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hat is it, exactly, that scientists do? How, exactly, do they do it? How is a 

scientific hypothesis formulated? How does one choose one hypothesis over 

another? 

It may be surprising that questions such as these are still 

discussed. Even more surprising, perhaps, is the fact that 

the discussion is still moving forward, that new ideas are 

still being added to the debate. Certainly most surprising 

of all, over the last 30 years or so, the normally concrete 

field of computer science has provided fundamental new 

insights. 

Scientists engage in what is usually called inductive rea­

soning. Inductive reasoning entails making predictions 

about future behavior based on past observations. How­

ever, defining the proper method of formulating such pre­

dictions has occupied philosophers through the ages. 

In fact, the British philosopher David Hume ( 1711-1776) 

has argued convincingly that, in some sense, proper in­

duction is impossible [3]. It is impossible because we can 

only reach conclusions by using known data and methods; 

such a conclusion is logically already contained in the start­

ing configuration; consequently, the only form of induction 

possible is deduction. Philosophers have tried to find a way 

out of this conundrum. To see where the discussion stands 

today, let's put ourselves in the position of a budding young 

scientist with a specific prediction to make. 

Let's follow the young Alice as she tries to win a bet. 
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Alice Is Offered A Bet 

Alice, walking down the street, comes across Bob, who is 

tossing a coin. He is offering odds to all passersby on 

whether the next toss will be heads or tails. The pitch is 

this: he'll pay you two dollars if the next toss is heads; you 

pay him one dollar if the next toss is tails. Alice is intrigued. 

Should she take the bet? Certainly, if Bob is tossing a fair 

coin, it's a great bet. Probably she'll win money in the long 

run. After all, she would expect that half Bob's tosses 

would come up heads and half tails. Giving up only one 

dollar on each head's toss and getting two for each tails­

why, in a while she'd be rich! 

Of course, to assume that a street hustler is tossing a 

fair coin is a bit of a stretch, and Alice is no dummy. So 

she watches for a while, recording how the coin comes up 

for other bettors, writing down a 1 for heads and a 0 for 

tails. After a while, she has written 01010101010101010101. 

Perhaps Bob manipulates the outcomes. Common sense 

tells Alice that she can expect foul play when she plays 

with Bob. 

What's her next move? 

Research 

Alice is now equipped with data (her record of the tosses 

she has observed) and needs to formulate a hypothesis con­

cerning the process producing her data-something like, 

"The coin has a probability of 1/2 of coming up heads." Or 

"The coin alternates between heads and tails." Which 

should it be? How does one formulate a hypothesis? As we 
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said, Alice is no dummy. She first checks out what the great 

thinkers of the past had to say about it. 

Epicurus 

The Greek philosopher Epicurus (342? B.c.-270 B.C.) is 

mainly known to us through the writings of the Roman poet 

Titus Lucretius Carus (100? B.c.-55"? B.C.), who, in his long 

poem On the Nature of the Universe, popularized 

Epicurus's stoic philosophy an10ng the Roman aristocracy. 

(What we modems usually mean by "epicurean" has little 

to do with Epicurus, by the way.) Lucretius offers expla­

nations for many natural phenomena and human practices 

(for example, he says, plausibly, that fire was delivered to 

humans by lightning), but he also admits that 

There are some phenomena to which it is not enough to 

assign one cause. We must enumerate several, though in 

fact there is only one. Just as if you were to see the life­

less corpse of a man lying far away, it would be fitting to 

state all the causes of death in order that the single cause 

of this death may be stated. For you would not be able 

to establish conclusively that he died by the sword or of 

cold or of illness or perhaps by poison, but we know that 

there is something of this kind that happened to him. [9] 

This multiple explanations approach is sometimes 

called the principle of indifference. Bertrand Russell sum­

marizes it as follows: "When there are several possible nat­

uralistic explanations ... there is no point in trying to de­

cide between them" [10]. In other words: 

PRINCIPLE OF INDIFFERENCE: Keep all hypotheses 

that are consistent with the facts. 

(To be fair, it should be pointed out that Epicurean phi­

losophy is not concerned with scientific progress but rather 
with human happiness.) 

William of Ockham 

The English cleric William of Ockham (1285-1349) is cred­

ited with formulating a different principle commonly called 

"Occam's Razor." He wrote, "Entities are not to be multi­

plied without necessity" and "it is vain to do with more 

what can be done with fewer." Again according to Bertrand 

Russell [ 10], "That is to say, if everything in some science 

can be interpreted without assuming this or that hypo­

thetical entity, there is no ground for assuming it." As pop­
ularly interpreted, we have: 

OCCAM'S RAZOR: Among all hypotheses consistent with 
the facts, choose the simplest. 

