
The Minimum Generalized Vertex Cover Problem

REFAEL HASSIN

Tel-Aviv University

AND

ASAF LEVIN

The Hebrew University

Abstract. Let G = (V, E) be an undirected graph, with three numbers d0(e) ≥ d1(e) ≥ d2(e) ≥ 0
for each edge e ∈ E . A solution is a subset U ⊆ V and di (e) represents the cost contributed to the
solution by the edge e if exactly i of its endpoints are in the solution. The cost of including a vertex
v in the solution is c(v). A solution has cost that is equal to the sum of the vertex costs and the edge
costs. The minimum generalized vertex cover problem is to compute a minimum cost set of vertices.
We study the complexity of the problem with the costs d0(e) = 1, d1(e) = α and d2(e) = 0 ∀e ∈ E
and c(v) = β ∀v ∈ V , for all possible values of α and β. We also provide 2-approximation algorithms
for the general case.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms

Additional Key Words and Phrases: Vertex cover, local-ratio, complexity classification

1. Introduction

Let G = (V, E) be an undirected graph. The MINIMUM VERTEX COVER PROBLEM
is to find a minimum size vertex set S ⊆ V such that for every (i, j) ∈ E at least
one of i and j belongs to S.

In the minimum vertex cover problem, it makes no difference if we cover an edge
by both its endpoints or by just one of its endpoints. In this article, we generalize
the problem and an edge incurs a cost that depends on the number of its endpoints
that belong to S.

For every edge e ∈ E , we are given three numbers d0(e) ≥ d1(e) ≥ d2(e) ≥ 0,
and for every vertex v ∈ V , we are given a number c(v) ≥ 0.

An extended abstract version of this article appeared in Proceedings of the 11th Annual European
Symposium on Algorithms, 2003.
Authors addresses: R. Hassin, Department of Statistics and Operations Research, Tel-Aviv University,
Tel-Aviv 69978, Israel, e-mail: hassin@post.tau.ac.il; A. Levin, Department of Statistics, the
Hebrew University, Jerusalem 91905, Israel, e-mail: levinas@mscc.huji.ac.il.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1549-6325/06/0100-0066 $5.00

ACM Transactions on Algorithms, Vol. 2, No. 1, January 2006, pp. 66–78.

The Minimum Generalized Vertex Cover Problem 67

For a subset S ⊆ V , denote S̄ = V \ S, E(S) is the set of edges whose both
end-vertices are in S, E(S, S̄) is the set of edges that connects a vertex from S with
a vertex from S̄, c(S) = ∑

v∈S c(v), and for i = 0, 1, 2 di (S) = ∑
e∈E(S) di (e) and

di (S, S̄) = ∑
e∈E(S,S̄) di (e).

The MINIMUM GENERALIZED VERTEX COVER PROBLEM (GVC) is to find a vertex
set S ⊆ V that minimizes the cost c(S) + d2(S) + d1(S, S̄) + d0(S̄). Thus, the value
di (e) represents the cost of the edge e if exactly i of its endpoints are included in
the solution, and the cost of including a vertex v in the solution is c(v).

Note that GVC generalizes the unweighted MINIMUM VERTEX COVER PROBLEM
that is the special case with d0(e) = 1, d1(e) = d2(e) = 0 ∀e ∈ E and c(v) =
1 ∀v ∈ V .

A motivation for this problem is the following (see Paik and Sahni [1995] and
Krumke et al. [1999]); Let G = (V, E) be an undirected graph. For each vertex
v ∈ V we can upgrade v at a cost c(v). For each edge e ∈ E di (e) represents the
cost of the edge e if exactly i of its endpoints are upgraded. The goal is to find
a subset of upgraded vertices, such that the sum of upgrading and edge costs, is
minimized.

Using this illustration, we use the term upgraded vertex, to denote a vertex that
is included in the solution, and nonupgraded vertex to denote a vertex that is not
included in the solution.

Paik and Sahni [1995] and Krumke, et al. [1999] considered bicriteria problems
where we can upgrade each vertex at some cost, and the cost of each edge depends
on the number of its endpoints that are upgraded. In Paik and Sahni [1995], the
objective is to minimize the size of the set of upgraded vertices (equal upgrading
costs), such that a given set of performance criteria will be met (e.g., for every
pair of vertices u, v , the shortest path between u and v has length at most �). In
Krumke et al. [1999], the problem is the following: given a budget that can be used
to upgrade vertices and the goal is to upgrade a vertex set such that in the resulting
network the minimum cost spanning tree is minimized.

When d0(e) = 1, d1(e) = α, d2(e) = 0 ∀e ∈ E and c(v) = β ∀v ∈ V , we
obtain the MINIMUM UNIFORM COST GENERALIZED VERTEX COVER PROBLEM
(UGVC). Thus, the input to UGVC is an undirected graph G = (V, E) and a
pair of constants α (such that 0 ≤ α ≤ 1) and β. The cost of a solution S ⊆ V for
UGVC is β|S| + |E(S̄)| + α|E(S, S̄)|.

The PROVISIONING PROBLEM is a related problem that we use. Suppose there are
n items to choose from, where item j costs c j ≥ 0. Also suppose there are m sets
of items S1, S2, . . . , Sm . If all the items in set Si are chosen, then a benefit of bi ≥ 0
is gained. The objective is to maximize the net benefit, that is, total benefit gained
minus total cost of items purchased. The problem was shown in Lawler [1976, pp.
125–127) to be solvable in polynomial time.

