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SUMMARY

Multiple testing issues are important in gene expression studies, where typically thousands of genes
are compared over two or more experimental conditions. The false discovery rate has become a popular
measure in this setting. Here we discuss a complementary measure, the ‘miss rate’, and show how to
estimate it in practice.

1. INTRODUCTION

We discuss the problem of identifying differentially expressed genes from a set of microarray
experiments. This problem has received much attention lately—see Dudoitet al. (2003) for a nice
summary. The false discovery rate (FDR) (Benjamini and Hochberg, 1985) has become a popular error
measure in this setting, see, e.g. Tusheret al. (2001), Efronet al. (2001), Storey (2002a), Storey and
Tibshirani (2003) and Genovese and Wasserman (2003). In this short paper, we introduce the ‘miss rate’,
which is the complement of the FDR. It is the proportion of genes that are truly differentially expressed,
among those declared non-significant. We show how to estimate the miss rate in practice and discuss its
properties both numerically and from a mathematical point of view.

2. T-STATISTICS, THRESHOLDING AND THE FALSE DISCOVERY RATE

Suppose we havem genes measured onn = n1 + n2 arrays, under two different experimental
conditions. Letxi1 = (xi1, xi2, . . . , xi,n1) andxi2 = (xi,n1+1, xi,n1+2, . . . xi,n1+n2) be the measurements
for gene i for conditions 1 and 2, respectively. We start with some statistic for comparing the two
conditions:

T (xi1, xi2). (1)

∗To whom correspondence should be addressed.

Biostatistics Vol. 6 No. 1c© Oxford University Press 2005; all rights reserved.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/6/1/111/379515 by guest on 20 August 2022



112 J. TAYLOR ET AL.

Table 1.Possible outcomes from m hypothesis tests

Accept Reject Total
Null True U V m0

Alternative True Q S m1
W R m

Examples of commonly used statistics include the Wilcoxon two-sample test and the unpaired T-test. For
concreteness, we focus on the T-test but note that the ideas apply equally well to other test statistics.
They also apply to other settings besides the two-sample problem, for example, the correlation of gene
expression with a survival outcome. All that is needed is an appropriate choice of a test statistic.

Let x̄i1 and x̄i2 be the average gene expression for genei under conditions 1 and 2, and letsi be the
pooled standard deviation for genei :

si =
[∑

1(xi j − x̄i1)
2 + ∑

2(xi j − x̄i2)
2

n1 + n2

]1/2

.

Here each summation is taken over its respective group (1 or 2). Then a reasonable test statistic for
assessing differential gene expression is the standard (unpaired) T-statistic:

Ti = x̄i2 − x̄i1

si

√
1

n1
+ 1

n2

.

For simplicity, our discussion focuses on the two-sample problem and the unpaired T-statistic but it
applies equally well to other settings and test statistics.

Using the statisticTi , we can simply compute its value for each gene, choose a thresholdc and then
declare significant all genes satisfying|Ti | > c.

Table 1 displays the various outcomes when testingm genes. The quantityV is the number of false
positives (Type I errors), whileR is the total number of hypotheses rejected. The false discovery rate
(FDR) is the expected value ofV/R.

Consider, for example, the microarray data taken from Golubet al. (1999). It consists of the expression
of 6087 genes in 38 leukemia patient samples: 27 with ALL and 11 with AML. The objective is to find
genes whose expression differs across the two types of leukemia.

A histogram of the 6087Ti values is shown in Figure 1: they range from−7.5 to 10.1. If theTi values
were normally distributed, we could consider any value> 2 in absolute value to be significantly large.
But with more than 6000 genes, we would expect many to have|Ti | > 2 just by chance.

We proceed by considering rules of the form|Ti | > c, for various values of the cutpointc, and
estimating the FDR of each rule by taking random permutations of the class labels. Here are the details:

1. CreateK permutations of the data, producing T-statisticsT k
i , for featuresi = 1, 2, . . . , p and

permutationsk = 1, 2, . . . , K .
2. For a range of values of the cutpointC , let R̂ = ∑

i I (|Ti | > C), V̂ = (1/K )
∑

i,k I (|T k
i | > C).

Let π0 = m0/m, the true proportion of null genes among them.
3. Estimate the FDR bŷFDR = π0V̂ /R̂.

Of course,π0 is unknown: we can estimate it in a number of ways. Here is one simple approach,
from Storey (2002a). Let(q0.25, q0.75) be the quartiles of the T-statistics from the permuted datasets. Let
π̂0 = #{Ti ∈ (q0.25, q0.75)}/(0.5m), and setπ̂0 = min(π̂0, 1).

In our example, if we takec = 2.9 , we getR = 609,V̂ = 31.9, π̂0 = 0.70, givingF̂DR = 0.037.
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Fig. 1. Microarray example: the left-hand panel shows a histogram of the 6087 T-statistics. In the right-hand panel,
we have overlayed the histogram of the T-statistics from the 100 data permutations.