This is taken as given by most scientists and sometimes 

even explicitly stated. The great mathematician John von 
Neumann wrote, 

... the sciences do not try to explain, they hardly try to 

interpret, they mainly make models .... The justification 
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(of a model) is solely and precisely that it is expected 

to work. ... Furthermore, it must satisfy certain aes­

thetic criteria-that is, in relation to how much it de­

scribes, it must be simple. [12] 

Of course, there are problems with this. Why should a 

scientist be governed by "aesthetic" criteria? What is meant 

by "simple"? Isn't such a concept hopelessly subjective? 

We're wading in deep waters now. However, we are 
wading not alone but together with the greatest scientist 

of all time, "Fortunate Newton, happy childhood of sci­

ence!" in Einstein's phrase. Isaac Newton formulated in his 

Principia [8]: 

Newton's Rule #1 for doing natural philosophy: We 

are to admit no more causes of natural things than such as 
are both true and sufficient to explain the appearances. To 
this purpose the philosophers say that Nature does noth­

ing in vain, and more is in vain when less will serve; for 

Nature is pleased with simplicity, and affects not the pomp 

of superfluous causes. 

Thomas Bayes 

The English mathematician and cleric (clerics keep pop­

ping up in all this) Rev. Thomas Bayes (1702-1761) offered 

what is in essence a modified principle of indifference. 

Rather than accepting all hypotheses consistent with the 

facts as equal, he gave a method of assigning probabilities 

to hypotheses. 

Bayes's Rule: The probability that a hypothesis is true is 

proportional to the prior probability of the hypothesis mul­

tiplied by the probability that the observed data would have 

occurred assuming that the hypothesis is true. [2] 

Suppose we have a priori a distribution of the proba­

bilities P(H) of the various possible hypotheses. We want 

the list of hypotheses to be exhaustive and mutually ex­

clusive so that I P(H) = 1, the summation taken over 

every possible hypotheses H. Assume, furthermore, that 

for all such H we can compute the probability1 Pr(DIH) 

that sample D arises if H is the case. Then, we can also 

compute the probability Pr(D) that sample D arises at all: 

Pr(D) = 2_)rCDIH) P(H), 

summed over all hypotheses. From the definition of con­

ditional probability, it is now easy to derive the familiar 

mathematical form of Bayes's Rule: 

PrCHID) = Pr(Dflf) P(H) . 
Pr(D) 

Despite the fact that Bayes's Rule essentially rewrites 

the definition of conditional probability, and nothing more, 

'We use notation Pr( ) to distinguish computed probabilities from prescribed 

probabilities like the a priori probability P( ). 



its interpretation and application are profound and con­

troversial. The different H's represent the possible alter­

native hypotheses concerning the phenomenon we wish to 

discover. The term D represents the empirically or other­
wise known data concerning this phenomenon. The factor 

Pr(D), the probability of data D, is considered as a nor­

malizing factor, so that I PrCHID) = 1, the sum taken over 
all hypotheses. 

The factor P(H) is called the a priori, initial, or prior 

probability of hypothesis H. It represents the probability 

of H being true before we have obtained any data. The 

prior probability P(H) is often considered as the experi­

menter's initial degree of belief in hypothesis H. 

The factor Pr(HiD) is called the final, inj'erred, or pos­

terior probability, which represents the adapted probabil­

ity of H after seeing the data D. In essence, Bayes's Rule 

is a mapping from prior probability P(H) to posterior prob­

ability Pr(HID) determined by data D. 

Continuing to obtain more and more data and repeat­

edly applying Bayes's Rule using the previously obtained 

inferred probability as the current prior, eventually the in­

ferred probability will concentrate more and more on the 

"true" hypothesis. It is important to understand that one 

can find the true hypothesis also, using many examples, by 

the law of large numbers. In general, the problem is not so 

much that in the limit the inferred probability would not 
concentrate on the true hypothesis, but that the inferred 

probability should give as much information as possible 

about the possible hypotheses from only a limited num­

ber of data. Given the prior probability of the hypotheses, 

it is easy to obtain the inferred probability and, therefore, 

to make informed decisions. 

Thus, with Bayes's Rule, we keep all hypotheses that are 

consistent with the observations, but we consider some 
more likely than others. As the amount of data grows, we 

home in on the most likely ones. 
But there is a nasty little phrase there: "the experi­

menter's initial belief in the hypothesis." How can a neu­

tral observer have such an initial belief? How can the 
process of assigning probabilities get started? This is 

known as the problem of assigning a priori probabilities. 

As a historical note: The memoir [2] was posthumously 

published in 1764 by Bayes's friend the Rev. Richard Price. 
Properly speaking, Bayes's Rule as given is not due to 

Bayes. Pierre-Simon, Marquis de Laplace, whom we will 

meet again later in this narrative, stated Bayes's Rule in its 
proper form and attached Bayes's name to it in [5]. 

