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The minimum mass ratio of W UMa-type binary systems
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ABSTRACT
When the total angular momentum of a binary system Jtot = Jorb + Jspin is at a certain critical
(minimum) value, a tidal instability occurs which eventually forces the stars to merge into a
single, rapidly rotating object. The instability occurs when Jorb = 3Jspin, which in the case
of contact binaries corresponds to a minimum mass ratio qmin ≈ 0.071–0.078. The minimum
mass ratio is obtained under the assumption that stellar radii are fixed and independent. This
is not the case with contact binaries where, according to the Roche model, we have R2 =
R2(R1, a, q). By finding a new criterion for contact binaries, which arises from dJtot = 0, and
assuming k2

1 �= k2
2 for the component’s dimensionless gyration radii, a theoretical lower limit

qmin = 0.094–0.109 for overcontact degree f = 0–1 is obtained.
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1 I N T RO D U C T I O N

When the total angular momentum of a binary system Jtot = Jorb +
Jspin is at a certain critical (minimum) value, a secular tidal instabil-
ity occurs (Darwin’s instability) which eventually forces the stars
to merge into a single, rapidly rotating object. It is likely that at
least some of the blue stragglers in star clusters are formed in this
way (see e.g. Lombardi et al. 2002). The instability occurs when
Jorb = 3Jspin, which in the case of contact binaries corresponds to a
minimum mass ratio qmin ≈ 0.071–0.076 (Rasio 1995; Li & Zhang
2006), depending on dimensionless gyration radii of stars k2 and on
the overcontact degree f (Rasio & Shapiro 1995).

The minimum mass ratio is obtained under the assumption that
stellar radii are fixed and independent. This is not the case with
contact binaries where, in accordance with the Roche model, com-
ponent’s radii are correlated, R2 = R2(R1, a, q), where a is the orbital
radius. More importantly, k2 ≈ 0.06 was adopted in previous studies
in order to place the well-known AW UMa with q = 0.075 (Rucinski
1992) just at the stability boundary. Nevertheless, n = 3 polytrope
(fully radiative star with �1 = 4/3) has k2 ≈ 0.075, implying that
AW UMa primary cannot have much of the convective envelope
and must be slightly evolved (Rasio 1995). In most W UMa-type
binaries the primary is a Sun-like main-sequence star (spectral types
late F to K, see e.g. Hilditch 2001). For the Sun k2� = 0.059 ≈ 0.06
(Allen 1973), and it is possible that primaries of W UMa systems
also have k2 slightly below the n = 3 value, but this k2 may not be
the same for W UMa-type secondaries.

In this paper we find a new criterion for the stability of con-
tact binaries, which arises from dJtot = 0 and the assumption that
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R2 = R2(R1, a, q). This taken into consideration and assuming
k2

1 �= k2
2, the minimum mass ratio of W UMa-type binary systems

is derived. Finally, the obtained results are briefly discussed and
compared with the observational data.

2 A NA LY S I S

The orbital angular momentum of a binary can be written as

Jorb = µa2� = q
√

G M3a

(1 + q)2
, (1)

where µ = M1 M2/M, M = M1 + M2, q = M2/M1 < 1, M1 and M2

are masses of the primary and secondary component, respectively,
and � is the orbital angular velocity. Synchronization assumed, the
spin angular momentum of a binary is

Jspin = k2
1 M1 R2

1� + k2
2 M2 R2

2�, (2)

where R1 and R2 are taken to be the volume radii.
The overcontact degree for a contact binary (or, by some authors,

the degree of contact) is defined as

f = 	 − 	IL

	OL − 	IL
≈ R − RIL

ROL − RIL
, (3)

where we have adopted the linear dependence of f on the volume
radius, which is a quite good approximation in the narrow range
0 � f � 1 involved (see tables 6 and 7 in Mochnacki 1984).
Volume radii for the inner Roche lobe are, following Eggleton
(1983),

RILi

a
=

{
0.49q−2/3

0.6q−2/3+ln(1+q−1/3)
, i = 1,

0.49q2/3

0.6q2/3+ln(1+q1/3)
, i = 2,

(4)
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while volume radii for the outer Roche lobe (Yakut & Eggleton
2005) are

ROLi

a
=

{
0.49q−2/3+0.15

0.6q−2/3+ln(1+q−1/3)
, i = 1,

0.49q2/3+0.27q−0.12q4/3

0.6q2/3+ln(1+q1/3)
, i = 2.

