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Abbreviations

A-site  Aminoacyl-tRNA-binding site on the 

ribosome

ATP  Adenosine triphosphate

cmnm5U  5-Carboxymethylaminomethyluridine

D  Dihydrouridine

DCS  Decoding centre

f5C  5-Formylcytosine

hm5C  5-Hydroxymethylcytosine

i6A  N6-Isopentenyladenosine

LSU  Large ribosomal subunit

m1A  1-Methyladenosine

m1G  1-Methylguanosine

m2G  N2-Methylguanosine

m
2

2
G  N2,N2-Dimethylguanosine

m3C  3-Methylcytosine

m4C  N4-Methylcytosine

m5C  5-Methylcytosine

m5U  5-Methyluridine

m6A  N6-Methyladenosine

m
6

2
A  N6,N6-Dimethyladenosine

ms2i6A  2-Methylthio-N6-isopentenyladenosine

MELAS  Mitochondrial encephalomyopathy, lactic 

acidosis and stroke-like episodes

MERRF  Myoclonic epilepsy with ragged red fibres

MLASA  Myopathy, lactic acidosis, and sideroblastic 

anemia

mt-DNA  Mitochondrial DNA

OXPHOS  Oxidative phosphorylation

P-site  Peptidyl-tRNA-binding site on the ribosome

PTC  Peptidyl transferase centre

Ψ  Pseudouridine

Q  Queosine

RIRCD  Reversible infantile respiratory chain 

deficiency

Abstract Mitochondrial protein synthesis is essential 

for the production of components of the oxidative phos-

phorylation system. RNA modifications in the mammalian 

mitochondrial translation apparatus play key roles in facili-

tating mitochondrial gene expression as they enable decod-

ing of the non-conventional genetic code by a minimal set 

of tRNAs, and efficient and accurate protein synthesis by 

the mitoribosome. Intriguingly, recent transcriptome-wide 

analyses have also revealed modifications in mitochondrial 

mRNAs, suggesting that the concept of dynamic regula-

tion of gene expression by the modified RNAs (the “epi-

transcriptome”) extends to mitochondria. Furthermore, it 

has emerged that defects in RNA modification, arising from 

either mt-DNA mutations or mutations in nuclear-encoded 

mitochondrial modification enzymes, underlie multiple 

mitochondrial diseases. Concomitant advances in the iden-

tification of the mitochondrial RNA modification machinery 

and recent structural views of the mitochondrial translation 

apparatus now allow the molecular basis of such mitochon-

drial diseases to be understood on a mechanistic level.
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rRNA  Ribosomal RNA

SAM  S-Adenosylmethionine

SSU  Small ribosomal subunit

t6A  N6-Threonylcarbamoyladenosine

τm5U  5-Taurinomethyluridine

τm5s2U  5-Taurinomethyl-2-thiouridine

tRNA  Transfer RNA

Introduction

Mitochondria are essential eukaryotic organelles that pro-

duce the majority of cellular energy by oxidative phospho-

rylation (OXPHOS) and also play important roles in other 

cellular processes, such as apoptosis, regulating intracellular 

calcium levels and ageing, and in various metabolic path-

ways [1–4]. They are thought to originate from the endocyto-

sis of an α-proteobacterium, which was retained by the host 

cell as it evolved to confer a selective advantage due to its 

ability to produce energy in the form of adenosine triphos-

phate (ATP) [5]. Consequently, all eukaryotic cells contain 

distinct sets of nuclear and mitochondrial genetic informa-

tion and two separate protein synthesis machineries. In mam-

mals, the mitochondrial genome is a multi-copy, circular, 

double stranded DNA (mt-DNA) that encodes 13 polypep-

tides, which are components of the OXPHOS system, as 

well as two ribosomal RNAs (mt-rRNAs) and 22 transfer 

RNAs (mt-tRNAs) [6]. Expression of the mt-DNA is essen-

tial for proper cellular function and is closely co-ordinated 

with nuclear gene expression as the remaining components 

of the electron transport chain (complexes I–IV), the ATP 

synthetase (complex V), and various factors required for 

biogenesis of the mitochondrial translation machinery are 

encoded within the nuclear genome, translated on cytoplas-

mic ribosomes and imported into mitochondria (reviewed in 

[7, 8]). Expression of the human mitochondrial genome is 

initiated by transcription of the mt-DNA from bidirectional 

heavy and light strand promoters (HSP and LSP, respec-

tively) to produce two polycistronic transcripts: one contain-

ing the sequences of the two mt-rRNAs, 14 mt-tRNAs, and 

10 mt-mRNAs (eight monocistronic and two bicistronic) 

and the other encoding eight mt-tRNAs and one mt-mRNA 

(reviewed in [9]). Release of the individual RNA elements is 

thought to be largely achieved by excision of the mt-tRNAs 

that directly flank the mt-rRNA and mt-mRNA sequences 

[10]. There are, however, several exceptions, such as the 

bicistronic mRNA encoding ATP6 and ATP8 that is immedi-

ately followed by the COX3 mRNA sequence, with no inter-

vening mt-tRNA (reviewed in [11]). The mt-tRNAs then 

undergo further processing and aminoacylation, and the 16S 

and 12S mt-rRNAs, together with either mt-tRNAVal or mt-

tRNAPhe, are assembled into 55S mitoribosomes. Overviews 

of the pathways of mt-tRNA maturation and mitoribosome 

biogenesis are provided by several recent reviews [12–15], 

and here, we will focus on a key aspect of the maturation of 

mitochondrial RNAs, the introduction of chemical modifi-

cations to specific nucleotides by nuclear-encoded enzymes 

that are imported into mitochondria to perform this function.

RNA modifications are present in most cellular RNAs in 

all three domains of life, and to date, more than 100 different 

types of modifications have been identified [16]. The discov-

ery of this plethora of chemical modifications in RNAs has, 

by analogy to the long known “epigenetic” markers in DNA, 

led to the introduction of the term “epitranscriptome” to col-

lectively describe modifications in coding and non-coding 

RNAs. In general, RNA modifications serve to expand the 

chemical and topological properties of the four basic nucleo-

tides and thereby influence the biogenesis, dynamics, stabil-

ity, and function of the RNAs/RNPs that carry them. tRNAs 

and rRNAs are the most extensively modified types of RNA 

and several unique features of mitochondrial gene expression 

make modification in mt-tRNAs and mt-rRNAs especially 

important. Mitoribosomes have a high protein-to-RNA ratio 

compared to all other ribosomes [17], and due to minimisa-

tion of the mt-rRNA scaffold, correct folding and high sta-

bility of this structure are particularly critical to ensure the 

fidelity of mitochondrial ribosome biogenesis and function. 

Similarly, many mt-tRNAs fold into non-canonical structures 

[18, 19], which require additional stabilisation by RNA mod-

ifications in the core of the mt-tRNAs to ensure that they can 

be recognised by aminoacyl-tRNA-synthetases and function 

accurately in translation. Furthermore, the use of a non-uni-

versal genetic code in mammalian mitochondria (reviewed 

in [20]) requires the minimal set of only 22 mt-tRNAs to 

decode 60 different codons and the necessary decoding flexi-

bility of the mt-tRNAs is largely achieved through the instal-

lation of complex RNA modifications in their anticodons.

In addition to these roles in maintaining the stability and 

functionality of the core translation machinery, the impor-

tance of RNA modifications as dynamic regulators of RNA 

fate has been highlighted by the identification of demethy-

lases that can “erase” specific modifications (reviewed in 

[21]) and the characterisation of several proteins, termed 

“readers”, which recognise particular modifications in 

cellular RNAs [22]. Furthermore, detection of substoi-

chiometric modification in rRNAs [23, 24] indicates that 

rRNA modifications may represent an important layer of 

translational control of gene expression (reviewed in [25]). 

