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THE MINIMUM OF SMALL ENTIRE FUNCTIONS

P. C. FENTON

Abstract. It is shown that if f(z) is entire and satisfies lim log Af(/-,/)/(log r)2 = o

< oo then for a sequence of r -» oo

This proves a long-standing conjecture of P. D. Barry.

1. Introduction. Suppose that w(z) is subharmonic in the plane and let B(r, u) =

max|2|_r w(z), A(r, u) = inf|z|_r u(z). It was proved by P. D. Barry [2, Theorem 8

and comments in §7.4] that if

— B(!UÜ = a<o0 (u)
*-»<» (log r)

then, on a sequence of r —» oo, A(r, u) > B(r, u) — m2a + o(l). The constant m2a is

known to be best possible over the class of subharmonic functions but Barry has

shown [2, pp. 484-485] that a better constant is possible over the class of functions

u(z) = log|/(z)|, where / is entire. He conjectured (see [2, p. 485]; also [1, p. 130])

that the right constant is log C rather than m2a, where

fr  il + exp(-(2/c-l)/4a)l2.

C-/i1ll-exp{-(2^-l)/4a}j' (U)

an example [2, p. 484] shows that this would be best possible. The aim here is to

prove Barry's conjecture.

Theorem. Suppose that /(z) is an entire function satisfying

— log M(r,f) = a<oo (1 3)

'•-»«'     (log r)

Then given e > 0 there are certain arbitrarily large values of r for which

where C is the number (1.2). Here M(r,f) = max,z,_r|/(z)| and m{r,f) =

minw_r|/(z)|.
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558 P. C. FENTON

2. Proof of the theorem: first part. We assume without loss of generality that the

zeros of /(z) are real and positive (so that in particular/(0) =£ 0), and write /n(r) for

the number of zeros of /(z) in |z| < t. (It should be mentioned that this counting

function is usually devoted by n(t) but since n is used extensively later on as a

subscript we make the change here to avoid subsequent confusion.) Then, (see [3, p.

271]), if /(z) has no zeros on \z\ = r,

logM(r,f) = r[X-^-dt,        \ogm{r,f) = rr-^--dt.     (2.1)
J0    t(r + t) J0    t(r - t)

The second of these integrals is to be understood as the principal value. Thus if K

is any real number, log m(r, f) > log M(r, f) — K is exactly equivalent to (as is

easily seen)

\K>r»{rx)-fí{r/x)\-éu (22)
2 J\ x   — \

Making the change of variable r = eR, x = e', and writing v(t) = n(e'), (2.2)

becomes

\k> C{v{R + t) - v(R - t))~—¡ dt,
L Jo e    — 1

which we rewrite as

2K>J    "RÍO—,--dt. (2.3)
1 Jo e   — 1

Here vR(t) = v(R + t) - v(R - t). If the zeros of /(z) are r, < r2 < • • ■  < rk

< . . . , and tk = log rk, then vR(t) measures the number of points tk in [R — t, R

+ t).

We aim to show that (2.3) holds for certain arbitrarily large values of R, for any

fixed K > log C; this will prove the theorem.

Using Jensen's theorem [3, p. 125] we deduce from (1.3) that ¡i(t) <

(2a + o(l))log / for arbitrarily large values of t, and from this it follows that, given

e > 0, there are arbitrarily large integers n such that

K(l + e)0 < (2a + 2e)/„. (2.4)

Let m be any large positive integer, and let n be greater than m such that (2.4)

holds. We form

/  =     min
tv<r<l„.

(""M-ir-;dt <2-5)
i •'o e    - 1

for any p such that both m </><« — 1 and tp ¥= tp+l, and write I„„ for rnin^, Ip.

We now rearrange the points tk. First transfer all tk with 1 < k < m to the point tm

and all tk satisfying /„ < tk < (1 + e)tn to the point tn. The effect of this change is

to increase each of the minima Ip, and so increase /ra, to 1^ say. Simply ignoring

the effect of the tk > (1 4- e)tn on the Ip gives rise to an error no more than

0(C'~^idt)=°(/"e^ (26)
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THE MINIMUM OF SMALL ENTIRE FUNCTIONS 559

and produces a new minimum, 1^ say. Now place one point at each of tm — rk

and tn + rk, k = 1, 2, 3, . . ., where

tn-tm

T ~ K(l + «OO - 1 • (2J)

The effect of this is to increase the minimum, to 7^ say. Thus the /,„, of the initial

configuration of points tk is no larger than

/_ = max C + 0(t„e-<), (2.8)

where the maximum is taken in the following way: all points to the left of tm and to

the right of /„ must remain fixed; at least one point must remain at tm and at least

one must remain at tn. The remaining p((l + e)tn) — 2 points are allowed to vary

throughout the interval [tm, tn]. We stress that each I¿¡¿ is the minimum (of minima

of the form (2.5)) taken only over those/? for which tp and tp+l are successive points

Now we shall clearly have (2.3) for certain arbitrarily large values of R if it can

be shown that for arbitrarily large values of m there is an n > m such that

4in <\K-  And  this  will  certainly  follow if,  for  certain  arbitrarily  large  m,

to»-*» /-»<£*

3. Proof of the theorem: second part. We show first that the maximum in (2.8)

occurs when all the p((l + e)/„) points in [tm, tn] aie distributed evenly, i.e. at a

constant spacing r given by (2.7).