(5)

The latter are defined as the radii of the spheres, each being of the
same volume as the volume of the respective figure obtained by
cutting the equipotential surface passing through the L2 point by
a plane through the L1 point which is perpendicular to the line of
centres.

As the component’s surfaces in the contact system are at the same
potential (the same f), by combining equations (3)–(5) one obtains

R2 = P(q)a + Q(q)R1, (6)

where

Q(q) = ROL2 − RIL2

ROL1 − RIL1
, (7)

and

P(q) = RIL2

a
− Q(q)

RIL1

a
. (8)

Total angular momentum of a contact binary system Jtot = Jorb +
Jspin, with the help of equations (1), (2) and (6), can then be expressed
as

Jtot = q
√

G M3 R1

(1 + q)2

(
a

R1

)1/2{
1

+ k2
1(1 + q)

q

[
(1 + q Q̃2)

(
R1

a

)2

+ 2q P̃ Q̃

(
R1

a

)
+ q P̃2

]}
,

(9)

where Q̃ = k2
k1

Q and P̃ = k2
k1

P . From the condition dJtot
d(a/R1) = 0 one

finds the critical separation

ainst

R1
=

q P̃ Q̃ +
√

(q P̃ Q̃)2 + 3(1 + q Q̃2)
{

q P̃2 + q/
[
(1 + q)k2

1

]}
q P̃2 + q/

[
(1 + q)k2

1

] .

(10)

Let us first examine two special cases:

(i) P̃ = Q̃ = 0
This is the situation when the secondary (i.e. its angular momentum)
has been neglected. Equation (10) is then reduced to

ainst

R1
= k1

√
3(1 + q)

q
, (11)

which is a result obtained by Rasio (1995). Inserting equations (4)
and (5), setting k2

1 = 0.06, and solving equation (11) numerically
results in qmin = 0.071–0.077, for the inner and the outer Roche
radius (f = 0–1).

(ii) P̃ = 0, Q̃ = k2 R2
k1 R1

In this case, the component’s radii are treated as independent. Setting
k2

1 = k2
2 = 0.06 and solving the equation numerically, one finds

qmin = 0.071–0.078 (Li & Zhang 2006).

If k2
1 = k2

2 = 0.06, by inserting equations (4) and (5) into (10) and
solving the equation numerically, one finds qmin = 0.072–0.080.
Thus, rigorous derivation does not basically change the result, that
is, since q is small all of the above assumptions and simplifications
are justified. For the radiative main-sequence primary, however, it
would be more appropriate to set k2

1 ≈ 0.075. The secondary in
all low-q systems is a very low-mass star (see fig. 2 in Gazeas &

Figure 1. Dependence of minimum mass ratio qmin on dimensionless gyra-
tion radius k2

1, for critical Roche lobes and different values for k2
2. Vertical

lines are k2
1 values for the Sun, n = 3 polytrope and n = 1.5 polytrope, while

horizontal lines are the empirical mass ratios for FP Boo, V870 Ara, AW
UMa, SX Crv and V857 Her.

Table 1. Contact systems with the lowest published q values.

Star q Reference

V857 Hera 0.065 ± 0.001 Qian et al. (2005)
SX Crv 0.066 ± 0.003 Rucinski et al. (2001)
AW UMa 0.075 ± 0.005 Rucinski (1992)
V870 Ara 0.082 ± 0.030 Szalai et al. (2007)
FP Boo 0.106 ± 0.005 Rucinski et al. (2005)
CK Boo 0.111 ± 0.052 Rucinski & Lu (1999)
FG Hya 0.112 ± 0.004 Lu & Rucinski (1999)
GR Vir 0.122 ± 0.044 Rucinski & Lu (1999)
V776 Cas 0.130 ± 0.004 Rucinski et al. (2001)
TZ Boo 0.130 ± 0.030 McLean & Hilditch (1983)

aThe q s.e. estimated for V857 Her is actually 0.0002. Nevertheless, this is the
only system included for which the mass ratio is determined photometrically.

