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1 Introduction: motivation and a brief description

The anomaly matching conditions of ’t Hooft offer an important consistency check on
possible scenarios for the nonperturbative behaviour of gauge theories [1]. “Traditional”
anomaly matching of continuous global symmetries acting on local operators (0-form sym-
metries) has played an important role in the construction of models of quark and lepton
compositeness (see [2] for a review) and have provided checks on various nonperturbative
dualities [3].

In recent years, new “generalized” anomaly matching conditions involving discrete 0-
form and 1-form symmetries have attracted interest. It turns out that they impose further
nontrivial constraints on the infrared (IR) phases of gauge theories, including symmetry
realization, the ordering of thermal phase transitions, and on the worldvolume physics
of domain walls and interfaces. These studies, initiated in [4–6], were followed by many
important works (the literature is by now too large to account for here).

In this paper, we study a specific set of ’t Hooft anomalies: the mixed anomalies
between discrete 0-form and 1-form symmetries. The prime example in four dimensions is
the mixed anomaly between parity (or time reversal) and the 1-form center symmetry of
pure Yang-Mills theory at θ = π [5, 6]. A related example [4] is the mixed anomaly between
discrete chiral symmetry and center symmetry in super Yang-Mills theory, also present in
Yang-Mills with adjoint fermions (QCD(adj)) [7, 8] and in generalizations like [9–11].

We wish to understand these anomalies from a traditional point of view: the canonical
quantization of four-dimensional (4d) gauge theories. Part of our motivation is that such
an understanding exists in two-dimensional (2d) models. Its utility, notably its immediate
implications for the spectrum of the Hamiltonian, stimulates our curiosity and desire to
extend a similar understanding to 4d.1 The simplest 2d example is the Schwinger model
with massless fermions of quantized charge q ≥ 2 [13]. There is a mixed anomaly between
the Z(0)

2q chiral symmetry and the Z(1)
q center symmetry.2 The anomaly can be seen after

a careful study of the symmetry algebra in the quantum theory. In 2d, this analysis can
be performed in either the original fermion description [13] or in the bosonized formula-
tion [14, 15]. The result is that, as in earlier quantum-mechanical examples [5], the anomaly
is reflected in a central extension of the algebra of symmetry operators. The extended sym-
metry algebra can be seen to imply a q-fold degeneracy of all energy eigenstates.3 There is
by now substantial literature investigating the structure of this and other 2d models from
varying perspectives, see e.g. [19–26].

We shall show that 4d gauge theories with a mixed discrete 0-form/1-form anomaly
also give rise to a centrally-extended symmetry algebra. An indication for this has been
seen before: on R3 × S1, using the semiclassical solution of deformed SU(N) Yang-Mills

1We note that ref. [12] also found torus Hilbert spaces useful to study various global anomalies in
d = 1, 2, 3.

2We use a superscript G(0) to denote 0-form symmetry groups and G(1) for 1-form symmetries.
3A subtlety specific to the d=2 case with a (d−1=1) 1-form symmetry, as in the 2d Schwinger model,

is that the degeneracy gives rise to different so-called “universes” [16, 17], where domain walls have infinite
tension [18], rather than to different vacua.
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(dYM) theory [27], a central extension of the IR-theory symmetry algebra at θ = π was
found in [28] (also, for a particular “mixed” SU(2) gauge theory at θ = π, see [5]).

We demonstrate here that such central extensions due to anomalies are quite general.
They lead to a symmetry algebra similar to [28] and to the 2d Schwinger model [13],
depending on the anomaly in question. In the bulk of the paper, we show in detail how the
central extension of the algebra emerges from the canonical quantization of 4d theories on
T3, for all simple gauge groups with nontrivial centers, namely SU(N), Sp(N), Spin(N),
E6, and E7.

For the experts, in the remainder of the Introduction we give a brief account of our
work. Here, we use the mixed anomaly between parity and the Z(1)

N center symmetry at
θ = π in pure SU(N) Yang-Mills theory as an illustration.

Let us first recall the by now usual description of the mixed anomaly [5, 6]. One begins
by turning on a 2-form background gauge field for the 1-form Z(1)

N symmetry. This can be
done in the continuum formalism of [29] or by turning on a flat background 2-form (i.e.
plaquette) ZN gauge field on the lattice — a set of intersecting center vortices (see [30]
for an introduction). In the Euclidean set-up, it is well known from either formalism that
a generic ZN 2-form background, say on T4, has non-integer topological charge (see [5, 6]
and the older work [31, 32], reviewed in [33]). Because of this non-integer charge, the
center-symmetry background violates the invariance under 2π shifts of the θ-angle. As
these shifts are part of the parity transformation at θ = π, parity is explicitly broken. This
breaking of parity is a classic example of a mixed ’t Hooft anomaly: the non-dynamical
background for the 1-form symmetry breaks the 0-form symmetry.

We now describe how we see the mixed anomaly in the canonical formalism on a spatial
T3. We begin by turning on a fixed 2-form center-symmetry ZN background in the spatial
directions. It is well known that such a background amounts to changing the co-cycle
conditions for the SU(N) transition functions on T3 to ones appropriate to an SU(N)/ZN
bundle [32]. Equivalently, one is led to consider a fixed ’t Hooft magnetic flux (or twist)
sector, labeled by a three-vector4 ~m with integer (mod N) components [34].