1.1. OUR RESULTS. We study the complexity of UGVC for all possible values
of α and β. The shaded areas in Figure 1 illustrate the polynomial-time solvable
cases, whereas all the other cases are NP-hard. The numbers in each region refers
to the lemma that provides a polynomial algorithm or proves the hardness of the
problem in that region. We provide two 2-approximation algorithms for GVC, one
is based on linear programming relaxation, and the other one runs in linear time
and is based on the local-ratio technique.

68 R. HASSIN AND A. LEVIN

FIG. 1. The complexity of UGVC.

2. The Complexity of UGVC

In this section, we study the complexity of UGVC.

LEMMA 1. If 1
2 ≤ α ≤ 1, then UGVC can be solved in polynomial time.

PROOF. If 1
2 ≤ α ≤ 1, then UGVC is reducible to the provisioning problem as

follows: The items are the vertices of the graph each has a cost of β. The sets are of
two types: a single item {v} for every vertex v ∈ V , and a pair {u, v} of vertices for
every edge (u, v) ∈ E . A set of a single vertex {v} has a benefit of (1 − α)deg(v)
and a set that is a pair of vertices has a benefit of 2α − 1 ≥ 0. Then, the sum of
costs of the provisioning solution and the corresponding UGVC solution, is always
m, that is, the number of edges in E . To see this fact, note that we can allocate the
benefit of choosing a vertex vi among its adjacent edges so each edge gain a benefit
of 1 − α. In case both vertices of an edge (u, v) were chosen, then the sets of the
singletons {u} and {v} already results a benefit of 2(1 −α) and the set {u, v} causes
an additional gain of 2α − 1 and thus the total gain for such an edge is exactly 1.
So if we choose k vertices, then by paying βk in the provisioning problem (this is
exactly as their cost in UGVC) we gain 1 − α for each edge that is covered once,
and 1 for each edge that is covered twice.

Therefore, optimizing the first objective (provisioning) is equivalent to optimiz-
ing the second objective (UGVC).

For a graph G, a leaf is a vertex with degree 1.

LEMMA 2. If α < 1
2 and β ≤ 3α, then UGVC can be solved in polynomial

time.

The Minimum Generalized Vertex Cover Problem 69

PROOF. We first observe that upgrading one end of an edge saves 1 − α, and
if also the other end of the edge is upgraded then the additional saving is α. By
assumption, α < 1

2 and therefore α < 1 − α.
By assumption β ≤ 3α, and therefore it is optimal to upgrade all the vertices

whose degree is greater than or equal to 3. We will analyze the solution for the
leaves and vertices with degree 2.

If two leaves u and v are connected by an edge, then if β > 1 − α it is optimal
not to upgrade u and v , if 1 − α ≥ β > α it is optimal to upgrade u and not to
upgrade v , and if β ≤ α it is optimal to upgrade u and v .

If β ≤ α, then it is optimal to upgrade all the vertices.
If α < β ≤ 2α, then it is optimal to upgrade all the vertices that have degree 2

and not to upgrade the leaves.
If β > 2(1 − α), then all the vertices that have degree 1 or 2 are not upgraded.
Assume that 2α < β ≤ 3α and that β ≤ 2(1 − α). The vertices with degree 1 or

2 induce disjoint cycles, paths that connect a pair of vertices with degree at least 3,
paths that connect a vertex with degree at least 3 and a leaf, and paths that connect
a pair of leaves.

We first assume that β ≥ 1. In this case, it is not optimal to upgrade adjacent
vertices with degree 1 or 2. Therefore, the upgraded set is an independent set.

—A cycle of k vertices causes a cost of t(2α+β)+k−2t = k+t(β−2(1−α)) if we
upgrade an independent set of size t . This cost is minimized when t is maximized.
Number the vertices along the cycle v1, v2, . . . , vk . Then, the vertices with even
index constitute a maximum independent set and upgrading them is optimal.

—For a maximal path of k + 1 vertices v0, v1, . . . , vk with degree 1 or 2, such that,
if k = 1, then either v0 or v1 has degree 2, we upgrade all the odd index vertices
(not including vk , if k is odd). This is an optimal solution due to the following:
The cost of this path if we upgrade an independent set with t inner vertices is
exactly t(2α + β) + k − 2t − 2 = k − 2 + t[β − 2(1 − α)], which is minimized
when t is maximized.

Assume that β < 1. In this case, a solution is not optimal if it does not upgrade
two adjacent vertices. Therefore, an optimal solution upgrades a vertex cover of the
edges with an endpoint with degree at most 2.

—For a cycle of k vertices, we number the vertices along the cycle v1, v2, . . . , vk
and we upgrade all the vertices that have an odd index. The upgraded set is a
minimum size vertex cover. The cost of the cycle if we upgrade a vertex cover
with t vertices is tβ + (2k − 2t)α = t(β − 2α) + 2kα, and it is minimized when
t is minimized.

