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The genetic basis of most complex traits is highly polygenic and dominated by

non-coding alleles, and it is widely assumed that such alleles exert small

regulatory effects on the expression of cis-linked genes.  However, despite

availability of expansive gene expression and epigenomic data sets, few

variant-to-gene links have emerged. We identified 139 genes in which

protein-coding variants cause severe or familial forms of nine human traits. We

then computed the association between common complex forms of the same

traits and non-coding variation, revealing that most such traits are also

associated with non-coding variation in the vicinity of the same genes. However,

we found colocalization evidence—the same variant influencing both the

physiological trait and gene expression—for only 7% of genes, and

transcriptome-wide association evidence with correct direction of effect for only

4% of genes, despite an abundance of eQTLs in most loci. Fine mapping variants

to regulatory elements and assigning these to genes by linear distance similarly

failed to implicate most genes in complex traits. These results contradict the

hypothesis that most complex trait-associated variants coincide with currently

ascertained expression quantitative trait loci. The field must confront this deficit,

and pursue the “missing regulation.”

Modern complex trait genetics has uncovered surprises at every turn, including the

paucity of associations between traits and coding variants of large effect, and the

“mystery of missing heritability,” where no combination of common and rare variants can

explain a large fraction of trait heritability1. Further work has revealed unexpectedly high
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polygenicity for most human traits and very small effect sizes for individual variants.

Bulk enrichment analyses have demonstrated that a large fraction of heritability resides

in regions with gene regulatory potential, predominantly tissue-specific accessible

chromatin and enhancer elements, suggesting that trait-associated variants influence

gene regulation2–4. Furthermore, genes in trait-associated loci are more likely to have

genetic effects on their expression levels (expression QTLs, or eQTLs), and the variants

with the strongest trait associations are more likely also to be associated with transcript

abundance of at least one proximal gene5. Combined, these observations have led to

the inference that most trait-associated variants are eQTLs, exerting their effect on

phenotype by altering transcript abundance, rather than protein sequence. The

mechanism may involve a knock-on effect on gene regulation, with the variant altering

transcript abundances for genes elsewhere in the genome (a trans-eQTL), but the

consensus view is that this must be mediated by the variant influencing a gene in the

region (a cis-eQTL)6. As most eQTL studies profile cell populations or tissues from

healthy donors at homeostatic equilibrium, the further assumption has been tacitly made

that these trait-associated variants affect genes in cis under resting conditions.

Equivalent QTL analyses of exon usage data have revealed a more modest overlap

with trait-associated alleles, suggesting that a fraction of trait-associated variants

influence splicing, and hence the relative abundance of different transcript isoforms,

rather than overall expression levels. Thus, a model has emerged where most

trait-associated variants influence proximal gene regulation.
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Several observations have challenged this basic model. One challenge comes from the

difference between spatial distributions of eQTLs, which are dramatically enriched in

close proximity of genes, and GWAS peaks, which are usually distal7. Another comes

from colocalization analyses, attempting to map shared genetic associations between

human traits and gene expression. If the model is correct, most trait associations should

also be eQTLs; trait and expression phenotype should thus share an association in that

locus (rather than two association peaks overlapping). However, only 5-40% of trait

associations co-localize with eQTLs in relevant tissues or cell types6,8–10, and only 15%

of genes colocalize with any of 74 different complex traits11. Finally, expression levels

mediated a minority of complex trait heritability12. This has led to the suggestion that

most trait-associated alleles influence gene regulation in a context-specific

manner13—either altering expression during development or in response to specific

physiological stimuli—or that they act indirectly in trans to affect the regulation of a small

number of genes involved in trait biology (the omnigenic model14,15). Without a set of

true positive cases, in which the gene driving trait variation is known, it remains difficult

to assess either the basic model or the proposed variations.

One source of true positives is to identify genes that are both in loci associated with a

complex trait and are also known to harbor coding mutations causing severe or early

onset forms of related traits (e.g. related Mendelian disorders). The strong expectation

is that a variant of small effect influences the gene identified in the severe form of the

trait. This expectation is supported by several lines of evidence. Comorbidity between

Mendelian and complex traits has been used to identify common variants associated
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with the complex traits16. A handful of genes have been conclusively identified in both

Mendelian and complex forms of the same trait, including APOE, which is involved in

cholesterol metabolism17,18, and SNCA, which contributes to Parkinson’s disease risk.

Early genome-wide association studies (GWAS) found associations near genes

identified through familial studies of severe disease19,20, and more recent analyses have

found that GWAS associations are enriched in regions near causative genes for

cognate Mendelian traits in both blood traits8 and a diverse collection of 62 traits21.

