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Abstract In this paper we introduce weighted estimators of the location and disper-

sion of a multivariate data set with weights based on the ranks of the Mahalanobis

distances. We discuss some properties of the estimators like the breakdown point, in-

fluence function and asymptotic variance. The outlier detection capacities of different

weight functions are compared. A simulation study is given to investigate the finite-

sample behavior of the estimators.

Keywords Robust estimation · efficiency · outlier detection

1 Introduction

The classical estimators of the location and scatter of a multivariate data set with n

observations and p variables are the sample mean and sample covariance matrix. How-

ever, these estimators are not resistent to the presence of outliers in the data set, so

robust alternatives that yield reliable estimates even in the presence of contamination

are desirable. Since shape or covariance matrices form a cornerstone in multivariate

statistical analysis, robust estimators of shape/scatter can be used to construct robust

multivariate methods. Such methods have been studied for principal component analy-

sis (Croux and Haesbroeck 2000; Salibian-Barrera et al. 2006), canonical correlation

(Croux and Dehon 2002; Taskinen et al. 2006), multivariate regression (Rousseeuw et

The research of Stefan Van Aelst was supported by a grant of the Fund for Scientific Research-
Flanders (FWO-Vlaanderen) and by IAP research network grant nr. P6/03 of the Belgian
government (Belgian Science Policy)

Ghent University - UGent
Department of Applied Mathematics and Computer Science
Krijgslaan 281 S9
B-9000 Gent
Belgium
Tel.: +32-9-2644756
Fax: +32-9-2644995
E-mail: Ella.Roelant@ugent.be - Stefan.VanAelst@ugent.be - Gert.Willems@ugent.be



2

al. 2004) and factor analysis (Pison et al. 2003). Pison and Van Aelst (2004) used ro-

bust location and scatter estimators to construct diagnostic procedures for multivariate

methods.

M-estimators (Maronna 1976) are robust in the sense that they have a bounded

influence function but their breakdown point is low. A well-known robust, high-break-

down estimator for location and scatter is the minimum covariance determinant (MCD)

estimator, where the estimates are given by the mean and covariance matrix of that

half of the data where the smallest determinant of the covariance matrix is attained

(Rousseeuw 1984). Butler et al. (1993) studied the asymptotics of the MCD loca-

tion estimator and Croux and Haesbroeck (1999) discussed the influence function and

asymptotic efficiency of the MCD scatter estimator. S-estimators of multivariate loca-

tion and scatter as studied by Davies (1987) and Lopuhaä (1989) are more efficient,

positive breakdown estimators, but their bias can be considerably high. Very efficient,

high-breakdown estimators are the classes of constrained M-estimators (Kent and Tyler

1996), τ -estimators (Lopuhäa 1991) and MM-estimators (Tatsuoka and Tyler 2000).

The MCD uses a zero-one weight function. That is, at least half the observations

get weight one and the remaining data points get weight zero and thus can be outliers.

However, this weight function can make it difficult to identify intermediate outliers

which are outliers that are relatively close to the bulk of the data. If such intermediate

outliers are not downweighted, then they get the same weight as all other regular

points and therefore can attract the estimates such that they become masked. To

reveal this masking effect, a more general weight function would be more appropriate.

In the regression context, Hössjer (1994) considered robust estimators with weights

based on the ranks of the absolute value of the residuals. Moreover, Visek (2001) and

Masicek (2004) introduced the least weighted squares estimator as a generalization

of the least trimmed squares estimator by using a weight function based on the rank

of the squared residuals. In a more general context these estimators can be seen as

Weighted Trimmed Likelihood Estimators as discussed by Hadi and Luceño (1997)

and Vandev and Neykov (1998). In the same spirit, we consider a generalization of the

MCD estimator using weights based on the ranks of the Mahalanobis distances. We

specify two types of weight functions (increasing vs non-increasing) which enables us

to identify intermediate outliers.

The outline of the paper is as follows. Section 2 defines the estimator. Section 3

describes the algorithm to approximately calculate the estimates. Section 4 discusses

the robustness properties of the estimator. We investigate the breakdown point and the

influence function at elliptical distributions. Section 5 studies the asymptotic efficiency

of the estimates while Section 6 shows results of simulations to investigate the finite-

sample behavior of the estimator. Section 7 contains some real data illustrations.

2 The estimator

Let Xn = {x1, . . . , xn} be a data set of p-variate observations. We estimate the center µ

by minimizing a weighted sum of the squared Mahalanobis distances where the weights

depend on the ranks of these distances. We are mainly interested in weight functions

an(i) = h+(i/(n + 1)), i = 1, . . . , n where h+ : (0, 1) → [0,∞) such that

sup{u; h+(u) > 0} = 1 − α,



3

with 0 ≤ α ≤ 1
2 and h+(u) > 0 for u ∈ (0, 1 − α]. Hence, a proportion α of the

observations xi are given weight 0, which ensures that we obtain a robust estimator

(see also Hössjer 1994).

Definition 1 The minimum weighted covariance determinant estimator (MWCD) is

any solution

(µ̂MWCD(Xn), V̂MWCD(Xn)) = argmin
m,C;det C=1

Dn(m, C)

among all (m, C) ∈ R
p × PDS(p) where PDS(p) is the class of positive definite sym-

metric matrices of size p. The objective function Dn is defined as

Dn(m, C) =
1

n

nX
i=1

an(Ri)d
2
i (m, C)

with d2
i (m, C) = (xi − m)T C−1(xi − m) and Ri is the rank of d2

i (m, C) among

d2
1(m, C), . . . , d2

n(m, C).

If there are several solutions to the minimization problem we will arbitrarily choose

one as the MWCD estimator. The condition det C = 1 implies that V̂MWCD is an

estimator of shape.

In Agulló et al. (2008) it is shown that the MCD can be written as above using

the weight function an(i) = I(i ≤ k) with n/2 ≤ k ≤ n which explains that the

MWCD estimator actually generalizes the MCD estimator by allowing more general

weight functions. We expect that the use of different weight functions will give us

more insight in the outliers. Both MCD and MWCD have a proportion of the data not

contributing to the estimate. In this way, we can accommodate ‘strong’ outliers. But

in contrast to the MCD where each contributing observation has an equal influence,

using the MWCD weights allows the influence of these observations to be different.

A decreasing weight function puts more weight on points close to the center, while a

weight function that is increasing on its support gives higher weight to points further

away from the center. Hence, depending on the weight function MWCD treats possible

intermediate outliers differently, which enables us to detect them.

An equivalent formulation of the MWCD estimator is obtained as follows.

Proposition 1 For any data set Xn we have that

{(µ̂(Xn), V̂ (Xn)) ∈ argmin
m,C;det C=1

Dn(m, C)}

= {(µ̃(Xn), (det Σ̃(Xn))−1/pΣ̃(Xn))|(µ̃(Xn), Σ̃(Xn)) ∈ argmin
Dn(m,C)=c̃

det C

for any fixed constant c̃}.

The scatter estimator Σ̂MWCD := Σ̃(Xn) can be made a consistent estimator for

the covariance matrix of elliptical distributions by selecting the constant c̃ appropriately

(see Section 4).
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3 Algorithm

We now develop a fast algorithm to calculate an approximate MWCD solution which

is similar to the MCD algorithm of Rousseeuw and Van Driessen (1999). We first

consider non-increasing weight functions and then propose some modifications for the

case of functions that are increasing on their support. The basis of our algorithm is

the following proposition which is a generalization of the C-step in Rousseeuw and Van

Driessen (1999):

Proposition 2 Consider a data set Xn = {x1, . . . , xn} ⊂ R
p and a non-increasing

weight function an. Denote Q1 :=
Pn

i=1 an(R1i)d
2
1(i). Here R1 = (R11, . . . , R1n) is

the rank vector of d2
1(i) = (xi − µ̂1)

T V̂ −1
1 (xi − µ̂1), i = 1, . . . , n where µ̂1 ∈ R

p and

V̂1 ∈ R
p×p with det V̂1 = 1. Now compute the weighted mean and covariance matrix

µ̂2 := µ̂(R1) =

Pn
i=1 an(R1i)xiPn
i=1 an(R1i)

(1)

Σ̂2 := Σ̂(R1) = ch+

Pn
i=1 an(R1i)(xi − µ̂(R1))(xi − µ̂(R1))

TPn
i=1 an(R1i)

(2)

where ch+ is a consistency factor (see Section 4). Denote V̂2 = (det Σ̂2)
−1/pΣ̂2 and

d2
2(i) = (xi − µ̂2)

T V̂ −1
2 (xi − µ̂2), i = 1, . . . , n with corresponding rank vector R2. With

Q2 :=
Pn

i=1 an(R2i)d
2
2(i) we then have Q2 ≤ Q1 with equality if and only if µ̂2 = µ̂1

and V̂2 = V̂1.

We plug this generalized C-step in the algorithm of Rousseeuw and Van Driessen

(1999) which can be summarized as follows:

1. Start by drawing 1000 random (p + 1) subsets Jm of Xn.

2. Compute the corresponding sample mean µ̂m and sample shape matrix V̂m. (If

det(V̂m) = 0 for some subset Jm then add points to Jm until det(V̂m) > 0 or

#Jm = n.)

3. For each subset compute the objective function Q1 based on (µ̂m, V̂m).

4. Apply some C-steps (e.g. two) lowering each time the value of the objective function.

5. Select the 10 subsets which yield the lowest values of the objective function and

carry out further C-steps until convergence.

6. The final solution reported by the algorithm is the µ̂ and V̂ that correspond to the

lowest value of the objective function among these 10.

Note that since there are only a finite number of permutations of the rank vector

R, there can only be a finite number of weighted means and covariances as in (1)-(2).

Therefore, the uniqueness part of Proposition 2 guarantees that the C-step procedure

in Step 5 of the algorithm must converge in a finite number of steps.

