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Abstract: Melanoma is the less common but the most malignant skin cancer. Since the survival

rate of melanoma metastasis is about 10–15%, many different studies have been carried out in

order to find a more effective treatment. Although the development of target-based therapies and

immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still

remains a big challenge for oncologists. Here, we collect recent data about the emerging role of

melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement

in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical

stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being

considered small conserved regulators with the limitation of target specificity, we outline the dual

role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to

other tumors.
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1. Introduction

1.1. Melanoma: Its Progression and Metastasis

Melanoma is the most malignant skin cancer and its incidence has been steadily increasing over the

past three decades, accounting for the majority of skin cancer-related deaths worldwide [1]. Melanoma

originates from an altered proliferation of melanocytes, a skin minority cell population, with a low

proliferative potential, deriving from neural crest cell precursors. They produce melanin pigment,

providing it to the nearby keratinocytes. UV exposure induces melanocytes to proliferate and produce

melanin, by a finely tuned process, depending upon specific pathways of which alteration is associated

to the melanocyte malignant transformation [2,3].

Melanomagenesis has been classically described as a process characterized by a linear progression

of normal melanocytes through various precursor lesions and ultimately to melanoma [4]. The initial

step is the formation of a nevus, which consists of the proliferation and aggregation of melanocytes

located at the skin layer and epidermis; some of them could also show an altered growth pattern

changing into a dysplastic nevus phenotype. However, it may arise from a preexisting melanocytic

nevus or as a new lesion. This stage of progression is characterized by the disruption of the

p16INK4a-retinoblastoma (Rb) pathway, mostly by inactivation of CDKN2A, due to its mutations [5,6].

Successively, the continuous and unchecked melanocyte proliferation allows them to penetrate into

the epidermal/dermal junction or within the dermis by a radial growth phase (RGP). At this stage,

neoplastic melanocytes show an immortal phenotype, achieved by the activation of human telomerase
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reverse transcriptase (hTERT) [7]. Then, cells may grow into the dermis, where, they interact with other

cell types and gain physical access to both lymphatics and blood vessels, and may enter into the final

step of progression [4]. The final stage of melanoma progression is characterized by a vertical growth

phase (VGP), requiring mutations repressing apoptosis, which allow cells to survive in the absence of

keratinocytes as well as PTEN loss, over-expression of various protein kinases or RAS activation, and

β-catenin activation (reviewed in Bennett et al.) [8]. The loss of E-cadherin along with the aberrant

expression of N-cadherin and αVβ3 integrin have also been shown to be crucial for the progression

from RGP to VGP final melanoma progression (reviewed in Miller et al.) [9] (Figure 1).

kinases or RAS activation, and β
cadherin and αVβ3 integrin have also

–

–

–

Figure 1. Schematic representation of melanoma onset and progression. Melanoma onset and

progression described in the text was illustrated, underlining its clonal evolution, phenotype switching,

and high heterogeneity [10].

Although Clark classification is still used for melanoma stadiation, substantial evidence suggests

that melanomagenesis is not a result of a linear progression of alterations from nevus through all the

different phases to the metastatic melanoma, but MM can originate from each of the described phases,

without necessarily passing through all of them.

In fact, this model has been improved from the discovery and identification of cancer stem cells

(CSCs). It has been demonstrated that malignant melanoma stem cells (MMSCs) are involved in the

melanoma origin, progression, and metastasis [11]. MMSCs are similar to adult stem cells for their

multipotency and plastic phenotype properties [12–14]. These cells express VE-cadherin, and the

receptor tyrosine kinase for ephrin (Eph), and are able to induce de novo tumor angiogenesis by a

vasculogenic mimicry (VM) process. At the same time, the growth factors produced from endothelial

cells and/or fibroblasts present in the microenvironment play an important role in melanoma progression,

as well as immune cells infiltrating the tumor mass and their cytokines [15–18].

Furthermore, our growing knowledge about the epigenetic mechanisms involved in cancer

development provide a more complex picture of melanoma progression and metastasis [19,20].

1.2. Melanoma Risk Factors

Melanoma progression is a combination of environmental and genetic risk factors [21,22]. Among

the environmental factors, the accumulation of sun exposure (or by UV radiation from tanning beds)

is the primary and most common risk factor. Melanocytes are resistant to UV-induced apoptosis.

They continue to grow and accumulate genetic mutations, leading to the formation and growth of

a melanoma [23,24]. Other environmental risk factors for melanoma have been demonstrated to be

the skin pigmentation phenotype (fair or light skin) as well as the existence of atypical and multiple

nevi [25–28]. A role of the circadian rhythm in melanoma development has also been reported. It has

been demonstrated that melatonin, a major output product of thee circadian rhythm, plays a protective

role in melanoma [29].
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Along with the environmental risks, genetic risk factors have a large impact on melanoma

onset and progression. Somatic mutations in genes, critical in the regulation of pathways, involved

in cell proliferation, differentiation, and survival have been identified in approximately 60% of

melanomas. (e.g., BRAF, NRAS, TP53, NF1, MITF, c-kit, CDKN2A, PTEN, RAC1, GNAQ, GNA11, and

RPS27) [30–33].

Although sporadic melanoma is the most common, melanoma may occur in multiple members of

the same family and it may be due to shared environmental risk factors and/or genetic mutations, or

both [34–37].

1.3. Melanoma Current Treatment

Surgery represents the principal treatment for accessible and early stage cutaneous melanoma

(I–II stage). Although recent progresses in melanoma diagnosis and treatment have contributed to

substantially increasing the metastatic cancer patient survival, treating metastatic melanoma (MM)

still remains a key challenge for oncologists [38,39].

Here, we briefly summarize the main categories of current melanoma treatment:

1.3.1. Surgical Treatment

Surgery, as mentioned above, is used for early melanoma (I–II stage) treatment. After complete

excision of a primary melanoma radiation therapy (RT), can be considered as adjuvant therapy [40].

Because of the high number of metastases or the low accessibility and difficult of detecting small

metastatic lesions by using current imaging tools, MM is highly unlikely to be cured by surgery.

Despite this, it has been demonstrated that some melanomas in stage III (rarely IV), having not been

widely spread and carrying the BRAF mutation, can be treated surgically. In these cases, it has been

demonstrated that their treatment with the BRAF/MEK inhibitors combination, as a neoadjuvant and

adjuvant before and after surgery, provided a significant change in preventing later recurrence [41].