Such dynamic regulation of gene expression is likely to be 

highly important in mitochondria as their function needs 

to be modulated to meet cellular energy demands dur-

ing adaptation to changing environmental conditions and 

developmental cues. The disruption of mitochondrial pro-

tein synthesis impedes assembly of the components of 

the mitochondrial respiratory chain and is often associ-

ated with disease (see for example [26, 27] and reviewed 
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in [28]). Due to the importance of the OXPHOS system 

especially in highly energy-consuming tissues, such as 

brain and muscle, these disorders are often collectively 

referred to as encephalomyopathies, but can present with 

a broad range of additional symptoms, including blindness, 

deafness, failure to thrive, and lactic acidosis. Advance-

ments in whole-exome sequencing have revealed that such 

mitochondrial diseases can arise due to mutations either 

in the mt-DNA or in nuclear genes encoding factors that 

are required for assembly of the mitochondrial transla-

tion machinery. The growing inventory of such pathogenic 

mutations (see for example, MITOMAP (https://www.

mitomap.org/MITOMAP) [29]) reveals that many occur in 

mt-DNA regions that are transcribed into mt-rRNAs and 

mt-tRNAs, or in nuclear genes encoding factors that are 

required for mitochondrial protein synthesis. More specifi-

cally, many mutations have been found in mitochondrial 

RNA modification enzymes and at or near mt-RNA sites 

that carry modifications, highlighting the important roles 

that mt-RNA modifications play in facilitating and regulat-

ing mitochondrial gene expression, and suggesting strong 

links between lack of mt-RNA modifications and disease.

mt-rRNA modifications

The mammalian mitochondrial ribosome (55S), which 

is responsible for the translation of all mt-mRNAs, is 

composed of a small subunit (SSU; 28S) and a large subu-

nit (LSU; 39S; Fig. 1) [17, 30, 31]. The 28S subunit con-

sists of 30 ribosomal proteins and the 12S rRNA, whereas 

the 39S subunit is composed of 52 ribosomal proteins, the 

16S rRNA, and an mt-tRNA (mt-tRNAVal or mt-tRNAPhe) 

that forms the structural scaffold of the central protuber-

ance, analogous to the 5S rRNA of cytoplasmic ribosomes. 

Minimisation of mitochondrial rRNA sequences by many 

small deletions has left a core structure similar to that of 

bacteria and the addition of numerous mitochondria-spe-

cific ribosomal proteins not only functionally expands 

mitochondrial ribosomes beyond their bacterial counter-

parts, but also enables several key RNA–protein interac-

tions to be replaced by protein–protein contacts. Never-

theless, the mt-rRNAs form the essential scaffold of the 

ribosome, including key features such as the peptidyl trans-

ferase centre (PTC) and decoding site (DCS), and correct 

expression, folding, and modification of the mt-rRNAs are 

critical for ribosome assembly and function.

Compared to their cytoplasmic and bacterial counter-

parts, mammalian mt-rRNAs have a low number of modified 

nucleotides with only ten sites identified so far (Table 1) [32, 

33], which markedly contrasts to the >200 and >30 modified 

nucleotides present in eukaryotic cytoplasmic and prokary-

otic ribosomes, respectively [25, 34]. Mapping of the posi-

tions of mt-rRNA modifications on the recent cryo-electron 

microscopy structures of the mammalian mitochondrial 

ribosome [30] has revealed that, similar to modifications in 

bacterial and eukaryotic cytoplasmic ribosomes, they cluster 

Fig. 1  Distribution of RNA 

modifications on the human 

mitochondrial ribosome (PDB 

3J9M) [30]. The small riboso-

mal subunit (SSU) is coloured in 

teal, the large ribosomal subunit 

(LSU) in grey, and the structural 

 tRNAVal in black. The positions 

of mammalian mt-rRNA modi-

fications are highlighted in vari-

ous colours and the chemical 

structures of the corresponding 

modifications are indicated

https://www.mitomap.org/MITOMAP
https://www.mitomap.org/MITOMAP


244 M. T. Bohnsack, K. E. Sloan 

1 3

at functionally important sites within the ribosomes, such as 

the PTC in the LSU and the DCS of the SSU (Fig. 1).

Small ribosomal subunit RNA modifications

The first mitochondrial rRNA modifications studied in detail 

were two highly conserved adenosine dimethylations close 

to the 3′-end of the 12S rRNA (m6
2
A936 and m

6
2
A937). 

Based on homology to the E. coli 16S rRNA methyltrans-

ferase KsgA that installs the corresponding modifications in 

bacterial ribosomes, TFB1M and TFB2M were identified as 

mammalian S-adenosylmethionine (SAM)-dependent meth-

yltransferases that are capable of introducing these modifi-

cations in the mitochondrial 12S rRNA (Table 1) [35, 36]. 

Notably, these proteins were initially characterised as mito-

chondrial transcription factors [37]; however, in vivo analy-

ses revealed that TFB1M is primarily responsible for modi-

fication of 12S rRNA, while TFB2M mainly functions as a 

transcription factor (reviewed in [38]). Interestingly, ribo-

some-binding factor A (RBFA) was recently found to bind 

directly to the region of the 12S rRNA that contains these 

dimethylations and to be required for their efficient instal-

lation [39]. Lack of m
6

2
A in the SSU rRNA of bacteria 

and yeast does not significantly affect SSU biogenesis, but 

rather, these modifications have been implicated in main-

taining translation efficiency by the ribosome or conferring 

increased sensitivity to antibiotics [40]. Interestingly, in 

mammalian mitochondria, loss of TFB1M leads to decreased 

stability of the small ribosomal subunit and consequently 

prevents mitochondrial translation. It is possible that lack 

of stable 28S subunits reflects a role for this modification or 

TFBM1 in the assembly of the SSU. However, since TFBM1 

can also associate with mature 28S complexes, it is also pos-

sible that, in addition to its modification function, TFBM1 

directly contributes to small subunit stability, thereby ensur-

ing that only translation competent 28S subunits contain-

ing the m6
2
A936 and m6

2
A937 modification are present in 

assembled 55S monosomes. The importance of these mod-

ifications in vivo is highlighted by the findings that a con-

ditional knockout of TFB1M is embryonic lethal in mouse 

and that a tissue-specific knockout leads to loss of m6
2
A936 

and m
6

2
A937, lack of 28S, and impaired mitochondrial 

translation [41]. Furthermore, genetic analyses revealed that 

TFB1M is a type 2 diabetes risk gene and consistent with 

this, a  TFB1M+/− mouse model showed impaired mitochon-

drial translation in pancreatic islet cells and reduced insulin 

production in response to glucose, implying that lack of 12S 

modification and the consequent mitochondrial dysfunction 

contribute to the pathogenesis of type 2 diabetes [42, 43].

More recently, a 5-methylcytosine  (m5C) at position 841 

of the 12S rRNA has been shown to be installed by the Nol1/

nop2/SUN family protein, NSUN4 [44]. While other mem-

bers of this family of  m5C methyltransferases have been 

shown to target tRNAs [45–49], NSUN1 and NSUN5 are 

implicated in  m5C modification of rRNAs destined for cyto-

plasmic ribosomes [50, 51]. NSUN4 is essential for embry-

onic development in mice and tissue-specific conditional 

knockout of NSUN4 showed that in heart, lack of NSUN4 

leads to progressive cardiomyopathy. Reduced levels of the 

OXPHOS complexes containing mt-DNA-encoded proteins 

but not complex II that is assembled from nuclear-encoded 

proteins in these mice demonstrated that NSUN4 is essen-

tial for mitochondrial translation. While it is likely that this 

reflects the importance of 12S-m5C841 modification for 

ribosome function, interestingly, NSUN4 has a dual func-

tion in mitochondrial ribosome biogenesis as, together with 

MTERF4, it is also important for LSU assembly [44, 52, 53]. 

Notably, its catalytic function on 12S rRNA is independ-

ent of MTERF4 and lack of NSUN4 (or  m5C841) does not 

affect the installation the 12S-m6
2
A936 and m6

2
A937 modi-

fications, implying that it is not essential for assembly of the 

SSU. Several other methyltransferases involved in rRNA 

modification have also been demonstrated to have dual func-

tions [25, 40, 54, 55]. However, these enzymes are typically 

required for different aspects of the biogenesis of a single 

ribosomal subunit, but in the case of NSUN4, it is possible 

that its functions in both SSU modification and LSU assem-

bly may represent a mechanism for co-ordinating matura-

tion of both ribosomal subunits [44]. Based on homology to 

hamster, the human 12S rRNA is also predicted to contain a 

5-methyluridine  (m5U) at position 429 and a 4-methylcyto-

sine  (m4C) at position 839, but the presence of these modifi-

cations remains to be confirmed [32].