If the algorithm finds more than one solution, we arbitrarily choose one of the

reported solutions of the algorithm as final solution. Note that there is no guarantee

that the algorithm finds all possible solutions for the MWCD estimator.

In the case of an increasing weight function it is not assured anymore that the

C-step each time lowers the value of the objective function. Hence, we incorporated in

the algorithm that if the C-step does not lower the value of the objective function, then

we keep the earlier result as the final solution for that subset (and thus stop applying

C-steps). For the 10 best subsets, we set a maximum of 30 C-steps in Step 5 to make

sure that the algorithm stops by a given time.
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Note that there is no guarantee that the solution reported by the algorithm is

an MWCD solution or even a local minimum of the objective function but in our

experience the algorithm gives a good approximation of the MWCD solution in most

cases.

4 Breakdown point and influence function

We now investigate the robustness properties of the MWCD estimator. The global

robustness is investigated by means of the breakdown point while the local robustness

is investigated through the influence function.

The breakdown point ε∗n of an estimator is the smallest fraction of observations

from Xn that needs to be replaced by arbitrary values to carry the estimate beyond all

bounds (Donoho and Huber 1983). Intuitively, it is clear that for the MWCD this will

be approximately α because a proportion α of the observations with largest distances

does not affect the estimator. Denote k = ⌊(1 − α)(n + 1)⌋, then k is the number of

observations that get a non-zero weight in the MWCD estimator. We assume that the

data set Xn satisfies the following condition:

Condition A: No k points of Xn are lying on the same hyperplane of R
p.

Formally, this means that for all β ∈ R
p and γ ∈ R, it holds that #{xi|βT xi + γ =

0} < k unless β and γ are both zero.

We then have the following proposition.

Proposition 3 For any data set Xn satisfying condition A it holds that

ε∗n(µ̂MWCD, Xn) = ε∗n(Σ̂MWCD, Xn) =
min(n − k + 1, k − k(Xn))

n

with k(Xn) the maximal number of observations of Xn lying on the same hyperplane

of R
p.

Since k = ⌊(1 − α)(n + 1)⌋, for data sets in general position (i.e. k(Xn) = p), the

breakdown point tends to min(1 − α, α).

The MWCD functional MWCD: H → (Rp × PDS(p)) is defined as any solution

MWCD(H) = (µMWCD(H), VMWCD(H)) to the problem of minimizing

D(m, C) = EH [h+(G(d2
x(m, C)))d2

x(m, C)]

subject to

det C = 1

with d2
x(m, C) = (x − m)T C−1(x − m) and G(t) = PH(d2

x(m, C) < t) among all

(m, C) ∈ R
p × PDS(p). Note that for general distributions H there is no guarantee

that there is a unique solution or even that the number of solutions is finite. If the

solution is not unique we arbitrarily select one of the possible solutions. The functional

VMWCD corresponds to a shape functional, because its determinant equals 1. It can

be easily seen that the resulting MWCD-functional is affine equivariant.
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Let us define for any m ∈ R
p and C ∈ PDS(p) the weighted mean and covariance

matrix as

µm,C(H) =

R
h+(G(d2

x(m, C)))xdH(x)R
h+(G(d2

x(m, C)))dH(x)
(3)

Σm,C(H) = ch+

R
h+(G(d2

x(m, C)))(x − µm,C)(x − µm,C)T dH(x)R
h+(G(d2

x(m, C)))dH(x)
(4)

where ch+ is a constant defined below.

We then have the following result

Proposition 4

{(µ, V ) ∈ argmin
m,C;det C=1

D(m, C)}

⊂ {(µ, (det Σ)−1/pΣ)|(µ, Σ) ∈ argmin
m=µm,C ;C=Σm,C

det C}.

From Proposition 4 it follows that for every MWCD solution (µMWCD, VMWCD),

the location µMWCD can be written as a weighted mean as in (3), and for the shape

VMWCD there is a corresponding scatter functional ΣMWCD that can be written as a

weighted covariance matrix as in (4). The constant ch+ in (4) can be chosen to make the

MWCD scatter functional ΣMWCD Fisher-consistent at elliptical model distributions

(see Proposition 5).

We now consider estimating the parameters µ and Σ of a model distribution Fµ,Σ

with density

fµ,Σ(x) =
g((x − µ)T Σ−1(x − µ))p

det(Σ)

with µ ∈ R
p and Σ ∈ PDS(p). The function g is assumed to be known and to have

a strictly negative derivative g′ so Fµ,Σ is an elliptically symmetric, unimodal distri-

bution. At this model distribution, the MWCD scatter functional ΣMWCD becomes

Fisher-consistent by setting ch+ = c1/c3 where

c1 =
2πp/2

Γ (p/2)

Z ∞

0
h+(G̃(r2))g(r2)rp−1dr and c3 =

2πp/2

Γ (p/2)

Z ∞

0

1

p
h+(G̃(r2))g(r2)rp+1dr

with G̃(t) = PF0,I
(XT X ≤ t). This follows immediately by substituting F0,I for H

in (4). We now obtain the following consistency result.

Proposition 5 The functionals µMWCD and ΣMWCD are Fisher-consistent for the

parameters µ and Σ at elliptical model distributions:

µMWCD(Fµ,Σ) = µ and ΣMWCD(Fµ,Σ) = Σ.

Note that Proposition 5 implies that the resulting functionals µMWCD and ΣMWCD

are unique at elliptical model distributions.

The influence function of a functional T at the distribution H measures the effect

on T of an infinitesimal contamination at a single point x (Hampel et al. 1986). If
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we denote the point mass at x by ∆x and consider the contaminated distribution

Hε,x = (1 − ε)H + ε∆x then the influence function is given by

IF (x; T, H) = lim
ε↓0

T (Hε,x) − T (H)

ε
=

∂

∂ε
T (Hε,x)|ε=0.

We will consider the influence function at an elliptical distribution Fµ,Σ . Due to affine

equivariance of T (H) it suffices to look at spherical distributions F0,I with density

f0,I(x) = g(xT x).

Proposition 6 Denote qα = G̃−1(1 − α) and w = h+ ◦ G̃, then

IF (x; µMWCD, F0,I) =
w(‖x‖2)x

−2c2
I(‖x‖2 ≤ qα)

with

c2 =
πp/2

Γ (p/2 + 1)

Z √
qα

0
rp+1w(r2)g′(r2)dr.

The influence function of the scatter matrix part ΣMWCD (for p > 1) is given by

IF (x; ΣMWCD, F0,I) = − 1

2c4
xxT w(‖x‖2)I(‖x‖2 ≤ qα) + R(‖x‖)Ip

where

c4 =
πp/2

(p + 2)Γ (p/2 + 1)

Z √
qα

0
rp+3w(r2)g′(r2)dr.

The term for R(‖x‖) is rather elaborate and can be found in the Appendix (29).

The gross error sensitivity of a functional T at a distribution H is defined as

GES(T, H) := sup
x

‖IF (x; T, H)‖.

The gross error sensitivity is a measure of the maximal bias caused by an infinitesimal

contamination and hence is preferred to be low. In Table 1 we computed the gross-error

sensitivity for µMWCD at the normal model. Throughout the paper we will use the

following weight functions: a weight function that is decreasing on its support (MWCD↓
estimator), a weight function that is increasing on its support (MWCD↑ estimator) and

the zero-one weight function which corresponds to the MCD estimator. These functions

become zero when u > 1 − α. For u ≤ 1 − α we have h+
MWCD↓(u) = F−1

χ2
p

�
1 − u

2

�
and h+

MWCD↑(u) = F−1
χ2

p

�
1+u

2

�
. We use the notation MWCD↓50 for α = 0.50 and

MWCD↓25 for α = 0.25. From Table 1 we see that the MWCD↓ estimators have the

lowest gross error sensitivities.
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Table 1 Gross-error sensitivity at the normal model for the location estimators µMWCD and
µMCD for different dimensions p and 50% and 25% breakdown point

p 1 2 3 5 10 30

MWCD↓50 6.96 5.75 5.80 6.42 8.18 13.51
MWCD↑50 11.95 9.44 9.11 9.36 10.60 14.73
MCD50 9.46 7.67 7.56 7.98 9.36 13.61

MWCD↓25 2.74 2.86 3.14 3.73 5.02 8.65
MWCD↑25 5.94 5.71 5.87 6.30 7.31 10.20
MCD25 4.16 4.13 4.35 4.85 5.93 8.89

5 Efficiency

If an estimator is Fréchet-differentiable, then its asymptotic variance at the model

distribution F0,I can be calculated through its influence function. Neither Fréchet-

differentiability nor asymptotic normality have been formally proven for the MWCD

estimators. However, we conjecture that the MWCD is Fréchet-differentiable and use

this assumption to calculate asymptotic variances through the influence function. For

the location estimator µMWCD we then obtain that the asymptotic variance-covariance

matrix equals

ASV(µMWCD, F0,I) = EF0,I
[IF (x; µMWCD, F0,I) × IF (x; µMWCD, F0,I)T ]

(see e.g. Hampel et al. 1986) which yields

ASV(µMWCD, F0,I) =

R
‖x‖2≤qα

w(‖x‖2)2‖x‖2dF0,I(x)

4c22
.

Similarly, we can calculate the asymptotic variances of the diagonal and off-diagonal

elements of the shape matrix VMWCD:

ASV(Vii, F0,I) =

�
2 − 2

p

�
σ1 and ASV(Vij , F0,I) = σ1

with

σ1 =
1

p(p + 2)
EF0,I

�
1

4c24
w(‖x‖2)2‖x‖4

�
.

The asymptotic variances of the diagonal and off-diagonal elements of ΣMWCD be-

come:

ASV(Σii, F0,I) = 2σ1 + σ2 and ASV(Σij , F0,I) = σ1

with

σ2 = −2

p
σ1 + EF0,I

[γ2(‖x‖)] and γ(‖x‖) =
−1

2c4
w(‖x‖2)

‖x‖2

p
+ R(‖x‖).