1.3.2. Chemotherapy

For melanoma patients with progressive, refractory, or relapsed disease, chemotherapy has

been used for over three decades. The most commonly used chemotherapeutic agents have been

temozolomide (TMZ) and dacarbazine (DTIC), alkylating agents, which are able to inhibit DNA

synthesis by stopping or slowing the growth of cancer cells [42,43].

DTIC has been the standard care until the approval of the first target-based therapy with

vemurafenib in 2011, a BRAF inhibitor (BRAFi), along with ipilimumab, the first immune checkpoint

inhibitor, a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody.

Since then, several target-based therapeutics and immune checkpoint inhibitors have been

approved for MM treatment. Therapies based on these agents have significantly increased the median

overall survival (OS) of MM patients from ~9 months before 2011 to 2 plus years, and, in some cases,

producing long-term disease remissions.

Nowadays, chemotherapy is only used after and when more effective treatments, such as target

therapy and checkpoint blockade treatments, fail.

1.3.3. Target-Based Therapy

It has been shown that the mitogen-activated protein kinase (MAPK) pathway is critically involved

in melanoma pathogenesis [44]. Some of the genes encoding the proteins belonging to the MAPK

cascade are mutated in melanoma cells, compared to melanocytes, providing a solid strategy for the

development of target-based therapies.

About 40 different mutations in the BRAF gene have been detected. The most frequent has been

found in exon 15 and it is responsible for substitution of valine in glutamic acid at position 600 of the

BRAF protein (BRAF-V600E-) [45,46]. It constitutes about 90% of the BRAF mutations observed in

melanoma and in almost 50% of melanoma patients [47]. The mutated BRAF gene encodes for an



Int. J. Mol. Sci. 2020, 21, 878 4 of 28

active BRAF protein inducing the constitutive MAPK pathway activation and subsequently promoting

cell proliferation and preventing apoptosis in melanoma cells [48].

Other mutations have been also identified in the NRAS gene in approximately 15–20% of

melanomas [44,49,50].

Furthermore, molecular alterations have also been identified in other genes, such as c-KIT and

GNαQ (Guanine Nucleotide-binding protein G(q) subunit alpha (Gαq)), which have been described in

mucosal and uveal melanoma subtypes, respectively [51].

Based on these findings, several agents inhibiting the mutated BRAF and MEK proteins have

been developed and, since 2011, different target-based therapeutics have been approved by the Food &

Drug Administration (FDA), as shown in Figure 2A.

–

GNαQ binding protein G(q) subunit alpha (Gαq)

 

–

Figure 2. Melanoma treatment advances. Target-based therapy (A) and immunotherapy drugs

(B) FDA-approved.

However, recent investigations have shown that the continuous treatment with BRAF and MEK

inhibitor agents (BRAFi, MEKi) of patients carrying BRAF-mutant melanoma consistently failed due to

the selection of genetic mutations conferring disease resistance or the ability of melanoma endorsing

drug resistance-associated transcriptional programs [52,53].

Since 2014, the combination of two drugs has been extensively studied in order to escape the

phenomenon of drug resistance [54–56]. It has been demonstrated that intermittent BRAFi dosing,

using fixed on/off schedules, leads to a resistance time delay in preclinical studies [54].

Furthermore, patients with BRAF-mutant melanoma now have a new treatment option:

Encorafenib (a new generation BRAFi) with binimetinib (a new generation MEKi). The duration of

response to this treatment in a pivotal trial was 16.6 months and responses were seen in 63% of patients.

Compared to the previously FDA-approved combination of dabrafenib (BRAFi) and trametinib (D/T),

the new drugs appear to have similar response rates but a longer duration of response [57]. However, a

direct comparison of the two combinations in a clinical trial will be needed to make a solid conclusion

about the comparative efficacy of the two treatments [56].
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1.3.4. Immunotherapy

Several different types of immunotherapy have been developed over the years, as illustrated in

Figure 2B. The most important are checkpoint inhibitors that stimulate or trigger the immune system

to attack and kill the cancer cells.

Early immunotherapeutic agents, interleukin-2 (IL-2) and interferon α-2b (IF-α 2b), a recombinant

analogue, were FDA approved as single agents in 1998 and 2011, respectively. These agents act by

stimulating the immune system activity against the cancer and have been used in resected stage II/III

patients and sometimes in stage IV melanoma patients. In these cases, an overall response rate of

10–20% with a small effect on survival and a durable long-term benefit in less than 10% of patients was

observed [58].

However, an upregulation in CTLA-4 and PD-L1 expression in malignant cells, as well as a

downregulation of the antigen presentation processing has been demonstrated, depending on their

altered genetic and epigenetic properties [59]. These cells are also able to adopt alternative signaling

pathways to prevent cytotoxic T cells from causing cancer cell death silencing the immune surveillance

and growing unchecked.

Ipilimumab, an inhibitor of CTLA-4 (anti-CTLA-4), has been approved for the treatment of

advanced or unresectable melanoma This agent has been shown to be effective as monotherapy and in

combination with nivolumab (anti-PD-1) [60]. Another antibody, anti-PD-1, is pembrolizumab, and

is FDA approved for melanoma and the treatment of different types of cancer. These agents show

a dramatic increase in the durable response rates and a manageable safety profile in monotherapy.

However, more than 50% of patients did not respond to this treatment.

In order to enhance the response rates in patients, combined drugs were also evaluated. In

particular, the combination of ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1) has been

observed to be significantly more efficient in metastatic melanoma patients compared to their use in

monotherapy [61].

Furthermore, oncolytic virus anti-cancer therapy has recently been evaluated for melanoma

treatment. This therapeutic strategy relies on the oncolytic virus’ ability of indirectly lysing tumor cells,

leading to the release of soluble antigens and interferons, driving the antitumor immunity. In particular,

the attenuated herpes simplex virus-based oncolytic virus talimogene laherparepvec (T-VEC) was FDA

approved in 2015, and it is currently used as a local treatment of patients carrying an unresectable

advanced stage melanoma [62].

Recently, TLR9 agonists (SD-101, CMP-001, IMO-2125) were developed as new

immunotherapeutics, which are intratumorally injected mostly in combination with other drugs

as a pairing therapy [63]. Scientific investigations have shown their ability to increase the expression

of TRL9 receptor, a critical key factor in the activation of the innate and adaptive immunosystem in

cancer [64]. Interestingly, Milhem et al. also reported a positive response to these drugs in the tumor

sites not locally injected with the drug (abscopal effect) [65].

