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Mitochondrial permeability transition pore (PTP), a (patho)physiological phenomenon discovered over 40 years ago, is still not
completely understood. PTP activation results in a formation of a nonspecific channel within the inner mitochondrial
membrane with an exclusion size of 1.5 kDa. PTP openings can be transient and are thought to serve a physiological role to
allow quick Ca2+ release and/or metabolite exchange between mitochondrial matrix and cytosol or long-lasting openings that
are associated with pathological conditions. While matrix Ca2+ and oxidative stress are crucial in its activation, the consequence
of prolonged PTP opening is dissipation of the inner mitochondrial membrane potential, cessation of ATP synthesis,
bioenergetic crisis, and cell death—a primary characteristic of mitochondrial disorders. PTP involvement in mitochondrial and
cellular demise in a variety of disease paradigms has been long appreciated, yet the exact molecular entity of the PTP and the
development of potent and specific PTP inhibitors remain areas of active investigation. In this review, we will (i) summarize
recent advances made in elucidating the molecular nature of the PTP focusing on evidence pointing to mitochondrial FoF1-ATP
synthase, (ii) summarize studies aimed at discovering novel PTP inhibitors, and (iii) review data supporting compromised PTP
activity in specific mitochondrial diseases.

1. Introduction

Situated in the cytoplasm of eukaryotic cells, mitochondria
are essential for normal cell function. Notably, these
dynamic, double membrane structures gained considerable
attention in recent years due to their role in Ca2+ homeosta-
sis, interorganelle communication, cell proliferation, and
senescence, as well as the orchestration of various signaling
pathways some of which determine cell commitment to
death or survival [1]. Most importantly, their vital function
in cell physiology is by providing the cell with energy in the
form of ATP through oxidative phosphorylation (OXPHOS).
The latter, taking place in the inner mitochondrial mem-
brane (IMM), is composed of respiratory chain complexes
I–IV and FoF1-ATP synthase (ATP synthase). The OXPHOS
allows for ~30 molecules of ATP to be made per one mole-
cule of glucose or 15 times more than by glycolysis.

Mitochondria also contain their own genome which
encodes proteins essential for OXPHOS function. Maternally

transmitted human mitochondrial DNA (mtDNA) is circu-
lar, double-stranded helix which encodes 22 transfer RNAs,
2 ribosomal RNAs, and 13 core proteins that assemble in
and determine the efficiency of all but succinate dehydroge-
nase (complex II) complexes of respiratory chain. Its copy
number varies between cell type and developmental stage
and lies between 103 and 104 per cell to meet the energy
requirements of any specific cell type at a given time. In
healthy humans, mtDNA population was initially thought
to be uniform or homoplasmic, although recent studies sug-
gest that this is only true for ~10% of individuals [2]. Upon
cell division, mtDNA replicates and mitochondria are ran-
domly segregated between daughter cells. Consequently,
mutations in the mitochondrial genome give rise to hetero-
plasmy where normal and mutant mtDNA populations coex-
ist resulting in genetic drift toward either pure mutant or wild
type [3]. Over time, the percentage of mutant alleles may
increase leading to decline in bioenergetic capacity. Once
the threshold is reached, mitochondria fail to make enough
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energy and symptoms appear. Over 200 [4] debilitating, life-
threatening, and therapeutically challenging diseases, termed
mitochondrial diseases, have been linked to mutations in
both mtDNA and nuclear DNA encoding for mitochond-
rially localized proteins. Major difficulties, first diagnosing
the disease and then providing a treatment, lie in the com-
plexity and heterogeneity of these disorders both in terms
of genetic variation and clinical phenotypes. Yet, they all
share a common element—decreased energy supply as a
consequence of mitochondrial dysfunction. Within this
group of disorders, commonly observed mitochondrial
abnormalities include mitochondrial network fragmentation
[5, 6], decreased OXPHOS capacity [7], increased reactive
oxygen species (ROS) [8–10], andCa2+deregulation and alter-
ations in mitochondrial ultrastructure [11–15]. All of these
features are consistent with impaired regulation of the mito-
chondrial permeability transition pore (PTP), a conserved
physiological process in mitochondria of all eukaryotes.