To gain more insight in the MWCD estimators and how the weighting concept

affects their performance, we compare their efficiencies with that of the MCD estimator

at the multivariate standard normal distribution Np(0, I) and multivariate spherical

t-distributions tν where ν is the degrees of freedom.
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For α = 0.25, Figure 1a shows the asymptotic relative efficiency (ARE) of the

MWCD location estimators, relative to the MCD given by ARE(µMWCD, µMCD) =

ASV(µMCD)/ASV(µMWCD) at the multivariate normal distribution. Note that the

ARE increases with the dimension p. Moreover, the efficiency of the MWCD↑25 location

estimator is comparable to the MCD25 location estimator. Figures 1b and 1c show

the ARE at t-distributions with 3 and 8 degrees of freedom, respectively. Figure 1b

shows that MWCD↓25 now is more efficient than the MCD25. At the t8-distribution

the MWCD↓25 has the highest ARE and from p = 5 on it outperforms the MCD25.

Figure 1d shows the ARE of the MWCD↓50 estimator at Np(0, I), t3 and t8. We clearly

see that the MWCD↓50 is comparable or better than the MCD50 at t-distributions.

For the ARE of the MWCD shape estimators we obtained similar conclusions as for

the MWCD location estimators.
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Fig. 1 ARE of the MWCD25 location estimators at (a) normal distribution Np(0, I); (b)
t3-distribution; and (c) t8-distribution. (d) ARE of the MWCD↓50 at Np(0, I), t3 and t8

Finally, we consider the ARE of the diagonal elements of the MWCD scatter esti-

mators with α = 0.25 which are shown in Figure 2 for respectively Np(0, I), t3 and t8.

Note that the ARE of the off-diagonal elements of the scatter is the same as for the

shape matrix. From Figure 2a we see that the MWCD↑25 is the most efficient at the

normal distribution and comparable to the MCD25 estimator. For t3 we have the same

conclusions as before. For t8 the MWCD↓25 estimator has the highest ARE (p > 2).

Tables 2 and 3 show asymptotic efficiencies for the location, shape and scatter of

the MWCD and MCD estimators relative to the sample location, shape and scatter

estimators. As is well-known, the efficiencies of the MCD at the normal distribution are

low and are directly related to the breakdown point in the sense that a higher break-

down point results in a loss of efficiency. These properties also hold for the MWCD
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Fig. 2 ARE of the diagonal elements of the MWCD25 scatter estimators at (a) normal dis-
tribution Np(0, I); (b) t3-distribution; and (c) t8-distribution

estimators as can be seen from Tables 2 and 3. Note that the efficiencies for the el-

ements of the scatter and shape matrices at the normal distribution would be even

lower than those reported in Table 3 for the t5-distribution. There also exist robust

estimators, e.g. MM-estimators (Tatsuoka and Tyler 2000) and τ -estimators (Lopuhaä

1991) that control breakdown point and efficiency at the same time and hence do not

suffer from this problem. However, such estimators are typically less appropriate for

outlier detection.

We performed a simulation study to investigate the finite-sample performance of

the MWCD estimators. The results of this study (not shown) showed that the finite-

sample relative efficiencies agree with the asymptotic relative efficiencies.

Table 2 Asymptotic relative efficiencies for the location estimators at the normal distribution
Np(0, I) and t3-distribution

Np(0, I) t3

α 0.50 0.25 0.50 0.25

MWCD↓ 0.193 0.429 1.117 1.822
MWCD↑ 0.200 0.447 1.034 1.442
MCD 0.203 0.466 1.096 1.685
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Table 3 Asymptotic relative efficiencies for the diagonal elements of the scatter estimators
and off-diagonal elements of the shape estimators at the t5-distribution

diagonal off-diagonal

α 0.50 0.25 0.50 0.25

MWCD↓ 0.509 1.311 0.298 0.918
MWCD↑ 0.513 1.251 0.290 0.836
MCD 0.524 1.358 0.298 0.899

6 Simulations

6.1 Finite-sample robustness

To study the finite-sample robustness of the MWCD estimators, we performed simu-

lations with contaminated data sets. In each simulation we generated 1000 data sets

of Np(0, I) with p = 3 and sample sizes n = 50, 100, 300 and 500. We considered

two typical choices for k, namely k = ⌊(n + p + 2)/2⌋ (corresponding to α = 0.50)

and k ≈ 0.75n (corresponding to α = 0.25). To generate contaminated data sets we

started with the normally distributed data and then replaced 20% or 40% of the data

points xi by observations with components generated according to N(s
q

χ2
p,0.99, 1.5)

with s = 5, 3, 1. For each simulation we computed the mean squared error and bias of

the vectors µ̂
(l)
MWCD, given by

MSE(µ̂MWCD) = n ave
1≤j≤p

ave
l

[{(µ̂MWCD)
(l)
j }2]

bias(µ̂MWCD) =

r
ave

1≤j≤p
[{ave

l
(µ̂MWCD)

(l)
j }2].

The MSE and bias of diagonal and off-diagonal elements of the shape and scatter

matrix were calculated in a similar way.

Tables 4, 5 and 6 show the MSE and the bias for 40% outliers from N(
q

χ2
3,0.99, 1.5)

of the estimators MWCD↓50, MWCD↑50 and MCD50. Table 4 shows that for larger

sample sizes the bias of all estimators is close to zero. For n = 50 and 100, the MWCD↓
location estimator yields the best results. For the estimates of the shape, we see from

Table 5 that for small data sets it is better to use the MWCD↓ estimator. For the

diagonal elements of the scatter estimate (Table 6) the MWCD↓ estimator overall

shows the best behavior, although all estimates have been considerably affected by the

outliers (resulting in large bias and MSE).

Tables 7, 8 and 9 show the MSE and the bias for the MWCD↓ and MCD estimator

for 20% outliers distributed according to N(
q

χ2
3,0.99, 0.1). For n = 50 and 100 we see

that the bias of the MWCD↓ location estimator is smaller than the bias of the MCD

location estimator. For n = 500 this is no longer true. For the off-diagonal elements of

the shape we see the same results. For the diagonal elements of the scatter the MWCD↓
has the smallest bias for each n.

Although the MWCD estimators do not improve the efficiency of the MCD for

normal data, depending on the type of contamination they can give lower bias.
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Table 4 Location estimator: 40% outliers from N(
q

χ2

3,0.99, 1.5)

n 50 100 300 500

MSE bias MSE bias MSE bias MSE bias

MWCD↓50 5.777 0.066 2.667 0.005 2.857 0.002 2.981 0.0010
MWCD↑50 8.720 0.109 3.802 0.014 2.688 0.003 2.758 0.0010
MCD50 7.249 0.088 2.844 0.007 2.621 0.003 2.752 0.0014

Table 5 Off-diagonal elements of the shape matrix: 40% outliers from N(
q

χ2

3,0.99, 1.5)

n 50 100 300 500

MSE bias MSE bias MSE bias MSE bias

MWCD↓50 33.521 0.184 4.828 0.005 4.943 0.002 4.848 0.004
MWCD↑50 43.787 0.261 10.164 0.028 4.880 0.006 4.744 0.002
MCD50 38.692 0.224 6.576 0.016 4.842 0.005 4.729 0.003

Table 6 Diagonal elements of the scatter matrix: 40% outliers from N(
q

χ2

3,0.99, 1.5)

n 50 100 300 500

MSE bias MSE bias MSE bias MSE bias

MWCD↓50 185.043 1.227 92.245 0.832 194.007 0.755 291.939 0.734
MWCD↑50 299.255 1.659 148.520 1.019 236.958 0.841 358.110 0.817
MCD50 227.103 1.400 109.344 0.900 212.955 0.795 327.176 0.780

Table 7 Location estimator: 20% outliers from N(
q

χ2

3,0.99, 0.1)

n 50 100 300 500

MSE bias MSE bias MSE bias MSE bias

MWCD↓50 7.840 0.075 4.860 0.010 3.836 0.0051 3.870 0.0018
MCD50 7.817 0.082 5.053 0.016 3.565 0.0059 3.666 0.0012

MWCD↓25 2.521 0.020 1.914 0.006 1.522 0.0026 1.722 0.0017
MCD25 3.975 0.049 3.206 0.018 1.419 0.0023 1.584 0.0012

Table 8 Off-diagonal elements of the shape estimator: 20% outliers from N(
q

χ2

3,0.99, 0.1)

n 50 100 300 500

MSE bias MSE bias MSE bias MSE bias

MWCD↓50 109.075 0.331 39.593 0.044 10.715 0.0071 10.470 0.0024
MCD50 102.312 0.338 39.659 0.053 10.215 0.0075 10.009 0.0037

MWCD↓25 12.687 0.066 5.119 0.010 2.244 0.0036 2.256 0.0036
MCD25 24.864 0.149 16.952 0.051 2.169 0.0026 2.153 0.0033

To illustrate this further we plot in Figure 3 the bias at the different contamination

situations for the location estimators versus s where N(s
q

χ2
3,0.99, θ) is the distribu-
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Table 9 Diagonal elements of the scatter estimator: 20% outliers from N(
q