—For a maximal path of k + 1 vertices, v0, v1, . . . , vk that have degree 1 or 2, such
that, if k = 1, then either v0 or v1 has degree 2, we upgrade all the odd index
vertices. If k is odd and vk has degree 1, then we upgrade vk−1 instead of vk . The
upgraded set is a minimum size vertex cover. The cost of the path if we upgrade
a vertex cover with t inner-vertices is tβ + (2k − 2t)α = t(β − 2α) + 2kα, and
it is minimized when t is minimized.

LEMMA 3. If α < 1
2 and there exists an integer d ≥ 3 such that d(1 − α) ≤

β ≤ (d + 1)α then UGVC can be solved in polynomial time.

70 R. HASSIN AND A. LEVIN

PROOF. Simply upgrade a vertex if and only if its degree is at least d + 1.
We now argue that this is an optimal solution. First, given a solution that does not
upgrade a vertex with degree at least d + 1, then we improve its cost if we decide
to upgrade it (the change is improvement by at least (d + 1)α − β ≥ 0). Second,
given a solution that upgrades a vertex v with degree at most d, then the solution
resulting from the previous one such that it does not upgrade v , we improve its cost
by at least β − d(1 − α) ≥ 0.

If Lemma 1, Lemma 2, and Lemma 3 can not be applied, then UGVC is NP-hard.
We will divide the proof into several cases.

LEMMA 4. If α < 1
2 and 3α < β ≤ 1 + α, then UGVC is NP-hard even when

G is 3-regular.

PROOF. Assume that G is 3-regular and assume a solution to UGVC that up-
grades k vertices. Because of the lemma’s assumptions, if there is an edge (u, v) ∈ E
such that both u and v are not upgraded, then it is better to upgrade u (resulting
in an improvement of at least 1 − α + 2α − β = 1 + α − β ≥ 0). Therefore,
without loss of generality, the solution is a vertex cover (if β = 1 − α, then not all
the optimal solutions are vertex covers; however, it is easy to transform a solution
into a vertex cover without increasing the cost). Since there are 2|E | − 3k edges
such that exactly one of their endpoints is upgraded, the cost of the solution is
βk + α(2|E | − 3k) = k(β − 3α) + 2α|E |. Since β > 3α, the cost of the solution
is a strictly monotone increasing function of k. Therefore, finding an optimal solu-
tion to UGVC for G is equivalent to finding a minimum vertex cover for G. The
MINIMUM VERTEX COVER PROBLEM restricted to 3-regular graphs is NP-hard (see
problems [GT1] and [GT20] in Garey and Johnson [1979]).

LEMMA 5. If α = 0 and β > 0, then UGVC is NP-hard.

PROOF. If β ≤ 1, then by the proof of Lemma 4, UGVC is NP-hard. Assume
that β > 1. Let G be an input graph to MINIMUM VERTEX COVER PROBLEM. Replace
each edge by �β	 copies and denote the resulting multigraph by G ′. Then, an optimal
solution to UGVC on G ′ is an optimal solution to the vertex cover problem on G.

LEMMA 6. If α < 1
2 and 1 + α < β < 2 − α, then UGVC is NP-hard even

when G is 3-regular.

PROOF. Assume that the input to UGVC with α, β satisfying the lemma’s
conditions, is a 3-regular graph G = (V, E). By local optimality of the optimal
solution for a vertex v , v is upgraded if and only if at least two of its neighbors are
not upgraded: If v has at least two nonupgraded neighbors, then upgrading v saves
at least 2(1−α)+α −β = 2−α −β > 0; if v has at least two upgraded neighbors
then upgrading v adds to the total cost at least β −2α − (1−α) = β − (1+α) > 0.

We will show that the following decision problem is NP-complete: Given a 3-
regular graph G and a number K , is there a solution to UGVC with cost at most K .
The problem is clearly in NP. To show completeness we present a reduction from
NOT-ALL-EQUAL-3SAT PROBLEM.

The NOT-ALL-EQUAL-3SAT is defined as follows (see Garey and Johnson [1979]):
given a set of clauses S = {C1, C2, . . . , C p} each with exactly 3 literals, is there a
truth assignment such that each clause has at least one true literal and at least one
false literal.

The Minimum Generalized Vertex Cover Problem 71

FIG. 2. The graph G obtained for the clauses C1 = x1∨x̄2∨x3, C2 = x̄1∨x2∨x̄3, and C3 = x1∨x2∨x̄3.

Given a set S = {C1, C2, . . . , C p} each with exactly 3 literals, construct a 3-
regular graph G = (V, E) as follows (see Figure 2, see the max-cut reduction
in Yannakakis [1981] for similar ideas): For a variable x that appears in p(x)
clauses, G has 2p(x) vertices Ax

1, . . . , Ax
p(x), Bx

1 , . . . , Bx
p(x) connected in a cy-

cle Ax
1, Bx

1 , Ax
2, Bx

2 , . . . , Ax
p(x), Bx

p(x), Ax
1. In addition, for every clause C let G

have six vertices yC
1 , yC

2 , yC
3 , zC

1 , zC
2 , zC

3 connected in two triangles yC
1 , yC

2 , yC
3 and

zC
1 , zC

2 , zC
3 . Each set of 3 vertices corresponds to the literals of the clause. If x

appears in a clause C , and let yC
j and zC

j correspond to x then we assign to this
appearance of x a distinct pair Ax

i , Bx
i (distinct i for each appearance of x or x̄) and

we connect yC
j to Ax

i and zC
j to Bx

i . If x̄ appears in a clause C , and let yC
j and zC

j
correspond to x then we assign to this appearance of x̄ a distinct pair Ax

i , Bx
i and

we connect yC
j to Bx

i and zC
j to Ax

i .
Note that G is 3-regular.
For a 3-regular graph, we charge the upgrading cost of an upgraded vertex to

its incident edges. Therefore, the cost of an edge such that both its endpoints are
upgraded is 2β

