
The Mix-and-Cut Shuffle:

Small-Domain Encryption Secure
against N Queries

Thomas Ristenpart1 and Scott Yilek2

1 University of Wisconsin–Madison
rist@cs.wisc.edu

2 University of St. Thomas
syilek@stthomas.edu

Abstract. We provide a new shuffling algorithm, called Mix-and-Cut,
that provides a provably-secure block cipher even for adversaries that can
observe the encryption of all N = 2n domain points. Such fully secure
ciphers are useful for format-preserving encryption, where small domains
(e.g., n = 30) are common and databases may well include examples of
almost all ciphertexts. Mix-and-Cut derives from a general framework
for building fully secure pseudorandom permutations (PRPs) from fully
secure pseudorandom separators (PRSs). The latter is a new primitive
that we treat for the first time. Our framework was inspired by, and
uses ideas from, a particular cipher due to Granboulin and Pornin. To
achieve full security for Mix-and-Cut using this framework, we give a
simple proof that a PRP secure for (1 − ε)N queries (recently achieved
efficiently by Hoang, Morris, and Rogaway’s Swap-or-Not cipher) yields
a PRS secure for N queries.

Keywords: shuffles, small-block encryption, tweakable block ciphers.

1 Introduction

Traditional block ciphers such as AES and DES work on fixed domain sizes
(e.g., n = 64 or 128 bits). Some applications, however, require the ability to
securely encipher bit strings of smaller sizes (e.g., n = 30 bits). The canonical
example here being format-preserving encryption (FPE) [2,4,6,7], which makes
use of small-block-size block ciphers to perform in-place encryption of credit card
numbers, social security numbers, and other sensitive data.

In this paper, we provide a new small-domain block cipher, called Mix-and-
Cut, that achieves provable security up to q = 2n queries (the most possible). It
was designed using a new methodology for building ciphers secure as pseudoran-
dom permutations (PRPs) from pseudorandom separators (PRSs). The latter
is a cryptographic primitive that we treat for the first time. This methodology
was inspired by, and uses ideas from, a particular cipher construction due to
Granboulan and Pornin (GP) [11].

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 392–409, 2013.
c© International Association for Cryptologic Research 2013

The Mix-and-Cut Shuffle 393

Small domain encryption. Before explaining our results in more detail, we
describe further the motivation and related work. FPE has become popular in
settings where ciphertexts must follow a proscribed format. For example, should
credit card numbers (CCNs) already be stored in a database with a limit of
16 numerical digits, then encrypting the CCN with a conventional encryption
scheme would result in a ciphertext that could not be placed back in the database
column. Typically, in fact, the first 6 digits (being the issuer identification num-
ber) and the last digit (a Luhn checksum digit) must also be left in the clear,
and so one would like to encrypt just the remaining 9 digits. This requires a
cipher with domain of 109 ≈ 230. In cryptographic parlance, we seek a block
cipher E : K × {0, 1}n → {0, 1}n for some key space K, n = 30, and which is
indistinguishable from a random permutation.

Work on this small-space encryption problem can be traced back to, at least,
Black and Rogaway [5]. They gave several approaches, the most efficient of which
generalizes Luby and Rackoff’s classic result [17] on balanced Feistel networks.
This provides provable security, but only up to a number of encryptions below
q = 2n/4. In our example with n = 30, this is only q ≈ 128 ciphertexts. Mor-
ris, Rogaway, and Stegers [19] uncover a connection between unbalanced Feistel
networks and the Thorp shuffle, and use it to prove that maximally unbalanced
Feistel networks achieve security up to about q ≈ 2n(1−ε) queries for a frac-
tion ε inversely proportional to the the number of rounds of the construction.
This approach, with similar bounds, was extended to arbitrary balanced Feistels
by Hoang and Rogaway [14]. Most recently, Hoang, Morris, and Rogaway [13]
introduced a new shuffling approach, called Swap-or-Not, and a cryptographic
realization of it that provably achieves security up to q ≈ (1− ε)2n.

None of the above approaches, however, provide guarantees of security should
q get within a constant of N = 2n. Such full security is desirable when large
databases contain almost N encryptions. In our running example, this would
mean only about 1 billion database entries, which is not particularly large con-
sidering that processors using FPE deal with hundreds of millions of transactions
each month. Employing key rotation and tweaks [16] can ease this gap (by reduc-
ing the number of ciphertexts per key/tweak), but their use for this purpose is
not always feasible or desirable, for example should one need to support search.
What’s more, choosing appropriate security parameters requires somehow pre-
dicting the number of ciphertexts an adversary obtains. A fully secure cipher,
on the other hand, can often set parameters based solely on n.

There exist a handful of proven full security constructions, but they are all
quite slow for moderately sized N . The shuffle popularized by Knuth [9, 10, 15]
provides a cipher with full security, but requiresO(N) computation time, as does
the simple construction that uses lookup tables (c.f., [5]). Granboulan and Pornin
(GP) [11], build a cipher based on a shuffle introduced by Czumaj, Kanarek,
Kutylowski, and Lory [8]. It requires O(log3 N) operations and repeated sam-
plings from the hypergeometric distribution. The Thorp shuffle was shown to
provide full security [18], but also with O(log3 N) rounds. Stefanov and Shi [23]
offer a variant of the GP scheme that improves performance for very small

394 T. Ristenpart and S. Yilek

algorithm MixAndCut(D):

n← log |D|
Repeat r times:
K←$ {0, 1}n
for each pair of positions {X,K ⊕X}
b←$ {0, 1}
If b = 1 swap the cards at positions X

and K ⊕X
(D1, D2)← Cut(D)
MixAndCut(D1)
MixAndCut(D2)
Gather(D1, D2)

Fig. 1. (Left) The Mix-and-Cut shuffle on N = 2n cards with Swap-or-Not for the
mixing. D is the size N deck of cards, |D| is the number of cards in D, Cut(D) cuts the
deck exactly in half, and Gather(D1, D2) stacks two piles on top of each other. (Right)
Diagram of the Icicle construction with four stages (s = 4) and using pseudorandom
separators Z1, . . . , Z4. Each of the Xi

j have length γ bits. The leftmost γ bits (the
shaded boxes) of each stage “drip” down to the final ciphertext X1

1 ‖X2
2 ‖X3

3 ‖X4
4 .

Each Ti is a tweak that includes the Xj
j values output in previous stages j < i.

domains, but it requires Θ̃(N) time for key setup and Θ̃(N1/2) time and space
for encryption.