Table 1  Inventory of mammalian mitochondrial rRNA modifications

The rRNA, position (Pos.), modification (Mod.), and modification 

enzyme are given along with reported disease associations and refer-

ences, where applicable

rRNA Pos. Mod. Enzyme Disease associa-

tions

References

12S 429 m5U ? [148, 149]

12S 839 m4C ? [148, 149]

12S 841 m5C NSUN4 [44]

12S 936 m
6

2
A TFB1M Type 2 diabetes, 

mitochondrial-

associated 

deafness

[35, 36, 41, 43]

12S 937 m
6

2
A TFB1M Type 2 diabetes, 

mitochondrial-

associated 

deafness

[35, 36, 41, 43]

16S 947 m1A TRMT61B [33]

16S 1145 Gm MRM1 [62]

16S 1369 Um MRM2 [61, 62]

16S 1370 Gm MRM3 [61, 62]

16S 1397 Ψ RPUSD4 [57–59]
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Large ribosomal subunit RNA modifications

In eukaryotic cytoplasmic ribosomes, the most common 

modifications are 2′-O-methylations of the ribose and the 

isomerisation of uridine to pseudouridine [56]. Recently, 

a systematic analysis of mitochondrial pseudouridine syn-

thetases and a pseudouridine mapping approach on mito-

chondrial RNAs confirmed pseudouridylation of U1397 

of the 16S rRNA [57], and RPUSD4 was identified as 

the enzyme responsible for this modification [58, 59]. 

Although this modification is present in both yeast and 

mammalian mitochondrial ribosomes, in S. cerevisiae, the 

modification is not essential for cell viability [60] and its 

precise function is not yet known.

In the mammalian mitochondrial 16S rRNA, there are 

also three 2′-O-methylations, Gm1145, Um1369, and 

Gm1370, which are installed by MRM1, MRM2, and 

MRM3, respectively (Table  1) [61–63]. These modifi-

cations lie within the A (aminoacyl)-site (Um1369 and 

Gm1370) and the P (peptidyl)-site (Gm1145) of the PTC 

(Fig. 1). 2′-O-methylation of the A-loop is an evolutionarily 

conserved feature of ribosomes that is important for medi-

ating interactions with aminoacylated tRNAs. It has been 

suggested that the extent of modification of G1370 is influ-

enced by the adjacent Um1369 modification, implying that 

the catalytic action of MRM2 may precede that of MRM3 

[61]. This is analogous to the installation of Um2921 and 

Gm2922 during the biogenesis of the yeast cytoplasmic 

ribosomes as 2′-O-methylation of 25S-Um2921 (equiva-

lent to Um1369) occurs co-transcriptionally, whereas meth-

ylation of 25S-G2922 by Spb1 is a late step in pre-LSU 

assembly [24, 64]. This temporal model is supported by the 

fact that G1370 is accessible on the surface of the mature 

mitochondrial ribosome. Interestingly, however, immuno-

precipitation data and sucrose density gradient centrifuga-

tion analyses suggest that while both MRM2 and MRM3 

associate with LSU complexes, MRM2 also interacts with 

mature 55S monosomes. The relevance of this finding is 

not clear yet, but it is tempting to speculate that, similar to 

NSUN4, MRM2 has dual functions in rRNA modification 

and mediating ribosome assembly, further supporting the 

model that coupling of these events serves as a checkpoint 

for fidelity of ribosome assembly. Depletion of MRM2 and 

MRM3 significantly inhibits mitochondrial translation and 

results in a corresponding reduction in cellular oxygen con-

sumption rate. The precise influence of these A-loop modi-

fications on translation is not known yet; however, lack of 

the modification equivalent to Um1369 in E. coli ribosomes 

(23S-Um2552) leads to decreased programmed +1 and −1 

frameshifting and reduced read-through of UAA and UGA 

[65]. Interestingly, −1 frameshifting is necessary for trans-

lation termination of the COX1 and ND6 mt-mRNAs [66], 

suggesting that MRM2 and Um1369 may play a similar 

role in mitochondrial translation.

The inventory of 16S rRNA modifications was recently 

extended to also include a 1-methyladenosine  (m1A) at 

position 947 (Table 1) [33]. Genome-wide association stud-

ies suggested a functional link between modification of this 

position and single-nucleotide polymorphisms in the tRNA 

methyltransferase TRMT61B. The action of this enzyme, 

which is also responsible for modification of position 58 of 

several mt-tRNAs (see below), in  m1A methylation of 16S-

A947, was confirmed by primer extension and RNA-seq 

analyses of RNA derived from cells depleted of TRMT61B 

[33]. In vitro methylation assays demonstrated that isolated 

16S rRNA can be efficiently methylated implying that this 

modification is installed during the early stages of 39S 

biogenesis and close inspection of the sequence and sec-

ondary structural context of 16S-m1A947 and position 58 

of the  m1A modified tRNAs also targeted by TRMT61B 

revealed a weak consensus motif. The precise function of 

this modification in mitochondrial translation remains to 

be elucidated, but studies using a bacterial model system 

suggest that it could be important for optimal mitoribosome 

activity [33]. Interestingly, analysis of the presence of this 

modification through evolution revealed that it occurs on 

approximately 90% of mammalian 16S rRNA sequences, 

whereas the remaining 10% of mammalian mitochondrial 

ribosomes, and eukaryotic cytoplasmic ribosomes, carry an 

unmodified uridine at this position. In contrast, an unmodi-

fied guanine is present at the equivalent position in most 

bacterial ribosomes.  m1A947 lies within helix 71 of the 

39S subunit, which is located at the intersubunit interface 

in close proximity to the intersubunit bridge B3. Based on 

the tertiary structure of the mitoribosome, it was proposed 

that the positively charged  m1A may facilitate formation 

of stabilising electrostatic contacts between  m1A947 and 

the rRNA backbone of helix 64. It is probable, therefore, 

that the importance of the  m1A947 modification lies in its 

contribution to maintaining the integrity of assembled 55S 

monosomes during translation. While unmodified adenine 

is unable to form such interactions, the uridine or guanine 

nucleotides present in cytoplasmic and prokaryotic ribo-

somes, respectively, likely represent alternative strategies 

for stabilisation of this region of the ribosome. This raises 

the question of why the majority of mammalian mitochon-

drial ribosomes rely on installation of an RNA modifica-

tion by a nuclear-encoded enzyme when other unmodified 

nucleotides are sufficient to fulfil its function. It is possible 

that employment of a single enzyme for both rRNA modi-

fication and tRNA modification represents a mechanism 

by which different components of the translation machin-

ery can be co-regulated. Alternatively, it has been sug-

gested that there is a selective pressure on the presence of 
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adenosine at this position in the mitochondrial genome as it 

may also contain important regulatory elements [33].

Together, the post-transcriptional modification of mt-

rRNAs is important for ensuring the stability and function-

ality of mitoribosomes. The requirement for several mt-

rRNA modifying enzymes for the stability of mature 55S 

ribosomes suggests the existence of quality control mecha-

nisms, which guarantee that only mitoribosomes containing 

correctly modified rRNAs can engage in translation. Fur-

thermore, the multi-functionality of several of the identified 

mt-rRNA modification enzymes implies that the installa-

tion of modifications is closely coupled with other aspects 

of mitoribosome biogenesis and mitochondrial function.

mt-tRNA modifications

The 22 mammalian mt-tRNAs are essential adaptors for 

the decoding of mt-mRNAs by the mitoribosome. Endo-

nucleolytic processing of 5′-ends of mt-tRNAs is mediated 

by the mitochondrial RNase P, which, in contrast to other 

RNase P complexes that contain a catalytic RNA and up to 

10 proteins, is assembled from only three proteins MRPP1, 

MRPP2, and MRPP3 [67, 68]. Maturation of the 3′-ends of 

mt-tRNAs is initiated by the mitochondrial RNase Z hom-

ologue, ELAC2 [69, 70], followed by addition of the uni-

versally conserved CCA sequence to the 3′-termini of all 

tRNAs by the tRNA nucleotidyltransferase TRNT1 [71]. In 

addition, after aminoacylation, similar to the bacterial ini-

tiator tRNAi
Met, the portion of the single mt-tRNAMet des-

tined to act in translation initiation rather than elongation 

undergoes formylation by the mitochondrial methionyl-

tRNA formyltransferase (MTFMT) to produce mt-tRNAfMet 

[72]. This enables specific recognition by the mitochondrial 

translation initiation factor MTIF2 and recruitment to the 

mitoribosomal P-site to initiate translation [73]. Although 

mt-tRNAs contain fewer modifications than their cytoplas-

mic counterparts [16, 74], the installation of a diverse range 

of RNA modifications is essential for mt-tRNA stability 

and function, and so far, 15 types of RNA modifications 

have been detected in 118 positions in different mammalian 

mt-tRNAs [74]. Mitochondrial tRNA modifications can be 

broadly classified into two groups: anticodon loop modifi-

cations that expand the decoding capacity of mt-tRNAs and 

regulate the fidelity of translation, and core modifications, 

which primarily contribute to the structural stability of mt-

tRNAs, but in some cases, may influence recognition by 

aminoacyl-tRNA synthetases (see for example [75]).