2. The Enigma of the Mitochondrial
Permeability Transition

The PTP is a cyclosporine A- (CsA-) sensitive high-
conductance channel in the IMM which is triggered by
Ca2+ and potentiated by ROS. Once activated, it allows for
unselective diffusion of <1500Da solutes and water across
the IMM. Two states of channel openings have been identi-
fied: short in duration, so-called flickering, and long-lasting
openings. The former are thought to serve a physiological
role by allowing for a quick exchange of solutes (e.g., Ca2+,
oxygen radicals) between the mitochondrial matrix and the
cytosol required for signaling [16]. Long-lasting openings
result in mitochondrial depolarization, ATP consumption
rather than generation in attempt to maintain IMM potential
[17], burst in ROS, impaired cellular Ca2+ homeostasis, mito-
chondrial swelling, and release of proapoptotic factors into
the cytosol to initiate cell death [18]. Thus, the openings of
long duration are detrimental to mitochondria and mark
the point of no return in cell life and death.

While the great deal of information has been collected
about the regulation of the PTP (see [18–21]), its exact struc-
tural components remain the province of further experimen-
tation. The initial belief that the PTP forms at the adjoining
sites of the IMM and outer mitochondrial membrane
(OMM) through association of a variety of proteins (e.g.,
VDAC, TSPO, and adenine nucleotide transporter (ANT)
[22–24] among others) in each membrane has not been sup-
ported by rigorous genetic tests [25–28]; mitochondria miss-
ing these proteins still displayed a CsA-sensitive PTP
opening (see [18] for extensive review). These findings
prompted a multidisciplinary resurgence in the quest for
the identification of the proteins that form the regulated
channel defined as the PTP.

2.1. ATP Synthase as a Structural Component of the PTP. It
is important to recognize that the PTP is exclusively an
IMM event [23, 29]. Consequently, recent studies suggest
that ATP synthase forms the long-sought PTP [30–35],
but exact molecular mechanism of pore formation within

the IMM or ATP synthase specifically has yet to be estab-
lished. Mitochondrial ATP synthase is evolutionary con-
served enzyme of the IMM, whose main function is to make
ATP from ADP and phosphate. This multisubunit complex
is made of 17 different proteins that are assembled into two
main domains, the membrane extrinsic catalytic sector F1
(formed by subunits α and β, three copies each) and mem-
brane intrinsic proton-conducting sector Fo (made of sub-
units c, which in mammals forms an 8-member ring, a, and
supernumerary subunits e, f, g, A6L, DAPIT, and 6.8PL)
[36, 37]. They are connected through central and peripheral
stalks comprised of subunits γ, δ, and ε and subunits b, d,
F6, and OSCP respectively [36, 38]. Two approaches to
manipulate ATP synthase have been employed to test this
theory, and two major hypotheses on the role of this complex
of proteins in PTP formation have emerged in the last 5 years
(discussed below).

2.1.1. Dimer Hypothesis. The first hypothesis proposes that
PTP is formed by PTP-specific conformation of dimers of
ATP synthase when it shifts from ATP-synthetizing to
ATP-dissipating nanomachine, the “dimer” hypothesis. In a
seminal work, Giorgio and colleagues [30] have demon-
strated that purified bovine ATP synthase dimers, but not
monomers, can conduct currents when inserted into planar
lipid bilayers which are activated by Ca2+ and oxidizing
agents. These currents were closed upon addition of
ADP/Mg2+ (established PTP desensitizers) and correlated
well with the currents observed in patch clamped IMM
preparations (mitoplasts) attributed to mitochondrial mega
channel (MMC), an electrophysiological equivalent of the
PTP [39, 40]. These findings were later supported by similar
studies in yeast and Drosophila [31–33]. Interestingly, even
though channel activities of ATP synthase dimers were
observed in all species tested and possessed the same regula-
tory pattern (i.e., were activated by Ca2+ plus thiol oxidants
and inactivated by ADP/Mg2+), their maximum conduc-
tance state differed, varying from 1ns to 300 ps to 53ps in
B. taurus, S. cerevisiae, and D. melanogaster, respectively
[30–32]. These results imply that the pore diameter may
vary between species.