Mix-and-Cut. We offer a new cipher, which, following [13,14,19] can be viewed
as a card shuffle. Think of each of the 2n domain points as a card. Our new shuf-
fling algorithm intermingles two kinds of shuffles on these cards. The first is the
recursive shuffling procedure underlying GP, in which at each stage one splits
the deck of cards into two halves, then splits each half into two smaller halves
for a total of four halves, and so on until one can split no further. GP uses a
recursive hypergeometric sampling routine to make the split perfectly random.
We instead use another shuffling routine to provide a split that is cryptographi-
cally indistinguishable from a random one. For this we use a number of rounds
of the Swap-or-Not shuffle sufficient to ensure the top and bottom halves of the
deck appear to have been chosen randomly (but not yet nearly enough rounds
to prove a full uniform shuffling of the deck). The complete shuffling algorithm
is given on the left of Figure 1. The full shuffle, then, will mix the deck using
Swap-or-Not, then cut it into two, recursively shuffle each one independently,
and so on.

Mix-and-Cut may appear ad-hoc, fitting together two prior shuffles in an
arbitrary fashion. But in fact it was discovered using, and is just the best in-
stantiation we could find of, a new paradigm for building ciphers that is inspired
by the construction of the GP cipher. We describe this paradigm from the bot-
tom up, starting with a new cryptographic primitive that we define, called a
Γ -pseudorandom separator.

The Mix-and-Cut Shuffle 395

Γ -pseudorandom separators. A Γ -PRS, from a shuffling point of view, can
“split a deck” pseudorandomly into Γ piles. Cryptographically speaking, a per-
mutation Z on {0, 1}n is a secure Γ -PRS if no computationally bounded adver-
sary can distinguish the first γ = logΓ bits of its output from that of a randomly
chosen, regular function {0, 1}n → {0, 1}γ. That the ideal object is regular is
important: we will be often interested in n small and q large, and here the dif-
ference between a regular random function and arbitrary random function is
readily apparent even to a computationally bounded adversary. For large n and
small q, however, Γ -PRS security can be shown to be equivalent to security in
the sense of a PRF with range size γ bits using techniques first used to analyze
the PRF security of truncated PRPs [1, 12].

Unlike a PRP, a Γ -PRS provides no security guarantees about the remaining
n−γ bits of its output (when γ < n). This means that Γ -PRS security is strictly
weaker than PRP security in general; when γ = n the two notions coincide.

In fact, we focus on tweakable separators, which like tweakable block ciphers in
the sense of Liskov, Rivest and Wagner [16], are families of permutations indexed
by both a key and a tweak. Different tweaks should give rise to independent-
looking permutations. Tweaks will be critical to our use of PRSs in building
PRPs.

Separators were inspired by the use, in the GP cipher, of an algorithm for per-
fectly splitting a deck into two halves using a recursive sampling from the hyper-
geometric distribution. Our treatment here draws out the implicit cryptographic
primitive underlying GP’s algorithm: in our terminology, the GP hypergeometric
separator is a fully secure 2-PRS.

From PRSs to PRPs. Fix a value γ and target block size n, with s = n/γ. We
provide a new construction, that we call an icicle, that uses a set of tweakable
permutations Z1, . . . , Zs to build a secure PRP on n bits. See the right hand
side of Figure 1. Each Zi should be a secure Γ = 2γ-PRS on n − γ(i − 1) bits.
An icicle is simple: apply an n-bit Γ -PRS, output the first γ bits, apply to the
remaining n−γ bits a Γ -PRS on n−γ bits with tweak being the output thus far,
add the first γ bits of the result to the output, and so on for s stages, in order
to produce a sequence of γ-bit outputs that is the ciphertext. The use of tweaks
is requisite for security: they ensure that the PRSs lower in the icicle provide
independent behavior for different prefixes of the ciphertext. An icicle for Γ = 2
is exactly the recursive shuffling procedure used in the GP cipher; their cipher we
can view now as an icicle using hypergeometric 2-PRSs. Our proof of the icicle
construction modularizes their result, and generalizes it to work with imperfect,
computational PRSs for arbitrary Γ . The proof conserves full security, as well,
so if the underlying PRSs are fully secure, so too is the resulting PRP.

Overall, this can be seen as a new paradigm for building PRPs. Unlike Luby-
Rackoff that starts with PRFs, we go a different route, starting with PRSs. This
may seem to not buy much; in particular, building an n-bit cipher using an icicle
requires an n-bit permutation (the first stage) and also a γ-bit PRP (the last
stage). But we only require the first γ bits of the first stage to be random-looking,

396 T. Ristenpart and S. Yilek

and we can arrange that γ is small enough in the last stage to make a PRP there
trivial (e.g., γ = 1).

A simple but useful lemma. This begs the question of how to build PRSs,
particularly ones that are faster than the GP hypergeometric 2-PRS. We show
that the inverse E−1

K of any cipher EK that is a secure PRP for (Γ − 1)N/Γ
queries is a good Γ -PRS for all N queries. The proof is straightforward (see
Section 4), and we explain it informally here for the case of Γ = 2 which we
will use later. The reduction must simulate all N 2-PRS queries given only N/2
evaluations of E. But to do so requires only returning the first bit of each value
E−1

K (X1), . . . , E
−1
K (XN), and this is learnable by querying only half the domain,

say by querying EK(0 ‖ y) for all y ∈ {0, 1}n−1. If a value X is in the set of
returned points, then we know that the first bit of E−1

K (X) is zero and otherwise
that it is one. The result extends easily to handle when the PRS adversary
queries all N domain points for each of some number of tweaks.

The lemma shows that one can get a fully secure Γ -PRS using any construc-
tion that achieves only (1 − ε)N PRP security. In particular this implies that
Swap-or-Not is a fully secure 2-PRS for a number of rounds a small fraction
of that needed to make it a fully secure PRP (provably under the Hoang et
al. result).

Putting it all together. The Mix-and-Cut cipher uses the icicle construc-
tion with fully secure 2-PRSs built from Swap-or-Not. Our simple lemma
described above ensures that we can use the number of Swap-or-Not rounds sug-
gested by Hoang et al. for N/2 queries to establish 2-PRS security for N queries.
Back to the shuffling interpretation, Swap-or-Not need only shuffle enough to en-
sure that the “deck” can be cut into two piles with a pseudorandom assignment
of cards to piles. We then cut the deck, and focus on each pile independently.