To test the model that trait-associated variants influence baseline gene expression,

therefore, we assembled a list of such “putatively causative” genes. We selected nine

polygenic common traits with available large-scale GWAS data, each of which also has

an extreme form in which coding mutations of large effect size affect one or more genes

with well-characterized biology (Table 1). Our selection included four common diseases:

type II diabetes22, where early onset familial forms are caused by rare coding mutations

(insulin-independent MODY; neonatal diabetes; maternally inherited diabetes and

deafness; familial partial lipodystrophy); ulcerative colitis and Crohn disease23,24, which

have Mendelian pediatric forms characterized by severity of presentation; and breast

cancer25, where coding mutations in the germline (e.g. BRCA1) or somatic tissue (e.g.

PIK3CA) are sufficient for disease. We also chose five quantitative traits: low and high

density lipoprotein levels (LDL and HDL);  systolic and diastolic blood pressure; and

height. We selected 139 genes harboring large-effect-size coding variants for one of the

nine phenotypes (Table 1). These genes were identified in familial studies, and, for

breast cancer, using the MutPanning method26.
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We first examined whether these genes are more likely than chance to be in close

proximity harboring variants associated with the polygenic form of each trait. In

agreement with existing literature21, we observe a highly significant enrichment.

However, in well-powered GWAS, even relatively rare large-effect coding alleles

(mutations in BRCA1 which cause breast cancer, for instance) may be detectable as an

association to common variants. To account for this possibility, we computed association

statistics in each GWAS  locus conditional on coding variants. We applied a direct

conditional test to datasets with available individual-level genotype data; for those

studies without available genotype data, we computed conditional associations from

summary statistics using COJO27. After controlling for coding variation, we still detected

a highly significant enrichment of our genes under GWAS peaks. Of our 139 genes, 89

(64%) fell within 1 Mb of a GWAS locus for the cognate complex trait. After

fine-mapping the GWAS associations in each locus using the SuSiE algorithm28, we

found that 23/139 (17%) putative causal genes are closer to the GWAS fine-mapped

SNPs (posterior inclusion probability > 0.7) than any other gene in the locus, as

measured from the transcription start site. Given their known causal roles in the severe

forms of each phenotype, we thus suggest that the 89 genes near GWAS signals are

likely to be the targets of trait-associated non-coding variants. For example, we see a

significant GWAS association between breast cancer risk and variants in the estrogen

receptor (ESR1) locus even after controlling for coding variation; the baseline

expression model would thus predict that non-coding risk alleles alter ESR1 expression

to drive breast cancer risk.
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We next looked for evidence that the trait-associated variants were also altering the

expression of our 89 genes in relevant tissues. If these variants act through changes in

gene expression, phenotypic associations should be driven by the same variants as

eQTLs in relevant tissue types. We therefore looked for co-localization between our

GWAS signals and eQTLs in relevant tissues (Supplementary table 1) drawn from the

GTEx Project, using three well-documented methods: coloc10, JLIM9, and eCAVIAR29.

We found support for the colocalization of trait and eQTL association for only four

(coloc), six (JLIM), and three (eCAVIAR) of our 89 putatively causative genes, even

before correcting for multiple-hypothesis testing, which is not obviously better than

random chance. We note that our estimates of the number of putatively causative genes

with colocalization of eQTL and GWAS signal is conceptually distinct from and not

directly comparable to the existing estimates of the fraction of GWAS associations

colocalizing with eQTLs. This distinction matters because it illuminates the role of

eQTLs in known trait biology rather than examining the locus for the presence of a

colocalizing eQTL which may or may not be relevant to the complex trait.

A different way to identify potential causative genes under GWAS peaks using gene

expression is the transcriptome-wide association study design (TWAS)30–32. This

approach  measures local genetic correlation between a complex trait and gene

expression. Though not designed to avoid correlation signals caused by LD33, the

approach has higher power than colocalization methods in cases of allelic heterogeneity

or poorly typed causative variants30. We used the FUSION implementation of TWAS,
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which accounts for the possibility of multiple cis-eQTLs linked to the trait-associated

variant by jointly calling sets of genes predicted to include the causative gene, to

interrogate our 89 loci32.

