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Abstract Current research on the mitochondrial perme-
ability transition pore (PTP) and its role in cell death faces
a paradox. Initially considered as an in vitro artifact of little
pathophysiological relevance, in recent years the PTP has
received considerable attention as a potential mechanism for
the execution of cell death. The recent successful use of PTP
desensitizers in several disease paradigms leaves little doubt
about its relevance in pathophysiology; and emerging find-
ings that link the PTP to key cellular signalling pathways are
increasing the interest on the pore as a pharmacological tar-
get. Yet, recent genetic data have challenged popular views
on the molecular nature of the PTP, and called into question
many early conclusions about its structure. Here we review
basic concepts about PTP structure, function and regulation
within the framework of intracellular death signalling, and
its role in disease pathogenesis.

Keywords Apoptosis - Mitochondria - Permeability
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1 Introduction

Mitochondria have crucial roles in diverse cellular functions,
such as energy production, modulation of redox status, os-
motic regulation, Ca?* homeostasis, inter-organelle commu-
nication, cell proliferation and senescence, and cell responses
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to a multiplicity of physiological and genetic stresses. They
also orchestrate a wide number of signals to determine cell
commitment to death or survival [1-7]. Extensive investiga-
tion in the last decades is making clear that these biochemical
routines work as an integrated system. However, given the
complexity of these intertwined signaling networks, their
functional and molecular interplay is still the matter of in-
tense investigation. Most of these processes are dynamic,
and the same biochemical devices can be used for differ-
ent and sometimes antinomic biological operations, possibly
in different subcellular locations. For instance, mitochon-
dria contribute to cellular Ca>* level regulation by coupling
and coordinating mitochondrial and endoplasmic reticulum
Ca?* fluxes, so that Ca’* signals may be defined by the spa-
tial organization of mitochondrial populations within cells
[8].

Mitochondria are obligate participants in intrinsic apop-
totic signaling, and play important roles also in extrinsic,
receptor-mediated apoptosis and in non-apoptotic forms of
cell death [1, 5, 6, 9, 10]. When a stress stimulus tips the
death/survival balance towards a lethal outcome, several
changes affect mitochondrial physiology and ultrastructure
[7, 11]. Depending on the intensity and persistence of the
stimulus, these alterations may drive the cell to a point of
no return in its death path, eventually leading to the release
of proteins that acquire key apoptogenic functions, such as
cytochrome c¢ (cyt ¢; [12]), apoptosis inducing factor (AIF;
[13]), endonuclease G (Endo G; [14]), high temperature re-
quirement A2 (HtrA2/Omi; [15]), and second mitochondria
derived activator of caspase/direct IAP binding protein with
low pI (SMAC/Diablo; [16]). Since the size of these fac-
tors largely exceeds the pore diameter of outer mitochon-
drial membrane (OMM) channels, some alternative form of
OMM permeabilization is mandatory for their release.
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Several models were proposed to explain OMM perme-
abilization. These models are not necessarily mutually ex-
clusive, and the possibility exists that different mechanisms,
or different combinations of subroutines, may cause the re-
lease of intermembrane space proteins in different apoptotic
conditions and cell types. On the whole, the main mecha-
nisms can be summarized as the direct OMM permeabiliza-
tion model and the permeability transition (PT) model. In
the former, proapoptotic Bcl-2 family proteins such as Bax
and Bak promote, directly or indirectly, the opening of pores
on the OMM that are large enough to allow the channelling
of apoptogenic proteins. In the latter, rupture of the OMM
and release of the intermembrane space components follow
the opening of an inner membrane channel termed the PT
pore (PTP). A prolonged PTP opening, by eliciting inner
mitochondrial membrane (IMM) depolarization and matrix
swelling, would lead to cristae unfolding and subsequently
to breaches in the OMM. This review will focus on the anal-
ysis of the PTP, of its regulation and of its involvement in
cell death and in disease. The direct OMM permeabilization
model will also be analyzed in correlation with PTP and cell
death.

2 The mitochondrial permeability transition
2.1 General features

The inner mitochondrial membrane (IMM) possesses an in-
trinsically low permeability to ions and solutes, whose fluxes
are tightly regulated by a set of channels and transporters
[17]. Charge separation across the IMM generates a proton
electrochemical potential difference (Ap) whose major com-
ponent is the membrane potential difference (A, negative
inside). The Ap is essential to store the energy required for
the synthesis of more than 90% of the cellular ATP by the
FoF; ATP synthase [18].

The mitochondrial PT can be defined as a sudden in-
crease of IMM permeability to solutes with molecular masses
up to 1500 Da, and is due to the opening of a voltage-
and Ca’*-dependent, cyclosporin A (CsA)-sensitive, high-
conductance channel [19-21]. In its fully open state the ap-
parent diameter of the PTP is 3 nm, and the pore open—closed
transitions are strictly regulated by anumber of effectors. The
PT and its association with Ca?* overload and with large
amplitude swelling of mitochondria [22] was initially
thought to result from a damage to the IMM due to the pro-
duction of lysophospholipids by a mitochondrial phospho-
lipase (reviewed by [23]). Later on, several studies [24, 25]
proposed what is the present consensus model: mitochondrial
PT is originated by a unique supramolecular complex, the
PTP, composed or regulated by components of all mitochon-
drial compartments [20, 26]. The molecular composition of
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the PTP could also not to be fixed, but rather dynamically
regulated by a variety of stimuli and conditions [27]. An al-
ternative view postulates that the PTP forms by aggregation
of mitochondrial membrane proteins damaged by diverse
stresses. Clustering of these misfolded protein would be
blocked by chaperone-like molecules. When protein clusters
exceed a certain threshold, they would overcome the effect
of chaperones and cause opening of unregulated pores [28].

2.2 Consequences of pore opening

The primary consequence of a prolonged PTP opening is mi-
tochondrial depolarization due to equilibration of the proton
gradient, which may be followed by respiratory inhibition,
as matrix pyridine nucleotides (PN) are lost [29, 30]. Equili-
bration across the IMM of ions and of solutes with molecular
masses below the pore size induces massive release of the
Ca?* stored in the matrix and extensive swelling of mito-
chondria, given the colloidal osmotic pressure exerted by the
high concentration of matrix proteins. As a consequence, the
unrestricted cristae unfolding causes breaches in the OMM
and release of intermembrane proteins.