The resulting cipher provides full security, using only simple operations: Swap-
or-Not can be instantiated with two AES calls per round. That said, the new
cipher does require a large number of rounds. For N = 230 and an advantage of
less than 10−10 we need around 10,000 rounds. By comparison, using Swap-or-
Not directly under the bounds1 of Hoang et al. requires about 126× 109 rounds
to achieve the same advantage for N = 230. On an Intel Core i5 with AES-NI, a
full application of Mix-and-Cut should take less than a millisecond for N = 230.
Improved analyses for Swap-or-Not or another algorithm (directly as a 2-PRS
or as a PRP) can be used immediately by Mix-and-Cut in order to increase
efficiency.

Adding tweaks and CCA security. It is easy to ensure that icicle produces
a tweakable block cipher: just prepend the tweak T to the tweak used in each
stage. We have also described all the above in terms of achieving CPA security.
But CPA security and CCA security are equivalent when q = N — another
advantage of targeting full security.

1 Their bound is vacuous if one sets q = N , but we can apply it with q = N − 1.

The Mix-and-Cut Shuffle 397

Separators for generalized domains. Largely for pedagogical reasons, we
focus in this abstract on the case where domains have sizes that are powers
of 2. However, many small-domain encryption settings require domains that
operate over non-binary digits (e.g., base 10 for credit cards). We can generalize
our results to work with radixes other than two in a straightforward way. This
natural generalization leads to slightly weaker bounds than the binary case. It is
also possible to treat the most general case, which uses PRSs to build tweakable
ciphers for completely arbitrary domains. We give details in the full version.

Other uses of Γ -PRSs. We believe that the new Γ -PRS primitive will find
application in contexts beyond our goal here of full security ciphers. As one
example, we show in the full version that 2 rounds of balanced Feistel gives a
good 2n/2-PRS, though with security only for q ≈ 2n/4. While therefore not
directly useful for full security applications, we show that one can recast the
original Luby-Rackoff (LR) result [17] that 3-rounds provides a secure PRP as
a composition of any 2n/2-PRS with one round of Feistel. Combining the two
results gives a bound that matches the original LR result.

Further discussion. Should one be interested in just partial security (q � N),
then our approach does not provide the most efficient solution. This limitation
extends as well to very large block sizes, where partial security is inherently
the goal (since, e.g., q = 2128 is unrealistic); our lemma described above scales
exponentially in q. In these settings one would do best to stick with (say) Swap-
or-Not up to n = 64 and from there use traditional block ciphers within a suitable
domain extension transform (e.g., [22]).

The icicle construction, being built from any Γ -PRS, can of course be used in
a multitude of ways. A two stage icicle extends the domain of any fixed-length
PRP by γ bits. One can also build a full cipher using multiple different kinds of
separators across different icicle stages. For example, one could use several stages
of (say) Swap-or-Not before applying a different shuffle for a few stages, before
then applying at the bottom of the icicle a permutation that works well for very
small domains. While the resulting cipher would be more complicated than Mix-
and-Cut with its homogeneous set of separators, it suggests the existence of a
wide space of possible designs from which one might use proven-secure ciphers
for the domain sizes for which they work best to improve overall efficiency.

Finally, we note that in practice small-block encryption uses constructions
that have weak bounds or even have no security proofs entirely. The proposed
FFX [3,4] standard for FPE suggests 10 rounds of Feistel for domain size around
230. The choice of rounds is based on a heuristic; no proofs providing reasonable
bounds are known for this choice and in fact no proofs are likely given current
techniques (see [19] for more discussion). That said, no (computationally reason-
able) attacks are known, and we have no reason to believe that efficient attacks
will arise. (The best is due to Patarin [21], but the round choice was made to
defeat this.) But that is not proof of the absence of attacks, and so we view
closing the (large) performance gap between Mix-and-Cut and ciphers such as
FFX an important open research problem.

398 T. Ristenpart and S. Yilek

2 Preliminaries

Tweakable block ciphers. A tweakable block cipher is a family of functions
E : K×T × {0, 1}n → {0, 1}n, where K is a non-empty, finite set called the key
space, T is a non-empty, finite set called the tweak space, and where for every
K ∈ K and T ∈ T , EK(T, ·) = E(K,T, ·) gives a permutation on {0, 1}n. We let
E−1

K (T, ·) denote the inverse block cipher of E. When T is a singleton, we have
a block cipher, and write instead EK(·) = E(K, ·) and E−1

K (·) = E−1(K, ·).
We target tweakable block ciphers that are secure even under chosen-ciphertext

attack. This is sometimes called strong pseudorandom permutation (SPRP) se-
curity. Given tweakable block cipher E : K × T × {0, 1}n → {0, 1}n and an
adversary A, the cca-advantage of A with respect to E is

Advcca
E (A) = Pr

[
AE(K,·,·),E−1(K,·,·) ⇒ 1

]
− Pr

[
Aπ(·,·),π−1(·,·) ⇒ 1

]

where the first probability is overK←$K and the coins used by A and the second
probability is over π←$ Perm(T , n) and the coins used by A. Here Perm(T , n) is
the set of families of n-bit permutations. That means picking π gives a family of
uniformly chosen permutations, one for each T ∈ T . The inverse of π is denoted
π−1. When T = {0, 1}t we will write Perm(t, n). A cpa adversary simply makes
no queries to its second oracle, and for such adversaries we denote their advantage
by Advcpa

E (A) as a reminder that A makes no inverse queries. We call a cipher
that is secure under cpa attack a good PRP.

We will need as well non-adaptive cpa security, which we define as follows. A
non-adaptive cpa adversary A is given access to one of two different oracles to
which it can query a single time a pair of vectors (T1, . . . , Tq) and (M1, . . . ,Mq).

The oracle E(K, (T1, . . . , Tq), (M1, . . . ,Mq)) computes Ci = ETi

K (Mi) for all i
and returns the resulting ciphertexts. The oracle π((T1, . . . , Tq), (M1, . . . ,Mq))
computes Ci = π(Ti,Mi) for a random tweakable permutation π, and returns
the results. We define advantage as

Advncpa
E (A) = Pr

[
AE(K,·,·) ⇒ 1

]
− Pr

[
Aπ(·,·) ⇒ 1

]

where the first probability is over the choice of K←$K and the coins used by A
and the second probability is over π←$ Perm(T , n) and the coins used by A.