Table 2.

|Ti | in (c0, c) |Ti | > c (Reject) Total
Null true U0 V m0

Alternative true Q0 S m1
W0 R m

3. THE MISS RATE

Having derived a list of genes by using a rule like|Ti | > c, it is of interest to estimate some sort of
false negative rate. Looking at Table 1, the quantityE(Q/W ) is what Genovese and Wasserman (2003)
call the false non-discovery rate. This quantity is the proportion of false negatives among all genes with
|Ti | < c. Since the vast majority of these genes have values of the T-statistic near zero, and hence, were
not close to being rejected, this quantity would not usually be of practical interest. Consider, instead, some
cutpointc0 < c, chosen, for example, so that say 5% of the values|Ti | lie in (c0, c). Then we call themiss
rate the expected proportion of genes in(c0, c) that are non-null.

In detail, consider the definitions in Table 2. The miss rate is defined to be

MR(c, c0) = E

(
Q0

W0

)
. (2)

For example, takingc0 = 2.46 givesW0 = 305 genes with values ofTi in (c0, c). The estimated miss
rate for this interval, calcuated in a way described later, is 85.3%. Thus, we estimate that 0.853 · 305 =
260.2 of these 357 genes are non-null, i.e. differentially expressed across the two groups.

The miss rate, MR, is estimated using the same information gathered for the estimation of the FDR.
With W0 equal to the number of|Ti | in (c0, c) andÛ0 equal to the average number of permutation values
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Table 3.Estimated miss rates, leukemia example

Interval Number of genes Miss rate
(2.45, 2.89) 305 0.853
(2.15, 2.46) 304 0.604
(1.91, 2.15) 304 0.274

|T K
i | in (c0, c), wedefine

M̂R(c0, c) = W0 − π̂0U0

W0
. (3)

The miss rate serves as a useful cautionary statistic. The estimated FDR is low here (3.7%), so we are
happy that only few among our list of 609 genes are false positives. However, among the next best 305
genes (all declared non-significant), an estimated 85.3% are actually non-null.

Table 3 gives the estimated miss rates for successive intervals below the cutpoint of 2.89, each
containing 5% of the genes. We see that the miss rate does not become low until we get down to values of
the T-statistic around 2.0

When estimating both the FDR and the miss rate, it is possible to obtain values either< 0 or > 1. In
each case, the corresponding estimate is set to 0 or 1 respectively.

There is a close relationship between the miss rate and thelocal false discovery rate (fdr) defined
in Efron et al. (2001) and Efron and Tibshirani (2002). The local fdr is the false discovery rate in an
infinitesimal interval(c − ε, c). The miss rate is 1 minus the local fdr, taken over a large interval(c0, c).
In defining the miss rate, we have to focus on a larger interval to aid interpretability.

Another important issue is the choice of the distribution for the test statistics under the null hypothesis.
Here we have used a permutation distribution for the null, which is simple and convenient. But, as shown
in Efron (2004), this can sometimes be under-dispersed, resulting in under-estimation of the FDR (and
that is probably the case in this example). Efron (2004) discusses alternative methods for generating the
null distribution of the test statistics.

Finally, we point out that the miss rate, along with the FDR and local FDR are unidentifiable quantities
in general, due to the fact thatπ0 is unobserved. Ifπ0 were known, however, then all these quantites are
identifiable. This has led to work on coming up with conservative estimates ofπ0, which in turn yield
conservative estimates of FDR, local FDR and the miss rate. The reader is referred to Storeyet al. (2004)
and Storey and Tibshirani (2001)

4. A SIMULATION STUDY

We simulated data fromp = 1000 genes andn = 40 samples, in two groups of size 20, All values
were generated independent and identically distributed (i.i.d.) N(0,1) except for the first 100 genes in
samples 21–40, which wereN (1.25, 1). Table 4 shows the results averaged over 50 simulations.

The simulation standard errors are< 0.01 for FDR, MR and their estimators. In general, botĥFDR
andM̂R do a reasonably good job of estimating the false discovery rate and miss rate, respectively. When
MR is low, thenM̂R over-estimates it on average, due to the truncation ofM̂R at zero. We also note the
estimateπ̂0 averaged 0.91, close to the actual valueπ0 = 0.90.