Where Does This Leave Alice? 

Now that Alice knows the thoughts of the ancients, what 
should she do. Should she take the bet? Her basic question 

is, "What process (that is, what kind of coin) caused the 

sequence 01010101010101010101?" That's a tough one; so 
like any good scientist, she first tries to answer a simpler 

question: Is Bob tossing a fair coin (one where heads and 

tails are equally likely to come up) or not? Since a fair coin 

could cause such a sequence, Epicurus says we can't re­
ject that hypothesis. (But we can't reject a lot of other hy-

potheses, either.) Occam says accept the fair coin hypoth­

esis if it is simpler than any other. (But he offers no help 

in determining if "the probability of heads is 1/2" is simpler 

than, say, "the probability of heads is 1/3. ") Bayes's rule 

has some intuitive appeal here. The sequence doesn't seem 

likely to have resulted from tossing a fair coin. Why not? 

What does Alice expect a fair-coin sequence to look like? 

Randomness 

What bothers Alice is that the sequence of coin tosses 
doesn't look random. She expects that a fair coin produces 

a random sequence of heads and tails. But what is "ran­

dom"? She has intuition about the concept to be sure-

00101110010010111110 looks more random than 

01010101010101010101-but, precisely, what is meant by 
"random"? 

Again, let's review the thoughts of the sages. Dr. Samuel 

Johnson (1709-1784), the great eighteenth-century master 

of conversation, had something to say on just about all top­
ics. His biographer, James Boswell, wrote: 

Johnson was quite proficient in mathematics. . . . Dr. 

Beattie observed, as something remarkable which had 

happened to him, that he chanced to see both the No. 1 
and the No. 1000 of the hackney-coaches, the first and 

the last. "Why sir," said Johnson, "there is an equal 

chance for one's seeing those two numbers as any other 
two." He was clearly right; yet the seeing of two ex­

tremes, each of which is in some degree more conspic­

uous than the rest, could not but strike one in a stronger 

manner than the sight of any other two numbers. [l] 

Many of us (including Alice) would agree with Boswell. 

(Most of us are not Samuel Johnson, of whom it was also 
said, "There's no arguing with Johnson; for when his pis­

tol misses fire, he knocks you down with the butt end of 
it.") But why are the two numbers Dr. Beattie observed 

more "conspicuous" than any other two? What does that 
mean? Aren't these two numbers just as likely as any other 

two numbers (all pairs with equal probability 1/1,000,000)? 
The great French mathematician Pierre-Simon Laplace 

(1749-1827) addressed the question of why our intuition 

tells us that a regular outcome of a random event is un­

likely: 

We arrange in our thought all possible events in various 
classes; and we regard as extraordinary those classes 

which include a very small number. In the game of heads 

and tails, if head comes up a hundred times in a row, 
then this appears to us extraordinary, because the al­

most infinite number of combinations that can arise in 
a hundred throws are divided into regular sequences, or 

those in which we observe a rule that is easy to grasp, 
and into irregular sequences, that are incomparably 

more numerous. [5] 

What is regular and what is irregular? If Alice could con­

vince herself that the particular sequence she observed is 
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random, she could reasonably assign a high probability to 

the hypothesis that Bob is tossing a fair coin, and she 

should take the bet he offered. 
(In fact, betting strategies were a basis for early defini­

tions of randomness-in essence, a sequence of n coin 
tosses is random if you can't predict the nth toss by look­
ing at the first n - 1 tosses. But such definitions of ran­

domness ran into difficulties when attempts were made to 
make them mathematically precise.) 

Yet, the classical calculus of probabilities tells us that 
100 heads are just as probable as any other sequence of 
heads and tails, even though our intuition tells us that it is 
less "random" than some others. Laplace distinguishes be­
tween the object itself and a cause of the object: 

The regular combinations occur more rarely only be­
cause they are less numerous. If we seek a cause wher­
ever we perceive symmetry, it is not that we regard the 
symmetrical event as less possible than the others, but, 
since this event ought to be the effect of a regular cause 
or that of chance, the first of these suppositions is more 
probable than the second. On a table we see letters 
arranged in this order C o n s t a n t i n o p 1 e, and we 
judge that this arrangement is not the result of chance, 
not because it is less possible than others, for if this 
word were not employed in any language we would not 
suspect it came from any particular cause, but this word 
being in use among us, it is incomparably more proba­
ble that some person has thus arranged the aforesaid 
letters than that this arrangement is due to chance. 

