e., a solution to
macdg. It remains to prove the second requirement above.

Theorem 3. dg is a constant-factor approximation for macdg, i.e., area(
⋃

dg
) ≤

c′′ · area(
⋃

optD ), for some constant c′′.

Proof. We only outline the proof, since it is very similar to the proof of the
previous section. We first claim that area(

⋃
dg

) ≤ 9 area(
⋃

mst
). This follows

immediately from Claim 6, since
⋃

dg
⊆

⋃
ra

. Next, we observe that if one
doubles the radius of each of the disks in opt

D, then the resulting set of disks
contains the set of disks of some spanning tree T of P. Thus, by Theorem 1,
area(

⋃
mst

) ≤ c · area(
⋃

optD ). We complete the proof by putting the two
inequalities together.

5 A Constant-Factor Approximation for mat

Consider the complete graph induced by P. We assign weights to the edges of
the graph, such that the weight w(e) of an edge e is |e|2. Let G2 denote this
graph. Define the weight w(F ) of a subset F of the edge-set of G2 to be the sum
of the weights of the edges in F .

Notice that the triangle inequality does not hold in G2. However, the triangle
inequality “almost” holds, in that |uv|2 ≤ 2 · (|uw|2 + |wv|2). For distance func-
tions such that d(u, v) ≤ τ · (d(u,w) + d(w, v)), constant-factor approximation
algorithms for the TSP are known: Andreae and Bandelt [3] give a (3τ 2/2+τ/2)-
approximation, which was refined by Andrea [2] to a (τ 2 + τ)-approximation,
and Bender and Chekuri [4] give a 4τ -approximation. For our case (τ = 2), this
implies that there is a 6-approximation.

Andreae and Bandelt actually compute a tour T in G2, such that w(T ) ≤
c · w(mstG2), where mstG2 is the minimum spanning tree of G2 and c is some



constant. We show that T is a constant-factor approximation for the Minimum-
Area Tour (mat) problem.

For an edge e in T , let D(e) denote the disk whose diameter is e. Put D(T ) =
{D(e) | e is an edge in T},

⋃
T =

⋃
e∈T D(e), and σT =

∑
e∈T area(D(e)). Let

opt
T be an optimal tour, i.e., a solution to mat. Clearly area(

⋃
optT ) ≥

area(
⋃

optS ), where opt
S is a solution to the Minimum Area Spanning Tree

(mast) problem. We need to show that area(
⋃

T ) = O(area(
⋃

optT )). Indeed

area(
⋃

T

) ≤ σT ≤ w(T ) ≤ c · w(mstG2) .

But w(mstG2) =
∑

e∈mst
|e|2, where mst is the minimum spanning tree of P

(since both trees are identical in terms of edges). So

area(
⋃

T

) = O(
∑

e∈mst

|e|2) = O(σmst) = O(area(
⋃

mst

)) ,

where the latter equality follows from Lemma 1. And, by the main result of
Section 2,

O(area(
⋃

mst

)) = O(area(
⋃

optS

)) = O(area(
⋃

optT

)) .

The following theorem summarizes the result of this section.

Theorem 4. T is a constant-factor approximation for mat, i.e., area(
⋃

T ) ≤
ĉ · area(

⋃
optT ), for some constant ĉ.
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