Full security. We target full security, meaning that cca advantage should be
low even for adversaries that make q = N = 2n queries for some number w of
tweaks. (Clearly q = N − 1 is also sufficient, but the difference matters little.)
Thus, full security requires security to hold for a total of wN queries. When
security holds only for q � N we say that the tweakable cipher instead achieves
only partial security. Partial security suffices when, as with standard block ci-
phers with n = 128, the domain is so large that no adversary could feasibly
obtain, let alone compute over, anywhere remotely close to N queries. In small
domain encryption settings, however, full security is important as applications
may apply a cipher to most of the domain (for some set of tweaks). Another
advantage of targeting full security is that cpa security and cca security are

The Mix-and-Cut Shuffle 399

equivalent when q = N . The following formalizes this fact and allows us to focus
on cpa adversaries in the remainder of the paper.

Lemma 1. Let E : K × T × {0, 1}n → {0, 1}n and N = 2n. Let A be a cca
adversary making queries for w distinct tweaks. Then for the cpa adversary B
specified in the proof below it holds that Advcca

E (A) ≤ Advcpa
E (B). Moreover B

makes at most wN queries and runs in time that of A plus O(wN logwN) time.

Proof. The adversary B runs adversary A. When A makes either a forward
or inverse query on a not-before-seen tweak T , B immediately queries values
(T,X1), . . . , (T,XN). That is, it queries the entire domain. Then B uses the
resulting values Y1, . . . , YN to respond to the query, and to respond to future
forward or inverse oracle queries using T .

Note that the variable w in the above only measures the number of distinct
tweaks queried, not the total number of queries made by A. Thus, even if A
makes 2n − 1 queries on each tweak, the bound holds as shown. Also, when we
use big-O notation, i.e., O(w2n logw2n) in the lemma above, this hides only
small, fixed constants.

PRFs. Let F : K×{0, 1}� → {0, 1}n be a family of functions. For an adversary

A, the prf security of F with respect to A is Advprf
F (A) = Pr

[
AF (K,·) ⇒ 1

]
−

Pr
[
Aρ(·) ⇒ 1

]
where the first probability is over K←$K and the coins used by

A and the second probability is over ρ←$ Func(�, n) and the coins used by A.
Here Func(�, n) is the set of all functions {0, 1}� → {0, 1}n. It will be convenient
to speak of PRFs that accept tweaks as input in addition to messages and keys,
so a map F : K × T × {0, 1}� → {0, 1}n. It is easy to build such an F that is a
good PRF using an untweaked PRF. We write Func(T , �, n) to denote the set of
all such functions and Func(t, �, n) should T = {0, 1}t.

3 Pseudorandom Separators

We define a new security goal for tweakable permutations. Informally speaking,
a family of permutations is a good Γ -pseudorandom separator or simply a good
Γ -PRS if no adversary can distinguish the first γ = logΓ bits of its outputs
from a random, regular function {0, 1}n → {0, 1}γ. (Regular just means that
each range point has 2n−γ preimages.) The shuffling-based interpretation is that
the permutation does a good job of separating the domain into Γ different piles
with random domain points (cards) assigned to each pile.

More formally, a tweakable separator is a map Z : K×T × {0, 1}n → {0, 1}n
where K is the key space, T is the tweak space, and we require that for all
K ∈ K and T ∈ T , Z(K,T, ·) is a permutation with inverse Z−1(K,T, ·). Let
RegFunc(T , n, γ) be the set of all functions f : T × {0, 1}n → {0, 1}γ where
f(T, ·) is regular for any T ∈ T . Then for γ ≤ n, the Γ -prs advantage of an
adversary A is defined by

AdvΓ -prs
Z (A) = Pr

[
AZ(K,·,·)[γ] ⇒ 1

]
− Pr

[
Aρ̂(·,·) ⇒ 1

]

400 T. Ristenpart and S. Yilek

where the first probability is over K←$K and the coins used by A and the
second probability is over ρ̂←$ RegFunc(T , n, γ) and the coins used by A. The
oracle Z(K, ·, ·)[γ] on input (T, x), returns the first γ bits of Z(K,T, x).

We say, informally, that a tweakable separator Z is Γ -PRS secure if the advan-
tage is low for all adversaries given reasonable resources. Looking ahead, we will
use separators in building fully secure, small-block ciphers, and so reasonable
here means q = N queries can be made for each of some number ω of tweaks.

It is easy to see that any separator that is Γ -PRS secure is also Γ ′-PRS secure
for any γ′ < γ. The converse is also true, for any γ′ < γ one can construct a
Γ ′-PRS that is not a Γ -PRS. (Briefly, use the hypergeometric sampler described
below within the icicle construction of Section 5 for just γ′ stages, and output
the result without further processing of the low n− γ′ bits.)

Separators for generalized domains. In the above, and in the next few
sections, we restrict attention to the case of bit-string domains. We find this
to be pedagogically appealing. However, many small-domain encryption settings
require domains that operate over non-binary digits (e.g., base 10 for credit
cards). Generalizing the above formulation and our results in Sections 4, 5, and
6 to work over domains being strings over an arbitrary alphabet Σ is straight-
forward. We do caution that the natural generalization leads to slightly weaker
bounds than the binary case; see the full version for the details. There we also
treat the most general case, using PRSs to build tweakable ciphers for domains
of any size.

PRS versus PRF. It may seem that we have, above, just tediously repeated
with different language the classical PRF security notion for the special case of a
truncated permutation. However, there is indeed a gap between the two notions,
due to the fact that we require the random function in the PRS setting to be
regular. In fact, PRF security is not helpful to us in our full security setting.
Formally:

Proposition 1. Let ρ←$ Func(T , n, γ) for n ≥ γ and finite set T . There ex-
ists an adversary A making N = 2n queries such that AdvΓ -prs

ρ (A) > 1 −
e/

(
(
√
2π)Γ ·N (Γ−1)/2 · Γ (N−Γ)/2

)
where Γ = 2γ.

The attack is simple: just query all points, and determine if the function is
regular by inspecting preimage sets. The probability that a random function is
regular is at most the fraction shown, derived straightforwardly using Stirling’s
approximation. Even for n = 2 and γ = 1, we have the advantage of A being
about 0.9.