Let us try to turn Laplace's argument into a formal one. 
Suppose we observe a binary string s of length n and want 
to know whether we must attribute the occurrence of s to 
pure chance or to a cause. "Chance" means that the literal 
s is produced by fair coin tosses. "Cause" means that there 
is a causal explanation for s having happened-a causal 
explanation that takes rn bits to describe. The pure chance 
of generating s itse(f literally is about 2-n. But the proba­
bility of generating a cause for sis at least 2-rn. In other 
words, if there is some simple cause for s (s is regular), 
then m < < n, and it is about 2n -rn times more likely that 
s arose as the result of some cause than literally by a ran­
dom process. It now remains to make this intuition oper­
ational. 

Computer Science to the Rescue 

In the mid-1960s, three men-Ray Solomonoff, Andrei N. 
Kolmogorov, and Gregory Chaitin-independently in­
vented the field now generally known as Kolmogorov com­
plexity. (Actually, Solomonoff was the earliest by a couple 
of years, and Chaitin last, but Kolmogorov, in the middle, 
was already world famous and his mathematics impecca­
ble, and his name got attached to the field. As Billie 
Holliday sang, "Them that's got shall get. Them that's not 
shall lose. So the Bible says, and, Lord, still it's true.") 
Solomonoff was addressing Alice's problem with Bayes's 
formula; how do we assign a priori probabilities to hy-
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potheses when we begin an experiment? Kolmogorov and 
Chaitin were addressing Alice's problem of defining pre­
cisely what is meant by a random sequence. All three saw 
that the notion of "computable" lay at the heart of their 
questions. They arrived at equivalent notions, showing that 
these two questions are fundamentally related, and made 
major strides toward answering the age-old questions de­

scribed above. (An extensive history of the field can be 

found in [7].) 

For those of us living in the computer age, the notion 
of "computable" is pretty much intuitive. Many of us have 
written programs; most of us have run computers. We 
know what a computer program is: it's a finite list of in­

structions telling the computer how to calculate a particu­
lar function. Once you know that, the notion of a com­
putable binary sequence or "string" is both natural and 

straightforward. 

Consider a particular computer language like FORTRAN 
or C + +. Once we fix the language, we can look at the pro­
grams that take no input-you just start them running, and 
some of them print out a binary string and stop. There are 
infinitely many such programs. Now, let s be a particular 
binary string. Some of the programs print out s; in fact, in­
finitely many of them do. Let's list them: P1, P2, P3 ... , and 
so on to infinity. Among these progran1s, there is a short­

est one. (Remember that programs themselves are binary 
strings-think of object code-so we can talk about the 
length of a program.) 

Here's the key definition: The cornple::city of a binary 
string, s, is the length of a shortest program which, on no 

input, prints out s. 

We'll use C(s) to denote the complexity of s (but we'll 
shortly replace it with a variant denoted K(s) that has the 
technical properties we need-just be prepared). 

Once we have the definition, we get a few easy facts. 

Suppose s is a string n bits long. 

l. C(s) :5 n (plus some constant). 
This says that there is a program not much longer 
than s which will print out s. The one-line program 
"print(s)" will do the job. 

2. There is a strings for which C(s) :::o: n. 

This is true since there are only 2" - 1 programs of 
length less than n, but 2" strings of length n. So at 
least one string must satisfy this inequality. 

A string satisfying the second inequality above may be 
called random. Why? Such a string is its own shortest de­
scription. In other words, it contains no regular pattern. 
For example, with the phrase "a string of 10,000 zeros," one 
can describe a 10,000-bit string with just a few letters. But 
(plausibly) the shortest way to describe the string 
00100011101011010010 is by writing it out. 

So using this idea, Alice is justified in feeling that 
01010101010101010101 is not random. She can describe it 
with a pattern: "ten alternating O's and l's." But how does 

that help her formulate a hypothesis about the nature of 
the coin Bob is flipping? 

That's where Solomonoffs ideas come in. Remarkably, 



his initial idea gave rise to a way of assigning probabilities 

to binary strings. If we define K(s) pretty much as C(s) ex­

plained above (there are some technical details we're post­

poning until the next section), we can assign a probability 

to s as follows: 

P(s) = 2-KC5 \ 

that may be taken as the a priori probability of s. This as­

signment of probabilities is called the semimeasure uni­

versal for the class of enumerable semimeasures. We'll 

just call it the universal distribution. 

So what? What exactly does this mean? (And how does 

it relate to Alice's problem?) First recall the three ancient 

principles for formulating hypotheses: the principle of in­

difference, Occam's razor, and Bayes's Rule. As pointed out 

earlier, Bayes's Rule is in a sense a refinement of the prin­

ciple of indifference. The importance of a priori probabil­

ity is that it neatly combines all three principles. 

Look at it this way: any sentence can be coded into a 

series of O's and l's. Hypotheses are sentences; so they can 

be coded as binary strings. Since a priori probability as­

signs a probability to every binary string, it assigns a prob­

ability to every hypothesis. But there's more. "Simple" hy­

potheses-the ones you favor under Occam's razor-are 

precisely those with small complexity. 

