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In this paper, it is shown what influences remain in a controlled system if the decoupling controller
is designed by using incomplete state variable feedback. A sufficient condition for the existence of
a decoupling controller based on the incomplete state variable feedback is derived by using the
special structure of the model.

It is also shown for a binary distillation column that only five state variables (1st, 2nd, 3rd,
(n - l)-th, n-th) need be fed back for design of a decoupling controller.

Introduction

In many chemical processes, it is often required to
install suitable control systems for maintaining the

output variables at some preassigned constant values.
But it is not easy to design such control systems,
because chemical processes are inherently highly
interconnected, multivariable systems.
The control system design for such a multivariable

system is an important problem from both theoretical
and practical viewpoints. Decoupling control has

been intensively investigated as a promising approach
and practical approaches have been proposed based
on;
1) compensator1>6)
2) state variable feedback controller2"5'7 ^.

Many theoretical results concerning these ap-
proaches have been published, but only a few ap-

plications to practical process control problems have
been reported.
Buckley1) applied the first approach to a distillation

column and proposed the simple and intuitively ap-
pealing scheme of inserting two interaction compensa-
tors to cancel the effect of each manipulating variable
on the compositions at the other ends of the column.
Luyben6) also took this approach and designed two
types of decouplers, ideal and simplified, from a linear
distillation columnmodel. These decouplers are so
designed as to make all the non-diagonal elements of
the transfer function zero. With this approach there
is a possibility of producing uncontrollable modes,
and it cannot be applied to systems with implicitly
diverging modes.
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As for the second method, Morgan7} first proposed
state space formulation of the decoupling problem for
linear multivariable systems.

He dealt with the problem such that
x=Ax+Bu

y=Cx

C=[Im, 0]

where :c=/2-dimensional state variables
w=m-dimensional manipulating variables

j=ra-dimensional output variables
A=nxn constant matrix
B^nX mconstant matrix
C=mx n constant matrix
7m=mX m unit matrix

and obtained the feedback control law

(1)

(2)

(3)

u=Fx+Gw (4)

which allows the decoupling of the above system where
w are ra-dimensional external inputs and F and G are
mxnand mxmconstant matrices, respectively. By
this method, decoupling can only be accomplished if
the mXmmatrix Bm, composedof the upper m rows
of the matrix B, is non-singular. Rekasius8) extended
his results.

Falb and Wolovich2>3) pointed out that Morgan and
Rekasius's result is a sufficient condition and also
derived for the first time the necessary and sufficient

condition for decoupling general linear time-invariant
multivariable systems.

Gilbert4) and Pivnichny5) reexamined these results

and developed a computer program for synthesizing
the decoupling controller. Even in their method, the
feedback controller is designed so as to make the
transfer function matrix diagonal.
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In these methods it is presumed that all the state
variables can be fed back, but this assumption is
unacceptable for most chemical processes where the
dynamical behavior is usually expressed by higher-

order ordinary differential equations. It is very com-
monin actual chemical processes that only some of the
state variables can be measured and fed back. This
means that we should try to decouple the system by
utilizing incomplete state variable feedback.
In this paper we first ask whether it is possible to

decouple the system by using incomplete state variable
feedback. To do this we introduce a matrix H that
indicates the state variables whichwill be measured
and fed back. Then, a sufficient condition for the
existence of such a controller is derived, and at the
same time, the minimumnumber of state variables
which need to be measured and fed back for composing
the decoupling controller is set out. A method to
determine these state variables is also proposed. As
a practical example, a binary distillation column con-
trol problem is considered where it is shown how to
control two output variables, the compositions of both
the distillate and the bottom product, by an incomplete
state variable feed back decoupling controller.
For a distillation column, it is shownthat measure-

ment and feedback of only five state variables is suf-
ficient to compose a decoupling controller.

1. Decoupling Control Using Complete State Variable
Feedback

It is first assumed that the control system is expressed
by

x=Ax+Bu (1)

y= Cx (2)
where C is an m x n arbitrary constant matrix free from
the restriction of Eq. (3).