1.3.5. Vaccine

Tumor cells are characterized by genetic instability, resulting in the occurrence of a large number of

mutations, as well as the expression of non-synonymous mutations producing tumor-specific antigens,

also known as neo-antigens. Researchers from Dana-Farber Cancer Institute, the Broad Institute of

MIT, and Harvard created vaccines targeting tumors’ neoantigens. These molecules are new to the

immune system and may trigger an immune response. It has been reported that in patients with

melanoma, a personalized treatment vaccine generated a robust immune response against the cancer

and may have helped to prevent it from returning [66]. Although this clinical trial is in the I phase, the

studies confirm the potential of neo-antigen vaccines to treat cancer and should lead to larger trials in

the future in order to help address such challenges for effective cancer immunotherapy.
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1.3.6. Pairing Therapies

It has been demonstrated that the combination therapy, among the target-based therapy and

immunotherapy, is more efficient than monotherapy. A combination of immunotherapy drugs for

people who have less advanced melanoma was evaluated by Heinzerling et al. They showed the

efficiency of BRAF and MEK inhibitors (BRAFi + MEKi), combined, as an established therapeutic

option in patients with BRAF-mutated advanced melanoma. In particular, the dabrafenib + trametinib

(D + T) combination has been demonstrated to prolong overall survival in the adjuvant setting [67].

At the same time, it seems that the combination of ipilimumab and nivolumab (CTLA-4 + PD-1

antibodies) is preferred to the mono-treatment in immunotherapy. Abdel-Wahab et al. demonstrated

that the combination therapy CTLA-4 + PD-1 was more effective than previous monotherapy regimens

in small patient cohorts selected for the first phase I trials, although it increased drug-related toxicity [68].

These data were also confirmed in phase III trials, supporting the use of anti-CTLA-4 and anti-PD-1

combination therapy [69].

Furthermore, BRAF/MEK inhibitor combination therapy induces an elevated initial response rate

with a median duration of response of approximately 1 year. The immunotherapy by targeting PD-1

produces lower response rates but a longer response duration.

Preclinical models suggest a combination of immunotherapy and target-based therapy for

patients with stage IV melanoma. BRAF and MEK inhibitors combined with anti-PD-1 agents

improved antitumor activity, suggesting additional therapeutic possibilities for patients unlikely to

have long-lasting responses to either mode of therapy alone [70,71].

The use of immunotherapy and target-based therapy has improved survival for most patients,

and they are now the preferred approaches for patients with metastatic melanoma.

Recently, a new treatment option as a target-based therapy has been developed: Encorafenib

(BRAFi) plus binimetnib combination [57]. This treatment, compared to the previously FDA-approved

combination (D/T), appears to have similar response rates but a longer duration.

For immunotherapy, a bright new hope is represented by TLR9 agonists in combination with the

humanized antibody pembrolizumab: SD-101, CMP-001, or IMO-2125 in combination with ipilimumab

(that activates the immune system by targeting CTLA-4) [65]. However, Ribas et al. suggested that the

triple-combined therapy may benefit metastatic melanoma patients carrying the BRAFV600-mutation

by increasing the frequency of long-lasting anticancer responses [72].

Although current treatment has increased patients’ OS (overall survival), new treatment

approaches are needed. Here, we will briefly describe the currently available data about the role of

miRNAs in melanoma and their potential in developing innovative diagnostic tools and efficacious

therapeutic drugs.

2. MicroRNAs in Melanoma Cell Biology

MicroRNAs (miRNAs) have been extensively studied and, since their discovery in 1993 in the

C.elegans animal model by the Ambros’ group at Harvard University, their involvement in determining

and/or repressing the tumor phenotype as well as in its prognosis and response has been well

characterized [73].

In Table 1, we collected some of the most important miRNAs exhibiting onco-suppressor properties

by targeting oncoproteins (miRNA tumor suppressor) and/or able to target mRNA-coding tumor

suppressors (oncomiRs).
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Table 1. Most representative tumor suppressor miRNAs and OncomiR (orange) involved in

melanoma metastasis.

miRNA Function Target References

miR-9 Tumor suppressor NF-κB1-SNAIL1 [74]
miR-18b Tumor suppressor MDM2 [75]
miR-22 Tumor suppressor MMP14 and SNAIL [76]

miR-26a Tumor suppressor MITF [77]
miR-34 Tumor suppressor c-Kit [57]

miR-30a 5p Tumor suppressor SNAIL, Sox4 [78,79]
miR-34b Tumor suppressor MET [80]
miR-34c Tumor suppressor MET [80,81]
miR-137 Tumor suppressor MITF; PIK3R3 [82,83]
miR-148 Tumor suppressor MITF [84]

miR-145 5p Tumor suppressor TLR4; Oct4, Sox2, c-Myc [85]
miR-138 Tumor suppressor HIF1α [86,87]

miR-150 5p Tumor suppressor SIX-1 [88]
miR-128 Tumor suppressor TERT [89]
miR-125a Tumor suppressor Lin28B [90]
miR-193 b Tumor suppressor CCND1 [91,92]
miR-199 3p Tumor suppressor MET [93]
miR-145 5p Tumor suppressor TLR4 [94]

miR-124 Tumor suppressor RLIP76 [95]
miR-125b Tumor suppressor C-jun [96]
miR-155 Tumor suppressor SKI [97]
miR-146a Tumor suppressor ITGAV and ROCK1 [98,99]
miR-194 Tumor suppressor GEF-H1/RhoA [100]

miR-199-3p Tumor suppressor mTOR and c-Met [101]
miR- 200c Tumor suppressor BMI-1 [102]

miR- 205 5p Tumor suppressor E2F1 and E2F5 [103]

miR-211 Tumor suppressor
AP1S2, SOX11, IGFBP5,

SERINC3, RAP1A
[104]

miR-203 Tumor suppressor BMI-1; SLUG [105–107]

miR-218 Tumor suppressor
CIP2A, BMI-1, CREB1,

MITF
[108,109]

miR-224 Tumor suppressor PIK3R3/AKT3 [110]
miR-365 Tumor suppressor NRP1 [111]

