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The analysis of misorientations has up to now usually be carried out by comparing the
values obtained experimentally using two dimensional distributions of rotation axes or
rotation angles with the distribution calculated by Mackenzie for the statistically random
case. In this paper the presentation of the distribution of the misorientations is based
on the three dimensional orientation distribution function (ODF) (as described by Bunge).
The new function is termed the misorientation distribution function (MDF) to differentiate
it from the ODF. The advantages in using this function are presented and illustrated
by three MDF’s derived from the work of Haessner, Pospiech and Sztwiertnia.

INTRODUCTION

In many investigations ofpolycrystalline materials, an important source
of information is the orientation differences ("misorientations") between
adjacent crystallites as well as the statistics based on them. This
information can be derived from the results of measurements of
orientation topography (Haessner, 1981).
The misorientations are described statistically using the three-

dimensional misorientation distribution function (MDF). This function
can be described using different orientation parameters. The parameters
chosen depend on the nature of the question which one wants to answer.
In practice two uncorrelated statistics describing, for instance, the two-
dimensional distribution of rotation axes and the one-dimensional
distribution of rotation angles, which have been derived from mis-
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orientation sets, have usually been chosen. These distributions are not
constant but vary with the rotation angle, when the misorientation
distribution is random. The forms, calculated for cubic symmetry are
known fi’om the earlier work of Mackenzie and Thomson (1957) and
Mackenzie (1964). They can serve as a reference for identification of
rotation axes or rotation angles. Examples of such a procedure are
presented in the publications by Aust and Rutter (1960, 1962), Ibe (1965)
and Ibe and L/icke (1972) as well as Schrode (1977). Here the distri-
butions of rotation axes and rotation angles of recrystallized grains
which grow rapidly into the surrounding matrix on annealing are
analysed for lead, aluminium, iron-silicon and niobium. Such distri-
butions have been used by Schnell (1974) and Schnell and Grewe (1978)
in investigations into the problem of the formation and the structure
of high angle boundaries in heavily deformed copper single crystals and
recently also by Haessner et al. (1983) in an analysis of orientation
topography of rolled polycrystalline copper.

In the following the MDF derived for the misorientations of adjacent
crystallites ("pairs") lying on a line parallel to the main axes ofthe rolling
symmetry i.e. rolling, transverse or normal direction (RD, TD, ND) will
be presented. For this, the orientation topography used in the above
work of Haessner et al. (1983) was employed.

FUNDAMENTAL RELATIONSHIPS

An obvious way to describe the orientation ofa crystallite A (orientation
gA) with respect to the crystallite B (orientation gB), i.e. the orientation
difference F gff ga is given in terms of the Euler angles 991, , o2.
Another convenient way of representing the orientation difference is
by means of the rotation axis r and the rotation angle 09. In the following
we use mainly the latter method.

In the rotation axis and angle description each crystallite is repre-
sented by a rectangular reference frame with a common origin. The
rotation axis r has in both reference frames identical spherical co-
ordinates q, ff and rotation by 09 about the axis r brings both frames
into coincidence. The definition of the angles , if, o is illustrated in
Figure 1. The set of misorientations F formulates statistically the
misorientation distribution function (MDF)f(F). In the case considered,
this function states the probability dI/I of a misorientation within the
interval dF about F, such that
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FIGURE Definition of the angles 8, ,, 09.

dI- f(r(, r))ar(o, r) (1)

where the element of the space dF (0), r) has the form:

1 20)dF(0), r) 2sn - sin 8 d0)dSd,. (2)

Integration of the expression (1) over the rotation angle 0) and division
by the element ds sin 8 d8 d, yields the density function ofthe rotation
axis distribution

Q(r) K 2 1 ff(o9, r)sin2-d09
0

(3)
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FIGURE 2 Three dimensional representation of the rotation axis (, k) and rotation
angles (co).

where K2 is a normalizing coefficient. The density function of the
rotation angle distribution is determined by integrating the expression
(1) over the coordinates of the rotation axes 9, and by dividing by
the element do9

sin2o9

K 2 2 fV(o)
SO

(4)