The necessary and sufficient condition for the
existence of feedback control

u=Fx+ Gw (4)
which allows the decoupling of the input-output
relations, was derived by Falb and Wolovich and is
expressed as follows.
Let di be defined by

rf,=min{y|C^£=£0;y=0, à"à"à", n-1}

=n-1 (ifCtA>'B=0 for ally) (5)

where C{ is the i-th row of C
The necessary and sufficient condition is

(6)
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and is non-singular.
Hereafter, we say the system expressed by Eqs. (1)

and (2) "can be decoupled" if and only if
det £*^O (7)

When det B*=£0, there exists the inverse of 2?*,

and it is possible to choose F and G of the decoupling
controller so that

F=-B*~1A*

G^B*-1

CmA*^

where

(10)

Substituting Eq. (4) into Eqs. (1) and (2), and using
the relation defined in Eq. (5), we find that the z'-th
output, yi9 is expressed by

y^i^)=Ci(A+BF)d-+1x+Ci{A+BF)^BGw (ll)

Substituting Eqs. (8) and (9) into Eq. (ll), we obtain
y«i+D=Wim i=l,2,...,m (12)

It is clear that the j'-th input w{ affects only the z-th

output yt. In other words, a one-to-one correspond-
ence is accomplished between the external input
variables w and the output variables y.
The transfer function for such a decoupled system

is given by
s-(d1+D o

e-(ct +1)

(13)

and the decoupled system is called an "integrator

decoupled system".
The block diagram for this decoupled system is

shown in Fig. 1. If we define "the control loop z"
by a single input and a single output, and the transfer
function of the control system is given by the i-th

element of the diagonal of the transfer function matrix
G(s), then the classical control theory is easily applied
to this decoupled control loop /.
According to the suggestion of Falb and Wolovich,

F is chosen instead of Eq. (8) as follows:
F=B*-1[ Z MkCAk-A*] (14)

k=0

where
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<5=max{</,|i=l,2, à" à" à" , m} (15)

and Mkis an arbitrary mxmdiagonal matrix whose
elements are given by -^V(z=l, 2, à" à" à", m) and, more-
over, ~^*=0 if k<di. Then the following relations

are obtained :
yfi+v^X^yv+Wt (i=l,2, à"à"à",m) (16)

where ^=0 if fc<rfi.
And the transfer function matrix (z(s) is expressed by

1

G(s)=
fc=o

8
(17)

&=0

For the control loop /, the values of-^(£=0, 1, 2,
... , di) can be chosen arbitrarily; in other words,

some suitable values can be assigned to ^^ki(k=0, 1,
2, à" à" à",di) in such a way that any desirable pole
assignment is accomplished.

If we choose ~^f=0(/=1,à" à" à",m,£;=0,à" à" à",

^), the system expressed by Eqs. (1) and (2) becomes
an integrator decoupled system given by Eq. (13).

Hereafter, we use Eq. (14) as a general type ofF.

2. Incomplete State Variable Feedback

In the previous section, we explained the condition
for accomplishing the decoupling by using complete

state variable feedback. In many chemical processes,
however, it is often the case that we cannot feedback

all the state variables due to various restrictions.
Even if all the state variables could be feedback, for

economic reasons it is not unusual to utilize only
someof them.

Thus, it may be possible to take the approach where-
by an approximate model is made by using only the
state variables which can be fed back, and then to try
to design a control system based on this model.
Here we take a different approach. Without using

any simplification or approximation of the modelof
Eqs. (1) (2), we determine whether it is possible to

accomplish decoupling by using only incomplete state
variable feedback, by using only some of the state
variables.

For this purpose, we introduce a new matrix H for
indicating which state variables are to be measured and
fed back. This matrix H has the following properties.
1) His an nXn diagonal matrix
2) each diagonal element of H has the value 1 if the
corresponding state variable is measured, otherwise it

iszero.

When His used, the feedback control law of Eq. (4)
becomes

Fig. 1 Diagram of the decoupling control system

Fig. 2 Diagram of the control system by using
incomplete state variable feedback

u=FHx+Gw (18)

Substituting Eq. (18) into Eqs. (1) and (2) the following
equation is derived with respect to the z'-th output yt.
yldi+1) = Ct(A+BFH)d*+1x+ Ct(A+BFH)diBGw

(19)

Choosing F and G as given by Eqs. (14) and (9), re-
spectively, Eq. (19) is further rewritten as
yld*+1>=(CtAd*+\I-H)+ Z ^iCiAkH)x+wt (20)k=0

and this equation shows the resulting behaviour of the
system controlled by the incomplete state variable feed-
back control law of Eq. (18). The block diagram of
this system is shown in Fig. 2. This system is not said
to be completely decoupled because the influence of
the unmeasured state variable exists in the input-
output relation of "the control loop /" as expressed
by Eq. (20). It is also evident that we cannot assign
arbitrary desired values to the poles of the closed loop.