miR-339 3p Tumor suppressor MCL-1 [112]
miR-338-3p Tumor suppressor MACC1 [113]

miR-340 Tumor suppressor MITF [114]
miR-339 3p Tumor suppressor MCL1 [112]

miR-429 Tumor suppressor AKT [115]
miR-579 3p Tumor suppressor BRAF, MDM2 [116]
miR-524 5p Tumor suppressor BRAF, ERK2 [117]
miR-542 3p Tumor suppressor PIM1 [118]
miR-605 5p Tumor suppressor INPP4B [119]

miR-675 Tumor suppressor MTDH [120]
let7i Tumor suppressor ITGB3 [121]
let-7a Tumor suppressor ITGB3 [122]
let-7b Tumor suppressor BSG; Cyclin D1/D3 [121,122]

miR-10b OncomiR ITCH [123]
miR-17 OncomiR ETV1 [124]
miR-19 OncomiR PITX1 [125]

miR-21 OncomiR
TIMP3, PTEN, PDCD4,

FBXO11; TP53
[126–128]

miR-25 OncomiR DKK3; RBM47 [129,130]
miR-30d OncomiR GALNT7 [131]
miR-30b OncomiR GALNT7 [131]
miR-125b OncomiR NEDD9 [132]
miR-146a OncomiR NUMB [99]
miR-182 OncomiR MITF, FOXO3, MTSS1 [133]
miR-214 OncomiR TFAP2C [134]
miR-224 OncomiR TXNIP [135]

miR-199a 5p OncomiR ApoE; DNAJA4 [136]
miR-199a 3p OncomiR ApoE; DNAJA4 [136]

miR-221 OncomiR c-KIT, P27KIP1 [137–139]
miR-222 OncomiR c-KIT, P27KIP1 [137–139]
miR-340 OncomiR MITF [114]
miR-373 OncomiR SIK1 [140]
miR-452 OncomiR TXNIP [135]

miR-519d OncomiR EphA4 [141]
miR-532 5p OncomiR RUNX3 [142]

miR-638 OncomiR TP53, INP2 [143]
miR-1908 OncomiR ApoE; DNAJA4 [136]

It has been observed that miRNAs are involved in melanomagenesis. In particular, it has been

demonstrated that mi-RNAs play an important role in MITF regulation. Microphthalmia-associated

transcription factor, MITF, is a master regulator not only in melanocytes’ differentiation, proliferation,

and survival but also in melanomagenesis [144]. Furthermore, it is associated to the melanoma
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heterogeneity. Subpopulations of cells showing different MITF cellular levels have been detected in

melanoma, some showing high MITF levels, which were highly differentiated and proliferative,

and others with low MITF levels, exhibiting a high invasive and metastatic potential. These

findings suggested a ‘phenotype switching’ between these populations as a model to explain

melanoma heterogeneity, which is the biggest issue to overcome for the development of efficacious

therapeutics [145–148].

MITF activity is tightly modulated at the transcriptional, post-transcriptional, and

post-translational levels. Several miRNAs, such as miR-137, miR-148, miR-182, miR-26a, miR-211,

miR-542 3p, miR-340, miR-101, and miR218, have also been described to be involved in its regulation,

as schematically shown in Figure 3.

–
–

’

These findings suggested a ‘phenotype switching’ between these populations as

–

 
Figure 3. Schematic representation of several miRNAs able to regulate MITF, a master regulator of

melanocyte development and of melanomagenesis.

In particular, it has been reported that miR-137 downregulates MITF expression in melanoma cell

lines and its expression has been observed to correlate with the poor survival of melanoma patients at

stage IV. Further, miR-137 is involved in the downregulation of multiple oncogenic target mRNAs,

including c-MET (a protooncogene encoding for a tyrosine kinase receptor), YB1 (Y box-binding protein

1), EZH2 (enhancer of zeste homolog 2), and PIK3R3 (phosphatidylinositol 3 kinase regulatory 3) [82].

Regarding miR-137, it has been observed that miR-148 negatively regulates MITF expression in

melanoma cells by targeting a binding site found in its 3′UTR sequence [84]. However, the combined

miR-137 and miR-148 overexpression does not result in a cumulative effect. Interestingly, miR148 has

been found to play a dual/opposite role in MITF regulation [84].

Additionally, miR-182 has been found to be frequently amplified and upregulated in melanoma

cell lines as well as in tissue samples [133]. It has been observed that miR-182 overexpression stimulates

the migration of, and melanoma cell survival by directly downregulating MITF and FOXO3 (forkhead

box O3) expression. In particular, it has been demonstrated in A375 melanoma cell line that miR-182
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overexpression induces increased proliferation, migration, and invasion, as well as inhibiting cell

apoptosis, and blocking the cell cycle at the S phase [133].

Furthermore, miR-218 has been shown to suppress MITF expression, by targeting its mRNA

3′-UTR. It is also able to block tyrosinase synthesis and to stimulate skin melanogenesis while miR-340

drives a decrease in MITF expression and mRNA degradation because it is able to interact with two

target sites on MITF 3′UTR [114,149].

Additionally, miR-26a and miR-101 have been demonstrated to be capable of inhibiting the

invasion and proliferation of melanoma cells by targeting MITF [77,150].

Another miRNA involved in MITF regulation is miR-211. Lower miR-211 levels have been observed

in highly invasive melanoma cell lines compared to less invasive ones. It has been demonstrated

that miR-211 inhibits the migration and invasion of melanoma cells. It also induces the loss of cell

adhesion by directly regulating NUAK1 m-RNA, an AMP-activated protein kinase-related kinase

overexpressed in many cancers [151]. Also, miR-211 revealed an important role in the regulation

of POU3F2, the POU domain transcription factor that is better known as BRN2, a well-established

MITF repressor, suggesting a further indirect influence of miR-211 in the development of melanoma

metastasis [144,146,147,152,153].

BRN2 together with MITF are key factors identified in melanoma phenotype switching: The

transformation of melanocytes to malignant melanoma and the subsequent development of invasion

and metastasis.

It has been reported that melanoma phenotype switching has similarities to the

epithelial–mesenchymal transition (EMT) program that occurs during development and plays a critical

role in the acquisition of metastatic properties during the melanoma vertical growth phase [4,154,155].

In fact, it has been demonstrated that melanoma phenotype switching is associated with MITF levels:

High MITF levels have been found to be associated with the proliferative state while low MITF levels

were associated with the invasive state [156].