χ2

3,0.99, 0.1)

n 50 100 300 500

MSE bias MSE bias MSE bias MSE bias

MWCD↓50 179.150 0.851 79.430 0.419 47.360 0.288 60.192 0.273
MCD50 175.446 0.904 81.854 0.449 49.427 0.302 62.661 0.284

MWCD↓25 24.412 0.358 20.239 0.329 40.867 0.337 64.735 0.341
MCD25 46.137 0.548 42.995 0.442 50.529 0.381 79.022 0.380

tion of the contaminated components. Figure 3a shows that for 20% less concentrated

outliers (θ = 1.5) the MWCD↓ estimator has the lowest bias and the MWCD↑ the

highest bias. The decreasing weight function gives a lower weight to points further

away, in this case the well spread outliers, so this results in a smaller bias. This bias is

also small compared to the MCD which does not make a distinction in weight between

the observations in the subset. In case of highly concentrated outliers (θ = 0.1) not far

away, the situation is reversed, as seen in Figure 3b. The MWCD↓ estimator now gives

the outliers (that is, the most concentrated points) the highest weights and the good

observations are given a low weight which results in a high bias. The increasing weight

function has the opposite effect and results in a lower bias. If the outliers are further

away we get the same relations as with the less concentrated points. For 40% outliers

the same conclusions can be made and the effect is even more clear-cut.
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Fig. 3 Bias for the location estimators at ǫ% outliers from N(s
q

χ2

3,0.99, θ), (a) (ǫ, θ, α) =

(20%, 1.5, 0.25) (b) (ǫ, θ, α) = (20%, 0.1, 0.25) (c) (ǫ, θ, α) = (40%, 1.5, 0.50) (d) (ǫ, θ, α) =
(40%, 0.1, 0.50)
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7 Examples

7.1 Generated data

To illustrate the use of the two different weight functions in detecting intermediate

outliers, we generated a data set with n = 500 observations from a multivariate normal

distribution Np(0, I) with p = 8. We then replaced 50 of the data points by observa-

tions with components generated according to N(2
q

χ2
8,0.99, 0.1) and 50 according to

N(0.5
q

χ2
8,0.99, 0.1). Hence we have a group of strong outliers and a group of inter-

mediate outliers in our data. Figure 4 shows the robust distances of the MWCD↑25

estimator versus those of the MWCD↓25 estimator. The lines correspond to the usual

cutoff value
q

χ2
8,0.975 = 4.1874. Both estimators clearly detect the strong outliers

lying far away from the majority of the data. However, there are several points that lie

above the cutoff for the MWCD↓25 estimator but under the cutoff for the MWCD↑25

estimator. These points correspond exactly to the intermediate outliers in the data.

The treatment of the intermediate outliers clearly differs between both estimators. The

MWCD↓25 reveals these points because the weight decreases with the distance from

the center. On the other hand the MWCD↑25 gives a high weight to these intermedi-

ate outliers so that they become masked. Note that a comparable plot is found if we

plot the robust distance of the MWCD↑25 versus those of the MCD25 estimator (not

shown).
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Fig. 4 Generated data: Plot of the robust distances of the MWCD↑25 estimator versus those
of the MWCD↓25 estimator

7.2 Ionospheric data

This data set from the Johns Hopkins University Ionosphere database was taken from

the “Data Repository” of Hettich and Bay (1999) and has 351 radar measurements

on 34 continuous characteristics: real and imaginary parts of the complex responses

corresponding to each of 17 pulse numbers. We only look at n = 225 ‘good’ radar
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returns showing some type of structure in the ionosphere. As in Maronna and Zamar

(2002) variables 1, 2 and 27 are omitted so we are left with p = 31 variables. Figure 5

shows a plot of the robust distances of the MWCD↑25 estimator versus the robust

distances of the MWCD↓25 estimator. The lines correspond again with the cutoff valueq
χ2

31,0.975 = 6.9449. In Figure 5, 87 observations lie in the upper right corner, meaning

that they are detected by both methods as outliers. The critical difference between

the weight functions is again in the way that intermediate points are considered. 9

observations lie in the lower right rectangle, which means that they are identified as

outliers by MWCD↓25, but not anymore by MWCD↑25. These 9 observations can be

considered intermediate outliers, which can be motivated by looking at the sequence

of coordinates as done by Maronna and Zamar (2002). They plotted the sequence of

coordinates and were able to find 4 characteristic forms to describe the data. These 4

forms can be seen in Figure 6. The outliers detected by both estimators have a much

noisier form as shown in Figure 7. We also display in Figure 8 a few typical forms

for the intermediate points. We notice that these observations deviate from the pure

specimens but are not as aberrant as the outliers. This can explain why these points

differ between both estimators. Hence, comparing the outliers that are detected by a

decreasing weight function with the outliers detected by an increasing weight function,

allows us to identify intermediate outliers.

When comparing both MWCD estimators to MCD25, MWCD↑25 identifies 87

outliers, MCD25 yields 90 outliers (not shown) and MWCD↓25 detects 96 outliers.

Hence, the result of the MCD25 estimator, which uses a weight function that is constant

on its support, lies in between the two MWCD results, so the MCD25 detects some of

the intermediate outliers but not all of them.
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Fig. 5 Ionospheric data: Plot of the robust distances of the MWCD↑ estimator versus those
of the MWCD↓ estimator for α = 0.25
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Fig. 6 Ionospheric data: “Pure specimens”. Observation 4, observation 32, observation 58 and
observation 79 (from left to right).
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Fig. 7 Ionospheric data: “Outliers”. Observation 95, observation 96, observation 41 and ob-
servation 27 (from left to right).
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Fig. 8 Ionospheric data: “Intermediate outliers”. Observation 67, observation 73, observation
186 and observation 168 (from left to right).

8 Conclusion

We developed a generalization of MCD using weights based on the ranks of the Maha-

lanobis distances. Similarly to MCD, we used a C-step procedure to construct a fast

algorithm to calculate an approximate solution of the MWCD estimators. We showed

that the MWCD estimators have the same breakdown point as MCD. We derived in-

fluence functions and gave expressions for the asymptotic variances. Comparing the

efficiency at several elliptical distributions makes clear that at t-distributions MWCD

can give an improvement over MCD, but the efficiencies remain quite low. We also

compared the finite-sample robustness in different types of contaminated data sets.

For small sample sizes, weighing the observations results in a smaller MSE and bias.

For larger sample sizes the situation is less straightforward, but depending on the type

of contamination the MWCD has a better bias. Some examples illustrate that using

the different weight functions offers possibilities to identify intermediate outliers in the

data.

Appendix

The derivations in this appendix are mainly based on the proofs of Van Aelst and

Willems (2005) and Agulló et al. (2008).
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Proof of Proposition 1 Let (µ̂n, V̂n) = (µ̂(Xn), V̂ (Xn)) minimize
1
n

Pn
i=1 an(Ri)(xi −m)T C−1(xi −m) with det C = 1. Let M = Dn(µ̂n, V̂n). We have

then

c̃ =
1

n

nX
i=1

an(R̃i)(xi − µ̂n)T
�

M

c̃
V̂n

�−1

(xi − µ̂n).

Then, suppose (µ̃n, Σ̃n) such that Dn(µ̃n, Σ̃n) = c̃ and det Σ̃n is minimal. This implies

det Σ̃n < det
�

M
c̃ V̂n

�
or det

�
c̃

M Σ̃n

�
< 1. Hence there exists a constant 0 < c < 1

such that det(1
c

c̃
M Σ̃n) = 1. This implies

1

n

nX
i=1

an(R̃i)(xi − µ̃n)T
�

1

c

c̃

M
Σ̃n

�−1

(xi − µ̃n) = cM < M

with R̃ the rank vector of d2(µ̃n, Σ̃n) but this contradicts the fact that M corresponds

to the minimum of Dn.

Let (µ̃n, Σ̃n) minimize det C such that 1
n

Pn
i=1 an(R̃i)(xi−µ̃n)T Σ̃−1

n (xi−µ̃n) = c̃.

Put Ṽn = (det Σ̃n)−1/pΣ̃n. Then suppose V̂n such that det V̂n = 1 and

1

n

nX
i=1

an(R̂i)(xi − µ̂n)T V̂ −1
n (xi − µ̂n)

<
1

n

nX
i=1

an(R̃i)(xi − µ̃n)T ((det Σ̃n)−1/pΣ̃n)−1(xi − µ̃n) = c̃(det Σ̃n)1/p

with R̂ rank vector of d2(µ̂n, V̂n) and R̃ rank vector of d2(µ̃n, Ṽn). This implies

1

n

nX
i=1

an(R̂i)(xi − µ̂n)T ((det Σ̃n)1/pV̂n)−1(xi − µ̂n) < c̃.

Hence there exists a constant 0 < c < 1 such that

1

n

nX
i=1

an(R̂i)(xi − µ̂n)T ((det Σ̃n)1/pcV̂n)−1(xi − µ̂n) = c̃.

But det((det Σ̃n)1/pcV̂n) < det Σ̃n which contradicts that Σ̃n has minimal determi-

nant. ⊓⊔
Proof of Proposition 2. We first give the following equations similar to those in

Agulló et al. (2008) which will be used in the proof. Using properties of traces yields

(with R ∈ R and N =
Pn

j=1 an(Rj)/ch+)

1

N

nX
j=1

an(Rj)d
2
j (µ̂(R), Σ̂(R)) =

1

N

nX
j=1

an(Rj)(xj − µ̂(R))T Σ̂−1(R)(xj − µ̂(R))

= trace
�
Σ̂−1(R)Σ̂(R)

�
= p. (5)

We also have that

nX
j=1

an(Rj)d
2
j (µ̂(R), Σ̂(R)) = (det Σ̂(R))−1/p

nX
j=1

an(Rj)d
2
j (µ̂(R), V̂ (R)). (6)
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Combining (6) with (5) results in

nX
j=1

an(Rj)d
2
j (µ̂(R), V̂ (R)) = Np(det Σ̂(R))1/p. (7)

We have

Q2 =
nX

i=1

an(R2i)d
2
2(i) ≤

nX
i=1

an(R1i)d
2
2(i)

because R2i is the rank vector based on d2
2(i) and an is a non-increasing function.