FUSION included our putatively causative genes in the set of genes identified as likely

relevant to the GWAS peak in 42/89 (47%) loci. Genes were often identified as hits in

multiple tissues, but with an inconsistent direction of effect—that is, increased gene

expression correlated with an increase in the quantitative trait or disease risk in some

tissues, but a decrease in others. This may indicate that different tissues have relevant

genes that are different, but still called within the same joint set. Because of this

possibility, and the known biological role of many of our genes, we restricted our results

to tissues with established relevance to our traits. Only 9/89 (10%) genes were

identified by FUSION when we restricted the analysis to relevant tissues, and of these,

only five had a direction of effect on the complex trait consistent with what is known

from hypomorphic and amorphic Mendelian mutations. This fact, combined with the

inconsistent direction of effect across tissues, may indicate that even when putatively

causative genes fall within a set of genes jointly called by TWAS, their baseline

expression may not be mediating the association.

Our results so far are consistent with trait-associated variants altering the regulation of

causative genes in ways that are not well-represented by steady-state gene expression

measurements. We thus tried to find fine-mapped GWAS variants that appear in

regulatory sites within +/- 1 Mb windows around the transcription start sites (TSS) of our
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putatively causative genes. We found that 73 fine-mapped variants with a high posterior

probability of association (PIP > 0.7) to a trait fall within a narrow peak of H3K27ac,

H3K4me1, or H3K4me3 chromatin modification features. Despite our 1 Mb window, all

identified features are located within a 100 kb window around the transcription starts

sites of 27/89 (30%) putatively causative genes (two of these genes, ATG16L1 and

CARD9, are putatively causative for both CD and UC). Extending our search to include

not only fine-mapped variants within chromatin modification features, but also those

within 500 bp of features, identifies only two additional putatively causative genes.

Restricting our analysis to chromatin features in relevant tissues, 46 fine-mapped

variants fall within chromatin features, corresponding to 24 putatively causative genes.

Combining activity and proximity signals, we evaluated an “activity-by-distance”

measure, a simplified version of the “activity-by-contact” method34. Activity-by-distance

uses linear distance along the genome instead of the chromatin contact frequency

between feature and TSS. Among the fine-mapped variants that fall inside chromatin

modification features, 17 variants appear in the feature with the highest

activity-by-distance score in the locus, corresponding to 11 genes.

Next, we relaxed the requirement of proximity to a specific feature and selected all

enhancer regions annotated by the ChromHMM35 method in any measured cell or tissue

type. Overall, within +/- 1 Mb windows of our putatively causative genes 120/335

fine-mapped variants fall in an enhancer region (i.e. enhancer, bivalent enhancer,

genetic enhancer) highlighted by ChromHMM’s core 15-state model. These enhancers
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correspond to 43 putatively causative genes. Restricting our analysis to relevant

tissues, 51/335 fine-mapped variants fall in enhancers, corresponding to 26 putatively

causative genes.

In sum, we observe that fine-mapped variants appear near sites of regulatory

activity—suggested by the presence of activating chromatin marks—for a sizable

minority of our loci. However, 54/89 (61%) putatively causative genes, no fine-mapped

variants are associated with regulatory regions according to either chromatin marks or

ChromHMM. Furthermore, because we connect regulatory features to genes based

solely on proximity, it is possible that our finding of 35 genes represents an

over-estimate.

Overall, our results do not support the assertion that most common non-coding variants

associated with human traits alter baseline gene expression in trait-relevant tissues.

Several explanations may account for this: incorrect assumptions, lack of statistical

power, biological context, and alternative regulatory mechanisms. We discuss each

below.

Incorrect assumptions: it is possible that our putatively causative genes may simply not

be causative in complex trait forms. This would invalidate our underlying premise that

they should be targets of trait-associated variants in the common, complex forms of

phenotypes. This implies that in the vast majority of cases, a common variant

associated with the polygenic form of a trait near a gene known to cause a severe form
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actually targets a different gene. For instance, the risk alleles driving the breast cancer

GWAS signal near BRCA2, do not alter BRCA2 expression in breast tissue, but instead

influence another gene. This would also explain why 42 putatively causal genes do not

fall near a GWAS peak. The implication is that the underlying biological causes of an

extreme phenotypic presentation are different from the causes of the polygenic form

across all nine of the traits we have studied. This, to our minds, stretches credulity given

the highly significant enrichment of our genes near significant GWAS loci for cognate

phenotypes. We suggest it is more likely that our putatively causative genes are

relevant but influenced in some other way by polygenic risk alleles. More parsimonious

explanations for the 42 genes are that currently available GWAS are incompletely

powered, and thus have not detected association with alleles in those loci; or that strong

purifying selection acting on noncoding regions of these genes is preventing noncoding

variants from reaching population frequencies detectable by GWAS.