Some miRNAs have been revealed to play a role in the EMT process. MiR-200c, a well-established

central EMT regulator in different cancers, has been proven to be helpful in inhibiting EMT in

experimental vaccination against melanoma [102,157].

Similarly, miR-542 3p is another key regulator of the EMT process. MiR-542 3p has been found to

be strongly downregulated in melanoma cell lines and tissues compared to healthy counterparts. It has

been demonstrated that forced miR-542 3p re-introduction inhibits the EMT process and metastasis

formation in a melanoma pre-clinical model, likely by the translational inhibition of the PIM1 factor, a

well-known promoter of cancer growth and spreading [118].

At the same time, increased expression of MITF has also been correlated with drug resistance.

Ji et al.’s investigations revealed that vemurafenib (BRAFi) resistance is correlated with the loss of

MITF [158].

2.1. MicroRNAs in in Drug Resistance

The continuous treatment of melanoma with target-based therapy leads to therapy failure due

the acquisition of drug resistance. Notably, BRAFi monotherapy may provide profound initial tumor

regression in patients with BRAF V600-mutated metastatic melanoma. However, this initial regression

is successively followed by disease progression due to resistance establishment to the treatment. Also,

the BRAF/MEK inhibitors pairing treatment often provides remarkable disease regression initially but

resistance to therapy then occurs within 12 months.

Drug resistance severely limited the efficacy of target-based therapy in BRAF-mutated metastatic

melanoma. Overall, recent findings show the positive implication of miRNAs as a strategy to improve

drug responses; in fact, some of them are able to provoke drug resistance and others to increase or

restore drug sensitivity.

In Table 2, we listed several miRNAs with a potential role of drug sensitivity and drug resistance

to melanoma treatment with target-based therapy.
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Table 2. The most representative miRNAs that are drug sensitive (green) and drug resistant (orange) to

target-based therapy and chemotherapy in melanoma metastasis.

miRNA Function Target References Treatment

miR-7 Drug sensitive EGFR/IGF-1R/CRAF [159] BRAFi
miR-31 Drug sensitive SOX10 [160] Chemotherapy
miR-32 Drug sensitive MCL-1 [161] BRAFi (vemurafenib)

miR-126-3p Drug sensitive
ADAM9 and

VEGF-A
[162] BRAFi (dabrafenib)

miR-199b 5p Drug sensitive HIF-1a/VEGF [163] BRAFi
miR-200c Drug sensitive BM1 [157] BRAFi

miR-524 5p Drug sensitive BRAF and ERK2 [117] BRAFi
miR-579 3p Drug sensitive BRAF, MDMD2 [116] BRAFi +MEKi

miR-659 3p Drug sensitive NFIX [164]
chemotherapy

(carboplatin/paclitaxel)
miR-34a Drug resistant CCL-2 [165] BRAFi (vemurafenib)

miR-30a 5p Drug resistant IGF1R [166] Chemotherapy (Cisplatin)
miR-100 Drug resistant CCL-2 [165] BRAFi (vemurafenib)
miR-125a Drug resistant BAK1, MLK3 [167] BRAFi
miR-125b Drug resistant CCL-2 [165] BRAFi (vemurafenib)

miR-204 Drug resistant
NUAK1/ARK5,

IGFBP5, TGF-bRII,
Slug, and CHD5

[168,169] BRAFi

miR-211 Drug resistant
NUAK1/ARK5,

IGFBP5, TGF-bRII,
Slug, and CHD5

[168,169] BRAFi

miR-514a Drug sensitive NF1 [170] BRAFi

For instance, Sun et al. showed that miR-7 could reverse resistance to BRAFi in certain

vemurafenib-resistant melanoma cell lines [159]. Furthermore, miR-126 3p expression was significantly

downregulated in the dabrafenib-resistant sublines as compared with their parental counterparts.

It has been demonstrated that its replacement in the drug-resistant cells leads to the inhibition of

proliferation, cell cycle progression, invasiveness, and increased dabrafenib sensitivity [162].

MiR-34a, miR-100, and miR-125b have also been shown to be highly expressed in both resistant

cells and treated patient tumor biopsies. Their expression has been found to be associated to the

chemokine monocyte chemoattractant protein-1 (CCL2), which promotes tumor progression in the

resistant cells, suggesting that both CCL2 and miRNAs may be helpful potential prognostic factors

and attractive targets for counteracting treatment resistance in metastatic melanoma [165].

Zheng’s study revealed that miR-31 is able to regulate resistance to chemotherapy of melanoma.

MiR-31 was found to be downregulated in melanoma tissues, and its enforced expression suppressed

the growth of melanoma cells and increased their chemosensitivity [160]. Also, Koez demonstrated that

miR-125a inhibition induces the suppression of resistance to BRAFi in a subset of resistant melanoma

cell lines, leading to a partial drug resensitization.

Finally, they showed that miR-125a upregulation is mediated by TGFβ signaling [167].

Upregulation of miR-204 5p and miR-211 5p improved vemurafenib’s responses, facilitating the

emergence of resistance [168]. Moreover, miR-579 3p has been found to be downregulated in tumor

samples derived from patients before and after the development of resistance to target-based therapies

as well as in cell lines resistant to BRAF/MEKi [116].

Stark et al. demonstrated that miR-514a overexpression was correlated with increased melanoma

cell resistance to BRAFi, through decreased expression of the NF1 tumor suppressor. Moreover,

while miR-7, miR-34a, miR-100, and miR-125b have been shown to be able to reverse/restore

melanoma resistance in target-based therapies by targeting different signaling pathways, miR-579-3p

has been found to be associated with resistance development in melanoma. MiR-579-3p is observed

to be downregulated in melanoma patients upon the development of resistance to target-based

therapies [116,159,165,168].
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Interestingly, miRNAs may also be associated with melanoma resistance to treatment with immune

checkpoint inhibitors (ICIs). Different circulating miRNAs (let-7e, miR-99b, miR-100, miR-125a,

miR-125b, miR-146a, miR-146b, and miR-155) have been demonstrated to be associated with the activity

of MDSCs (myeloid-derived suppressor cells) in melanoma patients [171]. Furthermore, miRNAs have

been shown to also be associated with pairing therapies involving target-based therapy.

Wagenseller et al. detected significant upregulation of 15 miRNAs by using microarray analysis.