If the complexity is small, the a priori probability is big. 

So with this method of assigning probabilities to hypothe­

ses-as required by Bayes's Rule-we make the simplest 

ones most probable-as William of Ockham said we 

should. 

Our solution of the induction problem is to use Bayes's 

rule with the single a priori probability P(s) = 2-K(s) in each 

and every problem! Let's look at an example. Suppose we 

have two working hypotheses, Hi andH2. Occam's razor says 

we should favor the simpler one. In this approach, that means 

that we should favor the one with the lower complexity (the 

one with the shorter description). Bayes's formula (as with 

the principle of indifference) says we should keep them both, 

but assign probabilities to each one. The universal distribu­

tion satisfies both Occam and Bayes. Epicurus, too! Suppose 

the shortest description of Hi is 100 bits long, and the short­

est description of H2 is 200 bits long. Then we conclude that 

the probability of Hi being the correct explanation is 1;2ioo 

or about 8 x 10-31, and that the probability of H2 being the 

correct explanation is 1/2200, or about 6 x 10-6 i. 

These numbers also determine their relative probabili­

ties, so that we can choose the most likely one: Hi is about 

1030 times more likely than H2· 

We keep both hypotheses (satisfying Epicurus), assign 

probabilities to our "initial beliefs" in them (as Bayes sug­

gested we do), and favor the simpler one with a higher 

probability (so William of Ockham won't feel left out). 

One simple theory ties up a couple of millennia of phi­

losophy! 

Some Details 

This section is for those readers who would like a few more 

details. 

The first thing we want to do is to justify our calling a 

string which is its own shortest description "random." Why 

should this definition be preferable to any other we might 

come up with? The answer to that was provided by the 

Swedish mathematician Per Martin-LOf (who was a post­

doc of Kolmogorov). Roughly, he demonstrated that the 

definition "an n-bit string, s, is random iff C(s);:::: n" en­

sures that every such individual random string possesses 

with certainty all effectively testable properties of ran­

domness that hold for strings produced by random sources 

on the average. To see where this goes, think about the 

pre-Kolmogorov-complexity traditional problems of 

whether or not the infinite sequence of decimal digits in 

71" = 3.1415 ... can be distinguished from typical outcomes 

of a random source. To determine this, the sequence has 

been submitted to several statistical tests for randomness 

called, appropriately, "pseudo-randomness tests" (for ex­

ample, whether each digit occurs with frequency 1110 

within certain fluctuations). If 71" had failed any of these 

tests, then we would have said that the sequence is not ran­

dom. Luckily, it satisfies all of them. 

What Martin-Lof proved was this: Suppose you come up 

with your own definition of such a "statistical test expos­

ing non-randomness." If your definition is at all reasonable, 

then any string which meets Martin-LOfs definition also 

meets yours. Now, what is "reasonable"? Here, we have to 

examine our intuition. First of all, we feel that most strings 

are random, so we demand that of your definition. 

(Specifically, we demand that, of all the 2n strings of length 

n, at least 2n (1 - l/n2) of them do not fail your random­

ness test.) Second, we demand that there be a computer 

program to execute your statistical test-it must be effec­

tive. Technically, the set of all strings that don't meet your 

definition should be what mathematicians call recursively 

enumerable, which means that there is a computer pro­

gram that enumerates every string that fails the random­

ness test-that is, is not random. 

For instance, suppose you define random as "passing 

statistical test A." Now if an n-bit string, s, meets Martin­

Lof's definition of randomness, we want to prove that it 

will pass statistical test A. Well, suppose it doesn't; in other 

words, suppose it's one of the at most 2n1n2 strings that fail 

test A. Then, here is a description of s: 

The mth string of length n which fails test A. 

We know that m is a number between 1 and 2n/n2• We may 

not know what number m is, but we know it's in that range. 

The length of that description (if we code it in binary) in­

volves coding both n (in log n bits) and m (in n - 2 log n 

bits). This comes to at most n - log n bits (plus some neg­

ligible terms which we ignore here); hence, we can con­

clude that C(s)::;; n - log n. But then s does not meet 

Martin-Lofs definition. 
To see that Martin-Lofs definition actually is itself such 

a randomness test: In the first place, we can approximate 

C( s) by running all programs of length at most s (plus some 

constant) for as long as it takes, in rounds of one step of 

each program. As soon as a program halts, we check 
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whether its output is s, and if so, whether this program 

beats the current champion that outputs s (by being 

shorter.) In this way, we approximate the shortest program 

better and better as time goes by. This process will for each 

s, eventually determine if it is not random. (For random s, 

the process may go on forever.) This shows also the sec­

ond property, namely that fewer than 2"/n2 strings fail 

Martin-Lofs test. For instance, let A test C(s) ~ n. 