The “dimer” hypothesis was further endorsed by studies
of yeast PTP in strains lacking ATP synthase dimerization
subunits e and g. These mitochondria could handle about
twice as much Ca2+ compared to wild-type preparations
before the yeast PTP occurred [31] and do not swell in
sucrose-based media upon PTP opening [33]. Further,
Carraro et al. have demonstrated that in contrast to what
was previously believed, dimers are still present in mutant
mitochondria. They are less stable, however, and require
crosslinking with Cu2+ to be detectable by BN-PAGE [33];
thus, they were missed in previous studies [31]. In support
of these findings, the cryo-EM structure of yeast ATP syn-
thase dimer revealed that subunits e and g do not directly
participate in dimer formation, but rather facilitate it through
contacts with subunits b and f [41]. Interestingly, when put in
planar lipid bilayers, Cu2+-stabilized dimers devoid of sub-
units e and g conducted Ca2+-dependent channel activity,
yet with 10-fold lower currents than controls. These currents
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could be further reduced by eliminating the first transmem-
brane domain of subunit b [33]. Thus, the full conductance
channels might reflect the long-lasting PTP openings that
result in mitochondria demise, while the low conductance
channels observed above could well reflect the flickering state
of the PTP with distinct physiological roles, e.g., a quick Ca2+

release as observed in Drosophila [32].

2.1.2. c-Ring Hypothesis. An alternative or “c-ring” hypothe-
sis has been the subject of much controversy. This hypothesis
is primarily advocated by Bonora’s group [35, 42, 43] and
supported by findings gathered by Alavian et al. [44] and
Azarashvili et al. [45]. It proposes that the central component
of the PTP is constituted by the c subunit of the ATP syn-
thase. In HeLa cells, interference with c subunit expression
levels has resulted in a change in PTP opening probability.
While downregulation caused its desensitization, overex-
pression resulted in sensitization [43, 44]. Moreover, when
purified c subunits were added to isolated mitochondria,
excess c subunit induced the PTP, and when added to
bilayer membranes, conducted currents that were cation
selective [45] rather than showing lack of selectivity nor-
mally associated with PTP function [46, 47]. An additional
study [44] detected PTP resembling currents upon c subunit
incorporation into proteoliposomes. In support of c-ring
being an important player in PTP formation, Morciano
et al. discovered 1,3,8-triazaspiro[4.5]decane derivatives as
ligands of c subunit. These molecules delayed PTP opening
upon Ca2+ overload and were protective in ex vivo models
of ischemia-reperfusion injury [48].

Mechanistically, supporters of this model propose that,
upon excess Ca2+ and ROS, dissociation (rather than associ-
ation as suggested in “dimer” hypothesis) of dimers and
detachment of F1 sector would allow for conformational
change of c-ring which would then form the PTP [42]. The
major issue with “c-ring” hypothesis is that significant struc-
tural alterations have to occur upon relatively modest change
in the surrounding environment; they need to be quick and
reversible. First, F1 sector would need to be removed from
Fo, and second, the lumen of c-ring would have to be emptied
of lipids to allow the passage of molecules upon PTP opening.
Neither is an easy task. Indeed, it was experimentally deter-
mined that as much as 2M urea is required to dissociate F1
from Fo and it is hard to believe comparable conditions
would form in the mitochondrial matrix [18]. Moreover,
Zhou et al. have performed atomistic simulations of c-ring
from two species, S. cerevisiae and B. pseudofirmus. Their
results concluded that hydration of the lumen of the c-ring
pore, required to allow the conducing state to form, is highly
unlikely [49]. Regardless, even if hydrated under certain cir-
cumstances, the channel would not be only anion selective
but also the predicted conductance values (2.5 ps for K+

and 116 ps for Cl-) would be inconsistent with properties of
the PTP [49].

Lastly, Walker laboratory disrupted all three genes
encoding for c subunit in order to determine if it is involved
in PTP formation. He et al. [50] reported that, despite the loss
of c-ring (alongside with a and DAPIT), mutant cells still
displayed a CsA-sensitive Ca2+-induced Ca2+ release and

membrane depolarization typically associated with the PTP
that was comparable to parent cells. However, Neginskaya
et al., while testing the same cells, found that mutants lacking
c subunit are more sensitive to Ca2+-triggered membrane
depolarization and thus, by inference, PTP opening [51].
Further, patch clamp analysis failed to register typical to
PTP-conducing channels (~1.5 nS) in mutant preparations,
yet observed the emergence of much smaller, 300 pS channels
[51], putting subunit c back in contention as critical compo-
nent of the PTP, be it direct or indirect.