Hence it gives the highest weights to the smallest distances, which will result in a

smaller sum than any other combination of the weights and the distances would result

in. Furthermore,
nX

i=1

an(R1i)d
2
2(i) ≤

nX
i=1

an(R1i)d
2
1(i) = Q1

because µ̂2 and V̂2 minimize
Pn

i=1 an(R1i)d
2
i (m, C). Indeed, suppose that there exist

some m ∈ R
p and C ∈ PDS(p) with det C = 1 such that

nX
i=1

an(R1i)d
2
i (m, C) <

nX
i=1

an(R1i)d
2
i (µ̂2, V̂2).

Using (7) this implies that

1

N

nX
i=1

an(R1i)d
2
i (m, (det Σ̂2)

1/pC) < p.

Hence, there exists a constant 0 < c < 1 such that 1
N

Pn
i=1 an(R1i)d

2
i (m, c(det Σ̂2)

1/pC)

= p. This can be rewritten as

trace

 
c−1(det Σ̂2)

−1/pC−1 1

N

nX
i=1

an(R1i)(x − m)(x − m)T
!

= p.

If we then use the following maximum determinant result: if one maximizes det A over

all positive semi-definite symmetric matrices of size p with trace(A) = p, then the

solution is A = I. We then have

det

 
1

N

nX
i=1

an(R1i)(x − m)(x − m)T
!

≤ det(c(det Σ̂2)
1/pC) = cp det Σ̂2.

Hence,

det

 
1

N

nX
i=1

an(R1i)(x − µ̂2)(x − µ̂2)
T

!
= det Σ̂2

≤ det

 
1

N

nX
i=1

an(R1i)(x − m)(x − m)T
!

≤ cp det Σ̂2

which is a contradiction so we have that

nX
i=1

an(R1i)d
2
i (m, C) ≥

nX
i=1

an(R1i)d
2
i (µ̂2, V̂2).
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We have equality if and only if

nX
i=1

an(R2i)d
2
2(i) =

nX
i=1

an(R1i)d
2
2(i) =

nX
i=1

an(R1i)d
2
1(i).

Using (7) on the last equality this implies that

1

N

nX
i=1

an(R1i)d
2
i (µ̂1, (det Σ̂2)

1/pV̂1) = p.

This can be rewritten as

trace

 
(det Σ̂2)

−1/pV̂ −1
1

1

N

nX
i=1

an(R1i)(x − µ̂1)(x − µ̂1)
T

!
= p.

Using the maximum determinant result we get

det Σ̂2 ≤ det

 
1

N

nX
i=1

an(R1i)(x − µ̂1)(x − µ̂1)
T

!
≤ det((det Σ̂2)

1/pV̂1) = det Σ̂2.

This implies that µ̂2 = µ̂1. Using trace
�
(det Σ̂2)

−1/pV̂ −1
1 Σ̂2

�
= p and

det
�
(det Σ̂2)

−1/pV̂ −1
1 Σ̂2

�
= 1 the maximum determinant result implies V̂2 = V̂1. ⊓⊔

Proof of Proposition 3 We first prove that

ε∗n(µ̂MWCD, Xn) ≥ min(n − k + 1, k − k(Xn))

n
.

We will show that there exist M̄ and α which only depend on Xn, such that for every X ′
n

obtained by replacing at most s = min(n−k+1, k−k(Xn))−1 observations from Xn we

have that ‖µ̂MWCD(X ′
n)|| ≤ M̄ , λ1(Σ̂MWCD(X ′

n)) ≤ α and λp(Σ̂MWCD(X ′
n)) > 0.

The norm we use here is the L2 norm. Let us denote

E(t, C) = {x : (x − t)T C−1(x − t) ≤ p/am}

with t ∈ R
p, C ∈ PDS(p) and am = min

an(Ri)>0
an(Ri). Consider the ellipsoids E(0, cI)

such that
nX

i=1

an(Ri)x
T
i Ic−1xi = p

with Ri the rank vector of ‖xi‖2. Choose a ranking R∗ ∈ R such that the largest

distances xT
i xi get the highest weights and denote cmax the corresponding constant

such that
Pn

i=1 an(R∗
i )xT

i Ic−1
maxxi = p.

With R′
i the rank vector of ‖x′

i‖2, it holds that

nX
i=1

an(R′
i)(x

′
i)

T x′
i ≤

nX
i=1

an(R∗
i )xT

i xi

because n − s ≥ k implies that X ′
n still contains k data points of the original Xn. For

the ellipsoid E(0, cmI) such that

nX
i=1

an(R′
i)(x

′
i)

T Ic−1
m x′

i = p
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it then holds that det(cmI) ≤ det(cmaxI). It follows that for the optimal solution

E(µ̂MWCD(X ′
n), Σ̂MWCD(X ′

n)) that satisfies

nX
i=1

an(R̃i)(x
′
i − µ̂MWCD(X ′

n))T Σ̂MWCD(X ′
n)−1(x′

i − µ̂MWCD(X ′
n)) = p (8)

with R̃ the rank vector corresponding to the distances di(µ̂MWCD(X ′
n), Σ̂MWCD(X ′

n))

we must have that det(Σ̂MWCD(X ′
n)) ≤ cp

max = V . Condition (8) implies that the

ellipsoid E(µ̂MWCD(X ′
n), Σ̂MWCD(X ′

n)) contains a subcollection of at least k points

of X ′
n. Because s ≤ k − k(Xn) − 1 this subcollection contains at least k(Xn) + 1

data points of the original Xn in general position. Using lemma 3.1 of Lopuhaä and

Rousseeuw (1991) if ||µ̂MWCD(X ′
n)|| > M̄ we obtain that det(Σ̂MWCD(X ′

n)) > V ,

yielding a contradiction. We have thus shown that ‖µ̂MWCD(X ′
n)‖ ≤ M̄ . More-

over, since E(µ̂MWCD(X ′
n), Σ̂MWCD(X ′

n)) contains at least k(Xn) + 1 original data

points in general position we know that there exists a constant β > 0 such that

λj(Σ̂MWCD(X ′
n)) ≥ β for all j = 1, . . . , p and det(Σ̂MWCD(X ′

n)) < V then im-

plies that there exists a constant 0 < α < ∞ (depending on β and V ) such that

λ1(Σ̂MWCD(X ′
n)) ≤ α.

Let us now prove that ε∗n(µ̂MWCD, Xn), ε∗n(Σ̂MWCD, Xn) ≤ min(n − k + 1, k −
k(Xn))/n. Suppose we contaminate s = min(n − k + 1, k − k(Xn)) points of Xn to

obtain X ′
n. Suppose first that s = n − k + 1. Let E(t, c) be an ellipsoid that satisfies

nX
i=1

an(Ri)(x
′
i − t)T C−1(x′

i − t) = p

with Ri rank of (x′
i − t)T C−1(x′

i − t) for i = 1, . . . , n. Because n − s = k − 1 there

exists at least one contaminated point that belongs to E(t, C). By letting ‖x‖ → ∞
for the replaced points we can make sure that at least one of the eigenvalues of C goes

to infinity. (If E(t, C) contains only replaced points, then letting ‖x‖ → ∞ in different

directions assures that det(C) → ∞). Therefore both µ̂MWCD(X ′
n) and Σ̂MWCD(X ′

n)

break down in this case.

Suppose s = k − k(Xn). Denote J̃ ⊂ {1, . . . , n} the set of indices corresponding

to the k(Xn) observations from Xn lying on a hyperplane of R
p. Then there exist an

α ∈ R
p and γ ∈ R such that αT xj − γ = 0 for all j ∈ J̃ . There exists a m ∈ R

p such

that mT α = γ which implies αT (xj − m) = 0 for j ∈ J̃ . Therefore for j ∈ J̃ we have

that xj − m ∈ S where S is a (p − 1)dimensional subspace of R
p. Now take a d ∈ R

p

with ‖d‖ = 1 such that d ∈ S. Now replace s = k − k(Xn) observations of Xn, not

lying on S by (m + λd) for some arbitrarily chosen λ ∈ R. Denote J0 the set of indices

corresponding to the outliers. It follows that for the s outliers xj − m − λd = 0 and

for the k(Xn) points on S we have that xj − m − λd ∈ S. Denote {e1, . . . , ep−1} an

orthonormal basis of S and ep a normed vector orthogonal to S. Denote P = [e1 . . . ep].

Consider C = PΛPT with Λ = diag(λ1, . . . , λp). For the k(Xn) points we have that

xj − m − λd ∈ S, thus there exist for each j ∈ J̃ coefficients ζ1, . . . , ζp−1 such that
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xj − m − λd =
Pp−1

i=1 ζiei. Therefore

(xj − (m + λd))T C−1(xj − (m + λd))

=

p−1X
i=1

ζie
T
i

0� pX
j=1

λ−1
j eje

T
j

1A p−1X
i=1

ζiei

=

0�p−1X
i=1

ζiλ
−1
i eT

i

1A p−1X
i=1

ζiei =

p−1X
i=1

ζ2
i λ−1

i .

Now
Pn

i=1 an(Ri)(xi − (m + λd))T C−1(xi − (m + λd)) =X
s outliers

+
X

k(Xn) on S

+
X

remainder

with Ri the rank of (xi − (m + λd))T C−1(xi − (m + λd)) for i = 1, . . . , n. Fix λ and

choose (λ1, . . . , λp−1) appropriately such that
P

k(Xn) on S → p. For the remainder we

can writeX
remainder

an(Ri)(xi − (m + λd))T C−1(xi − (m + λd)) =
X

remainder

an(Ri)

 
pX

i=1

ζ2
i /λi

!
.

If we let λp → 0 then the corresponding distances → ∞ and will surely be the largest

distances getting weight 0. The constructed solution has det(C) = λ1 · · ·λp → 0. By

letting λ → ∞ we thus obtain that both µ̂MWCD(X ′
n) and Σ̂MWCD(X ′

n) break down.