Modifications in the mt-tRNA body

Chemical modifications that occur in the body of mt-tRNAs 

(excluding positions 34 and 37) are small modifications, 

such as base methylations, or the conversion of uridine to 

either pseudouridine (Ψ) or dihydrouridine (D). Interest-

ingly, a subcomplex of the mitochondrial RNase P consist-

ing of MRPP1 (also known as TRMT10C) and MRPP2 

(also known as HSD10 or SDR5C1) also has an endonucle-

olytic cleavage-independent function in the N1-methylation 

of purines at position 9 of many mt-tRNAs (Table 2; Fig. 2) 

[76]. MRPP1 is the SAM-dependent methyltransferase 

responsible for substrate recognition and introduction of 

these modifications. In contrast, while MRPP2 that can act 

as a dehydrogenase and contains a Rossmann-fold NAD(H) 

dinucleotide-binding domain is essential for  m1A/G9 modi-

fications, its catalytic activity is dispensable for this function 

and it does not significantly contribute to tRNA binding by 

MRPP1. Although the precise role of MRPP2 in enabling 

modification, therefore, remains unclear, it is likely that it 

influences the stability or conformation of MRPP1 to pro-

mote methylation. The presence of N1-methylation at posi-

tion 9 in 19 of the 22 mt-tRNAs implies an important physi-

ological role for this modification, and indeed, it has been 

shown that unmodified A9 of mt-tRNALys basepairs with 

U64 leading to mis-folding of the tRNA [77–79]. The dual 

function of MRPP1 and MRPP2 in endonucleolytic process-

ing of the 5′-ends of tRNA sequences and N1-methylation 

of A/G9 may indicate coupling of these processes, ensur-

ing high modification efficiency of this important position. 

Mutations in MRPP2 have been shown to cause a disease 

characterised by progressive neurodegeneration and car-

diomyopathy, termed HSD10 disease (Fig. 2). These patho-

genic mutations not only impede dehydrogenase activity but 

also inhibit the interaction of MRPP2 with MRPP1, leading 

to decreased  m1A/G9 modification [80]. However, given the 

multifunctional nature of MRPP1 and MRPP2, it is not yet 

clear whether the lack of tRNA modification directly con-

tributes to HSD10 pathogenesis [81]. 

m1A modifications have also been detected at position 

58 of six bovine mt-tRNAs (Cys, Glu, Ile, Lys,  LeuUUR, and 

 SerUCN) and TRMT61B was confirmed to be the enzyme 

responsible for introducing these modifications in mt-

tRNALeu, mt-tRNALys, and mt-tRNASer [82].  m1A modifica-

tions at position 58 of tRNAs introduce additional positive 

charge to the T-loop, and in several tRNAs, this enhances 

the stability of their tertiary structure. More specifically, 

the cytoplasmic tRNAi
Met lacking the  m1A58 modification 

was shown to be actively targeted for degradation by the 

exosome in yeast [83]. Interestingly, TRMT61B has also 

recently been shown to be responsible for N1-methylation 

of A947 of the 16S rRNA (see above), raising the pos-

sibility that tRNA stability is co-ordinated with ribosome 

functionality in mitochondria. Furthermore, primer exten-

sion analyses of the extent of  m1A58 modification of mt-

tRNALys and mt-tRNASer suggest that these positions may 

be substoichiometrically modified, implying that dynamic 
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Table 2  Inventory of mammalian mitochondrial tRNA modifications

The positions (Pos.) of modifications (Mod.) detected in bovine mt-tRNA species, according to [74] or the individual references given, are 

shown. Enzymes demonstrated to be involved in installing these modifications in mammals are shown in bold and predicted enzymes (based on 

homology to the enzymes responsible for these modifications in other species) are given in italics, along with disease associations arising from 

mutations in the known or predicted modification enzymes and references (Refs.) where applicable

DEAF maternally inherited deafness, HCLA hypertrophic cardiomyopathy and lactic acidosis, MELAS mitochondrial encephalomyopathy, lactic 

acidosis and stroke-like episodes, MERRF myoclonic epilepsy with ragged red fibres, MLASA mitochondrial myopathy, lactic acidosis and side-

roblastic anemia, MM mitochondrial myopathy, RIRCD reversible infantile respiratory chain deficiency

Pos. Mod. mt-tRNA species Enzyme(s) Disease associations Refs.

6 m2G Asp THUMPD2 or THUMPD3 [91]

9 m1A Ala, Arg, Asp, Asn, Glu, Gly, His, 

 LeuCUN, Lys, Phe, Pro, Thr, Trp, 

Val,

MRPP1, MRPP2 HSD10 disease [76, 80]

m1G Cys, Gln, Ile,  LeuUUR, Tyr MRPP1, MRPP2 HSD10 disease [76, 80]

10 m2G Ala, Asn, Phe, Gly, His,  LeuUUR, 

 LeuCUN, Lys, Pro, Trp, Tyr, Val

TRMT11 [92]

16 m1A Arg ? [84]

20 D LeuUUR,  LeuCUN,  SerUCN DUS2 Lung cancer [93, 94]

26 m2G Ala, Glu,  LeuUUR ?

m
2

2
G Ile TRMT1 Intellectual disability [86–88]

27 ψ Asn, Asp, Cys, His, Ile,  LeuUUR, 

 LeuCUN, Met, Pro, Val

PUS1 MLASA [98, 99]

27a ψ SerUCN PUS1 MLASA [98]

28 ψ Ala, Asn, Cys, Glu,  LeuCUN, Lys, 

 SerUCN, Tyr

PUS1 MLASA [98, 99]

29 ψ SerUCN PUS1 [98]

31 ψ Asp,  LeuCUN RPUSD1 [100]

32 ψ Cys, Val RPUSD2 [101]

m3C SerUCN, Thr ?

34 τm5U Gln, Glu,  LeuUUR, Lys, Trp GTPBP3, MTO1 MELAS, MERRF, HCLA [118, 119, 124, 125]

τm5s2U Gln, Glu, Lys GTPBP3, MTO1, MTU1 RIRCD, DEAF [120, 121, 127–131]

f5C Met NSUN3, ABH1 MM, developmental disability, micro-

cephaly, failure to thrive, external 

ophthalmoplegia, convergence 

nystagmus

[45, 110, 111]

Q Asn, Asp, His, Tyr QTRTD1 Morris hepatoma [107]

37 t6A Asn, Ile, Lys,  SerAGY, Thr YRDC, OSGEPL1 [135–137]

i6A Cys, Phe,  SerUCN, Trp, Tyr TRIT1 Encephalopathy and myoclonic epi-

lepsy, lung cancer

[140, 143]

ms2i6A Phe,  SerUCN, Trp, Tyr TRIT1, CDK5RAP1 Encephalopathy and myoclonic epi-

lepsy, lung cancer

[143, 144, 146]

m1G Gln,  LeuCUN, Pro TRMT5 Mitochondrial myopathy, lactic 

acidosis

[132, 134]

39 ψ Ala, Arg, Cys, Gln, Gly, His,  LeuUUR, 

Phe, Tyr

PUS3 [102]

40 ψ Gln, Glu PUS3 [102]

48 m5C Asn,  LeuUUR, Trp ?

49 m5C Glu,  SerAGY ?

50 ψ Met ?

55 ψ Gln, Glu,  SerUCN, Tyr TRUB2 [58, 103]

57 ψ Ala ?

58 m1A Cys, Glu, Ile, Lys,  LeuUUR,  SerUCN TRMT61B [82]

67 ψ Thr PUS1 [98]

72 m5C Thr ?
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regulation of  m1A58 modifications in different conditions 

may be a mechanism by which mitochondrial translation 

could be regulated [82]. This hypothesis is supported by the 

recent finding that the extent of N1-methylation of A58 of 

mt-tRNALys is increased in cells lacking the dioxygenase 

ALKBH1, an enzyme which has been reported to act as an 

 m1A demethylase for selected cytoplasmic tRNAs [84, 85]. 

Interestingly, loss of ALKBH1 was also found to increase 

N1-methylation of position 16 of the mt-tRNAArg, a position 

not previously reported to carry an  m1A modification [84].