2.1.3. Additional Studies. In tests of ATP synthase as a funda-
mental component of the PTP, Walker and Bernardi’s labo-
ratories have taken two distinct approaches. Walker’s group
generated HAP1 clonal cell lines lacking select ATP synthase
subunits and has established that subunits c, b, OSCP, a, and
A6L (as set by Masgras et al. [52]) are dispensable for pore
formation [50, 53]. It is important to note that in cells devoid
of subunits c, b, and OSCP, ATP synthase fails to assemble
properly [50, 53]. Regardless, all of the lines created showed
comparable sensitivity to Ca2+-induced PTP activity (includ-
ing Ca2+ release and mitochondrial membrane depolariza-
tion) to wild-type controls and sensitivity to CsA. The
additional finding of one of these studies was that PTP activ-
ity was desensitized by CsA in OSCP-null line [53], a rather
unexpected observation refuting the previous findings [30]
of OSCP subunit being the PTP-modulating binding partner
of the mitochondrial peptidyl-prolyl cis-trans isomerase D
(cyclophilin D, CyPD), thus introducing yet another mystery
into PTP complex. However, despite the fact that the “pore”
of the PTP must form in the membrane, the essential role of
membrane subunits e, g, f, and 6.8PL in mammalian PTP
formation has yet to be established.

Bernardi and colleagues, on the other hand, sought to
determine the sites of action of major PTP regulators,
namely, Ca2+ and pH, by site-directed mutagenesis of indi-
vidual proteins within the ATP synthase complex. They have
found that Ca2+ binding to catalytic site of the β subunit,
possibly by replacing Mg2+, would cause local conforma-
tional change which would propagate through OSCP sub-
unit and lateral stalk of ATP synthase to the IMM to form
a pore within transmembrane subunits of the enzyme. The
T163S mutation in subunit β rendered HeLa cell mitochon-
dria less sensitive to Ca2+-triggered PTP opening and to cell
death, as well as decreased the number of apoptotic nuclei in
zebrafish embryos [54]. In subsequent work, this group
identified a unique histidine of the OSCP (H112) as respon-
sible for the PTP inhibition at acidic pH. Hek293 cells in
which this His was changed to Gln or Tyr were refractory
to (i) MMC inhibition and (ii) prevention of Ca2+

overload-induced mitochondrial swelling upon pH switch
from 7.4 to 6.5. Further, mutant cells failed to be protected
from cell death at acidic pH upon anoxic conditions [55].
Molecular dynamic simulations suggested that protonation
of H112, similarly to what was modelled for subunit β
T163S mutant [54], would cause a conformational change
in enzyme’s lateral stalk which would then prevent channel
formation. Finally, the elegant study led by Guo et al. [56]
identified an evolutionarily conserved residue within yeast
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subunit g (R107) as a target of phenylglyoxal, an established
PTP modifier [57, 58].

2.2. ANT: Reemergence of an Old Player. While studying
the MMC properties in mitochondria lacking c subunit,
Neginskaya et al. observed that the detected lower conduc-
tance channel was inhibited by CsA, ADP, and bongkrekic
acid [51]. Latter features closely resemble channel activities
previously reported for purified ANT [59].

The ANT is an integral IMM protein of solute carrier
family which facilities ADP exchange for ATP between cyto-
sol and mitochondrial matrix. It was included in the early
models of the PTP for several reasons. First, it was found that
its ligands, atractylate and bongkrekate, modulate the PTP.
The former favors PTP opening and the latter favors PTP
closing in the presence of Ca2+ [60, 61]. Second, ANT copur-
ified with VDAC and hexokinase in detergent membrane
extracts and displayed properties resembling those of PTP
after reconstitution in liposomes alone or in concert with
VDAC and CyPD [59, 62, 63]. Later studies determined that
mitochondria from the ANT1/2 null mouse livers, although
losing a detectable response to atractylate, bongkrekate, and
ADP and being less sensitive to Ca2+-induced Ca2+ release,
still underwent a CsA-sensitive PTP. These studies led to
conclusion that ANT is not essential for PTP formation
[28]. However, this early study missed the third isoform, the
ANT4. ANT4 is predominantly expressed in the testis, but,
at least in the mouse livers, steps in once ANT1/2 are ablated
[64, 65]. Mitochondria lacking all three isoforms showed
striking resistance to Ca2+-induced PTP opening and greatly
reduced channel conductance in patch clamped mitoplast.
The detected currents were not inhibited by ADP/Mg2+