It should be stressed that for individual mitochondria the
PT is an all-or-nothing phenomenon. In a cell, a subpopula-
tion of mitochondria may have a lower threshold for open-
ing (e.g. those spatially closer to the triggering signal) and
therefore open the PTP first. Ca>* or other diffusible sig-
nals released by these mitochondria might then propagate
a wave of PTP openings that eventually culminate in the
spreading of the PT to the whole mitochondrial population
[26, 31, 32].

Transient PTP openings, recorded electrophysiologically
as conductance “flickerings”, are not associated with a catas-
trophic permeability transition and suggest that the PTP has
physiological roles unrelated to death stimuli. These PTP
functions might encompass matrix volume and pH regula-
tion, redox equilibrium, protein import [33], and a fast Ca2t
release mechanism. The latter would be regulated by ma-
trix [Ca?"] fluctuations, resulting in a dynamic steady-state
distribution of the mitochondrial populations with open and
closed pores [34—36]. Consistent with this idea, transient PTP
openings eventually induce entry of radiolabelled sucrose in
all mitochondria even for very low values of matrix [Ca*t]
[37]. Moreover, transient PTP openings allow PN funnelling
in both directions across the IMM. In the matrix of adrenal
cortex cell mitochondria, PNs take part in steroidogenesis,
leading to the 11-B-hydroxylation of deoxycorticosterone
[38—40], whereas a Ca?*-dependent release of matrix PN
into the cytosol [29] may support DNA repair by poly-ADP
ribose polymerase [41]. Importantly, temporary PTP open-
ings might also contribute to death signalling through re-
lease of cyt ¢ [37]. The mechanism would be recruitment
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of pro-apoptotic Bcl-2 family members onto mitochondria,
providing a permeability pathway for cyt ¢ [42].

2.3 Molecular nature of the PTP

A passionate debate surrounds the molecular composition of
the PTP, which at presently remains an unsolved conundrum.
Nonetheless, based on partial purification by a variety of
methods, a restricted set of proteins was proposed to take
part in the PTP. These include: the IMM adenine nucleotide
translocator (ANT) [33]; the large and unselective OMM
voltage-dependent anion channel (VDAC) [43, 44]; and the
matrix cyclophilin D (CyP-D), a mitochondrial member of
the cyclophilin family that is the target of the desensitizing
effects of CsA on the PTP [45].

Additional proteins that may play aregulatory role, but are
generally not considered as part of the pore itself, are both
antiapoptotic and proapoptotic Bcl-2 family members on
the OMM [46, 47]; mitochondrial creatine kinase (MtCK),
which shuttles high energy phosphate groups in the inter-
membrane space of muscle and heart mitochondria [48];
mitochondrial hexokinases (HK), which catalyze the first
step of glycolysis and are associated to the cytosolic side
of the OMM [49, 50]; and the OMM peripheral benzodi-
azepine receptor (PBR), known to promote the transport
of cholesterol into the matrix during steroidogenesis [21].
Some of these proteins will be further discussed below in the
frame of the cross-talk between PTP regulation and cell death
signalling.

An unambiguous in vitro reconstitution of the PTP would
greatly help to unravel its molecular structure, but several
problems must be tackled at the same time: the mitochon-
drial membrane proteins must be highly purified and main-
tain their activity all along purification; they must be cor-
rectly inserted in sealed liposomes, to which they should
confer properties consistent with those displayed by the PTP
in isolated mitochondria; and the detection method must
be sensitive enough to allow measurements of pore open-
ing in minute amounts of purified material [26]. A com-
plementary and more telling approach is to knock out the
genes of suspected PTP components, and then test PTP
properties in mitochondria isolated from the mutant cells
and organisms. So far, this technique has been used for
the ANT [51], CyP D [52-55] and VDAC1 [56], and al-
together the obtained data do not support the idea that the
PTP is composed by either of these proteins. Further, mi-
tochondria from the anoxia-tolerant brine shrimp Artemia
franciscana do not undergo a PT despite a remarkable Ca?*
uptake capacity and the presence of ANT, VDAC and CyP-D
[57].

The major points concerning the role played by ANT,
VDAC and Cyp-D in PTP will be summarized here; more
information can be found in recent reviews [21, 58].

2.3.1 Adenine nucleotide translocator

The PTP is strikingly modulated by ligands of the ANT.
Atractylate, which inhibits the ANT stabilizing it in the “c”
conformation, favors PTP opening while bongkrekate, which
inhibits the ANT stabilizing it in the “m” conformation, fa-
vors PTP closure [59]. These findings led to the suggestion
that the PTP may be directly formed by the ANT. How-
ever, transition of the translocase from the “m” to the “c”
conformation is accompanied by a large decrease of the sur-
face potential [60]. This might easily explain pore opening
by atractylate and pore closure by bongkrekate within the
framework of the PTP voltage dependence independently of
a direct ANT involvement [17].

Unequivocal evidence that the ANT is not essential for
PTP formation was obtained in a detailed analysis of liver
mitochondria prepared from mice lacking both ANT iso-
forms. The ANT~/~ mitochondria underwent a Ca’*- and
oxidant-dependent, CsA-sensitive PT with matrix swelling
[51], indicating that the ANT is neither the binding partner of
CyP-D nor the site of action of oxidants. The only difference
between wild type and ANT null mitochondria was that the
latter required a larger Ca?" load to trigger the PT and had
expectedly lost sensitivity to ligands of the ANT (atractylate
and ADP, which like bongkrekate inhibits the pore) [51].

It has been suggested that ANT deficiency is compensated
in the IMM by other ANT-like channels of the same mito-
chondrial carrier family, and that the relative contribution of
ANT-containing and ANT-less forms to the PTP might de-
pend on specific conditions [61]; however, these ANT-like
molecules should be able to promote a CsA-sensitive PT and
yet not respond to atractylate and ADP.

2.3.2 Voltage-dependent anion channel

The earliest indication that the OMM could be involved in
the PT was the finding that swelling induced by sulfhydryl
reagents is not observed in mitoplasts, i.e. mitochondrial
preparations lacking the OMM [62]. A number of findings
support the hypothesis that the relevant OMM component of
the PTP is VDAC. Indeed, purified VDAC forms channels
with a pore diameter of 2.5-3.0 nM that possess electro-
physiological properties strikingly similar to those of the
PTP [63, 64], and VDAC is modulated by many factors that
also affect the PTP, such as NADH, Ca’t, glutamate and
binding of hexokinase [65—69]. It should be noted that these
intriguing analogies do not represent a proof of mechanism,
and that the PTP of mitochondria prepared from VDAC1~/~
mice was indistinguishable from the PTP of strain-matched
wild-type mitochondria [56]. However, in mammals there
are three VDAC isoforms, and in the absence of VDACI1
its PTP-forming activity might be compensated by VDAC2
and/or VDAC3. Unfortunately, this cannot be fully tested
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with genetic approaches, as elimination of VDAC2 is em-
bryonically lethal [70].