Melanoma tissues derived from patients treated with the temsirolimus (mTOR inhibitor) and

bevacizumab (VEGF inhibitor) combination were used in this study and in particular, treated versus

non-treated melanoma tissues were analyzed. Wagenseller et al. found 12 miRNAs with tumor

suppressor functions able to target 15 different oncogenes [98]. Among them, miR-125b, miR-7b, and

miR-29c were identified as differentially expressed after the temsirolimus and bevacizumab combined

treatment [164].

MiR-514a, a well-known key player in initiating melanocyte transformation and enhancing

melanoma growth, has been reported to regulate the sensitivity of BRAF-targeted therapy by modulating

the tumor suppressor NF1 gene [170]. In addition, it has been observed that miR-32 replacement

therapy as a single agent is able to exhibit synergistic effects with vemurafenib [161].

These findings highlighted the important role of miRNAs in new therapeutic strategies that seek

to overcome resistance. Different studies have demonstrated miRNAs’ impact in melanoma resistance

to BRAFi, in ICIs resistance therapy, and in pairing therapies. It could provide even more of a basis for

further studies against melanoma through miRNAs, which could represent attractive candidates for

melanoma intervention [101,164,170].

2.2. MicroRNAs in Melanoma Immunotherapy

The immune system plays a pivotal role in melanoma therapy, and specific immune therapies

have been developed, such as anti-CTLA4 and anti-PD1-based immune therapies. Even so, most

patients (50–60%) treated with these agents do not have a durable response [69,172].

Cancer immunotherapy inhibits the proliferation and invasion of cancer cells by inducing or

enhancing anti-tumor immune responses in different ways, active or passive. It is the fourth efficacious

and safe therapeutic option in addition to surgery, radiotherapy, and chemotherapy.

Currently, many clinical trials using immunotherapy have made remarkable achievements.

Phase II–IV clinical trials demonstrated that the use of immune checkpoint blockers (ICBs) for the

treatment of MM patients significantly prolonged progression-free survival and overall survival in

these patients [173,174]. Hence, different ICBs have been approved by the FDA for clinical therapeutic

protocols in multiple tumors. Ipilimumab has been approved for melanoma while nivolumab

and pembrolizumab have been approved for not only melanoma but also other malignant tumors.

Ipilimumab, an anti-CTLA-4 mAb, shows a better effect on survival improvement in melanoma patients

carrying the BRAF wild type compared to radiotherapy and chemotherapy.

Despite a significantly prolonged progression-free survival and overall survival being observed,

the majority of these patients developed resistance within one year [175].

MiRNAs have been demonstrated to regulate target genes involved in tumorigenesis and the

development of melanoma, functioning similarly to oncogenes or anti-oncogenes, and to also play an

important role immunotherapy [176] (Table 3).
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Table 3. The most representative miRNAs involved in the regulation of melanoma immunotherapy.

miRNA Target References

miR-17 5p ETV1 [177,178]
miR-28 TIM-3, B- and T-lymphocyte [179,180]

miR-30b/30d GalNac transferase [132]
miR-34a/c NKG2D, MICA/B; ULBP2 [181]
miR-146a STAT1/IFN [182]
miR-155 IL-1b, MITF-M [183]
miR-200a CDK6 [184]
miR-210 HIF-alpha [185]
miR-376 MICB [186]
miR-433 MICB [186]
miR-494 PTEN [187]

Notably, miR-30b/miR-30d involvement has been demonstrated in the melanoma metastatic

process but not in the classic EMT invasive pathways. In particular, it has been observed

that miR-30d-mediated GALNT7 (GalNAc transferase) inhibition stimulates the expression

of the immune-suppressive IL-10 cytokine, which in turn triggers an immune-suppressive

microenvironment [131]. MiR-210 is among the hypoxia-induced miRNAs in melanoma cells

and it impairs the susceptibility to T-cell lysis by tumor cells [185]. Similarly, miR-34a/c has been

demonstrated to modulate innate immune responses in melanoma cells by regulating ULBP2 expression,

a stress-induced ligand of NKG2D [181]. Liu et al. showed that TGFβ induces miR-494 expression in

myeloid-derived suppressor cells (MDSCs), promoting the accumulation and functions of the tumor

suppressor [187].

Furthermore, it has been reported that miR-155 is involved in novel mechanisms adopted from

melanoma cells to escape immune surveillance. MiR-155 modulated the IL-1β-induced downregulation

of endogenous MITF-M expression in melanoma cells [183]. Moreover, forced miR-200a expression

has been demonstrated to suppress CDK6 expression in metastatic melanoma cells, a factor frequently

found to be dysregulated in cutaneous melanoma. Recently, CDK4/6 inhibitors have shown promising

anti-tumor properties in several cancer types, including melanoma, and miR-200a downregulation

seems to correlate with disease progression and a higher number of lymph node metastases [184].

2.3. MicroRNAs as Biomarkers

Currently, among the biomarkers able to offer the potential to predict the risk of progression

to metastatic disease states in melanoma, LDH (lactate dehydrogenase) and S100B (S100 family

of calcium-binding proteins) have been identified. LDH is the only accepted serum prognostic

biomarker for routine clinical use in melanoma patients [188,189]. Unfortunately, limitations of the

above-mentioned biomarkers due to the lack of sufficient sensitivity and specificity have been identified.

In fact, LDH is not a melanoma-specific enzyme. It is also associated with many other benign and

malignant diseases [190]. By contrast, S100B shows a strong association with melanoma prognosis. It

is highly specific, and its increased levels are detected in patients with advanced melanoma [189–192].

Many different cell types, including tumor cells, produce exosomes. It has been demonstrated

that miRNAs are localized in these vesicles, protecting themselves by RNase activity and securing

their integrity [193]. Since then, circulating miRNAs have emerged due to their great potential and

ability to discriminate among diverse types of cancers, and their chemical stability and resistance to

RNase activity has been highlighted [194].

Leidinger et al. were one of the first research groups to perform high-throughput screening

techniques for diagnostic circulating miRNA biomarkers’ identification [195]. Since then, circulating

exosomal miRNAs have been extensively analyzed for their utility as biomarkers in different tumors

and disorders, including MM and have become a putative clinical and prognostic biomarker [196,197].
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Circulating miRNAs have also been found in biopsies, peripheral blood circulation, and other body

fluids, and the profile of circulating miRNAs was shown to be able distinguish tumors from normal

tissues [198,199]. Furthermore, miRNAs have an adequate half-life in clinical samples, if correctly

handled and stored, and are rapidly detectable in plasma by accurate, specific, and noninvasive

methods [200].