Further base methylations detected in mt-tRNAs outside 

the anticodon or position 37 are N2-methylguanosine  (m2G) 

at positions 6, 10, and 26, N2,N2-dimethylguanosine (m2
2
G) 

at position 26, 3-methylcytosine  (m3C) at position 32, and 

5-methylcytosine  (m5C) at positions 48, 49, and 72 of spe-

cific mt-tRNAs (Table 2). While the enzymes responsible 

for installing these modifications in human mt-tRNAs have 

not been confirmed, some enzymes are predicted based 

on their homology to methyltransferases known to install 

corresponding tRNA modifications in other species. The 

in vitro methylation activity of TRMT1, its mitochondrial 

localisation, and its similarity to yeast Trm1 strongly impli-

cates this enzyme in m2
2
G synthesis at position 26 of mt-

tRNAIle [86–88], and it is also anticipated to be responsi-

ble for  m2G methylations at the corresponding position of 

mt-tRNAAla, mt-tRNAsGlu, and mt-tRNALeu. Importantly, 

mutations that cause a frameshift in TRMT1 and conse-

quent lack of the protein have been identified in several 

patients with intellectual disability (Fig. 2) [89, 90]. Simi-

larly, based on their homology to Methanocaldococcus jan-

naschii Trm14, THUMPD2 or its paralogue THUMPD3 

are predicted to install  m2G6 modifications [91], and 

TRMT11 is a strong candidate for  m2G modification of 

position 10 of human mt-tRNAs as its yeast homologue has 

been shown to perform this function [92]. While studies on 

cytoplasmic tRNA modifications in yeast and humans pro-

vide putative candidates for the cytosine methyltransferases 

responsible for the  m3C32 (METTL2B),  m5C48 and  m5C49 

(NSUN2), and  m5C72 (NSUN6) modifications found in 

some mitochondrial tRNAs, the activity of these enzymes 

Fig. 2  Defects in multiple mt-tRNA modification enzymes are asso-

ciated with human diseases. Schematic view of the cloverleaf second-

ary structure of a typical tRNA on which the positions of nucleotides 

that are known to carry modifications in mitochondrial tRNAs are 

indicated with circles. Modifications that are associated with human 

diseases are indicated in red and the modifications present at these 

positions, the enzymes responsible for installing these modifications 

(putative modification enzymes based on homology are shown in ital-

ics) and the associated diseases are given. DEAF maternally inherited 

deafness; HCLA hypertrophic cardiomyopathy and lactic acidosis; 

ME myoclonic epilepsy; MELAS mitochondrial encephalomyopa-

thy, lactic acidosis and stroke-like episodes; MERRF myoclonic epi-

lepsy with ragged red fibres; MLASA myopathy, lactic acidosis and 

sideroblastic anemia; MM mitochondrial myopathy; RIRCD revers-

ible infantile respiratory chain deficiency. Asterisks developmental 

disability, microcephaly, failure to thrive, recurrent increased lactate 

levels in plasma, muscular weakness, external ophthalmoplegia, and 

convergence nystagmus
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on mitochondrial tRNAs has not been demonstrated so far 

and it is possible that other uncharacterised mitochondrial 

methyltransferases are instead responsible for installing 

these modifications.

In addition to the base methylations described above, 

tRNAs also undergo post-transcriptional modification to 

generate two derivatives of uridine: pseudouridine (ψ) and 

dihydrouridine (D). Although D is a universally conserved 

modified base found in tRNAs from all three domains of 

life and is highly abundant in eukaryotic cytoplasmic 

tRNAs and yeast mitochondrial tRNAs, only U20 of mt-

tRNALeu and mt-tRNASer are reported to be converted 

to D in human cells [74]. Although the human genome 

encodes four flavin mononucleotide (FMN)-dependent 

dihydrouridine synthetases (DUS1-4), DUS2 is likely to be 

responsible for the reduction of uridine to dihydrouridine 

in human mt-tRNAs. This conclusion is supported by the 

high specificity of Dus proteins for individual tRNA posi-

tions in yeast and the confirmed role of yeast Dus2 in D20 

formation [93], as well as the detection of human DUS2 in 

mitochondria [94]. The precise role of D20 modifications 

in mt-tRNAs is not known, however, the increased con-

formational flexibility of D compared to uridine [95] sug-

gests that this modification may contribute to folding and 

stability of mt-tRNALeu and mt-tRNASer. Notably, DUS2 is 

upregulated in many lung cancers (Fig. 2) [96], and while 

a corresponding increase in dihydrouridine in the cyto-

plasmic  tRNAPhe has been observed [97], it is possible that 

changes in DUS2 levels similarly affect mt-tRNA modifica-

tion and that this may also contribute to carcinogenesis.

In contrast to the relatively rare D modifications, pseu-

douridines are found at positions 27, 27a, 28, 29, 31, 32, 

39, 40, 50, 55, 57, and 67 of several mt-tRNAs (Table 2). 

The prevalence of pseudouridine in mt-tRNAs is likely to 

reflect the strong stabilising effect of this modification on 

RNA secondary structure, as the isomerisation of uridine to 

pseudouridine confers greater hydrogen bonding potential 

and enhances the rigidity of the sugar-phosphate backbone. 

The pseudouridine synthase PUS1 mediates formation of 

Ψ27 and Ψ28, and is thought to also be responsible for Ψ29 

and Ψ67 in individual mt-tRNAs [98]. This multifunctional 

enzyme is also responsible for installing modifications at the 

corresponding positions of numerous cytoplasmic tRNAs, 

and in yeast, Pus1 has been linked to various pseudouri-

dylations detected in cytoplasmic mRNAs by genome-wide 

modification mapping [99]. Importantly, genetic analyses 

have revealed that a missense mutation in the PUS1 gene 

underlies mitochondrial myopathy and sideroblastic anemia 

(MLASA), an autosomal recessive, oxidative phosphoryla-

tion disorder, and lack of Ψ27 and Ψ28 modifications have 

been confirmed in MLASA patients (Fig.  2). The human 

genome encodes several further pseudouridine synthetases 

that localise to mitochondria and based on homology to 

characterised yeast tRNA modification enzymes, RPUSD1 

and RPUSD2 are likely candidates for catalysing Ψ31 

and Ψ32 synthesis, respectively [100, 101]. Similarly, it is 

anticipated that PUS3 is responsible for pseudouridylation 

of positions 39 and 40 in several tRNAs, and Ψ55 modifi-

cations are probably installed by TRUB2 (Table  2) [102, 

103]. Interestingly, depletion of either TRUB2 or another 

mitochondrial pseudouridine synthetase RPUSD3 has been 

shown to decrease Ψ6294 in the COXI mRNA and Ψ9904-6 

in the COXIII mRNA [58], implying that several of these 

enzymes may in fact have a broad target spectrum. Further-

more, in contrast to yeast, in humans, additional pseudouri-

dines are present at position 57 of mt-tRNAAla and position 

50 of mt-tRNAMet, and it is likely that these modifications 

are also introduced by the above-mentioned enzymes, but 

these activities currently remain to be assigned [74].

Anticodon and position 37 modifications

Decoding of the 60 codons used in the non-universal genetic 

code of mammalian mitochondria by the minimal set of 22 

mt-tRNAs relies on non-canonical basepairing between the 

first position of the tRNA anticodon (the wobble position) 

and the third base of the codon triplet. Post-transcriptional mt-

tRNA modifications within the anticodon loop are essential 

to achieve this flexibility in decoding. Four types of modified 

nucleotides are found at the wobble position of mt-tRNAs: 

C34 of mt-tRNAMet can be modified to 5-formylcytosine 

 (f5C), queuosine (Q) is present at the wobble position of mt-

tRNAs Asn, Asp, His, and Tyr, and U34 of mt-tRNAs Gln, 

Glu, Leu, Lys, and Trp can be modified to carry the taurine-

containing modifications τm5U or τm5s2U (Table 2; Fig. 3).

Queuosine (Q) is a universally conserved anticodon mod-

ification that differs from most other RNA modifications in 

that it is not generated from one of the four basic nucleotides 

within the context of a cellular RNA, but rather involves the 

formal substitution of a guanosine for the heavily modified 

7-deaza-guanosine derivative, queuosine [104]. In bacte-

ria, queuosine can be generated in a multistep biosynthetic 

pathway [105], whereas in humans, queuosine is obtained 

either from the diet or from the intestinal microflora [106]. 

Insertion of Q into tRNAs is achieved by tRNA-guanine 

transglycosylases (TGTases), and in humans, the mitochon-

drially localised QTRTD1 enzyme is likely to be responsi-

ble for this modification [107]. While it has been suggested 

that the presence of Q at the wobble position of four tRNAs 

(Table  2) may contribute to anticodon–codon interactions 

and regulate codon selection [108, 109], the precise role of 

this modification remains to be elucidated.