3 , the cost of an edge such that exactly one of its endpoints is upgraded
is β

3 + α, and the cost of an edge such that none of its endpoints is upgraded is
1. Note that by the conditions on α and β, β

3 + α <
2β

3 because by assumption
β > 1 + α ≥ 3α. Also, β

3 + α < 2−α
3 + α = 2

3 (1 + α) < 1. Therefore, the cost of
an edge is minimized if exactly one of its endpoints is upgraded.

We will show that there is an upgrading set with total cost of at most (|E |−2p)(β

3 +
α) + p 2β

3 + p if and only if the NOT-ALL-EQUAL-3SAT instance can be satisfied.
Assume that S is satisfied by a truth assignment T . If T (x) = TRUE, then

we upgrade Bx
i i = 1, 2, . . . , p(x) and do not upgrade Ax

i i = 1, 2, . . . , p(x).
If T (x) = FALSE, then we upgrade Ax

i i = 1, 2, . . . , p(x) and do not upgrade
Bx

i i = 1, 2, . . . , p(x). For a clause C , we upgrade all the yC
j vertices that corre-

spond to TRUE literals and all the zC
j vertices that correspond to FALSE literals. We

note that the edges with either both endpoints upgraded or both not upgraded are all
triangle’s edges. Note also that, for every clause, there is exactly one edge connecting
a pair of upgraded vertices and one edge connecting a pair of non-upgraded vertices.
Therefore, the total cost of the solution is exactly (|E | − 2p)(β

3 + α) + p 2β

3 + p.

72 R. HASSIN AND A. LEVIN

Assume that there is an upgrading set U whose cost is at most
(|E |−2p)(β

3 +α)+p 2β

3 +p. Let Ū = V \U . Denote an upgraded vertex by U -vertex
and a non-upgraded vertex by Ū -vertex. Without loss of generality, assume that U is
a local optimum. Therefore, a U -vertex has at most one U -neighbor as otherwise, if
a U -vertex w has at least two neighbors in U , the solution U \{w} has a reduced cost
because the cost decrease by at least β − (1−α)−2α < 0 where the last inequality
holds because β > 1 + α, and this contradicts the fact that U is a local optimum.
Similarly, a Ū -vertex has at most one Ū -neighbor. To see this last claim, note that
otherwise if a Ū -vertex w has at least two neighbors in Ū , the solution U ∪{w} has a
reduced cost because the cost decrease by at least −β +2(1−α)+α > 0 where the
last inequality holds because β < 2−α, and this contradicts the fact that U is a local
optimum.

Therefore, for a triangle yC
1 , yC

2 , yC
3 (zC

1 , zC
2 , zC

3) at least one of its vertices is in
U and at least one of its vertices is in Ū . Therefore, in the triangle, there is exactly
one edge that connects either two U -vertices or two Ū -vertices and the two other
edges connect a U -vertex to a Ū -vertex.

We will show that in G there are at least p edges that connect a pair of U -vertices
and at least p edges that connect a pair of Ū -vertices. Otherwise, there is a clause
C such that, for some j , either yC

j ,zC
j are both in U or both in Ū . Without loss of

generality, assume that yC
j is connected to Ax

i and zC
j is connected to Bx

i . Assume
yC

j , zC
j ∈ U (yC

j , zC
j ∈ Ū), then, by the local optimality of the solution, Ax

i , Bx
i ∈ Ū

(Ax
i , Bx

i ∈ U), as otherwise yC
j or zC

j will have two U -(Ū -)neighbors and therefore
we will not upgrade (will upgrade) them. Therefore, the edge (Ax

i , Bx
i) connects

a pair of Ū (U) vertices. We charge every clause for the edges in the triangles cor-
responding to it that connect either two U -vertices or two Ū -vertices, and we also
charge the clause for an edge (Ax

i , Bx
i) as in the above case. Therefore, we charge ev-

ery clause for at least one edge that connects two U -vertices and for at least one edge
that connects two Ū -vertices. These charged edges are all disjoint. Therefore, there
are at least p edges that connect two U -vertices and at least p edges that connect two
Ū -vertices.

Since the total cost is at most (|E | − 2p)(β

3 + α) + p 2β

3 + p, there are exactly p
edges of each such type. Therefore, for every clause C for every j there is exactly
one of the vertices yC

j or zC
j that is upgraded. Also note that for every variable x

either Ax
i ∈ U, Bx

i ∈ Ū ∀i or Ax
i ∈ Ū , Bx

i ∈ U ∀i . If Bx
i ∈ U ∀i , we assign to

x the value TRUE and otherwise we assign x the value FALSE. We argue that this
truth assignment satisfies S. In a clause C , if yC

j ∈ U , then its nontriangle neighbor
is not upgraded and therefore, the literal corresponding to yC

j is assigned a TRUE
value. Similarly, if yC

j ∈ Ū , the literal is assigned a FALSE value. Since in every
triangle at least one vertex is upgraded and at least one vertex is not upgraded,
there is at least one FALSE literal and at least one TRUE literal. Therefore, S is
satisfied.