Next, we quantize the T3 gauge theory with boundary conditions twisted by ~m. Fol-
lowing the earlier work of refs. [31, 35, 36], we proceed to explicitly define the operators
performing 1-form center symmetry transformations in the spatial directions, the operators
performing a spatial reflection, and the operators performing 2π shifts of the θ-angle. Most
importantly, the operator generating the 1-form center symmetry in a direction parallel to
~m does not commute with the operator generating 2π shifts of the θ angle. We then show
that this non-commutativity leads, at θ = π, to a central extension of the algebra of the
parity and center symmetries.5 For even N , the centrally extended algebra at θ = π implies
a 2-fold degeneracy of the energy eigenstates for any size T3. In the infinite volume limit,

4We use ~a to denote vectors in R3, and reserve the bold-face symbol a for weight-lattice vectors.
5The ~m 6= 0 (mod N) twist breaks charge conjugation (for N > 2) but preserves parity, so in the following

we discuss P and not CP . In SU(N), the parity and Z(1)
N (along ~m) 1-form symmetry generators at θ = 0

obey a DN group algebra, which is centrally extended at θ = π (as per the usual notation of e.g. [37], DN
is the dihedral group of order 2N). For the mixed chiral-center anomaly, the centrally-modified algebra is
as found in the 2d Schwinger model [13].
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assumed to be unique, this degeneracy indicates the spontaneous breaking of parity. The
spontaneous breaking of parity at θ = π in pure SU(N) gauge theory is borne out by older
large-N [38] and other arguments, reviewed in [39], and by explicit semiclassical calcula-
tions6 on R3× S1 from the past decade [41–46]. Finally, there is recent lattice evidence for
SU(2) [47].

Let us now make a comment pertaining to the second line of our title. The double-
degeneracy at θ = π, exactly as implied by the centrally-extended algebra, was seen in
semiclassical calculations of the instanton-induced splitting of ’t Hooft electric flux energies
in the background twisted by ~m, in the framework of the “femto-universe,” where the entire
T3 is taken smaller than Λ−1. These calculations date back to the 1980’s (see [35, 48] and
section 3.2.1). In fact, as we shall see below, all ingredients needed to see the mixed
anomaly and the emergence of a centrally-extended algebra at θ = π are contained therein.
We stress, however, that the extension of the algebra and its interpretation as reflecting
the mixed ’t Hooft anomaly involving parity and the 1-form symmetry is new.

To end the introduction, we express our hope that the new wine will, in time, improve
in the old bottles. The relationship between newer and older developments does not appear
to be widely appreciated and we believe that working out the details pertaining to the new
insights will, apart from possible pedagogical advantage, benefit the further explorations
of gauge dynamics and implications of anomalies. Some possible venues for future studies
are discussed in the text.

2 Outline and summary

Here, we offer a guide through the various sections of this paper, along with only a brief
mention of the results. Readers interested primarily in the implications of the anomaly
in Hilbert space can proceed to sections 3.2.1 and 3.3.1, where the consequences of the
centrally-extended symmetry algebras for SU(N) gauge groups are discussed.

The bulk of the paper is section 3, devoted to a detailed description of the quantization
of SU(N) gauge theories on T3 in the fixed background of a 2-form ZN gauge field of the
1-form Z(1)

N global symmetry. Section 3.1 explains all the basic ingredients needed to derive
the parity/center-symmetry operator algebra at θ = π in the pure gauge theory, as well as
the parity/chiral algebra in the theory with nf massless adjoint Weyl fermions, QCD(adj).
In particular, section 3.1.4 introduces the minimal ’t Hooft flux background ~m = (0, 0, 1),
which we find very instructive and useful to illustrate the extension of the global-symmetry
algebras in all cases.

The centrally-extended algebra of the parity and center-symmetry operators at θ = π

is derived in section 3.2. The main implication of the extended algebra is that, for even-N ,
there is a two-fold degeneracy of all energy eigenstates on T3 at θ = π, while for odd-N ,
one finds a global inconsistency between θ = 0 and θ = π. A more detailed discussion
is given in section 3.2.1. There, we also review the older and more recent semiclassical
calculations on T3 and R3 × S1 and outline a few directions for future studies.

6The results reported in this paper also originate from work on extensions of our recent study [40] of
anomalies in the calculable R3 × S1 framework.
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We next turn to QCD(adj) and study the algebra of the discrete chiral symmetry and
center-symmetry operators. It is derived in section 3.3 and a discussion of its implica-
tions is given in section 3.3.1 (again, we recommend that the interested reader jump to
section 3.3.1). Here, the extended symmetry algebra implies an N -fold degeneracy of all
T3 energy eigenstates. We discuss the consistency of this degeneracy with the proposed
phases of QCD(adj) with various nf on R3 and outline some directions for future study.

We then consider the same classes of theories — pure gauge theories at θ = 0 and π and
theories with massless Weyl adjoints — but with arbitrary gauge groups with nontrivial
centers. The fractional topological charges for general gauge groups are calculated in
several voluminous appendices.7 The results of table 5 are known, but are derived here
in an explicit physicist-friendly manner. The same results are also shown in table 1 of
section 4, in a form adapted to the canonical quantization on T3 in the 2-form gauge field
background.