We note, however, that for q � N and for certain ranges of values of γ and
n, there exist upper bounds showing that PRF security implies PRS security.
For example, a simple birthday bound argument shows this for reasonably large
γ (and so n) and relatively small q. Better bounds for some parameters by
Hall, Wagner, Kelsey, and Schneier [12] as well as Bellare and Impagliazzo [1]
arise in their analyses of truncated PRPs. Their results also yield analogues to
Proposition 1 with improved bounds when A is allowed fewer than N queries.

The Mix-and-Cut Shuffle 401

PRS versus PRP. When γ = n, PRS security is equivalent to PRP security.
For γ < n, however, PRS is strictly weaker. The reason is that the high bits
of the output of a separator are not given to the adversary, and so these may
be entirely non-random. We next give an example of a secure separator that is
easily distinguished from a PRP.

The hypergeometric 2-PRS. As an example of a PRS, we turn to the
Granboulan and Pornin [11] splitting function that we denote ZGP(x). Their
algorithm cleverly uses repeated sampling from the hypergeometric distribution.
We provide a fuller description in the full version.

GP show that ZGP is (in our terms) a secure 2-PRS. It is not a secure PRP.
More specifically, ZGP has the property that if x < x′ and x and x′ are mapped to
the same half of the output space, then ZGP(x) < ZGP(x

′). In other words, points
that are mapped to the same half of the range retain their relative ordering.
Because of this, for example, ZGP(0

n) will always be equal to either 0n or 10n−1,
and so ZGP is easily distinguished from a random permutation.

The GP 2-PRS is, unfortunately, slow when implemented due to the expen-
sive floating point computations needed to perform the repeated hypergeomet-
ric samplings. We will therefore seek other ways of constructing pseudorandom
separators.

4 Full PRS Security from Partial CPA Security

In this section we prove a relationship between the cpa advantage and the Γ -prs
advantage for a block cipher E. In short, we show that if a block cipher E is
CPA secure against (Γ − 1)N/Γ queries, then its inverse E−1 is a secure Γ -PRS
against N queries. Later in the paper, we will be particularly interested in the
Γ = 2 case, since there a block cipher need only be CPA secure against N/2
queries. The following theorem captures this result.

Theorem 1. Fix n ≥ γ ≥ 1. Let N = 2n and Γ = 2γ. Let E : {0, 1}k × T ×
{0, 1}n → {0, 1}n be a tweakable block cipher and E−1 : {0, 1}k×T × {0, 1}n →
{0, 1}n its inverse. Let A be an Γ -prs adversary making queries with ω distinct
tweaks. Then for the cpa adversary B specified in the proof below it holds that
AdvΓ -prs

E−1 (A) ≤ Advcpa
E (B). Moreover, B makes exactly ω · N · (Γ − 1)/Γ cpa

queries and runs in time O(ωN(Γ − 1)/Γ · log(ωN(Γ − 1)/Γ)).

Proof. Adversary B runs A and answers its oracle queries as follows. On query
(T, x) from B, if T is a tweak that has never been previously queried, then B
queries its own oracle on (T, y) for all y ∈ {0, 1}n except those that begin with
0γ . If there is a y such that the oracle query (T, y) returned x to A, then B
replies to A with the first γ bits of y. Otherwise, A replies with 0γ . When A
finally outputs a final bit, B outputs this same value. In short, B is able to
perfectly simulate the environment for A because it makes sure to make enough
queries to its oracle to determine the first γ bits of all of A’s queries.

402 T. Ristenpart and S. Yilek

The above theorem and proof are perhaps most easily understood for the Γ = 2
case. There, to answer which half of the set {0, 1}n the point x is mapped to,
B queries the second half of {0, 1}n, i.e., all points starting with a 1. If one of
the returned answers is x, then B knows to return 1. If none of the returned
answers is x, then x must be mapped to the other half of {0, 1}n, so A knows it
can return a 0.

5 Building PRPs from PRSs: The Icicle Construction

We now show how to use PRSs to build PRPs. The route is a new construction
that we call Icicle, which recasts the Permutator algorithm of Granboulan and
Pornin [11] to work for arbitrary Γ -PRSs. (In the full version we provide a gen-
eralization of Permutator that works for any domain size.) Icicle can be viewed
as a way to shuffle a deck of N = 2n cards. First, use a Γ -PRS to separate the
full deck of cards into Γ piles pseudorandomly. Then, recursively shuffle each
of the Γ piles by separating each of them pseudorandomly into Γ smaller piles,
and so on. Finally collect up all the final piles (in some fixed order) back to
form a single deck. It is important that in each recursive step the shuffling is
independent across all the different piles.

The cryptographic interpretation can be formalized as follows. Let γ, n ∈ N be
numbers with 1 ≤ γ ≤ n and γ |n. Let Γ = 2γ . Let Zi : {0, 1}ki×Ti×{0, 1}ni →
{0, 1}ni for i ∈ [1 .. n/γ] and where Ti = T × {0, 1}ωi for ωi = (i − 1)γ and
ni = n − (i − 1)γ. Note that when i = 1, Ti = T and ni = n. Let Z =
{Z1, . . . , Zs}. The Icicle construction Icγ,n(Z) builds a tweakable block cipher
E : {0, 1}ks × T × {0, 1}n → {0, 1}n as defined by the pseudocode in Figure 2.
We use some notation there that must be defined: X1 ‖ · · · ‖X0 is defined to be
the empty string, while park(·) takes an input string of ik bits and parses it into
i strings of length k bits (and similarly for parγ).

The Icicle uses s = n/γ stages. In the first stage, it applies to the full n bit
input a Γ -PRS on n bits. This fixes the least γ bits of the final ciphertext, which
“drip” down to the output. These bits specify to which of the Γ piles the input

algorithm E(K,T,M):

s← n/γ

K1, . . . ,Ks ← park(K)

X0
1 , . . . , X

0
s ← parγ(M)

for i = 1 to s:

Ti ← T ‖X1
1 ‖ · · · ‖Xi−1

i−1

Xi−1 ← Xi−1
i ‖ · · · ‖Xi−1

s

Xi
i , . . . , X

i
s ← parγ(Zi(Ki,T

i,Xi−1))

Y ← X1
1 ‖X2

2 ‖ · · · ‖Xs
s

return Y

algorithm E−1(K,T, Y):

s← n/γ

K1, . . . , Ks ← park(K)

X1
1 , X

2
2 , . . . , X

s
s ← parγ(Y)

for i = s down to 1:

Ti ← T ‖X1
1 ‖ · · · ‖Xi−1

i−1

Xi ← Xi
i ‖ · · · ‖Xi

s

Xi−1
i , . . . , Xi−1

s ← parγ(Z
−1
i (Ki,T

i,Xi))

M ← X0
1 ‖ · · · ‖X0

s

return M

Fig. 2. The s-stage Icicle construction Icγ,n(Z) using 2γ-PRSs Z = {Z1, . . . , Zs}

The Mix-and-Cut Shuffle 403

algorithm Hybj(K,T,X):

s← n/γ ; K1, . . . ,Ks ← park(K) ; X0
1 , . . . , X

0
s ← parγ(X)

for i = 1 to j:

T i ← T ‖X1
1 ‖ · · · ‖Xi−1

i−1 ; Xi−1 ← Xi−1
i ‖ · · · ‖Xi−1

s

Xi
i , . . . , X

i
s ← parγ(Zi(K

i, T i,Xi−1))

if j = s then

Y ← X1
1 ‖ · · · ‖Xj

j

else

T j+1 ← T ‖X1
1 ‖ · · · ‖Xj

j ; Xj ← Xj
j+1 ‖ · · · ‖Xj

s

Xj+1
j+1 , . . . , X

j+1
s ← parγ(πj+1(T

j+1,Xj))

Y ← X1
1 ‖ · · · ‖Xj

j ‖X
j+1
j+1 ‖ · · · ‖Xj+1

s

return Y

Fig. 3. Hybrid oracles for j ∈ [0 .. s] where s = n/γ as used in the proof of Theorem 2.
Tweakable permutation πj is selected randomly from Perm(Tγj , n− γj).

was mapped by the stage. The second stage processes the remaining n− γ bits
using a Γ -PRS on n bits. The tweak includes the γ bits output from the first
stage. The resulting output fixes the second γ bits of the final output, and so on.
In the last stage, only γ bits remain, and these are handled by the last Γ -PRS. A
pictorial diagram is shown on the right-hand-side of Figure 1 in the introduction.

Security. We now turn to analyzing the security of the Icicle construction. The
following theorem shows its security assuming the underlying separators enjoy
Γ -PRS security.

Theorem 2. Fix n ≥ γ ≥ 1 with γ |n, let s = n/γ and let Z = {Zi}si=1 be an
appropriate collection of permutations for Icγ,n(Z). Let A be a cpa adversary
making q queries. Then for the Γ -prs adversaries B1, . . . , Bs specified in the
proof below it holds that Advcpa

Icγ,n(Z)(A) ≤
∑s

j=1 AdvΓ -prs
Zi

(Bs). Each adversary

Bj makes q oracle queries, runs in time at most that of A plus O(jq·Time(Z)+
(s− j)q log(s− j)q).

Proof. We introduce a sequence of hybrid oracles Hyb0, . . . ,Hybs as defined in
Figure 3. The jth hybrid Hybj implements Icγ,n(Z) but with the last s − j
stages replaced by an appropriately sized, tweakable random permutation. By
construction Hyb0 implements a random permutation while Hybs implements
Icγ,n(Z). Then

Advcpa
Icγ,n(Z)(A) ≤

s−1∑
j=0

∣∣Pr [AHybj+1 ⇒ 1
]
− Pr

[
AHybj ⇒ 1

]∣∣ (1)

We will now upper bound each individual difference in the sum, by way of ad-
versaries B1, . . . , Bs that attack the Γ -PRS security of the s underlying permu-
tations in Z. The adversaries are defined in Figure 4. In it, the adversary runs

404 T. Ristenpart and S. Yilek

adversary BSep
j :

V everywhere zero ; Z everywhere ⊥
K1, . . . ,Ks←$ {0, 1}ks
Run AEnc, answering queries (T,M) by:

X0
1 , . . . , X

0
s ← parγ(M)

for i = 1 to j:

T i ← T ‖X1
1 ‖ · · · ‖Xi−1

i−1 ; Xi−1 ← Xi−1
i ‖ · · · ‖Xi−1

s

if i < j then Xi
i , . . . , X

i
s ← parγ(Zi(Ki, T

i,Xi−1))

else Xj
j , . . . , X

j
s ← parγ(SepSim(T j ,Xj−1))

if j = s then

Y ← X1
1 ‖ · · · ‖Xj

j

else

T j+1 ← T ‖X1
1 ‖ · · · ‖Xj

j ; Xj ← Xj
j+1 ‖ · · · ‖Xj

s

Xj+1
j+1 , . . . , X

j+1
s ← parγ(πj+1(T

j+1,Xj))

Y ← X1
1 ‖ · · · ‖Xj

j ‖X
j+1
j+1 ‖ · · · ‖Xj+1

s

return Y

A outputs b′

return b′

subroutine SepSim(T ′,X)

if Z[T ′,X] = ⊥ then

Xj
j ← Sep(T ′,X)

Z[T ′,X]← Xj
j ‖ 〈V[T ′, Xj

j]〉n−jγ

V[T ′, Xj
j]← V[T ′, Xj

j] + 1

return Z[T ′,X]

Fig. 4. Adversaries for the proof of Theorem 2

for the first j − 1 stages as in Icγ,n(Z) and then queries its own Γ -PRS oracle
for the jth stage. Note that the oracle only gives back γ bits.

The adversary therefore simulates the behavior of Zj using the procedure
SepSim, defined as follows. On input T ′, X The first γ bitsXj are set by querying

Xj
j ← Sep(T ′,Xj−1). The remaining n− γ bits are set to an arbitrary value so

that the SepSim(T ′, ·) implements a permutation for each T ′. Specifically, we set
the last n− γ bits to be equal to the value V[T,Xj

j], which is then incremented.
(Note that V is set everywhere to zero initially.) This process ensures that we
build a simulation of Zj(T

′, ·) that is a permutation yet agrees on the first γ bits
with the output of SepSim.