LEMMA 7. If α < 1
2 , 2−α ≤ β < 3(1−α), then UGVC is NP-hard even when

G is 3-regular.
PROOF. Assume that G is 3-regular and assume a solution to UGVC that up-

grades k vertices. Let v ∈ V . Because of the lemma’s assumptions if any of v’s
neighbors is upgraded then not upgrading v saves at least β − 2(1 − α) − α =
β−(2−α) ≥ 0. Therefore, without loss of generality, the solution is an independent

The Minimum Generalized Vertex Cover Problem 73

set (if β = 2−α, then not all the optimal solutions are independent sets; however, it
is easy to transform a solution into an independent set without increasing the cost).
The cost of the solution is exactly βk + 3kα + (|E |− 3k) = |E |− k[3(1 −α) −β].
Since 3(1−α) > β, the cost of the solution is strictly monotone decreasing function
of k. Therefore, finding an optimal solution to UGVC for G is equivalent to finding
an optimal independent set for G. The MAXIMUM INDEPENDENT SET PROBLEM re-
stricted to 3-regular graphs is NP-hard (see problem [GT20] in Garey and Johnson
[1979]).

LEMMA 8. If α < 1
2 and dα < β ≤ min{dα + (d − 2)(1 − 2α), (d + 1)α} for

some integer d ≥ 4, then UGVC is NP-hard.

PROOF. Let G = (V, E) be a 3-regular graph that is an input to the MINIMUM
VERTEX COVER PROBLEM. Since dα < β ≤ dα+(d −2)(1−2α), there is an integer
k, 0 ≤ k ≤ d − 3, such that dα + k(1 − 2α) < β ≤ dα + (k + 1)(1 − 2α).

We generate from G a graph G ′ = (V ′, E ′) by adding k new neighbors (new
vertices) to every vertex v ∈ V . From G ′, we generate a graph G ′′ by repeating the
following for every vertex v ∈ V : add d − k − 3 copies of a star centered at a new
vertex with d + 1 leaves such that v is one of them and the other leaves are new
vertices.

Since β ≤ (d + 1)α, without loss of generality, in an optimal solution of UGVC
on G ′′ every such center of a star is upgraded. Consider a vertex u ∈ V ′′ \ V , then
u is either a center of a star or a leaf. If u is a leaf, then since β > α then an optimal
solution does not upgrade u.

In G ′′ every vertex from V has degree 3 + k + (d − k − 3) = d and in an
optimal solution for the upgrading problem, at least one of the endpoints of every
edge (u, v) ∈ E is upgraded as otherwise u will have at least k + 1 nonupgraded
neighbors, and since β ≤ dα + (k + 1)(1 − 2α), it is optimal to upgrade u.

Assume the optimal solution upgrades l vertices from V . The total cost of
upgrading the l vertices and the cost of edges incident to vertices from V is
lβ + lkα + (n − l)k + (n − l)(d − k − 3)α + (2|E | − 3l)α = l[β + α(k −
d + k)−k]+n(k + (d − k −3)α)+2|E |α. Since β > k(1−α)+ (d − k)α, the cost
is strictly monotone increasing function of l. Therefore, to minimize the upgrading
network cost is equivalent to finding a minimum vertex cover for G. Therefore,
UGVC is NP-hard.

LEMMA 9. If α < 1
2 and dα+(d −2)(1−2α) ≤ β < min{dα+d(1−2α), (d +

1)α} for some integer d ≥ 4, then UGVC is NP-hard.

PROOF. Let G = (V, E) be 3-regular graph that is an input to the MAXIMUM
INDEPENDENT SET PROBLEM. Since dα + (d − 2)(1 − 2α) ≤ β < dα + d(1 − 2α),
dα + (d − k − 1)(1 − 2α) ≤ β < dα + (d − k)(1 − 2α) holds for either k = 0 or
for k = 1.

If k = 1, we add to every vertex v ∈ V a star centered at a new vertex with d + 1
leaves such that v is one of them. Since β ≤ (d + 1)α, in an optimal solution the
star’s center is upgraded.

For every vertex in V , we add d − k − 3 new neighbors (new vertices). Consider
a vertex u ∈ V ′′ \ V then u is either a center of a star or a leaf. If u is a leaf, then
since β ≥ dα + (d − 2)(1 − 2α) > 1 − α, an optimal solution does not upgrade u.

Denote the resulting graph G ′. The optimal upgrading set S in G ′ induces an
independent set over G because if u, v ∈ S ∩ V and (u, v) ∈ E , then u has at least

74 R. HASSIN AND A. LEVIN

k + 1 upgraded neighbors and therefore since dα + (d − k − 1)(1 − 2α) ≤ β, it is
better not to upgrade u.

Assume the optimal solution upgrades l vertices from V . The total cost of
upgrading the l vertices and the cost of edges incident to vertices from V is:
nkα+(d−3−k)n+ 3n

2 −l[kα+(d−k)(1−α)−β]. Since β < dα+(d−k)(1−2α),
the cost is strictly monotone decreasing function of l, and therefore, it is minimized
by upgrading a maximum independent set of G. Therefore, UGVC is NP-hard.