Armed with these results, in section 4 we outline the canonical quantization for general
gauge groups in a ’t Hooft flux background. In section 4.1, we find the centrally extended
algebra of the parity and center-symmetry operators at θ = π and discuss its implications.
The pattern follows the one found for SU(N): for groups whose center is of an even order
(Sp(2k+ 1), Spin(2k), E7) the θ = π algebra implies a double degeneracy of all eigenstates
of the T3 Hamiltonian, while for groups with an odd-order center (E6) it results in a global
inconsistency. There is no degeneracy/global inconsistency for Sp(2k) and Spin(2k + 1).

In section 4.2, we perform a similar analysis for the discrete chiral symmetry and
center-symmetry operators for all gauge theories with nf massless adjoint Weyl fermions.
We find that the corresponding centrally extended algebra implies that groups with Z2 or
Z2 × Z2 centers have a double degeneracy of all T3 energy eigenstates, while groups with
a Z3 or Z4 center have a three- or four-fold degeneracy, respectively.

We end with a few comments on future studies. We believe that the Hilbert space
interpretation of the mixed 0-form/1-form anomaly and the associated degeneracies will
prove useful in studies of gauge theory dynamics. For example, the degeneracies between
different electric-flux states might be useful in lattice studies, especially for the θ = π

theories. As also mentioned in the body of the paper, the degeneracies have interesting
implications for the controlled semiclassical studies on R3 × S1 and it would be of interest
to confront them with explicit calculations. It would also be desirable to improve our
understanding of the implications of the anomaly in the infinite-volume limit, both in the
semiclassically calculable domain and in more general cases, notably ones believed to flow
to conformal field theories.

7The appendices are structured as follows. In appendix A, we summarize the relevant group-theory
data, in particular our choice of “convenient representations,” where the center acts faithfully, and of the
“convenient co-weights” used to represent the generators of the center of each group, see table 3. In
appendices B.1 and B.2, we explicitly calculate the fractional topological charge on T4 for all gauge groups
with a center. These are summarized in table 5. For completeness and possible future uses, in table 5 we
also give the fractional charges on non-spin manifolds. These are calculated in appendix B.3 using the CP2

background.
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3 Quantization on T3 in a 2-form gauge background and the anomaly:
SU(N)

In this section, we describe the canonical quantization of pure Yang-Mills theory on T3

with twisted boundary conditions, corresponding to introducing a fixed 2-form ZN gauge
background field. We use results of [31, 32, 35, 36],8 but attempt to make our presentation
as self-contained as possible.

The addition of adjoint fermions obeying the same boundary conditions on T3 as the
gauge fields is trivial. The various modifications necessary will be mentioned when we
discuss the chiral symmetry. Related discussions appear in the calculation of the Witten
index of 4d N = 1 supersymmetric Yang-Mills theory [49, 50].

In order to simplify the presentation, in this section we describe the quantization
appropriate to SU(N) gauge theories with boundary conditions twisted by ZN “magnetic
flux” ~m. In later sections, we shall discuss other gauge groups with nontrivial centers.
In most cases, the centers are cyclic groups, Zk, with k = 2, 3, 4, and the effect of the
corresponding twists amounts to simply replacing ZN by the appropriate Zk in all results
for SU(N).9

3.1 Canonical quantization in the 2-form ZN magnetic flux background

3.1.1 Preliminaries

Before we discuss the canonical quantization on T3, we discuss some general features about
gauge fields on T4. For all the following, we will be considering a SU(N) gauge connection,
A. We also introduce shorthand notation for the action of a gauge transformation, U ,
acting on A:

U ◦A = UAU−1 − iUdU−1.

Considering A on a compact Euclidean space(time), it is impossible to consistently define
A globally; instead, one must define it on local coordinate patches which are connected
with transition functions. These are elements of the gauge group defined on the overlaps
between patches. On a 4d torus, it is possible to expand one coordinate patch to cover
the entire space(time) parameterized by [0, L0]× [0, L1]× [0, L2]× [0, L3], where Lµ is the
circumference of the xµ-direction (these are Euclidean spacetime directions and we shall
sometimes interchangeably use L0 to denote β, the inverse temperature). The transition
functions can then be understood as boundary conditions. We denote the boundary con-
dition around the xµ-direction by an SU(N) group element Ωµ such that

A(xµ = Lµ) = Ωµ ◦A(xµ = 0)

8Pierre van Baal’s Ph.D. thesis [35] is at

https://www.lorentz.leidenuniv.nl/research/vanbaal/DECEASED/HOME/PHD/thesis.html.