⊓⊔
Proof of Proposition 4 First, we consider a non-increasing weight function h+.

For any (m, C) denote Vm,C = (det Σm,C)−1/pΣm,C such that det Vm,C = 1. Using

properties of traces yields with N =
R

h+(G(d2
x(m, C)))dH(x)/ch+

1

N
EH [h+(G(d2

x(m, C)))d2
x(µm,C , Σm,C)]

=
1

N
EH [h+(G(d2

x(m, C)))(x − µm,C)T Σ−1
m,C(x − µm,C)]

=
1

N
EH [trace

�
h+(G(d2

x(m, C)))(x − µm,C)T Σ−1
m,C(x − µ̂m,C)

�
]

=
1

N
EH [trace

�
h+(G(d2

x(m, C)))(x − µm,C)(x − µm,C)T Σ−1
m,C

�
]

=
1

N
trace

�
EH [h+(G(d2

x(m, C)))(x − µm,C)(x − µm,C)T Σ−1
m,C ]

�
= trace(Σm,CΣ−1

m,C) = p. (9)

We also have that

EH [h+(G(d2
x(m, C)))d2

x(µm,C , Σm,C)]

= (det Σm,C)−1/pEH [h+(G(d2
x(m, C)))d2

x(µm,C , Vm,C)]. (10)

Combining (10) with (9) results in

EH [h+(G(d2
x(m, C)))d2

x(µm,C , Vm,C)] = Np(det Σm,C)1/p. (11)
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We prove that for any (µ̃, Ṽ ) ∈ argmin
m,C;det C=1

D(m, C) that µ̃ = µµ̃,Σ̃ and Σ̃ = Σµ̃,Σ̃

and (µ̃, Σ̃) minimizes argmin
m=µm,C ;C=Σm,C

det C. Because Proposition 1 also holds in the

functional form, (µ̃, Σ̃) minimizes det Σ such that 1
N D(µ, Σ) = p. This implies

1

N
EH [h+(G(d2

x(µ̃, Σ̃)))(x − µ̃)T Σ̃−1(x − µ̃)] = p.

This can be rewritten as

trace

�
Σ̃−1 1

N
EH [h+(G(d2

x(µ̃, Σ̃)))(x − µ̃)(x − µ̃)T ]

�
= p.

Using the maximum determinant result the determinant of this matrix is maximized

by 1. Or this can be written as

det

�
1

N
EH [h+(G(d2

x(µ̃, Σ̃)))(x − µ̃)(x − µ̃)T ]

�
≤ det Σ̃.

It holds that

det Σµ̃,Σ̃ = det

�
1

N
EH [h+(G(d2

x(µ̃, Σ̃)))(x − µµ̃,Σ̃)(x − µµ̃,Σ̃)T ]

�
≤ det

�
1

N
EH [h+(G(d2

x(µ̃, Σ̃)))(x − µ̃)(x − µ̃)T ]

�
(12)

≤ det Σ̃. (13)

Because h+ is a non-increasing function it holds

1

N
EH [h+(G(d2

x(µµ̃,Σ̃ , Σµ̃,Σ̃)))(x − µµ̃,Σ̃)T Σ−1

µ̃,Σ̃
(x − µµ̃,Σ̃)]

≤ 1

N
EH [h+(G(d2

x(µ̃, Σ̃)))(x − µµ̃,Σ̃)T Σ−1

µ̃,Σ̃
(x − µµ̃,Σ̃)] = p.

Thus there exists a constant 0 < c ≤ 1 such that

1

N
EH [h+(G(d2

x(µµ̃,Σ̃ , Σµ̃,Σ̃)))(x − µµ̃,Σ̃)T (cΣµ̃,Σ̃)−1(x − µµ̃,Σ̃)] = p.

This implies det Σ̃ ≤ det cΣµ̃,Σ̃ ≤ det Σµ̃,Σ̃ . Hence together with (13) this results in

det Σ̃ = det Σµ̃,Σ̃ and because (12) becomes an equality also µ̃ = µµ̃,Σ̃ . Because

trace

�
Σ̃−1 1

N
EH [h+(G(d2

x(µ̃, Σ̃)))(x − µµ̃,Σ̃)(x − µµ̃,Σ̃)T ]

�
= trace(Σ̃−1Σµ̃,Σ̃) = p

and det(Σ̃−1Σµ̃,Σ̃) = 1 it follows from the maximum determinant result that Σ̃ =

Σµ̃,Σ̃ .

For any m = µm,C and C = Σm,C with V = Vm,C = (det C)−1/pC

EH [h+(G(d2
x(µ̃, Ṽ )))d2

x(µ̃, Ṽ )]

≤ EH [h+(G(d2
x(m, C)))d2

x(m, V )] = EH [h+(G(d2
x(m, C)))d2

x(µm,C , Vm,C)].

Using (11) the inequality can be rewritten as

Np(det Σµ̃,Ṽ )1/p ≤ Np(det Σm,C)1/p
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so we obtain det Σµ̃,Ṽ ≤ det Σm,C for all m = µm,C and C = Σm,C hence we conclude

that (µ̃, Σ̃) ∈ argmin
m=µm,C ;C=Σm,C

det C.

For an increasing weight function we may argue as follows. From differentiating the

objective function D(m, C), we easily obtain that the minimizing m and C can be rep-

resented as a weighted mean and covariance, on condition that D(m, C) is continuously

differentiable in this point. The latter condition will not always be satisfied. However,

if the distribution H is continuous, then it holds that D(m, C) is continuously differen-

tiable. Hence, we must have that the solution of minimizing D(m, C) does satisfy the

weighted mean and covariance representation. ⊓⊔
Proof of Proposition 5 First of all, due to equivariance, we may assume that

µ = 0 and Σ = Ip. We will denote F = F0,Ip
. Hence, we are left to show that for any

MWCD solution we have that µMWCD(F ) = 0 and ΣMWCD(F ) = Ip. µMWCD is the

weighted mean based solely on the ellipse E = {x ∈ R
p; (x − µMWCD)T Σ−1

MWCD(x −
µMWCD) ≤ qα} implying thatZ

E
w(d2(x))(x − µMWCD)T dF (x) = 0 (14)

with d2(x) = (x − µMWCD)T Σ−1
MWCD(x − µMWCD) and w = h+ ◦ G̃. Suppose

that µMWCD 6= 0. Let λ1, . . . , λp be the eigenvalues of ΣMWCD and v1, . . . , vp the

corresponding eigenvectors. There will be at least one 1 ≤ j ≤ p such that µT
MWCDvj 6=

0. Fix this j. From (14) it follows that we should haveZ
E

vT
j µMWCDw(d2(x))(x − µMWCD)T vjdF (x) = 0. (15)

Set d = (d1, . . . , dp)T := µMWCD. Since x is spherically symmetrically distributed we

may assume w.l.o.g. that ΣMWCD = diag(λ1, . . . , λp) as well as vj = (1, 0, . . . , 0). For

every d1 −
√

cλ1 ≤ x1 ≤ d1 +
√

cλ1 denote

E(x1) =

8<:(x2, . . . , xp) ∈ R
p−1|

pX
j=2

(xj − dj)
2

λj
≤ c − (x1 − d1)

2

λ1

9=;
where c := qα > 0. Then we have

I =

Z
E

w(d2(x))(x − µMWCD)T vjdF (x)

=

Z d1+
√

cλ1

d1−
√

cλ1

Z
E(x1)

w

0� pX
j=1

(xj − dj)
2

λj

1A (x1 − d1)g(x2
1 + . . . + x2

p)dx1 . . . dxp

=

Z √
cλ1

−
√

cλ1

t

Z
E(d1+t)

w

0� t2

λ1
+

pX
j=2

(xj − dj)
2

λj

1A×

g
�
(d1 + t)2 + x2

2 + · · · + x2
p

�
dx2 . . . dxpdt.

Since E(d1 + t) = E(d1 − t) and w(d2(d1 + t, x2, . . . , xp)) = w(d2(d1 − t, x2, . . . , xp)) it

follows that

I =
R√cλ1

0 t
R
E(d1+t) w

�
t2

λ1
+
Pp

j=2
(xj−dj)

2

λj

� h
g
�
(d1 + t)2 + x2

2 + · · · + x2
p

�
− g

�
(d1 − t)2 + x2

2 + · · · + x2
p

�i
dx2 . . . dxpdt.
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If d1 > 0 we have (d1 + t)2 + x2
2 + · · · + x2

p > (d1 − t)2 + x2
2 + · · · + x2

p and since g is

strictly decreasing this implies I < 0. Similarly, we can show that d1 < 0 yields I > 0.

Therefore, we have shown that vT
j µMWCD > 0 implies I < 0 and if vT

j µMWCD < 0

then I > 0. Hence, we obtain
R
E vT

j µMWCDw(d2(x))(x − µMWCD)T vjdFµ,Σ(x) < 0

which contradicts (15) so we conclude that µMWCD = 0.

We now show the Fisher consistency of ΣMWCD. The derivation is similar to

the proof of Lemma 3 in Butler et al. (1993). We have already shown that E = {x ∈
R

p; xT Σ−1
MWCDx ≤ qα}. As before, we may assume that ΣMWCD is a diagonal matrix

Λ with diagonal elements λ1, . . . , λp. We have

Λ = λ

Z
E

w(d2(x))xxT g(x2
1 + · · · + x2

p)dx,

for some λ > 0. On writing y = Λ−1/2x, it is sufficient to show that all solutions of

Ip = λ′
Z
E

w(‖y‖2)yyT g

 
pX

i=1

λiy
2
i

!
dy

for some λ′ > 0 satisfy λ1 = . . . = λp.