2.3.3 Cyclophilin D

The PTP is sensitized to inducing agents by CyP-D, a matrix
peptidyl-prolyl cis-trans isomerase that appears to modulate
the PTP affinity for Ca?* [71, 72]. CyP-D is inhibited by its
high affinity ligand CsA in the same range of concentrations
that desensitize the PTP [45, 71, 73].

Several groups inactivated the Ppif gene encoding CyP-
D in the mouse [52-35]. In all studies (i) the Ca2*-
dependent PT still took place; (ii) CyP-D ablation increased
the threshold Ca®* load required to open the pore (which
became identical to that of CsA-treated, strain-matched
wild type mitochondria); (iii) CsA had no effects on the
PT, which instead retained its normal response to other
inhibitors including Ubiquinone 0. Further, the PTP was
sensitized to oxidative stress [53]. These findings conclu-
sively demonstrate that CyP-D is a regulator, but not a
component, of the PTP, and that the effect of CsA is best
described as desensitization, rather than inhibition, of the
pore.

2.4 Regulation of the PTP

PTP regulation by pathophysiological effectors has been the
subject of many reviews over the years [17, 19-21, 23, 26,
74-77], and the reader is referred to these for detailed infor-
mation. Here we have singled out points that are particularly
important for an understanding of PTP regulation in patho-
physiology, and recent contributions that may not be found
in previous review articles.

2.4.1 PTP regulation by the proton gradient (Ap)

A key feature of the PTP is its regulation by both components
of the Ap, matrix pH and the IMM potential difference.
The optimum for pore opening is observed at matrix pH 7.4
[78], whereas the opening probability sharply decreases both
by lowering matrix pH (through reversible protonation of
histidyl residues) and by increasing it (through an unknown
mechanism) [79].

The PTP is voltage-dependent, and a high (inside-
negative) membrane potential stabilizes it in the closed con-
formation [78]. A variety of pathophysiological effectors can
move the threshold voltage at which opening occurs either
closer to the resting potential (PTP inducers), or away from
the resting potential (PTP inhibitors) [17]. We have postu-
lated the existence of a sensor that translates the changes of
both (i) the transmembrane voltage (through redox-sensitive
sites affected by electron flux) and of (ii) the surface poten-
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tial (through a set of charged residues) into changes of the
PTP open probability.

(i) At least three different sites are regulated by redox equi-
libria: one is modulated by matrix PN, with oxidation pro-
moting PTP opening [80, 81]; another by the GSH pool
through vicinal protein thiols [81, 82], and the last is acti-
vated by the thiol oxidant copper-o-phenanthroline [83].
Pore modulation by these redox-sensitive sites probably
explains the inducing effects of p66Shc, which directly
oxidizes cyt ¢ to produce superoxide anions and to induce
PTP-dependent cell death [84].

(i1) Regulation through the surface potential is supported by
observations that amphipathic anions such as arachidonic
acid favour the PT, whereas polycations (like spermine),
amphipathic cations (sphingosine, trifluoroperazine), and
positively charged peptides inhibit the pore. These data
imply that the effects of amphipatic compounds depend on
their net charge that would affect the PTP voltage sensor
[75].

Current evidence indicates that the PTP voltage sensor is
regulated by critical arginine residues. Indeed, glyoxals of
identical chemical reactivity towards arginines modulate the
PTP voltage-dependence in a manner that is entirely consis-
tent with the net charge and hydrogen bonding capacity of
the adduct, suggesting that crucial arginines are functionally
linked with the opening/closing and voltage sensing mecha-
nisms [85-88].

2.4.2 PTP regulation by Ca’*

In energized mitochondria, Ca>* uptake into the matrix is
achieved via the ruthenium-red-sensitive mitochondrial Ca?*
uniporter [89, 90] and/or the “rapid-mode” of uptake that ac-
tivates in response to fast changes of cytosolic Ca** [91].
Ca* efflux occurs through the Na™-Ca?* antiporter [92]
that exchanges 3 Na™ per 1 Ca®* ion [93], Na* being then
extruded by the HT-Na™ exchanger; and through a Na*-
insensitive Ca’* efflux pathway [94] that is inactivated by
depolarization [95, 96]. The interplay between the rate of
Ca’* influx and efflux tightly modulates the matrix Ca®*
content, which is in turn widely considered to be a key factor
for regulation of the PTP open-closed transitions [17, 97].
Matrix Ca?* acts as a permissive factor for most pore induc-
ers; its activity can be competitively inhibited by other Me>*
ions, such as Mg?*, Sr** and Mn>*.

The PTP dependence on matrix Ca?* represents some-
what of a paradox, however, because there is no obvious
correlation between matrix free [Ca>*] and onset of the PT.
Indeed, decreasing [Pi] from 5 mM to 2 mM, increased the
apparent threshold for PTP opening from 1.8 uM to 5.0 uM
matrix free [Ca2*] in rat brain mitrochondria [98]. Based on
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these results, we suspect that the PTP Ca?*-binding sites sat-
urate at very low matrix free [Ca®*], and that PTP opening
is not caused by Ca>* overload as such, but by additional
factors that still need to be characterized.

2.4.3 Other PTP regulators

Any PTP model must take into account the puzzling
fact that the pore is affected by a large variety of un-
related compounds that may inhibit or stimulate open-
ing [23]. Among the inhibitors we find positively charged
peptides (e.g. mastoparan, BH3-Bax), some anti-apoptotic
proteins (Bcl-2 and Bcl-Xp), proteins involved in an-
tioxidant defences (like catalase, superoxide dismutase
and glutathione) and a wide array of small molecules
(PK11195, CsA, sanglifehrin A, bongkrekic acid, ADP
and ATP, Ubiquinone 0, 4,40-diisothiocyanatostilbene- 2,20-
disulfonic acid, Ro 68-3400, and NADH); among the induc-
ers, matrix Ca2t, the GD3 ganglioside, arsenite, pro-oxidants
(like fert-butylhydroperoxide, diamide, phenylarsine oxide),
and atractylates [99].

The molecular targets and mechanisms of actions of some
of these molecules have been discussed in the preceding
paragraphs, and we must refer the reader to previous reviews
for further details [17, 19-21, 23, 26, 74-77].