Chapter III contains relevant unpublished results. See also [36].
9The only exception, Spin(4N), has a Z2 × Z2 center and requires two twist vectors. This modification

will also be easily accommodated.
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Notice that in general Ωµ is a function that depends on all the space(time) coordinates
except for xµ and that, as implied by consistency, Ωµ also transform under gauge trans-
formations, Ωµ → U(xµ = Lµ)ΩµU(xµ = 0). There is also a consistency condition on the
boundary conditions that follows from the usual co-cycle condition of transition functions:

Ωµ(xν = Lν)Ων(xµ = 0) = Ων(xµ = Lµ)Ωµ(xν = 0)

Introducing the 2-form background field for the center symmetry changes this condi-
tion. In particular, it introduces the following ZN phases:

Ωµ(xν = Lν)Ων(xµ = 0) = Ων(xµ = Lµ)Ωµ(xν = 0)ei
2π
N
nµν (3.1)

The integers (mod N) nµν are completely determined by the background field. Note that
nµν is antisymmetric. For the purposes of canonical quantization, we find it useful to break
up nµν into spatial and temporal parts, via the following definitions:

ki ≡ ni0 (3.2)

and
nij ≡ εijkmk. (3.3)

For use below note that, with ε0123 = 1, we have Pf(n) = 1
8εµνλσnµνnλσ = −~k · ~m.

The relation to the formalism of [29] can be briefly stated as follows. Given an explicit
2-form ZN gauge field, C(2), defined there, one can find nµν by integrating C(2) over the
µν-plane (which forms a closed torus). This integral results in∮

C(2) = 2πnµν
N

+ 2πZ.

Here the antisymmetry of nµν is a product of the choice of orientation of the µν two-torus.

3.1.2 Hilbert space and Z(1)
N center symmetry

Now, to canonically quantize the A field in the presence of a center background, we follow
a series of steps:

1. Pick boundary conditions that satisfy (3.1) on the spatial torus T3. Notice that here
we only need to consider the spatial part ~m of nµν , the temporal part will come in
later. It turns out [32] that any choice of boundary condition that give the same ~m
are necessarily equivalent up to a gauge transformation. In particular, it is always
possible to find constant matrices, Γi ∈ SU(N), such that the co-cycle conditions (3.1)
are satisfied by Ωi = Γi, i.e. they read

Γk Γl = Γl Γk ei
2π
N
εkljmj . (3.4)

As an example, consider the “clock and shift” matrices obeying WPWQ = ωWQWP

with ω = e2πi/N :

WP = α



0 1 0 . . . 0
0 1 . . .

...
. . .

...

0 1
1 . . . 0


, WQ = β



1
ω

ω2

. . .

ωN−1


, (3.5)

– 7 –
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where α and β are constants that ensure detWP = detWQ = 1. Boundary conditions
with transition functions of the form Γi = W qi

QW
pi
P then correspond to ~m = ~p× ~q.

One can find (though not uniquely) suitable ~p, ~q ∈ Z3 for any ~m ∈ Z3, so boundary
conditions of this form will always suffice [32, 51]. From now on in this paper, make
the choice of constant Ωi = Γi. Notice that the choice of constant boundary conditions
implies A = 0 is a valid background.

2. Borrowing notation from ’t Hooft [31], construct a Hilbert space of A fields that
satisfy the chosen boundary conditions and the gauge condition A0 = 0.10 This
results in the large Hilbert space:

H =
{
|A〉 |A(L1, y, z) = Γ1 ◦A(0, y, z), (3.6)

A(x, L2, z) = Γ2 ◦A(x, 0, z), A(x, y, L3) = Γ3 ◦A(x, y, 0)
}
,

where |A〉 stands for an eigenvector of the “position” operator Â(~x) |A〉 = |A〉A(~x).
Consider the set of gauge transformations preserving the boundary conditions (3.6){

U : SU(N)→ T3|U(L1, y, z) = Γ1U(0, y, z)Γ−1
1 , (3.7)

U(x, L2, z) = Γ2U(x, 0, z)Γ−1
2 ,U(x, y, L3) = Γ3U(x, y, 0)Γ−1

3

}
.

A gauge transformation U uniquely determines an operator on the large Hilbert space
by the relation

Û |A〉 = |U ◦A〉 . (3.8)
Gauss’ law requires that the physical states |ψ〉 ∈ H obey Û |ψ〉 = |ψ〉, i.e. are
invariant under gauge transformations U , which obey (3.7) and are homotopic to the
identity.
In addition to gauge transformations homotopic to the identity, maps from T3 to G
are also characterized by their instanton number ν, associated11 with π3(G). These
“large” gauge transformations do not leave physical states invariant but act as

Hphys.θ =
{
|ψ〉 ∈ H : Û |ψ〉 = e−iθν |ψ〉 , ∀U

}
(3.9)

where ν is the instanton number associated with the transformation U (ν vanishes for
the “small” gauge transformations (3.7)). Hphys.θ defines the physical Hilbert space,
where all vectors have definite theta angle.

3. In terms of the position,12 Âai (~x), and momentum, Π̂a
i (~x) = −i δ

δAai (~x) , operators, the
Hamiltonian in the physical Hilbert space is

Ĥ =
∫
T3

d3x

(
g2 tr Π̂iΠ̂i + 1

g2 tr B̂iB̂i
)
, [Π̂a

i (~x), Âbj(~y)] = −iδabδijδ(3)(~x−~y). (3.10)

10This gauge condition may appear to not allow for non-trivial Polyakov loops; however, the Polyakov
loop will be determined by imposing temporal boundary conditions.

11An explicit example for a ν = 1 map T3 → SU(2), obeying the boundary conditions (3.7), is T 2
3 , with

T3 of eq. (3.28).
12In this section, we use fundamental hermitean generators with trT aT b = δab/2 and [T a, T b] = ifabcT c.