We summarize the results:

THEOREM 10. In the following cases, UGVC is polynomial:

(1) If α ≥ 1
2 .

(2) If α < 1
2 and β ≤ 3α.

(3) If α < 1
2 and there exists an integer d ≥ 3 such that d(1 − α) ≤ β ≤ (d + 1)α.

Otherwise, UGVC is NP-hard.

3. Approximation Algorithms

In this section, we present two 2-approximation algorithms for the GVC problem.
We present an approximation algorithm to GVC based on LP relaxation. We also
present another algorithms with reduced time complexity based on the local-ratio
technique.

Remark 11. If d0(i, j)−d2(i, j) ≥ 2[d0(i, j)−d1(i, j)] holds for every (i, j) ∈
E , then GVC can be solved in polynomial time.

PROOF. We use the PROVISIONING PROBLEM: each vertex i ∈ V is an item with
cost max{0, c(i) − ∑

j :(i, j)∈E [d0(i, j) − d1(i, j)]}, and each edge {i, j} is a set with
benefit d0(i, j) − d2(i, j) − 2[d0(i, j) − d1(i, j)] = 2d1(i, j) − d0(i, j) − d2(i, j) ≥
0.

3.1. 2-APPROXIMATION FOR GVC. For the following formulation, we explicitly
use the fact that every edge e ∈ E is a subset {i, j} where i, j ∈ V . Consider the
following integer program (GVCIP):

min
n∑

i=1

c(i)xi +
∑

{i, j}∈E

(d2(i, j)zij + d1(i, j)(yij − zij) + d0(i, j)(1 − yij))

subject to:

yij ≤ xi + x j ∀{i, j} ∈ E
yij ≤ 1 ∀{i, j} ∈ E
zij ≤ xi ∀i ∈ V, {i, j} ∈ E
xi ≤ 1 ∀i ∈ V

xi , yij, zij integers ∀{i, j} ∈ E .

In this formulation, xi is an indicator variable that is equal to 1 if we upgrade
vertex i ; yij is an indicator variable that is equal to 1 if at least one of the vertices
i and j is upgraded; zij is an indicator variable that is equal to 1 if both i and j are

The Minimum Generalized Vertex Cover Problem 75

upgraded; yij = 1 is possible only if at least one of the variables xi or x j is equal
to 1; zij = 1 is possible only if both xi and x j equal 1; If yij or zij can be equal
to 1, then there exists an optimal solution such that they will be equal to 1 since
d2(i, j) ≤ d1(i, j) ≤ d0(i, j). Denote by GVCLP the continuous (LP) relaxation
of GVCIP.

In order to define a basic solution of GVCLP, one first transforms the prob-
lem into the standard form of linear programming. This transformation adds one
new slack variable for each constraint. So in the resulting problem the number of
variables is larger than the number of constraints. Denote the number of indepen-
dent constraints of GVCLP by K , then a basic solution is identified by setting
all variables beside K variables to zero and then solving the resulting system of
equations.

The following theorem generalizes a theorem by Nemhauser and Trotter [1975]
for the minimum unweighted vertex cover problem.

THEOREM 12. Let (x, y, z) be an optimal basic solution of GVCLP. Then,
xi ∈ {0, 1

2 , 1} ∀i .

Hochbaum [2002] presented a set of integer programs denoted as IP2 that con-
tains GVCIP. For IP2, Hochbaum showed that the basic solutions to the LP re-
laxations of such problems are half-integral, and the relaxations can be solved
using network flow algorithm in O(mn) time. The following is a direct proof of
Theorem 12:

PROOF. Denote by S1 = {i ∈ V |xi = 0}, S2 = {i ∈ V |0 < xi < 1
2},

S3 = {i ∈ V |xi = 1
2}, S4 = {i ∈ V | 1

2 < xi < 1}, and S5 = {i ∈ V |xi = 1}.
We prove that S2 ∪ S4 = ∅. Assume otherwise, and define an ε > 0 such that
ε < xi < 1

2 −ε ∀i ∈ S2, and 1
2 +ε < xi < 1−ε ∀i ∈ S4. Since (x, y, z) is optimal,

yij = min{xi + x j , 1} and zij = min{xi , x j }. We will show that if S2 ∪ S4 �= ∅,
then there are two feasible points (x ′, y′, z′) and (x ′′, y′′, z′′) such that x ′ �= x ′′ and
(x, y, z) is their middle point, and this leads to a contradiction to the assumption
that (x, y, z) is a basic solution. Define:

x ′
i =

⎧⎨
⎩

xi − ε i ∈ S4

xi + ε i ∈ S2

xi otherwise
x ′′

i =
⎧⎨
⎩

xi + ε i ∈ S4

xi − ε i ∈ S2

xi otherwise.

Define y′
ij = min{x ′

i + x ′
j , 1}, y′′

ij = min{x ′′
i + x ′′

j , 1}, z′
ij = min{x ′

i , x ′
j }, and

z′′
ij = min{x ′′

i , x ′′
j }.

(x ′, y′, z′) and (x ′′, y′′, z′′) are feasible solutions. If S2 ∪ S4 �= ∅, then these are
two feasible points which are different from (x, y, z), such that (x, y, z) is their
middle point. This contradicts the assumption that (x, y, z) is a basic solution.

Theorem 12 provides a 2-approximation algorithm:

(1) Solve GVCLP using Hochbaum’s [2002] algorithm, and denote by x∗, y∗, z∗
its optimal solution.