3 The PTP and cell death regulation

The hypothesis that PTP could have a role in cell death was
already proposed nearly 20 years ago [100]. Albeit a rigorous
test of whether a PT takes place in organisms is still lack-
ing, a number of experimental findings has supported a PT
occurrence in diverse death-promoting conditions, such as
hepatocytes subjected to oxidative stress [101], anoxia [102]
or treatment with ATP [103], and in cardiomyocytes [104]
and isolated hearts [105] exposed to ischemia followed by
reperfusion. We also found that arachidonic acid plays a key
role in Ca’*-dependent death signalling through activation
of the PTP [106, 107]. In addition, several PTP inhibitors
(bongkrekate, CsA and its derivatives) were reported to pro-
tect from cell death both in vitro and in vivo. In vitro, these
inhibitors abolish cyt ¢ release and protect different cell types
from apoptosis induced by glucocorticoids, neurotoxins and
tumor necrosis factor o« (TNFa) [108—-111]; in vivo, CsA is
effective in a variety of settings that are covered more in
detail below (see also [21]).

3.1 Cyclophilin D and cell death
As CsA delays PTP opening by binding to CyP-D, one would

expect that CyP-D favors PT and cell death. However, CyP-D
overexpression reportedly desensitizes cells from apoptosis

induced by the overexpression of caspase-8 (but not Bax)
or by exposure to arsenic trioxide [112, 113]. Thus, CyP-D
may play a role as a survival molecule, possibly acting on
target(s) other than the PTP. This dual function of CyP-D
could lead to a balance of its pro- and anti-apoptotic ef-
fects in animals lacking CyP-D. Consistently, Ppif~/~ mice
clearly demonstrate that CyP-D is dispensable for embry-
onic development and viability of adult animals. Various cell
types isolated from CyP-D-deficient mice normally undergo
apoptosis in response to various stimuli, including etoposide,
staurosporine, and TNFw, and tBID or Bax caused cyt c re-
lease from isolated mitochondria [52, 54, 55]. Instead, CyP-
D-deficient MEFs and hepatocytes are significantly more
resistant to necrosis induced by a Ca>* ionophore (A23187)
or by H,O,, and cardiac ischemia/reperfusion injury causes
less damage in Ppif~/~ animals, similarly to what is ob-
served following treatment of wild-type animals with CsA
[52, 54]. These studies were used to conclude that the PTP
only plays a role in necrotic, rather than apoptotic, responses
[114, 115]. However, it must be highlighted that results ob-
tained on Ppif~/~ mice or cells can only be interpreted in
terms of the role of CyP-D, not of the PTP, in cell death. In
addition, the PTP could be involved in apoptosis triggered by
stimuli that differ from those utilized in these works. Indeed,
the inference that PTP opening cannot take place because
CyP-D is absent has not been documented in vivo. It remains
therefore undetermined what is the physiological role played
by the PTP in the different cell death pathways.

3.2 PT-dependent permeabilization of the OMM

An increase in the permeability of the OMM is central to cell
death, as it is mandatory for the release of proteins with key
functions in cell dismantling (Fig. 1). As stated above, differ-
ent models compete to explain how the OMM permeabilizes
during cell death induction, postulating either the exclusive
involvement of outer membrane components or the opening
of the PTP on the inner membrane. These models are not
mutually exclusive, and the choice among them could de-
pend on several variables, including the cell type, the stress
stimulus and the energetic conditions of the cell, and the
same molecules could be involved in different OMM rupture
paradigms. It is however important to underline that PTP
openings can induce rupture of the OMM only as a result
of matrix swelling, and therefore cyt ¢ and the other apopto-
genic molecules do not exit mitochondria through the PTP
itself. In the next sections, we will focus on PTP regulators
that affect death signalling.

3.2.1 Bcl-2 family proteins

A role of Bcl-2 family proteins as PTP regulators was put
forward by several groups. The pro-apoptotic Bax protein
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triggers a CsA-inhibitable death in lymphoma cells [116],
and a CsA-sensitive PT in isolated mitochondria [68, 117],
even though other studies have concluded that Bax-mediated
release of cyt ¢ is independent of the PTP and occurs without
IMM permeabilization [118-120]. Bax (and perhaps Bak
and Bid [121]) may induce mitochondrial PT and cyt ¢
release by regulating PTP components. For instance, after
mitochondrial translocation Bax would form a pore upon
interactions with ANT [122]. When ANT and Bax were
reconstituted into liposomes or planar lipid bilayers, they
formed a bongkrekate- and CsA-sensitive channel with
cationic selectivity, whose opening was elicited by the ANT
ligand atractylate [122, 123]. Coherently, anti-apoptotic
Bcl-2 family members (Bcl-2 and Bcl-X;) were reported
to antagonize the PT and to inhibit a reconstituted PTP-like
complex [122]. It was proposed that Bcl-2 would stimulate
the ATP/ADP translocator function and abolish the pore
function of ANT, whereas the pro-apoptotic Bax would
act in the opposite way [33]. Bax and Bcl-2/X; could
also interact with VDAC to open or close it, respectively,
suggesting that they modulate the PTP via interaction
with VDAC [124-126]. However, others failed to detect
interactions between components of the PTP and Bcl-2
family proteins [127, 128]. Since the role of both ANT
and VDAC in PTP assembly is still disputed (see above),
these results must be considered with extreme caution when
trying to establish a Bcl-2 family role on PTP modulation.

Our laboratory has recently described a Bcl-2-binding
molecule, EM20-25, that is able to induce PTP opening,
to disrupt the Bcl-2/Bax interactions in situ and to activate
apoptosis in Bcl-2-overexpressing cells [129]. It is tempting
to speculate that the effects of EM20-25 on the PTP are
related to Bcl-2 binding, raising the intriguing possibility
that EM20-25 interaction with Bcl-2 plays a mechanistic
role in PTP regulation.