In form notation, to be used later, A = AaµT
adxµ, F = dA+ iA ∧A.
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Here B̂i = 1
2εijkF̂jk, F̂ij is given in footnote 12, and the operators Π̂i(~x) and Âi(~x)

obey the boundary conditions (3.6) twisted by Γj .

The perturbative expansion of the spectrum of Ĥ in a small T3 was studied in [36] (for
~m ∼ (0, 0, 1) or (1, 1, 1)). See also [48] for nonperturbative instanton-based results
that we shall return to later. We stress that our focus here is not on calculational as-
pects, which can become technically involved. Instead we focus on the representation
of the symmetries and their anomalies in Hilbert space.

4. On T3, in addition to transformations used to define the physical Hilbert space Hphys.θ ,
one can perform transformations on the fields (here, “C” stands for center, for reasons
explained below) that look like gauge transformations

A→ A′ = C[~k, ν] ◦A, (3.11)

with SU(N) group elements C[~k, ν]. They preserve the boundary conditions (3.6) but
themselves do not obey (3.7). Instead, they obey (3.7) only up to a center element:

C[~k, ν](L1, y, z) = ei
2πk1
N Γ1C[~k, ν](0, y, z)Γ−1

1 ,

C[~k, ν](x, L2, z) = ei
2πk2
N Γ2C[~k, ν](x, 0, z)Γ−1

2 ,

C[~k, ν](x, y, L3) = ei
2πk3
N Γ3C[~k, ν](x, y, 0)Γ−1

3 ,

(3.12)

which guarantees that A and A′ of (3.11) obey the same boundary conditions (3.6).
Thus, C[~k, ν] maps states ofH to states ofH. The label ν indicates that the instanton
number of C can be nonzero. In the literature C[~k, ν] with ~k 6= 0 have been often
called “improper gauge transformations” (or “central conjugations” in [52]). The
modern terminology is that (3.11) with (3.12) represent the action of global 1-form
symmetries. That this is so is clear from the fact that the only gauge invariant
operators they act on are winding Wilson loops. For example, the gauge invariant
Wilson loop winding once in xl,13

Wl ≡ tr
[
Pe
−i

Ll∫
0
dxlAl

Γl
]
, (3.13)

is multiplied by ei2πkl/N upon the action of C[~k, ν].

For the discussion that follows, it will be useful to define the three generators of the
1-form center symmetry, T̂i, by their action on vectors in H as follows:

T̂1 |A〉 = |C[(1, 0, 0), 0] ◦A〉
T̂2 |A〉 = |C[(0, 1, 0), 0] ◦A〉
T̂3 |A〉 = |C[(0, 0, 1), 0] ◦A〉 ,

(3.14)

where (1, 0, 0), etc., denote the components of ~k. The above definition is somewhat
open-ended as the C[~k, 0] used to define T̂i can be multiplied by any small gauge

13The insertion of the transition function Γl in Wl is required by invariance under (3.7).
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transformation and still satisfy (3.12). Moreover, the operators T̂i must map physical
states to physical states. Note however, that for any gauge transformation U , the
transformation U ′ = T †i UTi satisfies the conditions of (3.7) and hence is a gauge
transformation. Thus, for any physical states |ψ〉 and any gauge transformation U

we have
ÛTi |ψ〉 = T̂iÛ

′ |ψ〉 = e−iθν T̂i |ψ〉 . (3.15)

This demonstrates that T̂i map physical states to physical states and that they are
well defined on physical states.

Before we continue, we comment on the relation to the modern understanding of
p-form symmetries in d spacetime dimensions. These symmetries are represented
by topological operators defined on codimension-(p + 1) surfaces in spacetime [4].
While this property is not immediately obvious from (3.14), we note that one can,
instead, use canonical momenta and coordinates to define the unitary operator T̂i by
an exponential of an integral of an operator over a 2-surface in R3. We will not need
such a definition here,14 as (3.14) suffices for our purposes.

5. When the spatial boundary conditions are twisted by a nonzero ~m, the operators T̂i,
and the related15 Ĉ[~k, ν] have fractional winding number T3 → G [31]. The winding
number is familiar from Skyrmion physics

Q[C] = 1
24π2

∫
T3

tr (CdC−1)3 . (3.16)

and its fractional nature in the ~m 6= 0 background can be explicitly demonstrated as
follows. Consider the topological charge on the Euclidean T4,

Q = 1
8π2

∫
trF ∧ F = 1

64π2

∫
d4xF aµνF

a
λσε

µνλσ =
∫
d4x∂µK

µ , (3.17)

where we defined Kµ = 1
16π2 ε

µνλσ
(
Aaν∂λA

a
σ − 1

3f
abcAaνA

b
λA

c
σ

)
.16 Using Stoke’s the-

orem, and assuming that the background A obeys, on the spatial T3, boundary
conditions given by our choice of constant transition functions Γi, we can simplify
the topological charge to

Q =
∫
T3
K0

(
A
∣∣
x0=L0

)
−K0

(
A
∣∣
x0=0

)
, K0(A) ≡ 1

8π2 tr
(
A ∧ F − i

3A ∧A ∧A
)
,

(3.18)
Here 2πK0(A) is the Chern-Simons form, normalized to shift by 2π under gauge
transformations with unit T3 → G winding number (see (3.19) below). Now consider

14An analogous definition can be explicitly seen in the 2d Schwinger model, where the 1-form symmetry
is generated by a local operator, as in e.g. [14], or using the Kogut-Susskind lattice Hamiltonian [53]. For
a related continuum discussion, see also [54] and the appendix of [55].