(2) Upgrade vertex i if and only if x∗
i ≥ 1

2 .

THEOREM 13. The above algorithm is an O(mn)-time 2-approximation algo-
rithm for GVC.

76 R. HASSIN AND A. LEVIN

PROOF. Denote by xa
i = 1, if we upgrade vertex i and xa

i = 0; otherwise,
ya

ij = min{xa
i + xa

j , 1} = max{xa
i , xa

j }, and za
ij = min{xa

i , xa
j }. The performance

guarantee of the algorithm is derived by the following argument:

n∑
i=1

c(i)xa
i +

∑
(i, j)∈E

(
d2(i, j)za

ij + d1(i, j)
(
ya

ij − za
ij

) + d0(i, j)
(
1 − ya

ij

))

≤ 2
n∑

i=1

c(i)x∗
i +

∑
(i, j)∈E

(
d2(i, j)za

ij + d1(i, j)
(
ya

ij − za
ij

) + d0(i, j)
(
1 − ya

ij

))

≤ 2
n∑

i=1

c(i)x∗
i +

∑
(i, j)∈E

(
d2(i, j)z∗

ij + d1(i, j)
(
y∗

ij − z∗
ij

) + d0(i, j)
(
1 − y∗

ij

))

< 2
(n∑

i=1

c(i)x∗
i +

∑
(i, j)∈E

(
d2(i, j)z∗

ij + d1(i, j)
(
y∗

ij − z∗
ij

) + d0(i, j)
(
1 − y∗

ij

)))
.

The first inequality holds because we increase xi by a factor which is at
most 2. The second inequality holds because the second sum is a convex com-
bination of d0(i, j), d1(i, j), and d2(i, j). Since d0(i, j) ≥ d1(i, j) ≥ d2(i, j),
za

ij = min{xa
i , xa

j } ≥ min{x∗
i , x∗

j } ≥ z∗
ij, and 1 − ya

ij = max{1 − xa
i − xa

j , 0} ≤
max{1 − x∗

i − x∗
j , 0} = 1 − y∗

ij , the second inequality holds.

3.2. A LINEAR-TIME 2-APPROXIMATION FOR GVC-BASED ON THE LOCAL-
RATIO TECHNIQUE. We next show a different 2-approximation algorithm whose
analysis is based on the local-ratio technique [Bar-Yehuda and Even 1981; Bar-
Yehuda et al. 2004]1. Without loss of generality, we assume that d2(e) = 0 for all
edges e. Our algorithm extends the algorithm of Bar-Yehuda and Even [1981] that
applies for the vertex cover problem and the algorithm of Bar-Yehuda and Rawitz
[2001] that applies to the special case of GVC where d1(e) = d2(e) = 0 for all edges
e (this is a generalization of vertex cover in which we pay d0(e) for not covering an
edge e).

We define cost functions for the GVC problem where the cost of a vertex w is
C(w) and for an edge e′ the cost of covering it i times is Ci (e′). In particular, for
an edge e = {u, v} and a positive number ε > 0 we define the following functions:

C1(w) =
{

ε w ∈ {u, v}
0 otherwise

C1
1 (e′) = 0 ∀e′ C1

0 (e′) =
{

ε e′ = e
0 otherwise

C2(w) =
{

ε w = u
0 otherwise

C2
0 (e′) = C2

1 (e′) =
{

ε e′ = e
0 otherwise.

We also let Ci
2(e) = 0 for all edges e and for i ∈ {1, 2}. In order to use the

local-ratio technique we note that any solution is a 2-approximation with respect
to any edge e and the associated the cost functions C1 and C2 for all ε > 0. This is
so since any solution costs with respect to these cost functions either ε or 2ε, and
therefore it is a 2-approximation.

1 Another 2-approximation algorithm that runs in linear time and is based on the primal-dual scheme,
appears in Hassin and Levin [2003].

The Minimum Generalized Vertex Cover Problem 77

We use the following Local-Ratio Theorem:

THEOREM 14 [BAR-YEHUDA AND EVEN 1981]. If a feasible solution is an r-
approximation with respect to a pair of weight functions W1 and W2 then it is also
an r-approximation with respect to the weight function W1 + W2.

Our algorithm is as follows:

1. Initialize the cost function C so that C(v) = c(v) for all v ∈ V , and C2(e) = d2(e), C1(e) = d1(e),
and C0(e) = d0(e) for all e ∈ E .

2. While there is an edge e = {u, v}, ε > 0 and i ∈ {1, 2} such that C − Ci ≥ 0 and the cost of each
edge is monotone nondecreasing in the number of its end-vertices that belong to the solution. (i.e.,
for each edge e′ C0(e′) − Ci

0(e′) ≥ C1(e′) − Ci
1(e′) ≥ C2(e′) − Ci

2(e′)) do:
C ← C − Ci .

3. Return the set of zero cost vertices.

By Theorem 14, to show that the resulting solution is a 2-approximation, it
suffices to show that it is an optimal solution with respect to the final cost function
C . To show this last claim we will show that its cost is zero (and since C is
nonnegative this is an optimal solution).

LEMMA 15. Assume that C is the cost function at the end of the algorithm.
Then the resulting solution has a zero cost with respect to C.