Bcl-2 family members are also localized in ER mem-
branes, where they contribute to the modulation of
intracellular Ca?>* homeostasis in a complex and subtle
interplay with mitochondria [5]. Certain apoptotic stimuli
were shown to induce PTP opening by promoting release
of Ca?* from endoplasmic reticulum (ER) stores [130]; this
Ca?* would be taken up by mitochondria, overloading the
matrix and eventually prompting the PT [4, 131-133]. In
this context, the PTP could integrate different Ca>* signals,
switching their output towards death or survival in a fashion
dependent on the activity of Bcl-2 family members both
on mitochondria and on the ER [11, 134, 135]. Waves
of CsA-sensitive mitochondrial depolarization and Ca?*
release would propagate through the cell, resulting in cyt ¢
release and apoptosis [32, 136].
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3.2.2 (De)phosphorylation reactions

Dynamic networks of kinase/phosphatase pathways, which
are known to transmit localized signals to subcellular com-
partments, could regulate the PT, either directly or through
intermediate adaptors [137, 138]. For instance, mitochon-
drial Ca?* homeostasis, and therefore the threshold for PTP
opening, can be modulated by the stress-activated p38 MAP
kinase through phosphorylation of the Ca>* uniporter [139].
PTP inhibition might involve mitogen-activated protein ki-
nase kinase 6 [140], whereas the stress-activated kinase Jnk
inhibits Bcl-2/X; and promotes the release of cyt ¢ and of
Smac/DIABLO and a decrease in Ay, [141-144]. Cyt ¢ ox-
idase, whose activity could affect the PT through modulation
of the membrane potential, is phosphorylated at two different
sites, with opposite effects on its activity [145-147].
Possible direct PTP modulators include PKC§ and PKCe.
Activated PKCS§ translocates onto mitochondria in several
cell models and in a variety of apoptogenic settings, where
it triggers IMM depolarization, release of cyt ¢ and the sub-
sequent apoptosis induction through unknown mechanisms

Fig. 1 Synopsis of the main molecules involved in mitochondrial P

membrane permeabilization during cell death induction and of their net-
work of interactions. (A) The mitochondrion in a healthy cell. Several
cytosolic kinase pathways regulate mitochondrial permeability: follow-
ing growth factor binding, receptor tyrosine kinases (RTKSs) activate Erk
MAPK and Akt, which (i) contribute to keep some apoptogenic Bcl-2
family proteins away from the OMM and (ii) inactivate GSK3p, thus
allowing hexokinase (HK) interaction with VDAC on the OMM. Sev-
eral pro-apoptotic molecules (cyt ¢, Endo G, Omi/HtrA2, Smac/Diablo)
are segregated in the intermembrane mitochondrial space (IMS), where
they display diverse, non-apoptogenic functions. Caspases are kept in
their zymogenic, inactive form in the cytosol. The respiratory chain is
working in the IMM to produce the proton electrochemical gradient,
which is then used to make ATP by the FoF1 ATPase. Respiratory ac-
tivity is stimulated by a regulated Ca?* influx into the matrix (inset).
The PTP is depicted in the closed state, and several putative PTP reg-
ulators/components are indicated: HK/VDAC on the OMM, creatine
kinase (CK) in the IMS, ANT in the IMM and cyclophilin-D in the
matrix. (B) The mitochondrion exposed to death stimuli. A plethora
of stress signals converges on mitochondria to induce the release of
the IMS-stored apoptogenic proteins. Lack of growth factors abrogates
“survival kinase” activity, favouring relocalization of pro-apoptotic Bcl-
2 family proteins on the OMM and HK detachment from VDAC. The
balance between pro-and anti-apoptotic Bcl-2 proteins on the OMM is
tipped towards death induction. This is achieved either through changes
of the OMM itself, allowing release of cyt ¢ and of other death inducers
through proteinaceous pores (e.g. Bax channels), or through opening of
the PTP in the IMM and consequent matrix swelling, leading to protein
release in the cytosol. PARL and Opal regulate cristae remodelling and
facilitate mitochondrial protein release. Once released, cyt ¢ induces
apoptosome aggregation and caspase activation; Endo G and AIF tar-
get DNA; Omi/HtrA2 and Smac/Diablo inhibit a class of apoptosis
inhibitors (IAPs). Inset: the electrochemical gradient across the IMM is
dissipated and oxidative phosphorylation is disrupted. p66Shc oxidizes
cyt ¢ and contributes to PTP opening. Protein composition of the PTP
remains unsolved
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[148-150]; PKCe was reported to prevent PT in cardiomy-
ocytes by phosphorylating VDAC [151].

In addition, these and/or other kinase pathways might
impinge upon PTP regulation by indirect means, mainly in-
teracting with Bcl-2 family members. PKCe activates the
anti-apoptotic Bcl-2 and inactivates the pro-apoptotic Bad in
several cell types and conditions, thereby maintaining mito-
chondrial membrane potential and preventing cyt ¢ release
[138, 152]. Garlid and coworkers have proposed that two
pools of PKCe participate in inhibition of the PTP, one pool
acting directly on the pore after activation by ROS and the
other acting on the K arp channel, which would in turn inhibit
the PTP [153].

Bad is inactivated also by PKA, extracellular signal-
regulated kinases (ERKs) and Akt [138, 154—156]. The ef-
fect of ERKs on mitochondrial death pathways seems how-
ever more complex, as they have also been implicated in
the apoptogenic translocation of Bax to mitochondria [157].
Conversely, growth factor-activated Akt exerts a coherent
survival action at multiple levels, either in the cytosol or fol-
lowing translocation into mitochondria. Among the actions
that may relate more directly to the PTP, Akt was found
to influence the expression of putative PTP components or
regulators [158] and to phosphorylate glycogen synthase ki-
nase 38 (GSK3p) [159]. Various protective pathways could
impinge on GSK38, whose inhibition would result in a de-
creased probability of PTP opening [160].

3.2.3 Hexokinase

Further evidence indicates that Akt might be a central
knot in the network of cross-regulations between energy
metabolism, mitochondrial membrane integrity and cell
death through its regulation of hexokinase (HK). The mam-
malian HK isoforms HKI and HKII bind to VDAC on the
OMM and catalyse the first glycolytic step by using ATP
to convert glucose into glucose-6-phosphate. The dynamic
movement of HK between mitochondrial and cytosolic com-
partments is regulated by cycles of association/dissociation
with VDAC [161] and influenced by a variety of factors
(ATP, divalent cations, P;, intracellular pH and glucose-6-
phosphate), suggesting that HKs have specific functions of
metabolic sensing: as HKs on the OMM selectively utilize
intramitochondrial ATP for glucose phosphorylation, they
directly couple glycolysis to oxidative phosphorylation.
HK metabolic functions are connected to the regula-
tion of mitochondrial membrane permeability. In a recon-
stituted system, an enhanced association between HK and
VDAC correlated with PTP closure and vice versa [162].
The HK/VDAC interaction might either propagate a confor-
mational change that alters the conductive properties of the
PTP, or prevent the interaction between pro-apoptotic Bcl-2
family members and PTP regulators, such as VDAC itself
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or other proteins [50]. For instance, mtCK associates with
VDAC in the intermembrane space only when HK is not
externally bound [162, 163]. mtCK might therefore compete
with HK for the modulation of VDAC activity and VDAC-
ANT interaction [48, 164].