15The operators Ĉ are defined analogously to (3.14) by their action on |A〉 via the functions C[~k, ν], as
in (3.11).

16For completeness, we defined fabc the usual way, see footnote 12.
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a gauge field A on T4, obeying the spatial boundary conditions (3.6), and a time-
direction twist by C, A

∣∣
x0=L0

= C[~k, ν] ◦ A
∣∣
x0=0 and observe that its topological

charge (3.18) equals the winding number (3.16) of C:

Q[C] =
∫
T3
K0 (C ◦A)−K0 (A)

= 1
24π2

∫
T3

tr (CdC−1)3 + 1
8π2

∫
T3
d tr (iA dC−1C) = 1

24π2

∫
T3

tr (CdC−1)3 .

(3.19)

The boundary term in the second line of (3.19) vanishes owing to the boundary
conditions (3.6), (3.12) and the fact that the transition functions Γi are constant.

In words, we found that the winding number (3.16) of the map C[~k, ν] : T3 → G is, by
reversing the chain from (3.19) to (3.17), equivalent to the topological charge of a field
configuration A on T4, twisted by C in the time direction and by Γi in space. Thus,
the T4 transition functions of this field configuration are Ωµ = (C,Γ1,Γ2,Γ3). We
now notice that owing to the properties of C[~k, ν], the integers ~k play the role of twists
ni0 in the time direction.17 As the topological charge depends only on the twists nµν
and the usual integer instanton number, ν, we can use the result from [31, 32] (or
consult appendix B) to find the winding number (3.16):

Q[C[~k, ν]] = − 1
N

Pf(n) + ν = ~m · ~k
N

+ ν (3.20)

The preceding argument is especially helpful to find the fractional part of Q, as it
determined solely by the twists nµν . An explicit expression for C[~k, ν](x, y, z) (up
to small gauge transformations) would allow us to directly calculate (3.19) and yield
both the fractional and integer parts, see also [50].18

6. In what follows, it suffices to work with the operators generating the Z(1)
N center

symmetry, T̂l, l = 1, 2, 3, from (3.14), which, from the discussion above, we define
to have

Q[Tl] = ml

N
. (3.21)

For simplicity, we further assume that ml and N are co-prime, so that ei2πQ[Tl] is of
order N , i.e. N is the smallest power of T̂l with an integer topological charge, so that
Q[TNl ] = ml. Let |ψ〉 denote a state in the physical Hilbert space Hphys.θ which is an
eigenstate of T̂l. From the above, we have that T̂N represents a gauge transformation
of unit instanton number, thus T̂Nl |ψ〉 = |ψ〉 e−iθml . Then, it must be that

T̂l |ψ〉 = |ψ〉 ei
2π
N
el−iθ

ml
N = |ψ〉 ei

2π
N (el− θ

2πml) , l = 1, 2, 3. (3.22)
17For example, use (3.12) to find C(x1 = L1, y, z)Γ1 = Γ1C(x1 = 0, y, z)e−i2πk1/N . Comparing with (3.1),

we conclude n01 = −k1, as per (3.2).
18A concrete example might be useful. Consider the Q = 1/2 map T3 → SU(2), explicitly defined by

T3(~x) in (3.28) below. T3(~x) obeys the boundary conditions (3.12) with ~m = (0, 0, 1) and ~k = (0, 0, 1).
Clearly, T3 and (T3)3 have the same nµν , but the latter has Q = 3/2.
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Here, el is a (mod N) integer called ZN “electric flux.”19 The name is justified with
the following reasoning [34]: consider a state Ŵl |ψ〉, obtained from |ψ〉 by the action
of a fundamental Wilson loop (3.13) winding once in the xl direction. Then, using
T̂lŴlT̂

−1
l = ei

2π
N Ŵl and (3.22), it follows that T̂lŴl |ψ〉 = Ŵl |ψ〉 ei

2π
N

(el+1)−iθml
N , i.e.

acting with Ŵl on the state |ψ〉 increases el by one unit. Since Ŵl inserts an electric
flux tube winding in the xl direction, the interpretation of el as electric flux follows.
Thus, T̂l measures the amount of ZN electric flux carried by a given state. Electric
flux free energies are used as order parameters for confinement, see [30].

As T̂l commute with the Hamiltonian (3.10), they can be simultaneously diagonal-
ized. Thus, all energy eigenstates on T3 are labelled by three integers, ~e, the (ZN )3

discrete electric fluxes. As already mentioned, electric flux energies have been studied
analytically, for small T3, in the “femto-universe” framework, or for “large” volumes
Li � Λ−1 via numerical simulations. Beginning with Lüscher’s work [52], which took
~m = 0, this has been explored for various choices of ~m, see the review [48].