The expressions (3) and (4) are integrated within the basic domain of
misorientations (see below). The normalizing coefficient K 2 is equal to
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the number of the basic domains where K is the number of rotation
elements in the symmetry group of the crystal. For a random mis-
orientation distribution (f(F)= 1) and cubic symmetry the density
functions Q(r) and V(o) have been calculated (Mackenzie and Thomson,
1957, Mackenzie, 1964).
To present the MDF in the 09, 9, if-space one can assume a cylin-

drically shaped region (Figure 2) in which the position of the rotation
axis ,9, ff is described in a stereographic projection of the basal plane
and the rotation angle 09 about an axis perpendicular to this plane. The

FIGURE 3 Longitudinal section through the cylindrical representation space (O,
with details of the deformation of the space.
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form of expression (2) of the element dF (o9, r) indicates that the measure

( 1 )J -2" sin2.sin,9

of this space is not constant.
This fact is illustrated in Figure 3, (Pospiech, 1972), in which the

deformation of the longitudinal section of the cylinder, resulting from
the linearisation of the measure of the space can be seen. The largest
deformation corresponds to the smallest rotation angles o9. For o9 0
the cross section is reduced to a point, which is a manifestation of the
fact that each position of a point in this section describes the same (zero)
orientation difference.
The crystal symmetry introduces a division of the space into

symmetrically equivalent basic domains, i.e. the smallest sub-domains
of the space in which all values of the MDF are contained. This division
is determined by the conditionf(g) f(c" g" Ck), where cj, Ck are rotation
elements of the crystal symmetry.
The cubic symmetry contains 24 rotation elements c (i 1, 2,... 24)

and in this case the space is divided into 24 x 24 576 basis domains.
Thus each misorientation is represented by a set at 576 symmetrical
equivalent misorientations Fk CF’Ck and among them (determined
by expression F c. F. cf or I"k CkI"c ) there are at most 24 mis-
orientations, differing by the rotation angles o9. The smallest of these
angles (ogmi,) is called the angle of misorientation and the rotation axis
corresponding to it is called the axis ofmisorientation. The basic domain
of misorientation is chosen for the representation of the MDF.
MDFf(F) is obtained using the calculation operations of the Bunge

method (Bunge, 1982) based on the series expansion

f(r) Z Z cr" TT?" (r) (5)

in terms of generalized spherical functions ""(F), which are invariant
with regard to the crystal symmetry. The sum over includes all positive
integers (even and odd terms). The coefficients C7 are calculated from

exp exp(- + Tt"(F,) (6)c’[’"=
--12e/4) (1 1)2 e/4) v ,,

N exp (- e/4) ,=

used for a set of single orientations (Pospiech and Liicke, 1975), where
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F (i 1, 2,... N) denote misorientations and eo is the range of scatter
of the F assumed depending on the accuracy of measurement.

Routine MDF calculations are made using Euler angles q91, , q92
as orientation parameters. In the final calculation step this function is
transformed into the space ofthe rotation parameters (09, , q) according
to the rule given in a paper of Pospiech (1972).

Results

MDF was determined on the basis of orientation topography in rolled
copper (95 reduction) taken from the work by Haessner et al. (1983).
The orientation data for this topography were gained at predetermined
sites, using selected area diffraction in transmission electron microscopy
for two sections perpendicular to the rolling direction (RD) and to the
transverse direction (TD) of the material. The points investigated form
a rectangular grid. The separation between two points parallel to RD
was 1/m, those parallel to ND were separated by 0.5 #m. The calcula-
tion was carried out for three sets of orientation differences which were
determined from the orientations of adjacent crystallites ("pairs") along
the rolling direction, along the transverse direction and along the normal
direction of the sample.
The single misorientations Fi are shown in Figures 4-6 for the sets

RD, TD and ND respectively in the space of the rotation parameters
09, 0, . For 09 50, 55 resp. 60 the basic domain is limited to
0 > 27.35, 37.28 resp. 45. The basic domain reproduces itself for
og-values > 62.8 (Mackenzie, 1958). Therefore the representation has
been limited up to co 60. In Figures 4-6 the rotation axes are plotted
in a right-hand system. Since it is impossible to distinguish between
a right- and a left-hand system each point in Figures 4-6 must be
doubled by reflecting at the k 45 line.
From the double points only those misorientations were considered