In contrast to Q,  f5C is a modification that is only present 

in a single metazoan mitochondrial tRNA (mt-tRNAMet), 

and recently, the modification pathway and corresponding 

enzymes were identified. In general, enzymatic formylation 
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can take place via two alternative mechanisms: in a single-

step reaction using formyl-tetrahydrofolate as a formyl 

group donor or in a two-step reaction involving oxidation 

of a pre-installed methyl group. In the case of mt-tRNAMet, 

cytosine 34 is first methylated at position 5 of the pyrimi-

dine ring by the methyltransferase NSUN3 [45, 110–112] 

and this  m5C then undergoes oxidation by the Fe(II) and 

α-ketoglutarate-dependent dioxygenase ALKBH1 (also 

known as ABH1) to form  f5C (Fig.  3a) [45, 112]. Cyto-

sine 34 of mt-tRNAMet is almost fully modified, and while 

both mass spectrometry and bisulfite sequencing confirm 

the predominance of  f5C at this position, two independent 

studies also detected  m5C34 in vivo, suggesting that a frac-

tion of mt-tRNAMet may not be oxidised by ALKBH1 [45, 

110, 111]. Notably, while other dioxygenases, such as the 

TET proteins, generate  f5C in DNA via a stable 5-hydrox-

ymethylcytosine  (hm5C) intermediate [113], ALKBH1 

generates predominantly  f5C. In cytoplasmic translation, 

two alternative  tRNAMet are required to read the classi-

cal AUG codon during translation initiation and elonga-

tion, whereas, due to the non-conventional genetic code of 

human mitochondria, the single mt-tRNAMet is employed 

for decoding of AUG, AUA and AUU codons during ini-

tiation, and AUG and AUA codons during elongation. The 

 f5C modification is proposed to enhance the structure and 

thermodynamic properties of the anticodon [114, 115], and 

to facilitate the increased decoding capacity by shifting the 

tautomeric equilibrium of the wobble base cytosine towards 

the imino-oxo tautomer enabling basepairing with adenine 

in the third codon position [116]. Interestingly, the decoding 

capacity of the mt-tRNAMet is specifically regulated in the 

context of the ribosome. During translation initiation, the 

AUU initiation codon in the NADH dehydrogenase 2 (ND2) 

mRNA is recognised by mt-tRNAMet leading to incorpo-

ration of methionine as the first amino acid, while during 

elongation, mt-tRNAIle is recruited to AUU codons for the 

incorporation of isoleucine, following the universal genetic 

code. Since both the mitochondrial translation initiation 

factor MTIF2 and the mitochondrial translation elongation 

factor TUFM can deliver mt-tRNAMet to mitoribosomes, 

these findings indicate fine differences in tRNA selection 

and decoding of the AUU codon between P-site (initiation) 

and A-site (elongation), which will be interesting to explore 

on the structural level. The importance of this modifica-

tion pathway is further supported by the finding that lack 

of NSUN3 or ABH1 leads to decreased mitochondrial 

translation in various cell lines. Furthermore, the integrity 

of the anticodon stem-loop of mt-tRNAMet is essential for 

Fig. 3  Modification pathways 

for selected mt-tRNA anticodon 

loop modifications. a NSUN3 

methylates C5 of cytosine (C) 

at position 34 of mt-tRNAMet to 

produce  m5C, which can then 

be oxidised to 5-formylcytosine 

 (f5C) by ALKBH1. b Uridine 

at position 34 of selected 

mt-tRNAs can be converted to 

τm5U by MTO1 and GTPBP3. 

τm5U can then undergo O/S 

exchange by MTU1 to produce 

τm5s2U. c TRIT1 isopente-

nylates N6 of adenosine at 

position 37 of several mt-tRNAs 

to produce N6-isopentenyladen-

osine  (i6A). CDK5RAP1 can 

then perform methylthiolation 

to generate 2-methylthio-N6-iso-

pentenyladenosine  (ms2i6A)
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recognition by NSUN3 and mutations that disrupt the sta-

bility of the ASL (e.g., m.4435A>G and m.4437C>T) have 

been identified in patients with various diseases associated 

with mitochondrial dysfunction, implying that lack of this 

modification can be the molecular basis of these pathologies 

(Fig. 4a) [45, 110]. Similarly, a patient with developmental 

disabilities, microcephaly, muscle weakness, and ophthal-

moplegia was found to carry heterozygous loss-of-function 

mutations in NSUN3, further highlighting the importance of 

this modification for mitochondrial function (Fig. 2) [111].

Thirteen of the twenty-two mitochondrial tRNAs have 

uridine encoded at position 34, and while eight remain 

Fig. 4  Pathogenic mutations resulting in sequence changes in mt-

tRNAs can lead to decreased levels of anticodon loop modifica-

tions. Schematic view of the secondary structures of four mt-tRNAs, 

mt-tRNAMet (a), mt-tRNALeu(URR) (b), mt-tRNALys (c), and mt-

tRNASer(UCN) (d), with the positions of pathogenic mutations that lead 

to decreased levels of anticodon loop modifications (boxed), labelled, 

and highlighted in red. The diseases associated with each mutation 

are indicated. ASD autistic spectrum disorders; CPEO chronic pro-

gressive external ophthalmoplegia; DM diabetes mellitus; DMDF 

diabetes mellitus and deafness; FSGS focal segmental glomeruloscle-

rosis; HiCM histiocytoid cardiomyopathy; LA lactic acidosis; LHON 

Leber hereditary optic neuropathy; LS Leigh syndrome; MELAS 

mitochondrial encephalomyopathy, lactic acidosis and stroke-like 

episodes; MERRF myoclonic epilepsy with ragged red fibres; MIDD 

maternally inherited diabetes and deafness; MLASA myopathy, lac-

tic acidosis and sideroblastic anemia; MM mitochondrial myopathy; 

DEAF maternally inherited deafness; SNHL sensorineural hearing 

loss
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unmodified at this site, five carry taurine-containing modi-

fications (τm5U in mt-tRNALeu and mt-tRNATrp and τm5s2U 

in mt-tRNALys, mt-tRNAGlu, and mt-tRNAGln; Fig. 3b). The 

high frequency of uridines at the wobble base of mt-tRNA is 

due to the high conformational flexibility of U, which ena-

bles it to basepair with all four nucleotides at the third codon 

position (the four-way wobble rule or “super-wobbling”) 

meaning that the eight mt-tRNAs carrying unmodified uri-

dines are able to decode more than half of the codons used 

in the mitochondrial genetic code [117]. In contrast, mt-

tRNAs responsible for decoding only two codons ending 

in purines (NNA/G) carry τm5(s2)U modifications, which 

fix the uridine in the C3′-endo form, strongly favouring 

basepairing with purines rather than pyrimidines. The use 

of taurine in these mt-tRNA wobble base modifications is 

specific for metazoa as in bacterial and yeast mitochondrial 

tRNAs, U34 is modified to 5-carboxymethylaminomethy-

luridine  (cmnm5U). However, while the reason for this evo-

lutionary difference is unclear, the mechanisms utilised to 

generate both  cmnm5U and τm5U are thought to be similar 

and involve homologous enzymes. In yeast mitochondria, 

Mss1 and Mto1 form a heterodimer that is responsible for 

the synthesis of  cmnm5U using glycine as a substrate and 

FAD and GTP as cofactors. The human mitochondrial pro-

teins GTPBP3 and MTO1 are able to complement for lack 

of Mss1 and Mto1 in yeast, strongly suggesting that they 

perform the analogous modifications in humans [118, 119], 

although their activity in human cells has not formally been 

demonstrated. In the case of mt-tRNALys, mt-tRNAGln, and 

mt-tRNAGlu, the τm5U34 can be further modified to τm5s2U. 