We haveZ
E

w(‖y‖2)y2
1g

 
pX

i=1

λiy
2
i

!
dy =

Z
E

w(‖y‖2)y2
2g

 
pX

i=1

λiy
2
i

!
dy (16)

and henceZ
E

w(‖y‖2)(y2
1 − y2

2)

"
g

 
λ1y2

1 + λ2y2
2 +

pX
i=3

λiy
2
i

!
− g

 
λ2y2

1 + λ1y2
2 +

pX
i=3

λiy
2
i

!#
dy

= 0 (17)

as may be seen by interchanging the roles of y1 and y2. Suppose λ1 > λ2. Then

if y2
1 > y2

2 it follows that λ1y2
1 + λ2y2

2 > λ2y2
1 + λ1y2

2 . Similarly, if y2
1 < y2

2 then

λ1y2
1 +λ2y2

2 < λ2y2
1 +λ1y2

2 . Thus if λ1 > λ2 the integral in (17) is always non-positive

and strictly negative at some y1, y2. This contradicts (16) showing λ1 = λ2 and in

general λ1 = . . . = λp.

Finally the consistency factor ch+ then makes sure that ΣMWCD(F ) = Ip. ⊓⊔
Proof of Proposition 6. Consider the contaminated distribution Fε = (1−ε)F0+

ε∆x0 and denote µε := µMWCD(Fε) and Σε := ΣMWCD(Fε). We have then that

µε =

R
w(d2

Fε
(x))xdFε(x)R

w(d2
Fε

(x))dFε(x)

is an MWCD solution. Differentiating w.r.t. ε and evaluating at 0 yields

IF (x0; µMWCD, F0) =

�Z
w(d2

F0
(x))dF0(x)

�−1
∂

∂ε

Z
w(d2

Fε
(x))xdFε(x)|ε=0

+
∂

∂ε

"�Z
w(d2

Fε
(x))dFε(x)

�−1
#
|ε=0

Z
w(d2

F0
(x))xdF0(x).
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By symmetry of F0 Z
w(d2

F0
(x))xdF0(x) = 0

and Z
w(d2

F0
(x))dF0(x) =

Z
w(||x||2)g(xT x)dx = c1

or c1 = 2πp/2

Γ (p/2)

R
w(r2)g(r2)rp−1dr. Hence, we obtain

IF (x0; µMWCD, F0)

=
1

c1

∂

∂ε

Z
w(d2

Fε
(x))xdFε(x)|ε=0

=
1

c1

∂

∂ε

�
(1 − ε)

Z
w(d2

Fε
(x))xdF0(x) + εw(d2

F0
(x0))x0

�
|ε=0

=
1

c1

�
w(xT

0 x0)x0 −
Z

w(d2
Fε

(x))xdF0(x)|ε=0

+ (1 − ε)
∂

∂ε

Z
w(d2

Fε
(x))xdF0(x)|ε=0

�
=

1

c1

�
w(xT

0 x0)x0 +
∂

∂ε

Z
w(d2

Fε
(x))xdF0(x)|ε=0

�
. (18)

We now simplify the last term:Z
w(d2

Fε
(x))xdF0(x) =

Z
w(d2

Fε
(x))xg(xT x)dx.

Using the transformation v = Σ
−1/2
ε (x − µε) yields

I1(ε) :=

Z
w(d2

Fε
(x))xg(xT x)dx

= det(Σε)
1/2

Z
w(vT v)(Σ

1/2
ε v + µε)g((Σ

1/2
ε v + µε)

T (Σ
1/2
ε v + µε))dv.

If we rewrite this expression in polar coordinates v = re(θ) then r ∈ [0,
p

qα(ε)]. This

is because the function w differs only from zero when d2
ε(x) = (x−µε)

T Σ−1
ε (x−µε) ≤

qα(ε) where qα(ε) = (D2
Fε

)−1(1 − α) with D2
Fε

(t) = PFε
(d2

ε(x) ≤ t). e(θ) ∈ Sp−1 and

θ = (θ1, . . . , θp−1) ∈ Θ = [0, π[× . . . × [0, π[×[0, 2π[, yields

I1(ε) = det(Σε)
1/2

Z √
qα(ε)

0

Z
Θ

J(θ, r)w(re(θ)T re(θ))(rΣ
1/2
ε e(θ) + µε) ×

g((rΣ
1/2
ε e(θ) + µε)

T (rΣ
1/2
ε e(θ) + µε))drdθ,

where J(r, θ) is the Jacobian of the transformation into polar coordinates. Using Leib-

niz’ formula to this expression and the symmetry of F0 results in

∂

∂ε
I1(ε)|ε=0

=

Z
||v||2≤qα

∂

∂ε

�
w(vT v)(Σ

1/2
ε v + µε)g((Σ

1/2
ε v + µε)

T (Σ
1/2
ε v + µε))

�
|ε=0

dv
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because

1

2
trace(IF (x0; ΣMWCD, F0))

Z
||v||2≤qα

w(vT v)vg(vT v)dv = 0

and
∂(
p

qα(ε))

∂ε |ε=0

Z
Θ

J(θ,
√

qα)w(qα)
√

qαIe(θ)g(qα)dθ = 0.

We obtain for the derivative on the right hand side

∂

∂ε
{w(vT v)(Σ

1/2
ε v + µε)g((Σ

1/2
ε v + µε)

T (Σ
1/2
ε v + µε))}|ε=0

= w(vT v)IF (x0; Σ
1/2
MWCD, F0)vg(vT v) + w(vT v)IF (x0; µMWCD, F0)

T g(vT v)

+ 2w(vT v)vg′(vT v){vT IF (x0, Σ
1/2
MWCD, F0)v + vT IF (x0, µMWCD, F0)}.

Since
R
||v||2≤qα

w(vT v)vg(vT v)dv andR
||v||2≤qα

w(vT v)vg′(vT v)vT IF (x0; Σ
1/2
MWCD, F0)vdv are zero due to symmetry of F0,

we see that the terms including IF (x0; Σ
1/2
MWCD, F0) give a zero contribution to the

integral. Therefore,

∂

∂ε
I1(ε)|ε=0

= IF (x0; µMWCD, F0)

Z
||v||2≤qα

w(vT v)g(vT v)dv

+ 2

Z
||v||2≤qα

w(vT v)g′(vT v)vvT dvIF (x0; µMWCD, F0)

= [c1 + 2c2]IF (x0; µMWCD, F0)

where c2 =
R
||v||2≤qα

w(vT v)g′(vT v)v2
1dv can be rewritten by using polar coordinates

(see end). We now have that

∂

∂ε

Z
d2

ε(x)≤qα(ε)
w(d2

Fε
(x))xdF0(x) = [c1 + 2c2]IF (x0; µMWCD, F0). (19)

Substituting (19) in (18) yields

c1IF (x0; µMWCD, F0) = w(xT
0 x0)x0I(||x0||2 ≤ qα) + [c1 + 2c2]IF (x0; µMWCD, F0)

which gives the final result

IF (x; µMWCD, F0) =
1

−2c2
w(‖x‖2)xI(||x||2 ≤ qα)

c2 =

Z
||v||2≤qα

w(vT v)g′(vT v)v2
1dv

=
1

p

Z
||v||2≤qα

w(vT v)g′(vT v)(vT v)dv

=
1

p

Z √
qα

0

2πp/2

Γ (p/2)
w(r2)g′(r2)rp−1r2dr

=
πp/2

Γ (p/2 + 1)

Z √
qα

0
w(r2)g′(r2)rp+1dr.
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Similarly, the influence function of the scatter matrix part can be derived (see also

Croux and Haesbroeck 1999). We have that

Σε = ch+

R
w(d2

Fε
(x))(x − µε)(x − µε)

T dFε(x)R
w(d2

Fε
(x))dFε(x)

is an MWCD solution. Differentiating with respect to ε and evaluating at 0 yields

IF (x0; ΣMWCD, F0)

=

�Z
w(d2

F0
(x))dF0(x)

�−1
∂

∂ε
ch+

Z
w(d2

Fε
(x))(x − µε)(x − µε)

T dFε(x)|ε=0

+
∂

∂ε

"�Z
w(d2

Fε
(x))dFε(x)

�−1
#
|ε=0

ch+

Z
w(d2

F0
(x))xxT dF0(x). (20)

The second term in (20) is zero, so only the first term remains, for which we use:Z
w(d2

F0
(x))dF0(x) = c1.

Therefore, we get:

IF (x0; ΣMWCD, F0)

=
ch+

c1

∂

∂ε

Z
w(d2

Fε
(x))(x − µε)(x − µε)

T dFε(x)|ε=0

=
ch+

c1

∂

∂ε

�Z
w(d2

Fε
(x))(x − µε)(x − µε)

T (1 − ε)dF0(x) + εw(d2
F0

(x0))x0xT
0

�
|ε=0

=
ch+

c1

∂

∂ε

�Z
w(d2

Fε
(x))(x − µε)(x − µε)

T dF0(x)

− ε

Z
w(d2

Fε
(x))(x − µε)(x − µε)

T dF0(x) + εw(d2
F0

(x0))x0xT
0

�
|ε=0

=
ch+

c1

�
∂

∂ε

Z
w(d2

Fε
(x))(x − µε)(x − µε)

T dF0(x)|ε=0

−
Z

w(d2
Fε

(x))(x − µε)(x − µε)
T dF0(x)|ε=0

+ w(d2
F0

(x0))x0xT
0

�
=

ch+

c1

�
∂

∂ε

Z
w(d2

Fε
(x))xxT dF0(x)|ε=0

−
Z

w(d2
F0

(x))xxT dF0(x) + w(d2
F0

(x0))x0xT
0

�
=

1

c3

�
∂

∂ε

Z
w(d2

Fε
(x))xxT dF0(x)|ε=0

−
Z

w(d2
F0

(x))xxT dF0(x) + w(d2
F0

(x0))x0xT
0

�
.
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We have that

− 1

c3

Z
w(d2

F0
(x))xxT dF0(x) = − 1

c3

Z
w(‖x‖2)xxT g(xT x)dx

=

�
− 1

c3

1

p

Z
w(‖x‖2)xT xg(xT x)dx

�
I

=

 
− 1

c3

1

p

2πp/2

Γ (p/2)

Z ∞

0
w(r2)r2rp−1g(r2)dr

!
I

=

 
− 1

c3

1

p

2πp/2

Γ (p/2)

Z ∞

0
w(r2)rp+1g(r2)dr

!
I

= −I.