3.1.3 An important commutation relation

Now we have all the information to begin discussing the mixed 0-form/1-form anomaly.
Define the operator

V̂α[Â] = eiα
∫
T3 K0(Â), (3.23)

where K0 is given in (3.18). From (3.19), we know that
∫
T3 K0 shifts by an integer ν

under large gauge transformations with instanton number ν. Also, recall that, for any
|ψ〉 in Hphys.θ of (3.9), under a gauge transformation with instanton number ν, we have
Ûν |ψ〉 = |ψ〉 e−iθν , hence Ûν(V̂α |ψ〉) = (V̂α |ψ〉)e−i(θ−α)ν . Thus, the operator V̂α shifts the
θ angle by −α. Further, using (3.19) and (3.21), we can find the commutation relation of
V̂α with the center symmetry generators:

T̂l V̂α[Â] T̂−1
l = V̂α[Ĉ[ki = δil, 0] ◦ Â] = eiα

∫
T3 [K0(Ĉ[ki=δil,0]◦Â)−K0(Â)] V̂α = eiα

ml
N V̂α.

(3.24)
Another commutation relation involving V̂α follows from (3.10) and (3.23):

[Π̂a
i (~x), V̂α] = α

8π2 B̂
a
i (~x) V̂α . (3.25)

For our purposes, the most important consequence of (3.24) is a relation crucial for our
analysis of the anomaly

T̂l V̂2π = ei2π
ml
N V̂2π T̂l , (3.26)

showing that 2π shifts of θ do not commute with the 1-form center symmetry in the 2-
form ZN gauge field background labelled by ~m. The relation (3.26) is behind the mixed ’t
Hooft anomaly between the 1-form center symmetry and 0-form symmetries that involve
2π shifts of θ, such as the parity symmetry at θ = π or the discrete chiral symmetry in
the presence of adjoint fermions. Satisfying these non-trivial algebras requires non-trivial
vacuum structure, so we gain useful insight into the IR physics by studying these algebras.

19We stress again that we are working in the theory with fixed ~m, so the label ~m is implicit in |ψ〉.
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3.1.4 The case of ~m = (0, 0, 1)

Before elaborating on these anomalies, we shall write down more explicit details for Γi and
T̂i for the choice ~m = (0, 0, 1). This is the case considered in [49], and we found it to be
an instructive example.

Following our steps above, we first must find the constant transition functions, or twist
matrices, Γi, entering (3.6), (3.7). Since Γ3 must commute with the other two for this choice
of ~m, we can take it to be the identity. The others are the “clock and shift” matrices (3.5):

Γ1 = WP , Γ2 = WQ, Γ3 = 1N , Γ1Γ2 = ei
2π
N Γ2Γ1 , (3.27)

thus, by (3.4), n12 = m3 = 1, as desired. Witten noticed that for this choice of boundary
conditions, we can take T1 and T2 constant. In particular, the choices T1 = Γ−1

2 and T2 = Γ1
work.20 The fact that these operators are so simple is not surprising, since m1 = m2 = 0
ensures that they enjoy a trivial algebra with V2π, as per (3.26). The same algebra implies
that T3 is bound to be more complicated. As an explicit example, in SU(2) where Γ1 ∝ σ1

and Γ2 ∝ σ3, we find

T3(~x) = e
iπ2

y
L2
σ3
e
iπ2

x
L1
σ1
e
−iπ z

L3
σ3
e
−iπ2

x
L1
σ1
e
−iπ2

y
L2
σ3
, (3.28)

which can be seen to obey (3.12) with ~k = (0, 0, 1). As alluded to several times above,
from (3.19) one can explicitly calculate Q[(T3)n] = n/2. We will not give an explicit form
of T3 for N > 2, but they do exist. The algebra (3.26) now becomes

T̂3 V̂2π = ei
2π
N V̂2π T̂3, (3.29)

so, recalling (3.22), 2π shifts of θ change the eigenvalues of T̂3, e3 → e3 + 1.

3.2 The algebra of parity and Z(1)
N operators: θ = 0 vs. θ = π

The parity operation acts on A in the following way:

A(x, y, z)→ AP (x, y, z) = −ΓPA(L1 − x, L2 − y, L3 − z)ΓP , (3.30)

Here the matrix ΓP ∈ SU(N), Γ2
P = ±1, is required in order that AP (x, y, z) also obey the

boundary conditions (3.6). This requires

ΓPΓiΓP = eiφΓ−1
i . (3.31)

where eiφ can be any ZN phase. With our boundary conditions of the form Γi = W qi
QW

pi
P ,

this is fulfilled by the anti-diagonal matrix

ΓP = γ


0 · · · 1
... . .

. ...

1 · · · 0

 , (3.32)

20E.g., by the first relation in (3.12), T1 has to obey T1 = ei2π/NΓ1T1Γ−1
1 , satisfied by T1 = Γ−1

2 , etc.
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with γ a factor ensuring det ΓP = 1. Let P̂0 denote the operator that implements the
transformation (3.30) on our large Hilbert space. The subscript denotes that this is the
correct parity symmetry operator for θ = 0. Notice that also P̂ 2

0 = 1 as required.
By considering the above action of P̂0 and T̂i on an arbitrary eigenstate of A in the

large Hilbert space, it follows that P̂0T̂iP̂0 acts as a center symmetry transformation T̂ ′i with

T ′i (x, y, z) = ΓPTi(L1 − x, L2 − y, L3 − z)ΓP . (3.33)

Now recall that Ti(~x) obeys the boundary conditions (3.12) with (~k)j = δij . There-
fore, (3.33) implies that T̂ ′i (~x) corresponds to a transformation with (~k)j = −δij and ν = 0,
hence T̂ ′i is gauge equivalent to T †i = T−1

i . Therefore, on the space of physical states, we
have the DN commutation relation21

P̂0 T̂i P̂0 = T̂ †i . (3.34)

Hence, P̂0 changes the sign of the eigenvalues of T̂i, the electric fluxes: ~e→ −~e. Note also
that P̂0 does not change the sign of the magnetic field, P̂0B̂i(x, y, z)P̂0 = ΓP B̂i(L1−x, L2−
y, L3 − z)ΓP , but changes the sign of Π̂i, the electric field.