The output of the first j stages, the γ-bit value returned by the PRS oracle,
and the output of πj+1 (should j < s) combines to give the oracle response. We
will now argue that

Pr
[
AHybj ⇒ 1

]
= Pr

[
B

Zj(K,·,·)[γ]
j ⇒ 1

]
and (2)

Pr
[
AHybj+1 ⇒ 1

]
= Pr

[
B

ρj(·,·)
j ⇒ 1

]
. (3)

The Mix-and-Cut Shuffle 405

where ρj ←$ RegFunc(Tj , nj, γ) for Tj = T × {0, 1}(j−1)γ and nj = n− (j − 1)γ.
The first equation may seem to be immediate, but in fact is not because Bj

does not simulate exactly Zj for A when j < s. (When j = s the simulation is
indeed exact.) Nevertheless, for j < s the distribution of values observed by A
when Sep returns Zj(T

′,X)[γ] is distributed identically to when A’s oracle uses
Zj directly. This is because the discrepancy between SepSim’s outputs and what
would have been computed by Zj are hidden by πj+1, and SepSim implements
a permutation. This justifies (2).

To show the second part, we must argue that, when SepSim uses an oracle ρj ,
the result is that Bj implements Hybj+1. Here, we require that the composition
of SepSim and πj+1 in Bj ’s simulation yields a random tweakable permutation.

For each tweak T ′ = T ‖X1
1 ‖ · · · ‖X

j−1
j−1 , gives rise to a different random func-

tion ρj(T
′, ·) and permutation πj+1(T

′, ·). Moreover, SepSim(T ′, ·) implements a
permutation and so πj+1 ends up mapping counter values 1-1 to random values.
This justifies (3).

Combining (2) and (3) with (1) and the definition of Γ -prs advantage yields
the advantage statement given in the theorem.

Discussion. It is easy to generalize the construction above to work for hetero-
geneous mixes of separators, meaning that γ varies across stages. Moreover, we
have above used a different separator with its own key for each stage, but we
can also extend our results to use a variable-input-length separator that can be
securely used with a single key on inputs of differing sizes. Finally we note that
a corollary of Theorem 2 is that the icicle construction with s = 2 gives a way
to extend the domain of a PRP on m-bits to one on m+ γ bits given a Γ -PRS
on m+ γ bits.

6 The Mix-and-Cut Cipher

We now use the results of the prior sections to construct a new, full-security
tweakable block cipher that we call Mix-and-Cut. To do so, we show that the
Swap-or-Not cipher [13] is a secure 2-PRS for N queries. We then apply the
Icicle construction with Γ = 2, and use Swap-or-Not for each of the n stages.

The Swap-or-Not cipher. Let F : {0, 1}k×{0, 1}∗ → {0, 1}n be a PRF family.
The Swap-or-Not tweakable block cipher ESN : {0, 1}k × {0, 1}t × {0, 1}n →
{0, 1}n built from F is described on the left side of Figure 5. We emphasize that
each round of Swap-or-Not results in two calls to F , one to generate the round
key and the other to decide whether or not to swap. If F is implemented using
CBC-MAC with AES, then a single call to F may result in multiple AES calls,
depending on the lengths of the PRF inputs and how they are encoded. (One
must also take care to use F that is secure for variable-length inputs.)

Hoang, Morris, and Rogaway [13] analyzed an ideal, untweaked version of this
cipher with Kj independently random and the swap decision in each round made
by a call to a random function Gj (right side Figure 5). We use the following

406 T. Ristenpart and S. Yilek

algorithm ESN(K, T,M):

for j = 1 to r:

Kj ← F (K, roundkey ‖ j ‖T)
M ′ ← Kj ⊕M

X̂ ← max(M,M ′)
If F (K,decision ‖ j ‖T ‖ X̂)[0] = 1

M ←M ′

Return M

algorithm ESN*(KG,M):

(K1, . . . ,Kr)← parn(KG)

for j = 1 to r:

M ′ ← Kj ⊕M

X̂ ← max(M,M ′)
If Gj(X̂) = 1

M ←M ′

Return M

Fig. 5. (Left) The Swap-or-Not algorithm [13] and (Right) its ideal counterpart

restatement of [13, Th. 2], which gives a bound on the non-adaptive cpa security
of ESN*.

Theorem 3 (Hoang-Morris-Rogaway). Let N = 2n and let ESN* be the
ideal version Swap-or-Not block cipher with r rounds as defined above. Let A be

a non-adaptive cpa adversary making q queries. Then Advncpa
ESN*

(A) ≤ 2·N3/2

r+2 ·(
q+N
2N

)r/2+1

.

Unfortunately, the bound above is not very useful when q ≥ N − 1. We will
instead use it with q = N/2 in order to help us prove the following theorem,
which establishes that ESN is a secure 2-PRS for wN queries for some number
w of tweaks.

Theorem 4. Fix γ, n with γ |n and let Γ = 2γ, N = 2n. Let ESN be the Swap-
or-Not block cipher with r rounds as defined above and using a function F . Let
A be a Γ -PRS adversary making N queries across ω distinct tweaks. Then there
exists an explicit prf-adversary B for which it holds that

Adv2-prs
ESN

(A) ≤ 2 ·ω ·N3/2

r + 2
·
(
3

4

)r/2+1

+Advprf
F (B) .

The adversary B makes at most 2rqω queries and runs in time that of A plus
O(2rωN).

Proof. By Theorem 1 the advantage of A is upper bounded by the cpa advan-
tage of an adversary B′ against ESN which makes N/2 fixed queries for each
(adaptively chosen) tweak T . (Note that ESN = E−1

SN .) Thus

Adv2-prs
ESN

(A) ≤ Advcpa
ESN

(B′)

for an adversary B′ explicitly specified in the proof of Theorem 1. We now move
to a setting where ESN uses, instead of the function F , a random function. This
is via a standard reduction yielding that

Adv2-prs
ESN

(A) ≤ Advcpa
ESN[ρ](B

′) +Advprf
F (B)

where ESN[ρ] is ESN except with F (K, ·) replaced by a random function ρ. Note
that ESN[ρ] is not yet ESN* since the latter does not take tweaks. However ESN[ρ]

The Mix-and-Cut Shuffle 407

is equivalent to using ESN* with a fresh key KG for every tweak T queried by
B′. Note also that the set of messages queried to each instance of ESN* is fixed.
We can therefore use a hybrid argument in which one repeatedly applies the
ncpa advantage for each independent instance of ESN* to get that

Advcpa
ESN[ρ](B

′) ≤
ω∑

i=1

Advncpa
ESN*

(Bi) ≤
2 ·ω ·N3/2

r + 2
·
(
3

4

)r/2+1

.

The last inequality uses Theorem 3 for q = N/2 (the number of queries used by
each Bi).