[65]. Moreover, recently, ANT1 was identified as a likely volt-
age sensor of the PTP. Study led by Doczi [66] confirmed that
the absence of ANT1 results in delayed PTP opening in
response to Ca2+ overload and treatment with H2O2 in
patient-derived fibroblasts, as well as cultured cells, and dem-
onstrated that cells lacking ANT1 require higher voltage
threshold for Ca2+-induced PTP activation [66].

Taken together, great progress has been made in recent
years in attempt to elucidate the long-sought PTP. A wealth
of findings supports the notion of ATP synthase as being a
PTP-forming entity [34], yet does not conclusively provide
the site and mechanism of pore formation, and it appears
that ANT [65, 66] plays a more important role in this phe-
nomenon than initially thought.

3. Evidence of PTP Involvement in
Mitochondrial Disorders

Compromised PTP activation is recognized to play a pivotal
role in vast variety of human disorders [18, 21]. The most
studied pathologies that include ischemia-reperfusion injury
of different organs, muscular dystrophies, and central ner-
vous system diseases are reviewed in [18, 20, 67]. One of
the outcomes of prolonged PTP opening is the reversal of
ATP synthase to function as ATP hydrolyzing rather than
synthetizing enzyme in an attempt to maintain the IMM
potential. In this scenario, not only OXPHOS-derived

ATP is lost, but ATP derived from glycolysis and mito-
chondrial substrate-level phosphorylation is also consumed
[17, 68, 69] which eventually results in bioenergetic crisis.
Importantly, compromised energy metabolism is the central
dogma of mitochondrial diseases [70]. Below we overview
the evidence linking the PTP and mitochondrial disorders
in four disease paradigms.

3.1. Leber’s Hereditary Optic Neuropathy. Leber’s hereditary
optic neuropathy (LHON) is the most common mtDNA dis-
order and is most often, but not limited, to mutations in
genes encoding components of complex I; additional genes
includeMT-ATP6 [71–74] which encodes ATP synthase sub-
unit a. LHON is characterized by (sub)acute loss of central
vision which may affect both eyes simultaneously or start in
one and then, within several weeks or months, affect the
other. The loss of vision is due to degeneration of retinal gan-
glion cells and the optic nerve [75, 76]. The use of cell lines
containing nuclear DNA from one cell and mtDNA from
the other (cybrids) proved to be crucial in characterizing
mtDNA-related phenotypes. Studies in cybrid cell lines har-
boring mutations known to cause LHON revealed that these
cells (i) are sensitized to Ca2+- or oxidative stress-triggered
membrane depolarization and cell death compared to con-
trols [75, 77] and (ii) their mitochondria depolarize if chal-
lenged with respiratory chain or ATP synthase inhibitors in
a ROS- and Ca2+-dependent manner [78], effects that could
be counteracted by CsA treatment. The ability of CsA to
defer cell death prompted a trial of its oral version (Neoral,
Novartis) in LHON patients with acute, strictly unilateral
optic neuropathy aimed at preventing the involvement of a
second eye. The primary end point of this study—the preser-
vation of visual acuity of the second eye—was not achieved
[79]; thus, the trial is considered as failed. Yet, it did delay
the involvement of the second eye to the median interval of
28 weeks compared to 6-8 weeks reported in the literature
[79, 80]. Several reasons for the lack of prevention of disease
progression could be put forward. First, CsA might not have
been the best drug to test. Due to its immunosuppressive
abilities, the drug has to be administered at well-controlled
doses. Importantly, the presence of the drug in blood does
not mean that it reaches mitochondria in retinal ganglion
cells at therapeutic concentrations. The drug has to cross
the blood-ocular barrier first, and studies in rats and rabbits
did not detect CsA in the ocular tissues upon oral or intrave-
nous administration [81, 82]; similar studies in humans
revealed detectable CsA levels in aqueous humor only upon
severe uveitis [83]. Moreover, CsA (as discussed below) and
all the molecules acting on CyPD only desensitize the PTP,
but do not block it. Second, it might be that in order to reach
the maximum protective effect, treatment must be started
before the pathological process had set in. It is worth noting
that 4 out of 5 patients of this study presented with subtle
abnormalities of the central visual field of the second eye
indicating that degenerative process might have already
started [79].