A thiol group is derived from L-cysteine by the partly mito-

chondrial cysteine desulfurase NFS1 [120], and is transferred 

to the 2-thiouridylase MTU1 that is responsible for thiola-

tion of the C2 position of τm5U to form τm5s2U (Fig. 3b) 

[121]. Structural studies together with analysis of mutated 

mt-tRNAs in an in vitro mammalian mitochondrial transla-

tion system have revealed that the τm5U34 modification is 

necessary for decoding UUG codons as it serves to stabilise 

U:G wobble basepairing by increasing stacking interactions 

[122, 123]. Interestingly, a number of point mutations in 

mt-tRNALeu(UUR) (m.3243A>G, m.3244G>A, m.3258T>C, 

m.3271T>C and m.3291T>C) detected in patients with 

mitochondrial encephalomyopathy, lactic acidosis, and 

stroke-like episode (MELAS) have been correlated with a 

lack of τm5U34 modification (Fig. 4b) [26, 124, 125]. This 

implies that nucleotide substitutions at these positions in 

the D-, and T-loops and anticodon stem, impede recogni-

tion of mt-tRNALeu(UUR) by the MTO1-GTPBP3 heterodi-

mer, either directly or indirectly by causing mis-folding of 

the mt-tRNA. Consistent with the role of this modification 

in facilitating decoding of UUG codons, a specific decrease 

was also observed in the expression of the complex I compo-

nent ND6, which is expressed from an mRNA rich in UUG 

codons. Since a reduction in complex I activity is character-

istic of MELAS and a mutation in the ND6 mt-mRNA itself 

(m.14453A>G) is also associated with this syndrome [126], 

it is highly likely that a lack of complex I caused by defec-

tive τm5U34 modification of mt-tRNALeu(UUR) can be the 

pathogenic basis of this mitochondrial disorder. Similarly, 

an m.8344A>G mutation in mt-tRNALys that is associated 

with myoclonic epilepsy with ragged red fibres (MERRF) 

syndrome causes a lack of τm5s2U34 modification (Fig. 4c) 

[127]. On a molecular level, τm5s2U34 modifications have 

been found to be essential for decoding of AAR (R = A or 

G) codons and, consistent with this, a general defect in mito-

chondrial translation was observed in cells expressing the 

m.8344A>G mutation. The importance of the τm5U34 and 

τm5s2U34 modifications is further underlined by the find-

ing that not only mutations in the mt-tRNAs carrying these 

modifications, but that also mutations in the enzymes that 

install them can cause disease. Mutations in both MTO1 and 

GTPBP3 cause mitochondrial translation defects and hyper-

trophic cardiomyopathy, lactic acidosis, and encephalopathy 

[128–130], whereas defects in the 2-thiouridylase MTU1 are 

implicated in reversible infantile liver injury (Fig. 2) [131].

Similar to the wobble base, position 37 within the antico-

don loop of tRNAs is a hotspot of RNA modifications and 

can carry a diverse range of complex modifications. In all 

human mt-tRNAs, position 37 is a purine, and in the case 

of mt-tRNAGln, mt-tRNALeu, and mt-tRNAPro, the guanosine 

can be methylated by the methyltransferase TRMT5 [132]. 

This  m1G modification plays an important role in maintain-

ing the efficiency and accuracy of translation. More spe-

cifically, N1-methylation of G37 reduces its Watson–Crick 

basepairing potential, which, on the one hand, helps to main-

tain an open conformation of the anticodon loop by prevent-

ing interactions with other nearby mt-tRNA nucleotides, 

and on the other hand, also impedes erroneous interactions 

with mRNAs that would result in +1 frameshifting. Indeed, 

in bacterial tRNAs, lack of  m1G37 modifications has been 

shown to lead to increased frameshifting errors [133]. The 

physiological importance of  m1G37 modification was further 

highlighted by the finding that two non-related individuals 

presenting with lactic acidosis, muscle weakness, and other 

characteristic symptoms of mitochondrial respiratory chain 

complex deficiencies both carried a heterozygous mutation 

in TRMT5 [134]. This mutation leads to expression of either 

a truncated, non-functional protein or TRMT5 in which argi-

nine 291 was substituted for histidine, disrupting intramolec-

ular interactions that are important for the catalytic activity 

of the protein. Consistent with this, the extent of methyla-

tion of G37 of mt-tRNALeu(CUN) was significantly decreased 

in these patients, and the observation that re-expression of 

wild-type TRMT5 could rescue mitochondrial respiratory 

function strongly suggests that lack of  m1G37 modification 

is the basis of disease in these patients (Fig. 2) [134].
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In contrast to the G37, adenosines at position 37 of mt-

tRNAs can be modified in a range of different ways. In 

the mt-tRNAs Asn, Ile, Lys,  SerAGY, and Thr, threonyl-

carbamoyl adenosine  (t6A) has been identified at position 

37 [74]. While the enzymes responsible for installing this 

modification have not formally been identified in human 

cells, YRDC and OSGEPL1 are strong candidates based on 

their homology to the yeast Sua5 and Qri7 enzymes that 

introduce the corresponding modification into yeast mt-

tRNAs [135–137]. Similar to  m1G37 modifications, on a 

molecular level,  t6A at position 37 has been shown to help 

maintain an open loop structure of the anticodon. Moreo-

ver,  t6A37 modifications contribute to base-stacking with 

the first nucleotide of mRNA codons, leading to increased 

anticodon–codon basepairing and facilitating efficient and 

accurate translation [138]. While the impact of  t6A modi-

fications on mitochondrial translation has not been ana-

lysed so far, lack of  t6A modifications in yeast cytoplas-

mic tRNAs was found to promote translation initiation at 

upstream non-AUG codons, increase frameshifting, and 

optimise the translation elongation rate by slowing elon-

gation at codons decoded by high abundance tRNAs and 

accelerating translation of codons decoded by rare tRNAs 

[139].

The other modifications present at position 37 of mt-

tRNAs involve isopentenylation of N6 of adenosine. The 

cytoplasmic and mitochondrial isopentenyltransferase 

TRIT1, which was first identified as a tumour suppressor 

in lung cancer [140], has been demonstrated to be respon-

sible for introducing these modifications into a number of 

mt-tRNAs (see Table  2; Fig.  3c). In fission yeast,  i6A37 

modifications have been suggested to enhance the decod-

ing stringency of cytoplasmic tRNAs leading to increased 

translation efficiency [141]. Notably, in cytoplasmic 

tRNAs,  i6A37 modifications were found to be a co- or 

pre-requisite for installation of  m3C32 modifications, sug-

gesting that in some cases, the installation of anticodon 

loop modifications is co-ordinated [142], but it remains 

to be seen if this is also the case in human mitochondria. 

In humans, pathogenic mutations that cause an arginine 

323 to glutamine substitution in TRIT1 or an adenosine 

to guanosine switch at position 38 of mt-tRNASer(UCN) 

(m.7480A>G) were found to inhibit  i6A37 modification, 

suggesting that lack of mt-tRNA isopentenylation can be 

the basis of disease (Figs. 2, 4d) [143].

Four of the five  i6A-containing mt-tRNAs (mt-tRNAPhe, 

mt-tRNASer, mt-tRNATrp, and mt-tRNATyr) can also 

undergo subsequent methylthiolation to carry  ms2i6A37 

modifications (Fig. 3c). Based on its homology to the cyto-

plasmic  ms2t6A methylthiotransferase, CDK5RAP1 was 

identified as the enzyme responsible for 2-methylthiola-

tion of these mt-tRNAs. Interestingly, CDK5RAP1 also 

acts on cytoplasmic tRNAs and regulates the activity of the 

cyclin-dependent protein kinase (CDK5), implying that its 

activity is distributed between a range of substrates [144]. 

In bacteria, the thiomethyl group of the  ms2i6A modifica-

tion has been shown to stabilise A:U basepairing between 

the anticodon and the first base of UNN codons by inter-

strand stacking [145], and similarly, in humans, reporter 

assays have demonstrated that  ms2 modifications are criti-

cal for the accurate decoding of wobble codons corre-

sponding to mt-tRNAPhe, mt-tRNATyr, and mt-tRNASer. 

Analysis of CDK5RAP1 function in CDK5RAP1 knock-

out mice revealed impaired mitochondrial integrity and 

protein synthesis as well as accelerated myopathy and 

cardiac dysfunction in stress conditions [146]. Further-

more, a MELAS-associated point mutation in the sequence 

encoding mt-tRNALeu(UUR) (m.3243A>G) decreased  ms2 

modification. Notably, quantitative analysis of  ms2 levels in 

patient samples correlated with the heteroplasmy level of 

the mt-DNA mutations, providing strong evidence that lack 

of 2-methylthiolation of mt-tRNAs contributes to this dis-

ease [146, 147].

Concluding remarks and outlook

The mitochondrial epitranscriptome is emerging as a key 

regulator of organellar gene expression, and due to the spe-

cial features of mammalian mitochondrial gene expression, 

such as the use of a non-conventional genetic code, the lim-

ited number of mt-tRNAs, which often form non-canoni-

cal structures, and the minimal mt-rRNA content of the 

mitoribosome, RNA modifications play especially impor-

tant roles in enabling efficient, accurate, and dynamic pro-

tein synthesis in mitochondria. Systematic analyses of Bos 

taurus (bovine) mt-tRNA and Mesocricetus auratus (ham-

ster) mt-rRNA modifications [74, 148, 149] have provided 

inventories of the core RNA modifications of the mamma-

lian mitochondrial translation machinery and genome-wide 

identification of the binding sites of putative modification 

enzymes coupled with strategies for detection of a range of 

different types of modifications has increased our knowl-

edge of the enzymes responsible for introducing these 

modifications. Excitingly, transcriptome-wide approaches 

for the mapping of RNA modifications including pseudou-

ridine, N6-methyladenosine  (m6A),  m1A, and  m5C have 

recently been developed, and in addition to the detection of 

modifications in cytoplasmic mRNAs, intriguingly, pseu-

douridines have also been found in several mt-mRNAs. 