Icicle applied to Swap-or-Not. We now explore the security of the icicle
construction when ESN is used as the underlying 2-PRS. Let N = 2n and let
ZSN = {Ei

SN}ni=1 be a family of SN block ciphers where Ei
SN : {0, 1}k × Ti ×

{0, 1}ni → {0, 1}ni denotes the Swap-or-Not cipher as defined above where ni =
n − (i − 1) and Ti = T × {0, 1}i−1. Given this, let Ic1,n(ZSN) : {0, 1}kn ×
T × {0, 1}n → {0, 1}n denote the block cipher on n bits with tweak space T
constructed by using the icicle construction with ZSN. For simplicity, we use
this construction with the same number of rounds r of Swap-or-Not at each
stage (meaning nr rounds of Swap-or-Not for the entire icicle construction). We
refer to the resulting construction as the Mix-and-Cut cipher. We can prove the
following:

Theorem 5. Let N = 2n and Ic1,n(ZSN) be the construction described above
using r rounds for each Swap-or-Not cipher Ei

SN. Each cipher uses the same
PRF F (with distinct keys). Let A be a cpa adversary making N queries with w
distinct tweaks. Then for the prf adversary B given in the proof below it holds
that

Advcpa
Ic1,n(ZSN)(A) <

7 · w ·N3/2

r + 2
·
(
3

4

)r/2+1

+ n ·Advprf
F (B) .

B makes 2rnNw queries and runs in time that of A plus O(2rnNw).

Proof. Let α = (r + 2)−1 ·(3/4)r/2+1. We first apply Theorem 2 and Theorem 4
to get that

Advcpa
Ic1,n(ZSN)(A) ≤

n∑
i=1

Adv2-prs
Ei

SN

(Bi)

≤
n∑

i=1

2 ·w ·2i−1 ·N3/2
i α+

n∑
i=1

Advprf
F (Bi) (4)

where Ni = 2n−(i−1) and we have used that the number of tweaks queried
against the ith stage Ei

SN is w ·2i−1. First, a standard hybrid argument shows
that the prf adversary B that chooses j←$ [1 .. n] and behaves as Bj is such that∑n

i=1 Advprf
F (Bi) ≤ n ·Advprf

F (B). Turning to analyze the first sum in the right
hand side, we first have that

408 T. Ristenpart and S. Yilek

n∑
i=1

2i−1 ·N3/2
i =

n∑
i=1

2i−1 ·2n−(i−1) ·2(n−(i−1))/2 = 2n
n∑

i=1

2i/2

= 2n · 2
(n+1)/2 −

√
2√

2− 1

< 3.5N3/2 .

Plugging back into (4) yields the advantage statement of the theorem.

Shuffling interpretation. We can view the cipher above as a shuffle by
replacing all uses of the PRF with fresh random coin tosses. We refer to this as
the Mix-and-Cut shuffle, and it is given in the left of Figure 1 in the introduction.
To shuffle using Mix-and-Cut, “lightly” mix the entire deck in any fashion (e.g.,
using the Swap-or-Not shuffle for r rounds). Then, cut the deck in half. Lightly
mix each half and then cut the halves, yielding four total piles. This process is
repeated until all of the cards are in their own piles. At this point, the cards are
simply gathered together to form one deck. This shuffle is oblivious assuming
the mixing step is oblivious (in the sense of [20]).

Acknowledgements. The authors thank Phillip Rogaway for comments on an
earlier draft of this paper as well as the anonymous Crypto 2013 reviewers for
their valuable feedback. Ristenpart was supported in part by NSF grant CNS-
1065134 and generous gifts from Microsoft and RSA Labs.

References

1. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to prp to prf conversion.
Cryptology ePrint Archive, Report 1999/024 (1999), http://eprint.iacr.org/

2. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009)

3. Bellare, M., Rogaway, P., Spies, T.: Addendum to “the FFX mode of operation for
format preserving encryption”. Submission to NIST (September 2010)

4. Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for format-
preserving encryption. Submission to NIST (February 2010)

5. Black, J.A., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B.
(ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)

6. Brier, E., Peyrin, T., Stern, J.: BPS: a format-preserving encryption proposal.
Submission to NIST, http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/proposedmodes/bps/bps-spec.pdf

7. Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data
warehouse security. In: National Information Systems Security Conference, NISSC
(1997)

http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf

The Mix-and-Cut Shuffle 409

8. Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Fast generation of random
permutations via networks simulation. In: European Symposium on Algorithms,
pp. 246–260 (1996)

9. Durstenfeld, R.: Algorithm 235: Random permutation. Communications of the
ACM 7(7), 420 (1964)

10. Fisher, R., Yates, F.: Statistical tables for biological, agricultural and medical re-
search. Oliver & Boyd (1938)

11. Granboulan, L., Pornin, T.: Perfect block ciphers with small blocks. In: Biryukov,
A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 452–465. Springer, Heidelberg (2007)

12. Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 370–389. Springer, Hei-
delberg (1998)

13. Hoang, V.T., Morris, B., Rogaway, P.: An enciphering scheme based on a card shuf-
fle. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 1–13. Springer,
Heidelberg (2012)

14. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010)

15. Knuth, D.: The Art of Computer Programming, 3rd edn., vol. 2. Addison-Wesley
(1997)

16. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

17. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing 17(2) (1988)

18. Morris, B.: Improved mixing time bounds for the Thorp shuffle. arXiv Technical
Report 0912.2759 (2009), http://arxiv.org/abs/0912.2759

19. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small do-
main. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer,
Heidelberg (2009)

20. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. Journal of Cryptology 12(1), 29–66 (1999)

21. Patarin, J.: Generic attacks on feistel schemes. Cryptology ePrint Archive, Report
2008/036 (2008), http://eprint.iacr.org/2008/036

22. Ristenpart, T., Rogaway, P.: How to enrich the message space of a cipher. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 101–118. Springer, Heidelberg
(2007)

23. Stefanov, E., Shi, E.: Fastprp: Fast pseudo-random permutations for small domains.
Cryptology ePrint Archive, Report 2012/254 (2012), http://eprint.iacr.org/

http://arxiv.org/abs/0912.2759
http://eprint.iacr.org/2008/036
http://eprint.iacr.org/

	The Mix-and-Cut Shuffle: Small-Domain Encryption Secureagainst N Queries
	1 Introduction
	2 Preliminaries
	3 Pseudorandom Separators
	4 Full PRS Security from Partial CPA Security
	5 Building PRPs from PRSs: The Icicle Construction
	6 The Mix-and-Cut Cipher
	References