3.2. Neurogenic Muscle Weakness, Ataxia, and Retinitis
Pigmentosa (NARP). NARP syndrome was first documented
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in 1990 [84] and most commonly is due to a point mutation
m.8993T>G in mtDNA (when mutational load is between 70
and 90%) which falls intoMT-ATP6 gene encoding ATP syn-
thase subunit a [9]. This mutation results in biochemical
traits such as impaired OXPHOS, increase in ROS, and
higher mitochondrial potential [8, 9, 85–87]. Studies in
m.8993T>G osteosarcoma 143B cybrids revealed that NARP
cells were more sensitive to PTP opening and cell death upon
ROS, Ca2+, lipid, bongkrekic acid, and amyloid β challenge
which was largely attenuated upon antioxidant treatment.

3.3. French-Canadian Variant of Leigh Syndrome. An inter-
esting case with contradicting data is presented by studies of
mitochondrial function in fibroblasts from patients harbor-
ing a mutation in [88] and the mouse livers lacking [89] the
leucine-rich pentatricopeptide repeat containing (LRPPRC)
protein. LRPPRC gene encodes a protein that stabilizes mito-
chondrially encoded mRNAs; its absence results in severe
defects in the assembly of OXPHOS complexes IV and V
[89–92]. Mutations in LRPPRC cause the French-Canadian
variant of Leigh syndrome, a disease characterized with a sud-
denmetabolic acidosis which often results in early death [93].
Fibroblasts from affected patients presented with mitochon-
drial network fragmentation, impaired oxidative phosphory-
lation capacity, lower membrane potential, and increased
sensitivity to Ca2+-induced PTP opening [88]. The opposite
effect in terms of PTP opening was detected in mitochondria
coming from the mouse livers lacking LRPPRC. In this
model, loss of LRPPRC resulted in multifaceted bioenergetic
phenotype, which includes aberrant mitochondrial ultra-
structure, OXPHOS defects, reduction in MT-ATP6 tran-
script, and impairment of ATP synthase assembly. Yet,
these mitochondria were less sensitive to Ca2+-triggered
PTP opening and almost refractory to CsA treatment despite
expressing twice as much CyPD compared to controls [89].
While the first finding enforces the notion that ATP synthase
dimers function as PTP-forming units, the latter is quite
unexpected because CyPD is viewed as PTP sensitizer and
treatment with CsA displaces it from its binding site releasing
PTP sensitization. The most plausible explanation for higher
CyPD levels causing resistance to Ca2+ overload rather than
sensitization is that the PTP-regulating CyPD binding site
(probably on ATP synthase) has been lost in this model.

3.4. Mitochondrial Encephalomyopathy, Lactic Acidosis, and
Stroke-Like Episodes (MELAS). MELAS, first reported in
1984 [94], is a condition that affects many organs, most
severely the muscle and the brain. It can be caused by point
mutations in a number of genes, the most common being
m.3243A>G in MT-TL1 encoding mitochondrial transfer
RNA [95]. As it is true for all mitochondrial disorders, the
disease is rare, its pathogenesis is not fully understood, and
disease management is largely supportive [96]. Mitochondria
in MELAS fibroblasts show elevated resting Ca2+, decreased
membrane potential, and higher ROS, are swollen with disin-
tegrated IMM, and tend to accumulate around nucleus [15,
77, 97–99]. Studies in cybrids harboring m.3243A>G muta-
tion determined that mutant cells are more sensitive to
H2O2-induced cell death which could be deferred by Ca2+

depletion or CsA treatment [77]. Involvement of PTP in this
pathology was further supported by findings of Cotán et al.
This group reported that cultured fibroblasts from MELAS
patients contain mitochondria with reduced membrane
potential, increased oxidative stress, and sensitized PTP
opening [99].