Table 5 shows a second simulation example, as before but with 2000 genes, with the first 300 genes
differing in mean by 0.25 units in the second set of 20 samples. Again, both estimates are accurate enough
to be informative in practice.
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Table 4.FDR and MR results for simulated data, Example 1. The cutpoints represent the 75, 80, 85, 90
and 95 percentiles of |Ti |

Cutpoint > 1.4 > 1.6 > 2.0 > 2.7 > 4.1
FDR 0.601 0.504 0.348 0.107 0.005
F̂DR 0.600 0.500 0.349 0.107 0.006

# genesR 250 200 150 100 50
MR 0.008 0.030 0.169 0.791
M̂R 0.054 0.084 0.174 0.792

π̂0U0 49.21 45.89 41.82 11.55
# genesW0 50 50 50 50

Table 5.FDR and MR results for simulated data, Example 2. The cutpoints represent the 75, 80, 85, 90
and 95 percentiles of |Ti |

Cutpoint > 1.3 > 1.5 > 1.7 > 2.0 > 2.5
FDR 0.637 0.595 0.541 0.465 0.349
F̂DR 0.697 0.654 0.593 0.515 0.401

# genesR 250 200 150 100 50
MR 0.194 0.244 0.306 0.419
M̂R 0.133 0.162 0.252 0.371

π̂0U0 86.99 83.83 74.81 62.93
# genesW0 100 100 100 100

Table 6.FDR and MR results for simulated data, Example 3 (correlated data). The cutpoints represent
the 75, 80, 85, 90 and 95 percentiles of |Ti |

Cutpoint > 1.4 > 1.6 > 2.0 > 2.7 > 4.1
FDR 0.603 0.508 0.357 0.121 0.012
F̂DR 0.604 0.503 0.360 0.122 0.012

# genesR 250 200 150 100 50
MR 0.014 0.039 0.171 0.769
M̂R 0.052 0.105 0.179 0.768

π̂0U0 50.42 45.645 41.81 11.55
# genesW0 50 50 50 50

Table 6 shows the results of a third simulation study. The setup is the same as in Example 1, except
that the 1000 genes have been divided into 20 blocks of 50 consecutive genes. Within each blockk, we
addθk = 5 · (|z1|, |z2|, . . . |z40|) to the expression values for each gene, wherez j is a standard Gaussian
variate. This makes the pairwise correlation of genes in a block equal to about 0.35. This correlation has
little effect on the results.

5. SOME THEORY

Our estimate of the miss rate is

M̂ R(c0, c) = 1 − π̂0 · Û0

W0

whereÛ0 is the average number of permutation values of the|T K
i | in the interval(c0, c).
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Under some reasonable conditions, our estimate of the miss rate is consistent and under-estimates
the true miss rate asymptotically. We call this ‘conservative’ behavior but note that this term might be
confusing. The miss rate is meant to tell us that by choosing our cutoff at a point,c, say, then we are
missing a certain proportion of genes nearc but which were not included in the rejection region. The miss
rate is meant to estimate this number and it is conservative to under-estimate just how ‘interesting’ these
genes may be.

The main assumption that is required is that as both the number of genesm grows and the number of
permutation samplesK grows the empirical distribution functions

F̂(t) = 1

m

m∑
i=1

I (|Ti | � t)

F̂0(t) = 1

K · m

m∑
i=1

K∑
k=1

I (|T k
i | � t)

converge uniformly to non-random limits, sayF(t) andF0(t) and that the proportion of true nullsπ0,m =
m0/m converges to some limiting proportion 0< π0 < 1.

The simplest example under which these conditions are satisfied are when the genes are independent;
the null distribution of eachTi is the same; and the active genes are drawn i.i.d. from a mixture distribution
so that the alternative distribution of theT s are also identical (Genovese and Wasserman, 2002; Storey
and Tibshirani, 2001). For a more precise description of the necessary conditions, the interested reader is
referred to Efronet al. (2001), Storeyet al. (2004) and Storey and Tibshirani (2001) for further details.

The distribution functionF0 can be thought of as the ‘null’ distribution of a typical inactive gene.
For many models, this null distribution is the same across genes but, in general, it is possible that the
null distribution is different across genes, in which caseF0 is the mixture of these null distribution across
genes. The distribution functionF can be thought of as a mixture which puts weightπ0 on F0—the ‘null’
distribution ofTi and weight(1 − π0) on the ‘alternative’ componentF1.

If F andF0 are continuous, so that the quantiles of the|T k
i | also converge, then the estimateπ̂0,m also

converges tôπ0,∞, (see, e.g. (Storey, 2002b; Storeyet al., 2004)) and

π̂0,∞ � π0.

Therefore, asymptotically

M̂ R(c0, c) � M R(c0, c)

both in probability and expectation (Efron and Tibshirani, 2002; Storeyet al., 2004). Thus, our estimate
of M R(c0, c) is asymptotically conservative and the true miss rate is actually higher than our estimate on
average. In our simulation experiments, the bias inπ̂0 was very small and̂MR was usually close to MR
on average.

6. DISCUSSION

The miss rate (MR) represents a useful cautionary statistic, when interpreting the results of a
comparative gene expression study. In situations where the FDR of a list of significant genes is low,
the miss rate of genes that were not quite called significant can be quite high. The same information used
to estimate the FDR can be used to estimate the miss rate. We suggest that the miss rate be routinely
reported along with the FDR and the local false discovery rate, in gene expression studies.
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