Stark et al. analyzed 17 miRNAs enriched in melanoma compared to 34 other solid cancer cell

lines. The sera of melanoma patients (stage III and IV) were analyzed and a subset of seven miRNAs

(MELmiR-7 panel) was derived. Within the MELmiR-7 panel, some miRNAs were identified as being

able to discriminate different melanoma stages with a better diagnostic score than the currently applied

serological tests based on LDH and S100B, and with high sensitivity and specificity [169].

Furthermore, Margue et al. also performed a whole miRNAs array of serum samples from

melanoma patients compared to healthy individuals. They observed that miR-211 was very

discriminative for stage IV tumors versus healthy controls, while miR-16 was rather downregulated in

contrast to the upregulation reported by Stark [201]. Successive studies from Kanemaru et al. confirmed

the discriminative power of miR-221 levels for MM patients and they also found a correlation between

miR-221 levels and tumor thickness [202]. Finally, they observed that miR-221 levels were reduced

after tumor surgical removal while they were increased in tumor recurrence cases.

As highlighted by Jarry et al., limitations due to the use of different profiling platforms or variable

techniques for serum and plasma preparation, RNA extraction, low concentration of secreted miRNAs,

quality control, normalization, and statistical evaluation have been reported in the results of different

studies on circulating miRNAs in oncology [203].

Mumford et al. also identified the potential of prognostic circulating miRNAs found to be

differentially expressed in the circulation of melanoma patients compared to healthy controls,

highlighting the technical variables that may lead to the lack of consistency between studies [204].

More than 500 miRNAs, identified in multiple studies, are present at higher levels in nevi or

in melanomas. However, most of them have not been reproduced by using independent validation

sets. Torres and colleagues refined this list down to six miRNAs potentially able to reproducibly

distinguish nevi from melanoma across independent datasets and miRNA profiling platforms. Two

miRNAs were highly expressed in melanomas (miR-31 5p, miR-21 5p) while four miRNAs (miR-211

5p, miR-125a 5p, miR-125b 5p, and miR-100 5p) showed decreased expression in melanoma. Among

them, they confirmed the differential expression of miR-211 5p, miR-21 5p, and miR-125b 5p that has

been previously linked to melanoma [205].

The importance of miRNA discovery as biomarkers in order to rapidly identify melanoma

progression in patients would therefore be a significant clinical tool also because the limits of detection

of diagnostic imaging (e.g., CT (Computed Tomography) scan, PET (Positron Emission Tomography)

and MRI (Magnetic Resonance Imaging) that is not able to detect lesions that are <10 mm or low

metabolic activity. Furthermore, no scans are sensitive enough to detect micro-metastases. The utility

of miRNAs should be considered as a diagnostic and prognostic aid in the early detection of melanoma.

3. The Dual Role of miRNAs in Cancer

It has been widely demonstrated that miRNAs are able to modulate the expression of multiple

targets, some of which play oncogenic or tumor-suppressive roles. Evidence suggests that some

miRNAs can also have opposite effects in different tumoral contexts, as listed in Table 4.
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Table 4. The most representative miRNAs with an opposite role in melanoma and other tumors.

miRNA References

miR-9 [75,206]
miR-21 [207,208]

MiR-30b [209–211]
MiR-30d [209–212]
miR-125b [96,213]
miR-155 [97,214,215]
miR-146a [98,99]

miR-205-5p [216–220]
miR-211 [221]

miR-224 5p [110,135,222]
miR-452 [108,135,223]

miR-542-3p [118,224,225]

Notably, the dual role of miRs and the melanoma system has been established, as summarized

in Table 4. For instance, among the tumor suppressors, Skouti et al. showed miR-205-5p gradually

decreased during melanomagenesis in mice and was able to reduce cell invasiveness and proliferation,

and delay tumor initiation [216].

Several studies have focused on miR-205-5p and its dual role in cancer. It has been reported

as oncomiR in lung and nasopharyngeal cancers by targeting PTEN [217,218,226]. Furthermore,

a tumor suppressor role has also been described in prostate [219], breast [220], melanoma [227],

glioblastoma [228], and colon cancers [229] by targeting c-MYC [230], PKCε [219], and VEGF-A [228].

Further, miR-9 has been found to be downregulated in metastatic melanomas compared to primary

tumors. It has been shown to be able to downregulate SNAIL1 and consequently promote CDH1

expression, inhibiting melanoma cells’ ability to invade [72] while miR-9 has been described either as

an oncomiR or tumor suppressor in a variety of other cancers [206].

MiR-21 negatively regulates MKK3 and acts as a tumor suppressor in melanoma by inhibiting cell

growth and metastasis [207]. Instead, miR-21 inhibits tumor apoptosis and promotes proliferation and

metastasis by downregulating p53 expression in uveal melanoma cell lines [208]. miR-125b represents

another example of a miRNA able to act as either an oncomiR or a tumor suppressor, depending on

the context. It acts as an oncomiR in the vast majority of hematologic malignancies but as a tumor

suppressor in many solid tumors. This apparent paradox can be explained by considering the fact that

a single miR-125b targets antiapoptotic factors (MCL1, BCL2L2, and BCL2), proapoptotic factors (TP53,

BAK1, BMF, BBC3, and MAPK14), proproliferative factors (JUN, STAT3, E2F3, IL6R, and ERBB2/3),

metastasis promoters (MMP13, LIN28B, and ARID3B), and metastasis inhibitors.

MiR-125b has been found to be upregulated in some tumor types, e.g., colon cancer and

hematopoietic tumors, where it displays an oncogenic potential, by inducing cell growth and

proliferation and blocking apoptosis. In contrast, it acts in other tumor entities, e.g., melanoma,

as a tumor suppressor by targeting c-Jun [96,213].

Indeed, miR-155 shows a dual role in various types of cancer cells, such as melanoma. Although

miR-155 has been described as an oncogene in various type of cancers, Levati and colleagues

demonstrated that miR-155 is able to inhibit the proliferation of melanoma cell lines by targeting

the oncongene SKI [97]. Similarly, Li and colleagues and Qin and colleagues demonstrated that

miR-155 exerts a tumor-suppressive effect in gastric cancer and ovarian cancer-initiating cells by

targeting SMAD2 and CLDN1, respectively [215]. Another excellent example of the opposite roles

is provided by miR-30d and miR-30b-5p, which are associated with progression from primary to

metastatic melanoma [131].