That's the justification for calling a string which is its 

own shortest description "random." It gets a bit stickier 

when you go into the details of the universal distribution. 

You have to be a bit careful when you talk about "shortest 

description." Of course, when we talk about the descrip­

tion of a string, we mean, as mentioned above, a program 

which on no input will print out that string. But if we want 

to get probabilities out of all this, we are subject to a cer­

tain key restriction: the probabilities must add up to (no 

more than) l. We are faced with the task of establishing 

that the sum of all our a pi'iori. probabilities add up to no 

more than 1. 

This almost killed Solomonoffs original idea. It was 

soon shown that if we use the sin1ple definition of short­

est description, we get that, for every n, there is an n-bit 

string, s, where the value of C(s) is at most log n. This 

means that for every n, there is a string s with P( s) at least 

2- log" or l/n. And, of course, the infinite sum 1fz + 1h + 
1/4 + ··· diverges-it's certainly not one or less! 

It was about a decade before Solomonoffs idea was res­

cued-by Leonid A Levin, another student of Kolmogorov. 

Chaitin had the same idea, but again later. The device is, 

instead of considering the length of computer programs in 

general, to consider only certain computer programs. 

Specifically, we restrict our attention to prefix:free com­

puter programs, that is, a set of programs, no one of which 

is a prefix of any other. (This is not too hard to imagine. 

For instance, if you design a computer language in which 

every progran1 ends >v:ith the word "stop" (and "stop" may 

not appear anywhere else), the programs written in your 

language fom1 a prefix-free set.) 

The reason this approach saved the day is a key theo­

rem proved in 1949 by L.G. Kraft (in his master's thesis at 

MIT (4]). It says in the present problem that if we restrict 

our attention to prefix-free sets, then the resulting a pri­

ori probabilities will sum to no more than 1. 

From now on we'll use this slightly different definition 

of C(s), which we denote by K(s). So K(s) is the length of 

the shortest progran1 for s an1ong all prefix-free syntacti­

cally correct progran1s in our fixed programming language. 

Thus, the universal distribution P(s) = 2-K(s) meets the 

requirements of probability theory. Now, what is our jus­

tification for calling it "universal"? Briefly, it's this: Suppose 

you have defined a probability distribution on strings. As 

long as it meets a reasonable criterion (namely that it be 

enumerable, which is weaker than requiring that there is a 

computer program which, given s as input, will print out 

the probability you assign to s ), then the universal distrib­

ution dominates yours, in the sense that there is some con­

stant k, which depends on your probability but not on s, 
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for which k Pr(s) is as least at large as the probability you 

assigned to s. This is called "multiplicative domination" and 

was proved by Levin in the early seventies. 

In a way, this is similar to the idea of a "universal" Turing 

machine which is universal in the sense that it can simulate 

any other Turing machine when provided with an appropri­

ate description of that machine. It is universally accepted 

that the Turing machine is a mathematically precise version 

of what our intuition tells us is "computable," and therefore 

the universal Turing machine can compute all intuitively 

computable functions (11). The latter statement is not a 

mathematical one, it cannot be proved: it is known as 

Turing's Thesis; in related form, it is called Church's Thesis. 

Just as the Kolmogorov complexity is minimal (up to an ad­

ditive constant) among all description lengths that can be 

approximated from above by a computational process, so 

does the universal distribution multiplicatively dominate 

(and is in a particular sense close to) each and every enu­

merable distribution-distributions that can be approxi­

mated from below by a computational process. Hence, there 

are a lot of universalities here, and the Turing Thesis spawns: 

KOLMOGOROV'S THESIS: The Kolmogorov complexity 

gives the shortest description length among all description 

lengths that can be effectively approximated from above 

according to intuition. 

LEVIN'S THESIS: The universal distribution gives the 

largest probability among all distributions that can be ef­

fectively approximated from below according to intuition. 

Repaying the Source 

So the normally concrete field of computer science has 

contributed to an abstract philosophical debate which has 

occupied the ages. One can, in tum, use the philosophical 

ideas presented to contribute to the field of computer sci­

ence. Several areas of computer science have benefited 

from the basic concept of mi·iversal distribution. We will 

look at one of them here-namely the area called algo­

rithm analysis. Algorithm analysis is concerned with de­

termining the amount of time it takes to run a particular 

program. Of course, the amount of time a program takes 

depends on the size of the input to the program. For ex­

an1ple, the number of steps required to sort n numbers us­

ing the sorting technique computer scientists call quick­

sort2 will, in the worst case, be proportional to n2. 