PROOF. The selected vertices have zero cost, and therefore do not contribute a
positive amount to the cost of the solution. It remains to consider the edge costs.
Consider an edge e = {u, v}.
—If both u and v are in the solution, then e contributes C2(e) = 0.
—If exactly one of u and v belong to the solution, then assume it is u. The edge e

contributes C1(e). We next claim that C1(e) = 0. Assume otherwise and consider
the cost function C2 for ε = min{C1(e), C(v)}. Then, by the fact that the cost
of e is monotone nondecreasing in the number of its end-vertices that belong to
the solution, C − C2 is a nonnegative cost function. Moreover, the cost of each
edge in C −C2 is monotone nondecreasing in the number of its end-vertices that
belong to the solution. Therefore, this contradicts the exit conditions from the
while loop. Therefore, C1(e) = 0 and the edge e does not contribute a positive
amount to the cost of the resulting solution.

—If both u and v do not belong to the solution, we claim that C0(e) = 0. We
assume otherwise.
—Assume that C1(e) > 0. Consider the cost function C2 for ε =

min{C1(e), C(u)}. Then, by the fact that the cost of e is monotone nonde-
creasing in the number of its end-vertices that belong to the solution, we
conclude that C −C2 is a nonnegative cost function, and the cost of each edge
is monotone nondecreasing in the number of its end-vertices that belong to the
solution. Therefore, this contradicts the exit conditions from the while loop.
Therefore, the edge e does not contribute a positive amount to the cost of the
resulting solution.

—Assume that C1(e) = 0. Consider the cost function C1 for ε =
min{C0(e), C(u), C(v)}. Then, C −C1 is a non-negative cost function and the
cost of each edge is monotone nondecreasing in the number of its end-vertices
that belong to the solution. Therefore, this contradicts the exit conditions from

78 R. HASSIN AND A. LEVIN

the while loop. Therefore, the edge e does not contribute a positive amount to
the cost of the resulting solution.

The linear-time implementation of the algorithm is straightforward by noting that
in the second step of the algorithm, to find an appropriate e = {u, v} and i ∈ {1, 2}
can be done in constant (average) time by the proof of Lemma 15, and by picking in
each iteration of the while loop the maximum possible value of ε that maintains the
non-negativity of the resulting cost function. Therefore, we establish the following
theorem:

THEOREM 16. There is a linear time 2-approximation algorithm for problem
GVC that is based on the local-ratio technique.

4. Concluding Remarks

In this article, we provide a complexity classification of the UGVC problem as
a function of the cost parameters α and β. We are not aware of previous results
concerning NP-hardness of a problem as a function of parameters of the cost co-
efficients. We think that such study of the complexity of problems as a function of
the parameters of the cost function, is an interesting research topic, and we leave it
for future research.

In Hassin and Levin [2003], we considered also the MAXIMIZATION VERSION OF
GVC that is defined as follows: the input is a graph G = (V, E), three profit values
0 ≤ p0(i, j) ≤ p1(i, j) ≤ p2(i, j) for each edge (i, j) ∈ E , and an upgrade cost
c(v) ≥ 0 for each vertex v ∈ V . pk(i, j) denotes the profit from the edge (i, j)
when exactly k of its endpoints are upgraded. The objective is to maximize the net
profit, that is, the total profit minus the upgrading cost. We proved that this problem
is NP-hard and claimed that there is a 2-approximation algorithm for this problem.
However, the proof of the last result is incorrect and we leave for future research
the question of whether such an algorithm exists.

REFERENCES

BAR-YEHUDA, R., BENDEL, K., FREUND, A., AND RAWITZ, D. 2004. Local ratio: A unified framework
for approximation algorithms. ACM Comput. Surv., 36, 422–463.

BAR-YEHUDA, R., AND EVEN, S. 1981. A linear time approximation algorithm for the weighted vertex
cover problem. J. Algor. 2, 198–203.

BAR-YEHUDA, R., AND RAWITZ, D. 2001. On the equivalence between the primal-dual schema and the
local-ratio technique. In Proceedings of APPROX 2001. 24–35.

GAREY, M. R., AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company.

HASSIN, R., AND LEVIN, A. 2003. The minimum generalized vertex cover problem. In Proceedings of
the ESA 2003. 289–300.

HOCHBAUM, D. S. 2002. Solving integer programs over monotone inequalities in three variables: A
framework for half integrality and good approximations. Europ. J. Oper. Res. 140, 291–321.

KRUMKE, S. O., MARATHE, M. V., NOLTEMEIER, H., RAVI, R., RAVI, S. S., SUNDARAM, R., AND WIRTH,
H. C. 1999. Improving minimum cost spanning trees by upgrading nodes. J. Algor., 33, 92–111.

LAWLER, E. L. 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston.
NEMHAUSER, G. L., AND TROTTER, JR., L. E. 1975. Vertex packing: Structural properties and algorithms.

Math. Prog. 8, 232–248.
PAIK, D., AND SAHNI, S. 1995. Network upgrading problems. Networks. 26, 45–58.
YANNAKAKIS, M. 1981. Edge deletion problems. SIAM J. Computing. 10, 297–309.

RECEIVED AUGUST 2004; REVISED JUNE 2005; ACCEPTED JUNE 2005

ACM Transactions on Algorithms, Vol. 2, No. 1, January 2006.