MiR-30d acts as a tumor suppressor in prostate cancer cell proliferation and migration by targeting

NT5E and is regulated by the Akt/FOXO pathway in renal cell carcinoma [211,212]. MiR-30b-5p acts as
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a tumor suppressor microRNA in esophageal squamous cell carcinoma [209]. MiR-30b suppresses

tumor migration and invasion by targeting EIF5A2 expression in gastric cancer cells [210].

Furthermore, miR-146a has been shown to play a dual role in malignancy. MiR-146a has been

identified as being able to promote the tumor growth of malignant melanoma and, at the same time, to

impair tumor cell dissemination. High levels of miR-146a expression during melanoma progression

triggers tumor growth through inhibition of lunatic fringe (LFNG) and NUMB and activation of

the NOTCH/PTEN/AKT pathway. In contrast its downregulation in circulating tumor cells (CTCs)

suppresses tumor dissemination through modulation of the expression of ITGAV and ROCK1 [98,99].

It has been shown that miR-211 exhibited a dual role in melanoma progression, promoting cell

proliferation while inhibiting metastatic spread in a xenograft mice model [221].

High expression levels of miR-224-5p have been detected in a large variety of tumors, such as

glioma, colorectal cancer, and renal carcinoma, and is downregulated in uveal melanoma. Notably,

Li et al. showed that miR-224-5p is involved in the proliferation, invasion, and migration of uveal

melanoma (UM) cells via regulation of the expression of PIK3R3 and AKT3 [110]. Results from Gan et al.

highlighted the correlation of the downregulated expression of miR-224-5p with the clinical progression

and prognosis of prostate cancer [222]. Knoll et al. showed that the miR-224/miR-452 cluster is

significantly increased in advanced melanoma and that ectopic expression of miR-224/miR-452 induces

EMT and cytoskeletal rearrangements, and enhances migration/invasion. Conversely, miR-224/miR-452

depletion in metastatic cells induces the reversal of EMT, inhibition of motility, loss of the invasive

phenotype, and an absence of lung metastases in mice.

It has been shown that miR-224/miR-452 targets the metastasis suppressor TXNIP and induces

feedback inhibition of E2F1. MiR-224/452-mediated downregulation of TXNIP is essential for

E2F1-induced EMT and invasion [134]. Also, the tumor-suppressive role of miR-452 has been

reported in gliomas, targeting stemness regulators, such as BMI-1 [230].

The Rang group’s results collectively indicated that miR-542-3p acts as a metastasis suppressor

in melanoma [118] and as a tumor suppressor in ovarian cancer by directly targeting CDK14 ) and

promoting the proliferation of osteosarcoma cells in vitro [231–233]. Furthermore, Haflidadóttir et al.

reported miR148’s dual/opposite role in MITF regulation [84].

This set of observations highlights the polyvalence of miRNAs as an oncogenic or tumor suppressor,

even within a single cancer type.

4. Conclusions

Until relatively recently, no viable treatment for metastatic melanoma patients had been detected.

With the advent of target-based-therapy (BRAF and MEK inhibitors), immunotherapy (anti-PD1/PDL1

and anti-CTLA4 antibodies), and pairing therapies to avoid drug resistance, many improvements in

progression-free survival have been achieved.

Scientific investigations have shown the involvement of miRNAs as a new key factor for melanoma

metastasis treatment. Owing to their role in the regulation of gene expression and their stability

(resistance to endogenous RNase activity) in body fluids, miRNAs have been extensively shown to

be of particular interest for diagnosis, recurrence, identification, and treatment of cancer metastasis.

Additionally, new techniques that are able to inhibit oncomiRs expression have been discovered

and used as a new therapeutic option against many tumors: (1) Small molecule inhibitors (siRNA),

(2) anti-miR oligonucleotides (AMOs), (3) miRNAs sponge, and (4) miRNA masking [234].

Although the limitations of miRNAs in target specificity have been shown, because they are able

to regulate multiple ‘canonical’ instead of ‘non-canonical’ targets, there are currently clinical trials

regarding the positive impact of miRNAs in different diseases. MiR-122/miravirsen (produced by

Roche/Santaris) and miR-92/MRG 110 (produced by Regulus Therapeutics), designed to treat hepatitis

C, are considered the flagship products of this class of future cancer drug development.

The increased target specificity and efficacy, and the minimization of side effects of miRNA

drugs as intratumoral injections directly into the pathogenic site have been revealed for cancer-related
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pathologies [235,236]. In fact, Miragen has an active phase 1 study for miR-29 (MRG-201) to treat

keloid and scar tissue formation as well as a phase 2 trial for miR-155 (Cobomarsen; MRG-106) for

patients with a form of T-cell lymphoma.

Recently, the new miRNA drug candidate of Regulus (RGLS5579) targeting miR-10b has been

developed for potential trials in glioblastoma multiforme patients, one of the most aggressive forms of

brain cancer, with a median survival of approximately 14.6 months [237]. Therefore, the first recently

completed phase 1 trial engaging a newer technology termed “targomiR” exhibited encouraging results

in patients with recurrent malignant pleural mesothelioma or non-small cell lung cancer.

All of the miRNA-based drugs are currently in clinical trials and none have yet reached a

pharmaceutical breakthrough. However, the acquisition of miRNA-based companies by major

pharmaceuticals provides positive feedback regarding their potential.

In our opinion, despite the urgent need for the development of new and improved treatment

strategies for melanoma patients, it will now be interesting to see how newer investigations of miRNAs

will allow earlier detection of tumor recurrence and support the diagnosis and early detection of

melanoma recurrence, as well as the prediction of patients’ outcomes/responses to therapies.

Hence, in this review, we highlighted the important role of miRNAs not only in the current

treatments of melanoma metastasis but also their involvement in drug resistance to BRAF and MEK

inhibitors, and their role as prognostic factors (biomarkers). This excitement for the positive role

of miRNAs for melanoma metastasis treatment should encourage researchers, especially on the

combinatorial approaches of miRNAs with the current pairing therapies, to increase the field of

utilizing miRNAs as a therapeutic tool.
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