The italics are needed. Another way to approach algo­

rithm analysis is to detennine how fast a program runs on 

the average. This needs to be made precise. Let's look 

closer at the problem of sorting n numbers. We may as well 

assume our input is the n numbers i 1, i 2, ... , i 11 mixed up 

somehow, and we want to output them in order. The time 

2Briefly, the sorting algorithm known as quicksort is this: 

• Rearrange the list of numbers into two smaller lists, the left hall and the right 

half, in such a way that every member of the left half is less than every mem· 

ber of the right half. 

• Sort the left half, and sort the right half. 

• Merge the two sorted halves into one sorted list. 



required by quicksort is proportional to n2 when the input 

is the numbers already sorted. But, interestingly, for most 

inputs (where the numbers are not even close to being in 

order), the time required will be proportional to n log n. 
In other words, there is an input which will force quick­

sort to use n2 (or so) steps, but for most inputs, quicksort 

will actually run much faster than this. Now, if all inputs 

are equally likely, the average running time for quicksort 

is much less than its running time in the worst case. 

Again, the italics are needed. Are all inputs equally likely 

in "real" life? Actually, it doesn't seem that way. In "real" 

life, it seems that much computer time is spent sorting lists 

which are nearly sorted to begin with. What interests us 

here is the remarkable relation between worst-case run­

ning times and average-case running times revealed by the 
universal distribution. 

To reiterate, the term average implies the uniform distri­

bution. The term worst case is independent of any distribu­
tion. It is somehow natural to expect that in many cases the 

average is better (in this case lower) than the worst case. 

It came as a surprise when it was shown by two of us 
(ML and PV) [6] that if we assume the universal distribu­

tion, that is, if we assume that inputs with low complexity 

(ones with "short descriptions") are more likely than in­

puts with high complexity, then the running time we ex­

pect under this distribution is (essentially) the worst-case 
running time of the algorithm. 

This is not too hard to see in the case of quicksort. As 

we said, the worst case for quicksort is when the input is 

already sorted. In this case, the input has a short de­

scription (namely "the numbers 1 through n in order"), 

whereas if the input is all mixed up, it is "random" and is 

its own shortest description. Under the universal distrib­
ution, the already sorted input is far more likely than the 

unsorted input, and a generalization of this causes quick­
sort to require n2 steps. 

Why is this true for algorithms in general? Again, it's not 

too hard to see why, but the explanation is a bit more ab­

stract. Suppose algorithm A runs fast on some inputs and 
slowly on others. Then, the particular input which causes 

A to run slowest has a short description, namely "that in­

put of size n which causes algorithm A to run slowest." 

This is a description of length log n (plus some constant) 

which describes a string of length n. So the length-n string 
described has low complexity and is assigned a high prob­

ability under the universal distribution. This is intuitively 

the reason why the universal distribution assigns high 

enough probability to such simple strings to slow the av­

erage running time of A to its worst-case running time. 

The universal distribution is a great benefactor for learn­
ing and induction; but it is so bad for average running time 

and all other reasonable computing resources like com­

puter memory use, that such distributions are now called 
"malignant" by computer scientists. 

The Universal Bet 

We left Alice back there a ways. Have we really helped her? 
After all, Bob is about to flip the coin again, and it's time 

for Alice to put up or shut up. Well, we are forced into the 

theoretician's defense here. Yes, we have helped Alice. We 

have provided her with a solid framing of the problem she 
confronts. 

If she's clever, she can make a safe bet with Bob. In fact, 

Alice plays the stock market because, just like Bob's offer, 

the profits go up all the time. However, in the stock market, 

investment companies tell you that "past performance is no 

guarantee for future performance." Alice knows about cov­

ering her position with side bets called "puts" and "calls." 

So, let's see how Alice can cover her position with Bob. 

What she can propose is this: Bob flips his coin 1000 

times and one part of the scheme is his original offer of 

two dollars for one dollar payout on "heads." (Alice is a 

scientist, remember. This is lab work, and long lab hours 

are no deterrent to her.) The results of these 1000 flips are 
recorded, yielding a string-let's call its-of 1000 I's and 

O's representing heads and tails. With the second part of 

the scheme, Alice covers her position: Alice pays Bob one 
dollar and Bob pays Alice 

21000-K(s) 

dollars. Now, if Bob's on the square, like the stock market, 

he has to take this side bet, since his expected payout is 

less than one dollar. This follows from Kraft's work men­
tioned above, which sets the expected payout at 

I 2-100021000-K(s) :5 l, 

where the sum is taken over all binary strings s of length 
1000. (The expected payout is actually smaller than 1 be­

cause there are programs that have length ¥:- 1 OOO and there 

are other programs than shortest programs.) 

If Bob is as honest as Alice's stock broker (who accepts 
Alice's buying and selling orders, including her side-bet or­

ders for puts and calls), Bob should be happy to accept 

Alice's proposal. In fact, he can expect to earn a little on 

the side bet. But if Bob's crooked, and his flips do not re­
sult in a random string, but something like 000000 ... 