Akt modulates mitochondrial HK activity in several ways.
The interaction between HK and VDAC is abrogated by
a GSK3p-dependent phosphorylation of VDAC, and pro-
moted by Akt, which inhibits GSK38 [69]; HK ectopic ex-
pression and its association with mitochondria mimics the
ability of growth factors and Akt to maintain OMM integrity
and to inhibit cyt ¢ release and apoptosis [68, 165-168]. In
tumors, which usually are highly glycolytic even if oxygen
is available (the Warburg effect) [169], mitochondrial HK
activity is generally increased [50, 170], and disruption of
HK-VDAC binding enhances apoptosis induction [161].

Mitochondrial HKs prevent the apoptogenic activity of
Bax [68, 168]. Active Bax/Bak might compete with mito-
chondrial HKs for a binding site on the OMM. In the absence
of growth factors, a prolonged HK dissociation would pro-
mote OMM association of the activated Bax/Bak, leading
to permeabilization of the OMM. However, HK dissocia-
tion from mitochondria was reported to induce OMM per-
meabilization even in the absence of Bax and Bak, when
the majority of apoptotic signals are not effective [168]. As
this OMM permeabilization is Ca’>*-independent, an addi-
tional, Bax/Bak-independent and PTP-independent mecha-
nism might exist by which HK dissociation prompts loss of
mitochondrial membrane integrity and apoptosis. Nonethe-
less, cells doubly deficient for Bax and Bak seem to have a
functioning PTP, which would be responsible for cyt ¢ re-
lease and cell death observed in response to Ca**-dependent
apoptotic stimuli [132].

An alternate model proposes that a prolonged VDAC clo-
sure, and not opening, would lead to mitochondrial matrix
swelling, OMM rupture, and release of apoptogenic proteins
[165, 168, 171, 172], either as a consequence of HK dissoci-
ation from mitochondria [165, 173], or following HK/VDAC
interaction, as HK inhibits apoptosis by PTP inhibition [161]
and decreases the conductivity of purified VDAC reconsti-
tuted into planar lipid bilayers [174]. However, these ob-
servations are inconsistent with evidence that mitochondrial
HKs selectively utilize intramitochondrial ATP, which is fun-
nelled through an open VDAC, to phosphorylate glucose
[49].

3.3 PT-independent permeabilization of the OMM

Several PTP-unrelated mechanisms of apoptogenic protein
release probably exist (Fig. 1). These would exclusively in-
volve an increase in OMM permeability. A wealth of ev-
idence indicates that mitochondrial depolarization follows
cyt ¢ release in several types of apoptosis [46, 175], and
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that a number of compounds (thiols, gangliosides, peptides)
can induce OMM permeabilization in a Ca’*- and CsA-
insensitive manner [27]. OMM would permeabilize either
by formation of large channels by Bax and/or Bax-related
proapoptotic proteins [176], or by association of these pro-
teins with VDAC or ANT to form pores of adequate size
[125], or by protein funnelling through pores entirely formed
by lipids [177].

According to the hypothesis of a channel composed by
Bcl-2-family members, it was shown that several of these
proteins resemble the pore forming domain of diphteria
toxin and bacterial colicins [178—181], and that they exhibit
ion channel activities in synthetic lipid bilayers. These
channels display multiconductance levels, are voltage- and
pH-dependent, and are poorly ion selective [182—184].
However, in most cases, channel activities were recorded
in non-physiological conditions, and their relevance, if any,
in apoptosis signalling remains undetermined. It was also
shown that recombinant, tetrameric Bax alone was sufficient
to release fluorescein-labeled cyt ¢ from plain liposomes
[176] and from isolated mitochondria in a Bcl-Xj -sensitive
fashion [118], whereas it was reported not to be involved
in Ca?*-induced PT [185]. In a cell-free system composed
either of mitochondria, OMM vesicles or liposomes, per-
meabilization required a mixture of tBid and Bax, whereas
neither protein alone was sufficient, and it was inhibited by
Bcl-Xy . Remarkably, permeabilization occurred without the
need for IMM or matrix components [186].

Bax or Bak could form the so-called mitochondrial
apoptosis-induced channel, MAC. MAC was identified as a
high conductance, voltage-independent and slightly cation-
selective channel that forms during early apoptosis and pu-
tatively releases cyt ¢c. MAC is large enough to allow the
passage of cyt ¢, which in turn modifies MAC properties in
a way consistent with entrance of cyt ¢ into the pore. MAC
is not detected in cells lacking both Bax and Bak, and its
openings are abrogated by overexpression of Bcl-2 [187].
Recombinant active Bax (Bax AC20) channels have electro-
physiological properties that are similar to those of MAC.
Unlike PTP opening, MAC formation does not cause loss of
OMM integrity or mitochondrial depolarization. However,
MAC and PTP might function sequentially to maximize cyt
¢ release. In this model, PTP would break the OMM after
MAC activation, thus completing the release of apoptogenic
factors [11, 188].

BH3-only proteins (e.g. Bid) induce oligomerization of
Bax/Bak on the OMM, resulting in Bax activation [189] and
OMM permeabilization [127, 190, 191]. Oligomerized Bax
on the OMM has been shown to generate high-conductance
channels following interaction with ANT (even if the two
are located into different mitochondrial membranes; [122])
or VDAC [125]. In this latter study, neither Bax nor VDAC
alone could trigger the efflux of cyt ¢ from liposomes, but

Bax widened the VDAC pore just enough to allow efflux of
cyt ¢ [120]. The interaction with Bcl-2 family members could
modulate the VDAC oligomeric state, suggesting that it is the
multimeric form of VDAC that mediates cyt c release [44].
In addition, observations that cyt ¢ is recruited at the inter-
membrane space side of VDAC [192], and that anti-VDAC
antibodies prevent both Ca?*-induced and Bax-induced cyt
¢ release, mitochondrial depolarization and apoptosis [175],
whereas VDAC overexpression induces apoptosis [161], ar-
gue for a central role of VDAC in OMM permeabilization.