Hence

IF (x0; ΣMWCD, F0) =
1

c3

∂

∂ε

Z
w(d2

Fε
(x))xxT dF0(x)|ε=0

− I +
w(‖x0‖2)x0xT

0

c3
.

We rewrite this asZ
w(d2

Fε
(x))xxT dF0(x) =

Z
w(d2

Fε
(x))xxT g(xT x)dx.

Using again the transformation v = Σ
−1/2
ε (x − µε) we obtain that

I2(ε) :=

Z
w(d2

Fε
(x))xxT g(xT x)dx

= det(Σε)
1/2
Z

w(vT v)(Σ
1/2
ε v + µε)(Σ

1/2
ε v + µε)

T ×

g((Σ
1/2
ε v + µε)

T (Σ
1/2
ε v + µε))dv.

As before we rewrite this expression in polar coordinates v = re(θ) with r ∈ [0,
p

qα(ε)],

e(θ) ∈ Sp−1 and θ = (θ1, . . . , θp−1) ∈ Θ = [0, π[× · · · × [0, π[×[0, 2π[ which yields

I2(ε) = det(Σε)
1/2
Z √

qα(ε)

0

Z
Θ

h
J(θ, r)w(re(θ)T re(θ))(rΣ

1/2
ε e(θ) + µε)×

(rΣ
1/2
ε e(θ) + µε)

T g((rΣ
1/2
ε e(θ) + µε)

T (rΣ
1/2
ε e(θ) + µε))

i
drdθ. (21)

Applying Leibniz formula to (21) and using the symmetry of F0 results in:

∂I2(ε)

∂ε |ε=0

=
1

2
trace(IF (x0; ΣMWCD, F0))H(qα)I

+
∂
p

qα(ε)

∂ε |ε=0

qαw(qα)g(qα)d1I

+

Z
‖v‖2≤qα

∂

∂ε

�
w(vT v)(Σ

1/2
ε v + µε)(Σ

1/2
ε v + µε)

T×

g((Σ
1/2
ε v + µε)

T (Σ
1/2
ε v + µε))

�
|ε=0

dv (22)
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with d1 =
R
Θ J(θ,

√
qα)e2

1(θ)dθ = 1
p

R
Θ J(θ,

√
qα)dθ and

H(qα) =
R
‖v‖2≤qα

w(‖v‖2)vvT g(vT v)dv = c3. The last term of (22) can be worked out

as follows:

∂

∂ε

�
w(vT v)(Σ

1/2
ε v + µε)(Σ

1/2
ε v + µε)

T g((Σ
1/2
ε v + µε)

T (Σ
1/2
ε v + µε))

�
|ε=0

dv

=
1

2
w(vT v)

n
IF (x0; ΣMWCD, F0)vvT + vvT IF (x0; ΣMWCD, F0)

+ 2IF (x0; µMWCD, F0)v
T + 2vIF (x0; µMWCD, F0)

T
o

g(vT v)

+ w(vT v)vvT g′(vT v)
n

vT IF (x0; ΣMWCD, F0)v + 2vT IF (x0; µMWCD, F0)
o

. (23)

Note that since
R
‖v‖2≤qα

vw(vT v)g(vT v)dv and
R
‖v‖2≤qα

vvT w(vT v)g′(vT v)vdv are

zero, the terms in (23) including IF (x0, µMWCD, F0) give a zero contribution to the

integral in (22). We still need to compute the term
∂
√

qα(ε)
∂ε |ε=0

of (22). Using

c1 =

Z
w(d2

Fε
(x))dFε(x) = (1−ε)

Z
w(d2

Fε
(x))dF0(x)+εw(d2

Fε
(x0))I(d2

ε(x0) ≤ qα(ε))

and differentiating both sides with respect to ε yields

0 =
∂

∂ε

Z
w(d2

Fε
(x))dF0(x)|ε=0

−
Z

w(d2
F0

(x))dF0(x) + w(‖x0‖2)I(‖x0‖2 ≤ qα)

=
1

2
trace(IF (x0; ΣMWCD, F0))c1 +

∂
p

qα(ε)

∂ε |ε=0

w(qα)g(qα)

Z
Θ

J(θ,
√

qα)dθ

+

Z
‖v‖2≤qα

w(vT v)g′(vT v)vT IF (x0; ΣMWCD, F0)vdv − c1

+ w(‖x0‖2)I(‖x0‖2 ≤ qα). (24)

The third term in (24) equals, using the symmetry of F0, c2trace(IF (x0; ΣMWCD, F0)).

This leads to

∂
p

qα(ε)

∂ε |ε=0

=
c1 − w(‖x0‖2)I(‖x0‖2 ≤ qα) − trace(IF (x0; ΣMWCD, F0))(c2 + c1

2 )

w(qα)g(qα)pd1
.

(25)

So inserting (25) and (23) in (22) yields

IF (x0; ΣMWCD, F0)

=
1

2
trace(IF (x0; ΣMWCD, F0))I

+
1

c3

qα

p

�
c1 − w(‖x0‖2)I(‖x0‖2 ≤ qα) − trace(IF (x0; ΣMWCD, F0))(c2 +

c1
2

)
�

I

+
1

2c3

Z
‖v‖2≤qα

w(vT v)
�
IF (x0; ΣMWCD, F0)vvT

+ vvT IF (x0; ΣMWCD, F0)
�

g(vT v)dv

+
1

c3

Z
‖v‖2≤qα

w(vT v)vvT g′(vT v)vT IF (x0; ΣMWCD, F0)vdv

− I +
1

c3
w(‖x0‖2)x0xT

0 . (26)



30

In order to give elementwise expressions for the influence function we use results

from Croux and Haesbroeck (1999) to see:

1

2

pX
k=1

(
IF (x0; Σik, F0)

Z
‖v‖2≤qα

w(vT v)vkvjg(vT v)dv

+IF (x0; Σkj , F0)

Z
‖v‖2≤qα

w(vT v)vivkg(vT v)dv

)
= H(qα)IF (x0; Σij , F0)

for every 1 ≤ i, j ≤ p and

pX
k=1

pX
l=1

IF (x0; Σkl, F0)

Z
‖v‖2≤qα

vivjvkvlw(vT v)g′(vT v)dv

=

�
c4trace(IF (x0; ΣMWCD, F0)) + (c5 − c4)IF (x0; Σii, F0) i = j

2c4IF (x0; Σij , F0) i 6= j

where c4 =
R
‖v‖2≤qα

v2
i v2

j w(vT v)g′(vT v)dv and c5 =
R
‖v‖2≤qα

v4
i w(vT v)g′(vT v)dv.

From (26) the influence function for the off-diagonal elements is straightforwardly ob-

tained,

IF (x0; Σij , F0) =
1

c3
(2c4 + H(qα))IF (x0; Σij , F0) +

1

c3
x0ix0jw(‖x0‖2)I(‖x0‖2 ≤ qα)

hence

IF (x0; Σij , F0) = − 1

2c4
x0ix0jw(‖x0‖2)I(‖x0‖2 ≤ qα).

For the diagonal elements we get

IF (x0; Σjj , F0)

=
1

2
trace(IF (x0; ΣMWCD, F0))

+
1

c3

qα

p

n
c1 − w(‖x0‖2)I(‖x0‖2 ≤ qα) − trace(IF (x0; ΣMWCD, F0))(c2 +

c1
2

)
o

+
1

c3
{c5 − c4 + H(qα)}IF (x0; Σjj , F0) +

c4
c3

trace(IF (x0; ΣMWCD, F0))

− 1 +
x2
0jw(‖x0‖2)

c3
I(‖x0‖2 ≤ qα).

Using

b1 =
1

c3
(c4 − c5) and b2 =

1

2
+

1

c3

�
c4 − qα

p
(c2 +

c1
2

)

�
leads to

b1IF (x0; Σjj , F0) − b2trace(IF (x0; ΣMWCD, F0))

= −1 +
w(‖x0‖2)

c3
x2
0jI(‖x0‖2 ≤ qα) +

1

c3

qα

p

n
c1 − w(‖x0‖2)I(‖x0‖2 ≤ qα)

o
.

(27)
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Taking the sum of the diagonal terms in (27) yields an expression for the trace of the

influence function:

trace(IF (x0; ΣMWCD, F0)) = (b1 − pb2)
−1

�
1

c3
‖x0‖2w(‖x0‖2)I(‖x0‖2 ≤ qα)

+ p{ 1

c3

qα

p
(c1 − w(‖x0‖2)I(‖x0‖2 ≤ qα)) − 1}

�
.

(28)

Using (28) in (27) yields

IF (x0; Σjj , F0) =
1

b1

�
1

c3
x2
0jw(‖x0‖2)I(‖x0‖2 ≤ qα)

+
b2

b1 − pb2

1

c3
‖x0‖2w(‖x0‖2)I(‖x0‖2 ≤ qα)

+
b1

b1 − pb2

�
1

c3

qα

p
(c1 − w(‖x0‖2)I(‖x0‖2 ≤ qα)) − 1

��
.

The function R(‖x‖) is defined as:

R(‖x‖) =
1

b1

�
b2

b1 − pb2

1

c3
‖x‖2w(‖x‖2)I(‖x‖2 ≤ qα)

+
b1

b1 − pb2

�
1

c3

qα

p
(c1 − w(‖x‖2)I(‖x‖2 ≤ qα)) − 1

��
. (29)

⊓⊔
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