In the configuration in which the maximum in (2.8) is attained, all the points

must be separated and all the integrals Ip must be the same. To see this it is

necessary only to observe that the effect of pushing adjacent points radially the

same (small) distance out from their midpoint is to increase all Ip to the left of the

smaller point and likewise all Ip to the right of the larger point. Thus the effect of

slightly separating two points which occur together, moving one slightly to the left

and the other slightly to the right, is to increase Ij£', so points cannot occur

together in the extremal configuration. Similarly, if one of the Ip, say Ip , is larger

than all others, the effect of moving tPo slightly to the left and tp<¡+l slightly to the

right is to increase all integrals Ip, p ¥=pQ, and therefore to increase 1^'; so all

integrals Ip must be equal in the extremal configuration.

We show next that the only disposition of the points in [tm, tn] in which all occur

separately and all integrals Ip are equal is the uniform distribution. This evidently

follows from the following

Lemma. Suppose that a = s, < s2 < s3 < • • • <sN = b and let

t = (b - a)/ (N - 1).

Define

sN+k = b + kr,       k = 1, 2, 3, ...,

and

S\-k = a — kr,        k = 1, 2, 3, ... .
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For 1 < p < N — 1 define

Jr°°             e'
»-.(/) —- dt.

o           e2' - 1

///, = 72 = • • • = /„_] ¿¿en s* = a + t{k - \)for 1 < k < N.

The lemma is proved by induction. Suppose the lemma is true for a particular

number N0(> 2) of points, no matter what the values of a and b (this is certainly

true of 2 points), and suppose that N = N0 + 1. There are three cases to consider.

(i) s2 = jj + t. Then the result follows on applying the inductive hypothesis to

the interval [s2, sN +l], which contains 7V0 distinct points.

(ii) s2 < a + t. We move s2 to a + t; and if s3 < s4 < • • • <sk are also in

(j2, a + t] we shift them slightly to the right of a + t, preserving the order of all

the points. The effect of this shifting is to increase every Ip with 2 < p < JV0. (This

is immediate for N0 > p > k. For 2 < p < k, Ip will increase if the new positions of

s2, . . . , sk are sufficiently close together.) Let us denote the new Ip by Ip. (We shall

add a prime at each change.) Since the effect on Ip of shifting s2, . . ., sk declines as

p increases, we have I¿> I%+1> • - • > I'N. Moreover, we may fix the new

positions of s3, . . . , sk in such a way that I2 > I3 > • • • > Ik > • • • > I'N ;

finally I[ < /,.

Now consider the effect of the following shifting of the points. Shift sN far

enough to the right that I£ = I£ _,. Then

i¿°>/¿o,° // </;,     \<j<n»

/2">/3">-- >/£-,-/£.

Having done this, shift sN _, far enough to the right that /^"_2 = I'n- \ ■ Then

ÂS0     ;>1N0^>1Na' 1Na-\     > 1Na-V

If < If,        \<j<N0-\,

/r>/3'">-    • >/¿'0'-2 -/jv-1 >/£'.

Then repeat the process for sN _2, . . . , s3 in turn. We might call the whole process

a complete cycle. Let us call the minima at the end of a complete cycle

L„ . . ., LNo. Then L, < I[, L2> L3> ■ ■■ > LNq, L2 < I'2 and LN<¡ > i'N<. In

other words, the effect of a complete cycle is to decrease the first minimum, to

preserve the order of subsequent minima, and to decrease the second and increase

the last minima. Thus a sequence of complete cycles will produce a situation in

which all minima beyond the first have the same value, but a value which is strictly

greater than the value of the first minimum. But from the inductive hypothesis the

new s2, . . . ,sN +l must be evenly spaced in [a + r, b], so all minima must be the

same, a contradiction. Hence s2 < a + t cannot arise.

(iii) s2 > a + t. Again we move s2 to a + t. The effect of this is to increase /,,

and to decrease every Ip (to I'p say) in such a way that I'2<1'3< ■ • ■ <1'N. The

argument of (ii) is now repeated but in the opposite direction: s3 is the first point to

be shifted, and it is shifted to the left. A contradiction again arises and the lemma

is proved.
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4. Proof of the theorem: conclusion. The maximum of (2.8) occurs, we have

shown, when the v((l + e)t„) points in [tm, t„] are evenly spaced, at a spacing t

given by (2.7). This gives

max/»'=2sr -^^=iog(nfexp;^":¡T/2i+:)i.
tt, J(k-fy e2'-l 6\ *-i I exp((2* - 1)t/2) - 1 / J

Moreover when n is large r > 1 /(2a + 3e), and so for each fixed m

exp((2*-l)/(4o + 6e))+l\l (    .

exp((2A: - 1)/ (4a + 6e)) -If) K    '

It follows from this, together with the remark at the end of §2, that (2.3) holds for

arbitrarily large values of R if \K exceeds the right-hand side of (4.1). Since e is

arbitrary the theorem is proved.

Added in proof. The author is indebted to Professor W. K. Hayman for

pointing out that Barry's conjecture was proved, using different methods, by A. A.

Gol'dberg (Mat. Zametki 25 (1979), 835-844).
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