Once on the OMM, Bax might promote the formation
of lipidic pores. Other proteins, such as VDAC or molecules
involved in mitochondrial fusion/fission (e.g. Drp1 or Mfn2),
might facilitate this process by destabilizing the membrane.
Bax could interact with Drp1/Mfn2 to destabilize the OMM
through mitochondrial fission-like mechanisms [133].

Other observations indicate that the network of Bcl-2 fam-
ily proteins that impinges upon OMM permeabilization is
extremely intricate. Mcl-1 complexes with Bak and sup-
presses its pore forming activity [193]. The BH3-only pro-
teins PUMA and NOXA, which are expressed in a p53-
dependent manner upon DNA damage, were shown to cause
OMM permeabilization [194, 195]. Interestingly, cytosolic
p53 can directly activate Bax and thereby cause permeabi-
lization of the OMM, although the mechanism of this acti-
vation is still unclear [196].

Other investigators used in vitro translated proteins to
show that Bax, but not Bcl-Xi, could break planar lipid
bilayers [177], possibly through lipid-dependent membrane
destabilization due to an increase of the local membrane
curvature, eventually resulting in the formation of lipidic
pores [197].

Caspases could also control mitochondrial membrane
permeability. In models of UV-irradiated or staurosporine-
treated cells, cyt c isreleased, but IMM damage is only conse-
quent to caspase-dependent events [119]. Similarly, addition
of recombinant caspase-3 following Bax/Bak-dependent per-
meabilization of the OMM caused changes to the IMM and
to mitochondrial morphology [198]. Hence, activated cas-
pases might target the permeabilized mitochondria, increas-
ing apoptosis through a positive feedback loop. Caspase-2,
which is activated in response to genotoxic stress, can be
directly involved in the release of cyt ¢ from mitochondria
[199]; in isolated mitochondria caspase-2 stimulates mito-
chondrial release of cyt ¢ and of Smac/DIABLO, but not of
AIF, independent of several Bcl-2 family proteins [200-202].

3.4 Mitochondria remodelling and cell death
The PTP could also induce cyt ¢ release through remod-
eling of mitochondrial cristae. Tomographic analyses after

high-voltage electron microscopy have shown that mitochon-
drial cristae are pleiomorphic tubular structures connected
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through a narrow hose to the intermembrane space at regions
called contact junctions [203]. The intra-cristae regions may
form a barrier to the free diffusion of proteins, and contain
approximately 85% of the total cyt ¢ pool, while only 15% is
found in the intermembrane space [204]. It follows that two
steps could be required for substantial release of cyt c: first,
cristae remodelling in order to eliminate the diffusion bar-
rier and to redistribute cyt ¢ in the intermembrane space; this
step is at least partially controlled by PARL and Opal [205,
206], two proteins known to regulate mitochondrial fusion
[207]; second, cyt ¢ exit into the cytosol via either formation
of pores (e.g., Bax/Bak channels) or rupture of the OMM
(e.g. following matrix swelling). CsA appears to block the
first step of cyt ¢ release from mitochondria by inhibiting
the structural remodeling of cristae [208, 209]. Therefore,
the structural reorganization of mitochondria was proposed
to be regulated by PTP [58, 210]. In this model, the second
step of cyt ¢ release would instead be triggered by Bax/Bak
channels on the OMM [208].

In several apoptotic settings mitochondrial morphology
changes from a tubular networks to a fragmented phenotype,
suggesting that mitochondrial fission is also related to cyt ¢
release [211]. Accordingly, proteins involved in fission (e.g.
hFisl or DLP1) regulate cyt ¢ release and apoptosis [212,
213].

Cyt ¢ binds to cardiolipin, a lipid selectively found on
IMM, and it was shown that cyt ¢ release can be favored by
cardiolipin peroxidation [214], a phenomenon that can fol-
low the burst of ROS associated with PTP opening [215], or
by Ca* interaction with cardiolipin [216]. Based on these
findings a somewhat different “two step” model of cyt ¢
release was proposed where cyt ¢ first mobilizes from car-
diolipin [215] in association with cristae remodeling (see
above and [217]), and is then released in the cytosol through
permeabilization of the OMM by Bax-like proteins.

Mitochondrial swelling has been reported to occur follow-
ing many apoptotic stimuli, including growth factor with-
drawal, heat shock, sustained increase in intracellular Ca?t
levels, TNFa treatment and ischemia [218]. Nonetheless, it
must be pointed out that a matrix volume increase and the
subsequent release of intermembrane space proteins could
also rely upon PTP-independent mechanisms not associated
to a general increase of inner membrane permeability (the
high-energy swelling of [219]). In this paradigm, swelling
occurs without impairment of mitochondrial function and
with maintenance of intracellular ATP levels, which in turn
are required for the apoptotic pathway to proceed. In fact,
PTP openings are pro-apoptotic when a high intracellular
ATP level is maintained, whereas a low ATP level switches
the cell death subroutine towards necrosis (e.g. [220-222]).

Mitochondrial volume is controlled by K* transport
across the IMM, which is regulated by a balance of inward
electrophoretic flux with outward electroneutral K*/H" ex-
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change [17]. Indeed, stimulation of net K* influx (e.g. by
valinomycin or by openers of mitochondrial Karp chan-
nels) induces matrix swelling and cyt ¢ release without loss
of membrane integrity [223-225]. Intriguingly, K™ uptake,
swelling of mitochondria and cyt ¢ release can be inhibited by
Bcl-2 and stimulated by tBid [153] possibly through upreg-
ulation of the K*/H™ exchanger with the ensuing reduction
of net influx of KT [226, 227].

4 The PTP in pathology

Mitochondria are involved in more than 40 known human
diseases. The effects of CsA in treatment have implicated
PTP-dependent mitochondrial dysfunction and Ca>* dereg-
ulation in many of these conditions (see Table 1), including
ischemia-reperfusion (I/R) injury of the heart [30, 228], is-
chemic and traumatic brain damage [229, 230], muscular
dystrophy caused by collagen VI deficiency [231], amy-
otrophic lateral sclerosis [232], acetaminophen hepatotox-
icity [99], hepatocarcinogenesis by 2-acetylaminofluorene
[233], and fulminant, death receptor-induced hepatitis [234].