Lack of statistical power: it is possible that complex trait GWAS are insufficiently

powered to allow accurate fine-mapping and hence accurate colocalization; that eQTL

studies do not detect all eQTLs; that epigenetic studies do not identify all elements; or

that colocalization and regulatory element mapping methods lack power to detect

overlaps. However, we have ascertained GWAS associations at genome-wide

significance, and fine-map the majority of these signals using a Bayesian approach; and

the GTEx Consortium eQTL studies have reached saturation for eGene discovery6.
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The upper bound on the power of colocalization methods, under near-ideal

circumstances, is 66% at P < 0.01 (Barbeira et al. 2020). Under more typical conditions,

the portion of GWAS peaks which colocalize with an eQTL is 25% or higher9,10,29. As not

all GWAS peaks will share a causative SNP with a cis-eQTL, these estimates represent

a lower bound on power, with empirical power likely to be much higher. Given our

assumption that putatively causative genes are mediating association signals, we would

expect that 25% of these associations would colocalize, and that in each case, the gene

they colocalize with is our putatively causative gene. We would thus expect at least

22/89 (25%) of putatively causative genes near a polygenic trait association signal to

have a colocalizing eQTL in relevant tissue. Here, we report all associations without

correcting for multiple testing, so we would expect substantially more colocalizations.

We thus cannot attribute the absence of such events to lack of power. This conclusion is

supported directly by our analyses: coloc explicitly tests the hypothesis that GWAS and

eQTL signals are distinct, and finds strong statistical support for this hypothesis in three

times as many loci as it finds evidence for colocalization. This suggests that, in many

cases, genetically induced changes to baseline expression of putatively causative

genes do not translate into downstream phenotypic effects. At the same time, most

GWAS peaks over these genes are not eQTLs in available tissues.

The power of TWAS is comparable to colocalization methods in cases of a single typed

causative SNP. Its relative power increases in cases of poorly-typed SNPs, allelic

heterogeneity, or apparent heterogeneity (when multiple SNPs tag a single untyped
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causative SNP)30. Thus, the paucity of TWAS signals in the correct tissue and with the

correct direction of effect cannot be explained by low power.

Biological context: causative eQTLs may only manifest in certain developmental

windows, under specific conditions, or in a crucial cell subpopulation. We used data

from the GTEx project, which profiled bulk post-mortem adult tissue samples. If

causative eQTLs are only present in early development, or under specific exposures or

conditions not applicable to the GTEx donors, they would not be captured in these

contexts, even though cis-eQTLs have been detected for essentially every gene in the

genome in the GTEx data6.

Single-cell RNA sequencing (scRNA-seq) studies have identified some  eQTLs present

in only a subset of the cell types captured in bulk-tissue analysis, but these appear to be

limited—van der Wjist et al. found that 60% of cell type-specific eQTLs replicate in

bulk-tissue analysis, and their use of scRNA-seq found only 13% more eQTLs than

bulk-tissue analysis36. It has also been posited that cell type-specific eQTLs may be

enriched in disease association37. Additionally, genes causal for disease tend to have

more enhancers, which may lead to more complex spatiotemporal expression38.

Nonetheless, using this tendency to explain the many putatively causative genes whose

expression was not linked to GWAS requires us to believe most genes both have

cis-eQTLs that do not show up in bulk-tissue analysis, and lack those cis-eQTLs which

do show up in bulk-tissue analysis. Additionally, nearly all genes identified through
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proximity to a fine-mapped variant chromatin mark peak were identified in relevant

tissues, suggesting that our selection of tissue is correct.

A new cell-type TWAS method, which leverages large sample sizes for human bulk

tissues and high-resolution mouse scRNA-seq data to infer cell-type-specific gene

expression for each GTEx sample with respect to each Tabula Muris cell type under an

empirical Bayes framework and produce gene expression prediction models at cell-type

resolution, found no additional disease-associated gene in type II diabetes, and only

one, targeting FGFR2, in breast cancer (albeit not in breast mammary tissue; Huwenbo

Shi and Alkes Price, unpublished correspondence). This argues against context-specific

eQTLs being the most prevalent effect of trait-associated variants.

It is possible for eQTLs to change or disappear over the course of development39.

Because colocalization and TWAS methods rely on eQTL-mapping, such dynamic

eQTLs present a potential blind spot. Chromatin marks provide an orthogonal source of

information generally. Furthermore, because chromatin marks within a

tissue—especially H3K4me3—can remain stable across developmental time40, they

provide specific value in addressing this blind spot.