4. Pharmacological Targeting of PTP

In spite of the importance of the PTP in a variety of disease
paradigms, its potential as a drug target is currently not fully
exploited, in part due to yet unresolved its molecular identity
as discussed above. An extensive list of drugs has been
reported to delay PTP opening in in vitro studies. However,
the majority of these drugs have limited efficacy, are active
only at high doses and/or affect PTP indirectly, and thus,
are of little relevance for clinical use (see [100] for extensive
list and commentary). Only CsA, an 11-amino acid cyclic
peptide, best known for its immunosuppressive activities
due to binding to cyclophilin A, and its nonimmunosuppres-
sive derivatives Debio-025 (Alisporivir) and NIM811, proved
to be useful PTP inhibitors. Although these compounds
played a crucial role in establishing PTP as a major player
in numerous pathologies [18, 101–109], they desensitize the
PTP (by displacing CyPD from its site of action) rather than
affect the pore itself and thus afford limited efficacy [110].

Recently, significant efforts were put to fill this void. They
can be divided into two classes: (i) phenotypic screens for
small molecules affecting PTP directly and not acting on
CyPD and (ii) rational drug design-based search for novel
small molecule CyPD inhibitors.

4.1. High-Throughput Screens for CyPD-Independent PTP
Inhibitors. A number of groups aimed to discover novel,
CyPD-independent small molecule inhibitors of the PTP
with the prospect of targeting the channel directly. It
would allow the drug-treated mitochondria to resist to higher
stress stimuli than could be achieved by targeting CyPD. In
all three screening campaigns (as detailed in [110]), the
osmotic swelling of isolated liver mitochondria upon Ca2+

overload was followed in the presence of test compounds.
In two of the studies, the initial hits were then improved
through extensive medicinal chemistry optimization strate-
gies and subsequently tested against a variety of PTP-
inducing stimuli.

Fancelli et al. tested commercial library of FDA-approved
drugs and identified cinnamic anilides as their most potent
series. The best of these compounds not only delayed PTP
opening in vitro in response to Ca2+ overload and oxidative
stress [111] but also were protective in vivo. For example,
compound 22 reduced infarct size in a rabbit model of acute
myocardial infarction, yet no significant improvement over
CsA treatment was observed [111]. In a subsequent study,
this group established that treatment with another member
of these series (GNX-4728) increased the lifespan of G37R-
hSOD1 mice, a murine model of amyotrophic lateral sclero-
sis, by nearly 2-fold. Moreover, the treatment prevented
motor neuron and mitochondrial degeneration, attenuated
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spinal cord inflammation, and preserved neuromuscular
junction innervation in the diaphragm [112].

Using similar strategy, Roy et al. screened the NIH
Molecular Libraries Small Molecule Repository collection
consisting of ~360,000 molecules [100, 113]. Among vali-
dated hits, compounds from the isoxazole [113] and ben-
zamide [114] chemotypes proved to be most promising.
Original library compounds exhibited PTP inhibitory
activity comparable to CsA (~200 nM) in isolated mouse
liver mitochondria and were effective in permeabilized
mouse and human cell lines. Importantly, upon several
medicinal chemistry optimization rounds, a number of iso-
xazole analogs effective at low pM (or 10,000-fold lower
that CsA) were developed. These compounds prevented
PTP opening triggered by Ca2+ and by oxidative stress,
did not interfere with ATP synthesis or hydrolysis, and
were not toxic at effective concentrations [113]. In addi-
tion, they demonstrated that isoxazole 60 is beneficial in
a zebrafish model of Ullrich congenital muscular dystro-
phy. Phenotypes of these fish closely resembled clinical
traits of human disease [109, 115] by displaying severe
myopathy, motor deficits, and ultrastructural defects; all
phenotypes were greatly improved upon addition of isoxa-
zole 60 to fish water [113].