In cardiac I/R injury, overload of matrix Ca®* leads to
opening of the PTP, cyt ¢ release, and cell death [20]. During
ischemia, lactic acidosis prompts the exchange of extracel-
lular Na™ with cytosolic H*. The increased cytosolic Na*
stimulates the plasma membrane Na®/Ca’* exchanger, re-
sulting in cytosolic Ca>* overload that eventually lead to an
augmented matrix Ca®>* load. In addition, ATP hydrolysis in-
creases cell P; [20]. Recovery of respiration in the presence
of high intracellular and intramitochondrial [Ca?*] and [P;]
provides ideal circumstances for promoting PTP opening,
which would be further favored by overproduction of ROS
and recovery of neutral pH. Hence, ischemia per se does not
appear to cause PTP opening, but it creates the conditions
for PTP opening at reperfusion [105]. The partial recovery
of mitochondrial function generates an amount of ATP that
is sufficient for contraction, but not for relaxation, ultimately
resulting in sarcolemmal rupture [21, 37, 235]. Myocyte via-
bility is maintained when PTP opening is prevented not only
by CsA, but also by CsA analogues that lack immunosup-
pressive activity, further supporting the importance of PTP
opening in I/R injury [30, 236, 237]. In keeping with this
model, mice lacking CyP-D display a reduced susceptibility
to ischemic injury [52, 54, 55].

Tumor cells are more resistant to the breakdown of the
OMM [238], and PBR, HKII, mtCK, CyP-D, VDAC iso-
forms and ANT-2 were found to be dysregulated in a num-
ber of neoplastic tissues and tumor cell lines [113, 170].
An involvement of an altered PTP opening in cancer is sug-
gested by several pieces of evidence: (i) PTP opening can
be both the cause and the consequence of increased ROS
unbalance, and part of the amplification loop of apoptosis;
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Table 1

Involvement of permeability transition in pathological conditions

System or organ Disease

References

Cardiac/circulatory system

Ischemia/reperfusion injury

[30, 105, 228, 236, 237]

Nervous system Ischemic and traumatic brain damage [229, 230]
Hyperglycemia [229, 248]
Hypoglicemia [230, 249]
Trauma [250, 251]
Facial motoneuron axotomy [252]
Photoreceptor apoptosis [253]
Amyotrophic lateral sclerosis [232]
Middle cerebral artery occlusion [55]
Muscle Muscular dystrophy caused by collagen VI deficiency [231]
(mouse)
Ullrich congenital muscular dystrophy [259]
Liver Acetaminophen toxicity [99, 254]
Cholestasis [243]
Fulminant, death receptor- or viral-induced hepatitis [234, 255, 256, 257]
Hepeatitis C virus-induced hepatocyte apoptosis [244]
Alcohol-induced damage [245]
Acute endotoxemia [258]
Graft rejection [260]
Tumors Hepatocarcinoma? [21]

Hepatocarcinogenesis by 2-acetylaminofluorene [233]
Sensitivity/resistance to chemotherapeutics [239-241]
Resistance to hypoxia or anoikis [241]
Transformed cell apoptosis by jasmonates [242]

notably, inhibitors of chemotherapy-induced apoptosis in-
clude several antioxidant agents; (ii) resistance to chemother-
apeutics is related to a reduced release of Ca’* from in-
tracellular stores upon apoptosis induction [239]; (iii) cell
treatment with chemotherapeutic agents reduces the inter-
action of the antiapoptotic Bcl-2 with mitochondria [240,
241]; (iv) tumor cells escape apoptosis elicited by hypoxia
and matrix-detachment (anoikis), both of which activate the
PTP [241]; (v) the plant lipids jasmonates, which target the
PTP, selectively induce apoptosis in transformed tumor cells
[242], making the PTP itself a potential target in cancer
therapy.

Resistance to PTP opening displays hepatoprotective ef-
fects in a variety of conditions. CsA abrogates the lethal
effects of a combination of E. coli lipopolysaccharide plus
D-galactosamine, a treatment that kills hepatocytes through
TNF-« [234]. In a model of hepatocarcinogenesis, the ary-
lamine 2-acetylaminofluorene (AAF) causes onset of liver
tumors preceded by a sequence of alterations that closely
resembles the clinical course of chronic hepatitis. We found
that PTP desensitization early during AAF feeding induces
a tumor-promoting adaptive response that selects apoptosis-
resistant hepatocytes [233], and a similar adaptive response
of the PTP ex vivo has also been demonstrated after bile duct
ligation in rats [243]. A core protein of the hepatitis C virus
increases ROS production and possibly PTP opening by in-

hibiting respiratory chain complex I [244] in a fashion that
is reminiscent of what is observed in liver chronic alcohol
exposure [245]. As both alcoholic liver disease and chronic
hepatitis C are leading causes of hepatocarcinoma, inhibition
of liver apoptosis through PTP adaptation might play a role
in the onset of liver cancer in these conditions.

In the nervous system, CsA protects from brain dam-
age provoked by hyperglycemia, hypoglycemia, ischemia,
trauma, from cell death caused by facial motoneuron axo-
tomy in neonatal rodents and from photoreceptor apoptosis.
Furthermore, Ppif~/~ mice have a striking decrease of the
damage induced by middle cerebral artery occlusion (see
[21] for a review).

PT plays akey role in the pathogenesis of muscular dystro-
phy in a mouse model of collagen VI deficiency, indicating
that collagen VI myopathies have an unexpected mitochon-
drial pathogenesis [231]. In humans, mutations of collagen
VI genes cause either Bethlem myopathy [246] or Ullrich
congenital muscular dystrophy [247]. Collagen VI-deficient
mice display a phenotype strongly resembling Bethlem my-
opathy, with loss of contractile strength associated with ma-
jor alterations of sarcoplasmic reticulum and mitochondria,
and spontaneous apoptosis. These defects are caused by in-
appropriate PTP openings, as CsA rescues a normal muscle
ultrastructure and dramatically decreases apoptosis in vivo
[231]. We have recently found that the same defect can be
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demonstrated in myoblast cultures from patients with Ullrich
congenital muscular dystrophy [259].

5 Conclusions and perspectives

Despite the uncertainties about its molecular composition,
sound evidence indicates that the PTP plays a role in several
disease paradigms in vivo, and that the pore represents a
viable target for drug development. Many well-characterized
death signalling pathways affect mitochondrial function in
a variety of ways, and these include modulation of the PTP.
Whether Bcl-2 family members, VDAC and HK affect the
release of apoptogenic proteins through PT-dependent or-
independent pathways, or both, remains a controversial issue
that may depend on the intrinsic complexity of the system
and on the dynamics of the protein interactions involved. The
challenge of clarifying these issues will greatly benefit from
the structural definition of the PTP, a task that represents one
of the major efforts of our laboratory.
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