Alternative regulatory mechanisms: finally, it is conceivable that most non-coding

trait-associated variants act not on expression levels, but on other aspects of gene

regulation. For example, splicing QTLs (sQTLs) are enriched in GWAS peaks to the

same extent as eQTLs41,42. However, only 29% of our trait-associated variants that are
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highly likely to be causal (fine-mapping posterior probability > 0.7) fall in introns, despite

introns composing 45% of the genome43. Thus sQTLs do not immediately appear as a

viable hypothesis to explain the majority of trait-associated variation.

We thus have to explain the observation that putatively causative genes are often near

GWAS signals driven by non-coding variants, and that these genes are influenced by

baseline eQTLs in relevant tissues, but that trait-associated variants are not driving

those eQTLs. This result questions the basic assumption that trait variants act by

perturbing baseline gene expression, so that eQTLs in GWAS peaks are necessarily

relevant to the mapped trait. That these genes are more likely than chance to be near

such non-coding trait-associated variants suggests that both the structure and

regulation of these genes is relevant to complex traits. However, our results

demonstrate that the mechanism by which our genes influence complex traits is

generally not their baseline expression.

Regardless of the root cause, our results have consequences for efforts to uncover the

biology underlying human traits by linking variants to molecular function through

baseline expression measurements. These variant-to-function methods are currently the

most common computational strategies for identifying the biological significance and

therapeutic potential of non-coding genetic associations. Though they have successfully

identified many genes of biological consequence and clinical promise, most causative

genes likely go undiscovered. Given the difficulties many tissues present in obtaining

expression data across diverse developmental and environmental contexts, the
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limitations of examining baseline expression may present a difficult obstacle to

overcome.

There are limited mechanistic models to explain the function of non-coding variants

besides their action as cis-eQTLs. Besides sQTLs, another possibility is trans-eQTLs

that are not mediated by a cis effect on a gene, such as variants affecting CTCF binding

sites37, but this fails to explain the enrichment in GWAS signal near putatively causative

genes. Though it is likely that power and context play a role in the lack of overlap we

observe, for the reasons above it seems improbable that they explain it entirely.

Cumulatively, our analysis shows that whilst gold standard genes are often the closest

to a genetic association, more sophisticated analyses incorporating functional genomic

data fail to identify them as relevant to the trait in meaningful numbers. There are

currently no prominent models to fill this gap, but we must remember that complex trait

genetics has overturned our assumptions time and time again.

Figures
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Figure 1. Putatively causative genes identified by each method.

The leftmost column displays the entire set of putatively causative genes, along with the

subset near a linkage peak, and its subset of genes closest to the peak. For JLIM,

Coloc, and eCAVIAR, the portion of genes that were the only gene to colocalize in their

locus is noted. The numbers for these methods represent nominal significance

thresholds. For TWAS results, the subsets of genes which are in an appropriate tissue

and in an appropriate tissue in the right direction are indicated.
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C)

Figure 2. Genes identified as associated with a complex trait by each method.

A) Positive results for each of the three colocalization methods. B) Positive results for

each of the two chromatin methods. C) Positive results for all methods, collapsing A) to

“colocalization” and B) to “chromatin.”
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TP53

ZFP36L1

Table 1. Putatively causative genes

Supplementary methods

Identifying coding variants

Because many variants can fall within coding sequences in rare splice variants, coding

SNPs were selected based on the pext (proportion of expression across transcripts)

data44. Two filters were used. First, genes were considered only if their expression in a

trait relevant tissue was at least 50% of their maximum expression across tissues.

Second, variants were considered only if they fell within the coding sequence of at least

25% of splice isoforms in that tissue.

GWAS

For height, LDL cholesterol, and HDL cholesterol, GWAS were performed using

unrelated individuals of European ancestry from UKBB. The GWAS was run in Plink

2.045, using age, sex, BMI (for LDL and HDL only), 10 principal components, and coding

SNPs as covariates.

Conditional analysis

Analysis of breast cancer, Crohn disease, ulcerative colitis, and type II diabetes used

publically available summary statistics. The summary statistics were corrected for
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coding SNPs using an LD reference panel of TOPMed subjects of European ancestry46.

These subjects were identified with FastPCA47,48 and extracted using bcftools49.

Colocalization

JLIM9 was running using GWAS summary statistics and GTEx v7 genotypes and

phenotypes. Coloc10 was run using GWAS and GTEx v7 summary statistics. eCAVIAR29

was run using GWAS and GTEx v7 summary statistics, and a reference dataset of LD

from UKBB50 (Weissbrod et al. 2021).
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