This not only implies that modifications in nuclear-encoded 

mRNAs may influence the levels of mitochondrial modifi-

cation enzymes but also that the concept of dynamic regu-

lation of gene expression by alterations in mRNA modifi-

cations also extends to mitochondria. It will, therefore, be 

very interesting to discover which other modifications are 
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present in mt-mRNAs and to determine how such mRNA 

modifications influence the mitochondrial proteome.

Our increasing knowledge of the enzymes responsible 

for installing mt-RNA modifications has highlighted the 

fact that many of these enzymes are multifunctional. Some 

enzymes modify different types of mitochondrial RNA sub-

strates, such as TRMT61B, which methylates both A947 

of the 16S mt-rRNA and position 58 of several mt-tRNAs. 

Utilisation of the same enzyme for both tRNA and rRNA 

modifications could suggest that biogenesis of different 

components of the translation machinery is co-ordinated. 

Alternatively, several mt-RNA modifying enzymes are 

involved in other aspects of mt-RNA metabolism, such as 

mt-DNA transcription, mt-RNA processing, and mitoribo-

some assembly. This dual functionality of mitochondrial 

proteins extends beyond mt-RNA modification enzymes 

and likely reflects minimisation of the mitochondrial pro-

teome during transfer of many genes to the nuclear DNA. 

This means that the installation of mitochondrial RNA 

modifications is closely coupled with other processes, and 

in some cases, this appears to have the advantage that only 

correctly modified RNAs can be utilised in translation, 

thereby acting as a quality control mechanism. Alterna-

tively, several modifications enzymes, including PUS1, 

TRIT1, and CDK5RAP1, have been found to target both 

mitochondrial and cytoplasmic RNAs, implying that cross-

talk also occurs between protein synthesis machineries in 

these different compartments. Such co-regulation of mito-

chondrial and cytoplasmic gene expression also extends 

to include the fact that all the enzymes involved in post-

transcriptional modifications of mt-RNAs are translated on 

cytoplasmic ribosomes and imported into mitochondria. 

Interestingly, it was shown recently that production of the 

mitochondrial and nuclear-encoded components of the 

OXPHOS system is not co-ordinated at the level of tran-

scription, but rather, that mitochondrial and cytoplasmic 

translation are synchronously regulated to ensure equal 

expression of these components [150]. This raises the pos-

sibility that differential expression of nuclear-encoded 

modification enzymes may be an important level of regula-

tion of mitochondrial gene expression.

Such changes in the levels of mitochondrial RNA modi-

fication enzymes may not only regulate the extent of modi-

fication at certain sites, but since several modifications at 

key positions in mt-tRNAs are installed in two-step path-

ways via stable intermediates, this may also alter the ratio 

between the types of modification found at one position. 

The most prominent examples of such modifications are 

 f5C, which is installed via  m5C, τm5s2U that is a derivative 

of τm5U, and  ms2i6A that is produced by methylthiolation 

of  i6A (Fig. 3). In the case of the taurine-containing and iso-

pentenyl-containing modifications, some mt-tRNA species 

have only been observed to carry either τm5U (mt-tRNALeu 

and mt-tRNALys) or  i6A (mt-tRNACys), perhaps suggesting 

that they represent poor substrates for the second modifica-

tion enzymes (MTU1 and CDK5RAP1), while the presence 

of both forms of the modifications have been detected in 

other mt-tRNA species (see Table 2). Similarly, while mass 

spectrometry-based approaches have detected only  f5C 

at position 34 of mt-tRNAMet, recent bisulfite sequencing 

data from two independent studies suggest that some  m5C 

may also be present at this site. Given the critical roles of 

these modifications in expanding and regulating the decod-

ing capacity of mt-tRNAs, as well as ensuring the fidel-

ity and efficiency of mitochondrial translation, a dynamic 

equilibrium in the proportions of these tRNAs that undergo 

hypermodification, could influence mitochondrial protein 

synthesis. For example, it is tempting to speculate that 

alterations in the extent of oxidation, methylthiolation, or 

O/S exchange of the mt-tRNAs carrying these modifica-

tions may influence the expression of particular mt-mRNAs 

in different conditions.

Mitochondria serve as the “power-houses” of the cell, 

and as such, dynamic regulation of their activity needs 

to be closely coupled with the cell’s metabolic status and 

a growing body of evidence suggests that RNA modifi-

cations may play important roles in co-ordinating the 

rate of mitochondrial protein synthesis with the energy 

needs of the cell [151]. The building blocks of several 

RNA modifications present in mitochondrial RNAs are 

harvested from metabolic pathways (e.g., taurine and 

queosine) and many mt-RNA modifying enzymes rely on 

metabolites as cofactors for their reactions. For example, 

the dioxygenase ALKBH1 requires α-ketoglutarate that 

is produced in mitochondria during the Krebs cycle, the 

dihydrouridine synthetases DUS2 uses FMN as a cofac-

tor, dimethylallyl pyrophosphate (DMAPP) is used by 

TRIT1 for isopentenylation, and all methyltransferases 

characterised in mitochondria so far use S-adenosylme-

thionine as a methyl group donor. It is, therefore, a com-

pelling hypothesis that under conditions where nutrient 

resources are limited, lack of mt-RNA modifications may 

decrease mitochondrial translation rates to conserve cel-

lular energy, and it will be exciting to discover if such 

a mechanism exists. More specifically, cysteine is nec-

essary for 2-methylthiolation of several mt-tRNAs by 

MTU1 and, based on work in human cell lines, it has 

been suggested that supplementation with cysteine may 

rescue mitochondrial function in cases of reversible 

infantile respiratory chain deficiency (RIRCD), which is 

caused by lack of τm5s2U modifications [152].

The high specificity of most modification enzymes is 

likely achieved by their recognition of defined structural 

features of their substrates. Given the large number of 

mt-DNA mutations in sequences encoding mt-tRNAs and 

mt-rRNAs (see MITOMAP), it is anticipated that many 
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pathogenic mutations affect the folding of mt-tRNA or 

mt-rRNAs, inhibiting their recognition by modification 

enzymes. Indeed, several examples already exist, includ-

ing m.4435A>G and m.4437C>T in mt-tRNAMet that 

strongly affect methylation by NUSN3, m.74480A>G in 

mt-tRNASer(UCN) that causes a loss of  i6A37 modification 

by TRIT1 and several mutations in mt-tRNALeu(UUR) and 

mt-tRNALys that prevent introduction of taurine-contain-

ing modifications (Fig.  4) [45, 110, 143, 153]. Similarly, 

next-generation whole-exome sequencing analysis of many 

patients presenting with maternally inherited deafness have 

been found to have mutations in mt-RNR1, which encodes 

the 12S rRNA. While many such mt-rRNA mutations do 

not affect sites that are modified, two frequently occurring 

mutations, m.1555A>G and m.1494C>G, lie within the 

ribosomal A-site, adjacent to the aminoacyl-mt-tRNA bind-

ing site, and it is suggested that the conformational changes 

induced by the presence of alternative nucleotides as these 

sites may affect the efficiency and/or accuracy of mito-

chondrial translation. This model is supported by the find-

ing that several nuclear-encoded mitochondrial modifica-

tion enzymes are genetically linked to these 12S mt-rRNA 

mutations, suggesting that they are physiological effectors 

of the mutations. These enzymes include TFBM1 that 

modifies the nearby 12S-m6
2
A936 and 12S-m6

2
A937 resi-

dues as well as MTO1, GTPBP3, and MTU1 that introduce 

τm5(s2)U modifications into the anticodons of mt-tRNAs 

[154–156]. As well as mt-DNA mutations, the increasing 

number of pathogenic mutations that have been identified 

in nuclear encoded modification enzymes further confirms 

that defects in mitochondrial RNA modification often lead 

to disease.

Taken together, the concomitant advancements in tech-

niques for the detection of RNA modifications, the tran-

scriptome-wide identification of the target sites of modi-

fication enzymes, and whole-exome sequencing of patient 

material now pave the way for both the physiological roles 

of mt-RNA modifications to be elucidated and the molecu-

lar basis of mitochondrial disorders to be understood.
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