Finally, Briston et al. [116] performed a screen on cryo-
preserved rat liver mitochondria which retained their func-
tionality upon thawing. After testing 50,000 compounds,
the group identified ER-000444793 as their most potent mol-
ecule. Although this compound delayed PTP opening upon
Ca2+ overload in both rat and human mitochondria, it was
about 2-fold less effective than CsA. It is worth noticing that,
in contrast to other studies, no medicinal chemistry optimi-
zation has yet been reported.

4.2. Rational Drug Design Studies in Search for Nonpeptidic
CyPD Inhibitors. To date, a CsAmolecular target in mamma-
lian mitochondria, the CyPD, is the only universally agreed
upon component of the PTP complex. Yet, it plays a regula-
tory role rather than forming the pore itself; mitochondria
from mice lacking CyPD still undergo the PTP, although
require higher Ca2+ and oxidative stress loads [117, 118].
Nonetheless, physiological effects that are sensitive to CsA
are routinely defined as being due primarily to the activity
of the PTP despite the fact that the majority of the 20 cyclo-
philins encoded by the mammalian genome show some sen-
sitivity to CsA [119, 120]. As a therapeutic agent, CsA shows
unfavorable drug-like characteristics, such as high molecular
weight, limited solubility, poor bioavailability [121], and a
low blood-brain barrier permeability [122]. The latter is of
extreme importance as it renders CsA family drugs unsuit-
able for treatment of neurological disorders. To address these
limitations, several groups took rational design approach to
look for novel drugs.

In 2005, Guo et al. [123] reported the discovery of novel
quinoxaline derivatives; the best (GW5) showed selectivity
for CyPD over cyclophilin A, yet it was effective in preventing
Ca2+-induced mitochondrial swelling and Ca2+ release only
at high μM range. No further developments have been since
reported. Subsequently, Valasani et al. [124] used virtual

screening, molecular docking, and CyPD-pharmacophore
studies to design and synthetize pyrimidine-based ligands.
Yet, the ability of these compounds to inhibit CyPD and
the PTP in biological systems awaits verification. Shore at
al. built on previous work of Guichou and colleagues
[125] and synthetized a group of urea-based small molecule
inhibitors of cyclophilins [121]. The most promising com-
pound (19) bound to CyPD with K

d of 0.4μM, delayed
pancreatitis toxin-triggered mitochondria depolarization
and inhibited subsequent necrotic cell death in freshly iso-
lated pancreatic acinar cells. Lastly, Roh’s group has recently
reported several distinct classes of urea derivatives which
exhibited plausible binding with CyPD according to in silico
molecular docking studies [126–129]. In these studies, com-
pounds were protective against Aβ-induced mitochondrial
depolarization and cytotoxicity while they did not affect
ATP levels or cell viability per se. Yet, the concentrations
used (5μM) are rather high and no experimental evidence
was provided that these compounds inhibit CyPD or exert
their actions directly through the PTP. Summing up, while
plausible efforts were put to increase the selection of CyPD
inhibitors and thereby augment their efficacy in modulating
PTP opening, further studies are needed to increase their
potency, address the selectivity towards CyPD, and show
efficacy in animal models.

5. Conclusions

The molecular entity of the PTP is the matter of active inves-
tigation, which favors ATP synthase as a prime suspect, yet
recent studies suggest that other proteins, like ANT, might
also contribute. Early on, it was recognized that preventing
PTP opening by treatment with PTP inhibitors would be
beneficial in a wide range of therapeutically challenging
human diseases. Thus, significant efforts with some promis-
ing results were invested in developing PTP-specific inhibi-
tors that would overcome the major drawbacks of CsA, yet
further studies are needed to advance them from research
tools to therapeutics.

A consequence of PTP opening is the disruption of mito-
chondrial ultrastructure, dissipation of mitochondrial mem-
brane potential, cessation of ATP synthesis, and cell death
as a consequence of resulting bioenergetic crisis—a primary
characteristic of mitochondrial disorders, a diverse group of
diseases with no available treatment yet. Several studies
have demonstrated that cells harboring pathogenic muta-
tions are more sensitive to Ca2+ challenge and oxidative
stress, effects that could be counteracted by CsA treatment
and, potentially, by novel small molecules directly targeting
the PTP. These data suggest that PTP might be a viable
option as a drug target and thus should be further explored
to establish a definite link.
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