Niarchos 2006), M2 ∼ 0.1 M�.1 For a low-mass main-sequence
secondary n = 1.5 polytrope would be appropriate (fully convective
star with �1 = 5/3), for which k2 ≈ 0.205. This gives the theoretical
lower limit qmin = 0.094–0.109. The exact value probably depends
on the overcontact degree f (Rasio 1995; Rasio & Shapiro 1995).

If k2
1 is slightly lower than n = 3 value, for example, k2

1 = k2� =
0.059, and k2

2 ≈ 0.205, by solving equation (10) for the inner and the
outer Roche radius we obtain qmin = 0.076–0.087 (see also Fig. 1).
All these values are higher than the values obtained previously. This
makes the systems with low mass ratio like AW UMa even more
difficult to understand.

3 D I S C U S S I O N A N D C O N C L U S I O N S

Contact systems with the lowest mass ratio, that the author is aware
of, are given in Table 1. The first four, at least, seem to have q

1 Only V776 Cas secondary is slightly more massive, M2 ≈ 0.2 M�
(Djurašević et al. 2004).
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values below the theoretical limit for stability, although the errors in
some cases may be too optimistic. A spectroscopic mass ratio is de-
termined from the semi-amplitudes of the sine fitted radial velocity
curves, and a formal error usually given arises from the least-squares
method used. Radial velocity data were previously obtained from the
spectra by using techniques such as cross-correlation (see Hilditch
2001), or broadening function approach of Rucinski (1999), each
with their own uncertainties. Qian et al. (2005), for example, quote
q = 0.72 for SX Crv. Nevertheless, a spectroscopic mass ratio is
by far more reliable that the one obtained photometrically through
q-search (e.g. q = 0.65 for V857 Her), due to a number of parameters
involved in the light-curve modelling.

If we want to explain the existence of low-q systems such as AW
UMa, SX Crv or V857 Her, in the framework of current theory, the
only solution is in setting k2

1 (and k2
2) to match the observations.

Essentially, this requires k2
1 < 0.075. This can be understood if the

mainly radiative primary is slightly evolved, that is, more centrally
condensed than n = 3 polytrope, while keeping its main-sequence
mass and radius.

Another possible solution to the problem is to consider differential
rotation of the primary. Differential rotation was recently proposed
by Yakut & Eggleton (2005) as a possible mechanism for thermal
energy transfer from the primary to the secondary component in
contact binaries, which leads to the equalization of temperatures
in the common envelope. In this case, k2

1 in equation (2) could be
provisionally replaced withχk2

1, whereχ =1 for solid body rotation,
and χ < 1 for differential rotation (see Hilditch 2001). It is also
possible that other phenomena occurring in close binaries, such as
mass transfer or mass-loss, would make parameters in equations (1)
and (2) (e.g. components’ masses) depend on each other and on
binary separation a. This would ultimately lead to a new criterion
for the critical separation, and possibly to the explanation of the
existence of low-q systems.

In both cases the situation may not be that simple and the stability
analysis itself may have to be modified. The condition Jorb = 3Jspin

at the onset of instability is likely to be no longer valid, and even
the more general condition that dJtot = 0, that is, Jtot is minimum,
needs to be reconsidered. What should be kept constant along the
equilibrium sequence defining the Jtot curve? For a detail discus-
sion of this in the case of compressible Riemann ellipsoids, see Lai,
Rasio & Shapiro (1993, 1994a,b). Since the viscous forces con-
serve angular momentum, the binary evolution driven by viscosity
proceeds along sequences of constant Jtot. If the system loses an-
gular momentum, for example, through gravitational radiation (Lai
et al. 1994a), then fluid circulation C is conserved and the evolution
proceeds along sequences of constant C. In the late-type binaries
system would probably lose angular momentum due to magnetized
stellar wind (Stepień 2006). The onset of instability will depend on
what is driving the evolution, for example, angular momentum loss

or viscous dissipation. There are many other possibilities in contact
binaries including the mass-loss and mass transfer.
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