3. Minimum Number of State Variables Necessary to
be Measured

As shown in Eq. (20) the system is not completely
decoupled as the influence of the unmeasured state
variables still remains in the input-output relations.
If we can choose Hin Eq. (20) so as to satisfy

CtAk(I-H)=0fori=l, à" à" à" , m (21)

k=0,à" à" à",rf,+l

the system expressed by Eqs. (1) and (2) is completely
decoupled and Eq. (20) becomes exactly equal to Eq.
(16).

For a system able to be decoupled, there exists at
least one H which realizes the complete decoupling,
because by choosing H=I, complete state variable
feedback, the system able to be decoupled can be

completely decoupled as shown in the previous section.
If the given system has any special structure, that is,
the matrices A, B and C of the given system have any
special structure, it is possible to choose H in such a
way that Eqs. (21) are satisfied and at the same time
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Fig. 3 Flowchart for finding the minimum
measuring points

some of the diagonal elements of H are equal to zero.
This means that it is possible in some cases to ac-

complish the complete decoupling and pole assignment
of the system by measuring only some of the state
variables and feeding them back.
The number of non-zero diagonal elements of H,
means the numberof state variables which have to be
measured. Here, we define "the minimummeasur-
ing points" as the fewest state variables which have
to be measured to accomplish complete decoupling,
and we express the matrix comprising the fewest
measuring points as Hm.

To decouple completely the z-th input and output
variables, the following relations have to be satisfied
forallk(k=0, à" à" à", dt+l).

CiAk(I-H) = 0

This means that the only diagonal elements of (/-
H) which have to be zero are those which are multi-
plied by the non-zero elements of the vector CiAk.

The other diagonal elements of the matrix H can take
on arbitrary values. Thus we make all the other ele-
ments of the matrix H zero except those which are
assigned "1", so that the diagonal elements of (I-H)
will be zero. Hereafter we represent the matrix H
so obtained by Ht. The matrix Ht can be uniquely

obtained for each / and it shows which state variables
have to be measured so as to decouple the z-th input-

output relation. Thus the matrix Hm, is obtained bv

taking the logical sum of Hi for all f(/=l, à" à" à" , m).

The matrix Hmshows the minimumnumberof state
variables which have to be measured and fed back to
realize the complete decoupling amongthe all input
and output variables. The uniqueness of the matrix
Hmis understood from the fact that Ht is uniquely
determinedforall /(7=1, 2, à" à" à" , m).

A way of finding the fewest measuring points
First, let Hbe /and change the "1" elements on the
diagonal to zero one by one. At each stage check
whether Eq. (21) is still satisfied or not. If Eq. (21)
is still satisfied, continue; but when Eq. (21) ceases to
be satisfied, change the last altered element back to "1"
and continue with the next step.

Repeat this procedure for all i (/=1, à" à" à",m).

The matrix Hmfinally obtained contains the minimum
number of measuring points.

4. Application to a Binary Distillation Column
In this section, the decoupling control problem of a
binary distillation process is taken up as a practical
example and the fewest measuring points are obtained
by using the procedure explained in the previous sec-
tion.

The mathematical model of a binary distillation
column is obtained by linearizing the material balance
equation of each plate at the steadystate condition as
follows (see Appendix) :

x=Ax+Bu (22)
where

xT=[AxD, Axl9 ' ' * , AxB] (statevariables)

uT = [ALn, A Vm] (manipulating variables)
The output equation is expressed by

y= Cx (23)
where

yT = [AxD, AxB] (output variables)
The matrices A, B and C ofEq. (22) are given by

#11, d12 0

#21? #22? #23

A=

0

f 0 0 )
U"n,n-1) Unn(24)

B=

C=\Unl Uni/10 0

0 0 00 0

0 1 (25)

(26)
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Here, our objective is to control the compositions of
both the distillate and the bottom products.

To check whether the system expressed by Eqs. (22)
and (23) can be decoupled or not, we examine the
detB*.