00000000000000, then he'll receive 1000 dollars from 

Alice on the main bet but he'll pay out something like 
21000-tog iooo dollars on the side bet. That's about-well, 

who cares? Bob doesn't have that much money. 

If Bob's honest, this is no worse than his original pro­
posal. But if Bob has any brains, he'll pack up and move 

to another comer where Alice can't bother him, because 

in this game, Alice wins big if Bob is honest-about 500 

bucks-and even bigger if he cheats! 
Using the universal distribution, we have constructed 

the perfect universal bet that protects against all fraud. 
But there's a catch: none of these schemes can actually 

be carried out. The complexity of a string is noncom­

putable. Given a strings, there is no way to determine what 
K(s) is. Alice can't determine which of her hypotheses have 

low complexity and which do not. The payoff schemes she 
proposes to Bob can't be calculated. So it appears she's on 

her own. 
Don't leave it at that. An idea as elegant as the univer­

sal distribution cannot be just tossed out. To make the uni-
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versa! side bet feasible, Alice can pay Bob one dollar and 

Bob pays Alice 

2 !OOO-- length of p 

dollars for any prefix-free program p that Alice can exhibit 
after the fact and that computes s. This involves a com­
putable approximation "length of some programp to com­
putes" of K(s) ="length of the shortest program to com­
pute s." Consequently, Alice may not win as much in case 
of fraud because length of p:::: K(s) by definition (and 
Kolmogorov's thesis). In particular, the scheme is not fool­
proof anymore, for there may be frauds that Alice doesn't 

detect. 

However, for the particular bet proposed by Bob, Alice 
only cares about compressibility based on deviating fre­
quency of l's, because she can just bet that each bit will 
be l. Such a betting strategy and side bet, based on count­
ing the number of l 's in s and compressing s by giving its 
index in the set of strings of the same length as s and con­
taining equally many l 's as s, are both feasible and fool­
proof. 

Wonderful Universal Induction 

We started out by asking how learning and induction can 
take place at all; and we have followed Alice in her quest 
to the universal distribution. Now for the full problem: from 
universal gambling to universal induction. 

It is a miracle that this ages-old problem can be satis­
factorily resolved by using the w1iversal distribution as a 
"universal a priori probability" in Bayes's Rule. Ray 
Solomonoff invented a perfect theory of induction. Under 
the relatively mild restriction that the true a priori distri­
bution to be used in Bayes's Rule is computable, it turns 
out that one can mathematically prove that using the sin­
gle fixed universal distribution instead of the actually valid 
distribution (which may be different for each problem we 
want to apply Bayes's Rule to) is almost as good as using 
the true distribution itself! This is the case both when we 
want to determine the most likely hypothesis and when we 
want to determine the best prediction-which are two dif­
ferent things. 

They are two different things because the best single hy­
pothesis does not necessarily give the best prediction. For 
example, consider a situation where we are given a coin of 
unknown bias p of coming up heads, which is either p 1 = 
1 /~i or p 2 = 2/ 3. Suppose we have determined that there is 
probability 21:, that p = p1 and probability 1/3 that p = p2. 

Then, the best hypothesis is the most likely one: p = p1, 

which predicts a next outcome heads as having probabil­
ity 1/;3• Yet, the best prediction is that this probability is the 
e.rpectation of throwing heads, which is 

To take the prediction case: Solomonoff has shown that 
using the universal distribution, the total expected predic­
tion error over infinitely many predictions is less than a 
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fixed constant (depending on the complexity of the true a 
priori distribution). This means that the expected error in 
the nth prediction goes down faster than 1/n. This is good 
news, and in fact, it is better news than any other infer­
ence method can offer us. It turns out that these ideas can 

be used to prove Occam's Razor itself. 
Traditional wisdom has it that the better a theory com­

presses the learning data concerning some phenomenon 
under investigation, the better we are enabled to learn, 
generalize, and predict unknown data. This belief is vindi­
cated in practice but apparently has not been rigorously 
proved in a general setting. Two of us [PV and ML] have 
recently shown that, indeed, optimal compression is almost 
always a best strategy in hypotheses identification. For the 
different prediction question, whereas the single best hy­
pothesis does not necessarily give the best prediction, we 
demonstrated that, nonetheless, compression is almost al­

ways the best strategy in prediction methods. 
Statisticians like Jorma Rissanen and Chris Wallace 

know about Alice's problem. They have translated 
Solomonoffs ideas into workable (that is, easily com­
putable) forms called "minimum description length" algo­
rithms [7]. Such algorithms help many Alices get on with 
practical problems nowadays, such as video scene analy­
sis, risk minimization, and even playing the stock market.3•4 
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