for the MDF calculation for which (_Dmi was greater than 15. The reason
was, that for the lower range of 09 values the resolving power was too
small and thus the effect ofoverlapping ofthe scattering ofsymmetrically
equivalent positions was observed. In the geometrical centre of these
positions, i.e. at the point at which 09 0, the overlapping is at a maxi-
mum. The number of misorientations used for the MDF calculation
(pairs with O)mi > 15) were in the particular sets as follows: for RD-28,
for TD-54 and for ND-131.
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FIGURES 4-6 Individual values of the misorientations Fi in space of the rotation
parameters ,9, 09 for the set RD (Figure 4), TD (Figure 5) and ND (Figure 6). (The
basic domain is limited by the solid line. The intervals are 0 <- 09 < 7.5; 7.5 =< o9 < 12.5;

57.5 __<



THE MISORIENTATION DISTRIBUTION FUNCTION 209

2 -30" w-35" w.40"

-2S"

w=45"

=30"

>1.
to-SO* w=55" to-GO"



210 J. POSPIECH, K. SZTWIERTNIA AND F. HAESSNER

-25"

FIGURES 7-9 Misorientation distribution function (MDF) in rotation parameter space
for the set RD (Figure 7), TD (Figure 8) and ND (Figure 9). (The basic domain is limited

by the solid line).

In the space of the rotation parameters the three MDF’s describing
the distribution of misorientations for the sets RD, TD, and ND,
respectively, are shown in Figures 7-9. If the individual misorientations
Fi in Figures 4-6 are compared with the corresponding MDF’s in
Figures 7-9 then it becomes apparent that for certain angles co in the
MDF, intensity values are given, although no single misorientation
exists for these angles (e.g. set RD’o 50 or 55). This is due to the
interpolation effect, which is caused by the series expansion (5). The
same facts as in Figures 7-9 are represented in the Euler-space by
Figures 10-12. Since the space reproduces itself for q2 >45 the
representation has been limited to the interval 0 _< q2 -<_ 45. Figures
13-15 show regional enlargements from Figures 10-12 for the o2-values
40 (set RD), 5 (set TD) and 40 (ND). In these enlargements the same
intensity levels have been used as in Figures 10-12.

Consider first the results in the space of the rotation parameters: The
distributions obtained are characterized by large areas of scatter. Within
them there appear weak maxima which are merely an indication of the
tendency to favour the symmetry axes. Thus in the distribution of the
misorientation along RD a weak maximum in the position of the (111)
axis within the whole range of the rotation angles can be distinguished.
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FIGURE 10-12 Misorientation distribution function (MDF) in Euler-space (ql, b, (92)
for the set RD (Figure 10), TD (Figure 11) and ND (Figure 12).

At the same time, there occurs a weak concentration at (100) within
the range of rotation angles co 15 .’-- 20. In the distribution along TD
we observe a maximum in the scattering at (110) of 7.4 in the range
of rotation angles co-- 15 / 20, and within a weak maximum at (112)
co 30 / 40. Finally, in the distribution along ND, a maximum of 6
occurs near to co 25 for (111) similar to the case of RD.
The maxima described above are only obvious after careful study

in the Euler-space. The maximum in the set ND lies at the Euler-angles
q91 33.75 tI) 20.42 and (/9 2 7.75 (compare Figure 12 and Figure
15); the maximum in the set TD at (110), co - 20 is found at the Euler-
angles ol 7.1 14.1 q92 7.1 (compare Figure 11 and Figure
14). The minima in the distribution in the Euler-space, for example along
the line 0 are most obvious. In the present case the picture of the
MDF in the Euler-space is more complex than in the space of the
rotation parameter.

Finally the advantages and disadvantages of the two spaces to calcu-
late and represent MDF should be presented. The advantages of the
rotation axis space are as follows:
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is possible to differentiate between exactly determinable "accurate"
orientations and inexactly determinable "inaccurate" misorienta-
s. The MDF picture is relatively clear. The disadvantages ofthe rota-

90*

90*
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O* ’ 90*
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FIGURE 13 Detail enlargement of the MDF in Euler-space for 02 =40* (set RD;
Figure 13)

tion axis space are: numerical calculations are difficult. The space for
small 09 is very distorted. The limitation of the basal region is compli-
cated. The evaluation for the Euler-space is practically the reverse. The
advantages of the rotation space are here the disadvantages and vice-
versa. Routine numerical calculations can be carried out in Euler-space.
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