For this system, dt and B* as defined by Eqs. (5) and
(6)are

dx= \ (27)

d2 =0 (28)
CXAB a12b21 a12b22

C2B bni bn2

For the usual binary distillation column, (b21bn2-
b22bnl) is not zero, and therefore the det B* is not

zero. This means that the system expressed by Eqs.
(22) and (23) is "able to be decoupled".

By using the procedure explained in the previous
section, the matrix composing the minimumnumber of

measuring points is uniquely determined as follows:

Hmshows that to realize decoupling control it is
sufficient to measure three state variables (1st, 2nd,

3rd) in the enriching section, two {{n-\) th, «-th) in

the stripping section and to feed back these five state
variables.

Matrices F and G of the decoupling controller

defined by Eq. (18) are obtained as
F=i/r

Kifu bn2f2, -bn2a23, 0, à" à" * , 0, b22ann_u -b22fs
-bnifi, -bnlfl9 bnla2d, 0, à" à" à" , 0, -b21ann_l9 b21fz

G=
1 a12j

(31)

(32)^^2? #12^22
-bnl, a12b21

where
r=(b2ibn2-b22bnl)

f1 =Q./a12)(^o1+^a11 -al1-a12a2i)

The values of/i,/2 and/3 depend on the chosen values
of-^g1, -^i, and ~^o. It so happens that all the

elements of matrix F become zero except for the 3rd
and (ft-l)-th columns when suitable values of -^7(33)

(34)
(35)(36)

Fig. A-l Schematic diagram of a binary distil-
lation column

à"^i\ and -^02 are chosen. In this case, we cannot

arbitrarily assign the poles of the controlles system.
To accomplish decoupling of the binary distillation
column expressed by Eqs. (22) and (23), and to be able
to freely assign the poles, it is necessary to measure and
feed back five state variables as shown in Eq. (31).

The fact that only five state variables have to be
measured and fed back is a function of the structure
of the matrices A and B and not of the number of plates
in the distillation column. This is because the struc-
tural properties of matrices A and B, A being tri-
diagonal and the first column of B being a zero vector,
are preserved even whenthe numberof plates in a
distillation column is increased.
Conclusion

In applying the decoupling control techniques to
chemical processes, it has often been problematic
whether it is possible to realize decoupling controllers
based on manystate variables. But as shownin this
paper there does exist for some special processes a high
possibility of realizing complete decoupling by meas-
uring and feeding back only a few state variables.
For a binary distillation column, it has been made
clear that a complete decoupling controller can be
achieved by feeding back only five state variables.
Appendix

1. Mathematical model of a binary distillation column
A binary distillation column is schematically expressed as

shown in Fig. A-l. To obtain the mathematical model of this
system, the following assumptions are introduced.
1) The binary system has constant volatility throughout the
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column and each tray is a perfect, 100 percent efficient (theoreti-
cal) tray. Therefore a simple vapor-liquid equilibrium relation-
ship can be used:

aXn ,K 1\

>»= l+(«-lK (A"1}

xn: liquid composition on n-th tray (mol fraction of more
volatile component)

yn: vapor composition on «-th tray
a: relative volatility

2) A single feed stream is fed as a saturated liquid (at its
bubble point) onto the feed tray.
3) The overhead vapor is totally condensed.
4) The liquid hold-up on each tray is constant and perfectly
mixed.

5) The hold-up of vapor is negligible throughout the system.
6) The molal flow rates of the vapor and liquid through the

stripping and rectifying sections respectively are constant.
Under these assumptions, the unsteady state of the system is

expressed by the following equations,
i) condenser:

^=i> -^> <A-2>
ii) n-th tray of enriching section (l ^w^(/-1)):

à"§"- =^-0'.+i -J'-)+-^-(*. -i -*0 (A-3)

iii) feed tray:

-jr=Jf (XF~Xf)+JH<y^-*/>+7f(*/-i-*/) (A"4)

iv) m-th tray of stripping section ((f+l)£m^N):

^ =^(y»+i-jJ +^(^-i-^J (A-5)
v) bottom:

dff = -jj~ (xB -yB) + j^(xN -xB) (A-6)

By linearizing the above equations at steady-state condition,
the following linear model is derived.
where A is the deviation from the steady state and the super-
script ~ indicates the value at the steady state. Mt is defined by

^- W^w (A-8)
2. State equations of the binary distillation column

Wedefine the state, manipulating and output variables as
follows:
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