In order to study invariance under parity in our formalism, it is convenient to move
the θ-angle dependence from the states in Hphys.θ , eq. (3.9), to the Hamiltonian. This is
accomplished by conjugating the latter with V̂θ and working in the Hilbert space Hphys.θ=0
(the θ-dependent Hamiltonian Ĥθ has the same spectrum in the space Hphys.θ=0 as the θ-
independent Hamiltonian Ĥθ=0 has in Hphys.θ ). The θ-dependent Hamiltonian (3.10) then
becomes, making use of (3.25):

Ĥ → Ĥθ ≡ V̂θĤV̂ †θ =
∫
T3

d3x

(
g2

2

(
Π̂a
i −

θ

8π2 B̂
a
i

)(
Π̂a
i −

θ

8π2 B̂
a
i

)
+ 1

2g2 B̂
a
i B̂

a
i

)
. (3.35)

For θ = 0, P̂0, defined via (3.30), is the operator generating the parity symmetry: from
the remarks after (3.34) it follows that Ĥθ=0 commutes with P̂0. However, for θ 6= 0, this
transformation flips the sign of the theta term, as it reverses the sign of Π̂i, thus parity
cannot be a symmetry for almost all non-zero values of θ, with θ = π being the notable
exception. Thus, consider the action of P̂0 on the Hamiltonian (3.35) with θ = π

P̂0Ĥθ=πP̂0 =
∫
T3

d3x

(
g2

2

(
Π̂a
i + 1

8π B̂
a
i

)(
Π̂a
i + 1

8π B̂
a
i

)
+ 1

2g2 B̂
a
i B̂

a
i

)
= Ĥθ=−π . (3.36)

Now act with V̂2π on (3.36), using (3.25) as V̂2πΠ̂a
i V̂
−1

2π = Π̂a
i − 1

4π B̂
a
i , to find

V̂2πP̂0Ĥθ=πP̂0V̂
−1

2π = Ĥθ=π. (3.37)

21The dihedral group DN is defined by (3.34) plus P̂ 2
0 = 1, T̂Ni = 1. DN has one- and two-dimensional

irreducible complex representations. In our notation, the one-dimensional representations correspond to
taking P̂0 = ±1 and T̂3 = 1 or eiπ (e3 = 0 or N/2) for even-N , while T̂3 = 1 (e3 = 0) for odd-N . The other
representations are parity-partner doublets [37]. All this simply follows from the action of P̂0 on fluxes.
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In other words, parity at θ = π is generated by the operator

P̂π = V̂2πP̂0 . (3.38)

Notice that P̂0V̂2πP̂0 = V̂ −1
2π , so P̂ 2

π = 1 as required for a parity symmetry. Finally, to find
the commutator of P̂π with the center generators, we use the algebras (3.26) and (3.34):

T̂j P̂π = e
2πi
N
mj P̂π T̂

†
j . (3.39)

Hence, P̂π sends ~e to ~m − ~e. The algebra (3.39) is a central extension of the DN alge-
bra (3.34).

To see the implications of the algebras (3.34) and (3.39), consider, with no loss of
generality, the background ~m = (0, 0, 1) of section 3.1.4. Let us summarize our knowledge
of the parity and center symmetries in this background. The operators T̂1 and T̂2 commute
with the Hamiltonian, as well as with P̂π and T̂3. The interesting part of the algebra is:

[T̂3, Ĥθ=π] = 0 , [P̂π, Ĥθ=π] = 0 , T̂3P̂π = ei
2π
N P̂πT̂

†
3 , (3.40)

where P̂ 2
π = 1 and T̂N3 = 1, where we recall that we are working in Hphys.θ=0 . Clearly,

every energy eigenstate can also be labeled by the value of discrete electric flux, e3,22 (of
course, finding what values of e3 a given energy eigenstate has requires solving for the spec-
trum). Let us denote the energy eigenstate by |E, e3〉, where Ĥθ=π|E, e3〉 = |E, e3〉E and
T̂3|E, e3〉 = |E, e3〉ei

2π
N
e3 . By (3.40), the state P̂π|E, e3〉 is also a eigenstate of Ĥθ=π of the

same energy E. In addition, from the last commutator in (3.40), it obeys T̂3(P̂π|E, e3〉) =
(P̂π|E, e3〉)ei

2π
N

(1−e3), i.e. is an eigenstate of T̂3 of electric flux 1− e3. Note that this could
be the same state, should it happen that 1− e3 = e3 (modN), see below.

Thus, we have shown that the algebra (3.39) implies that the eigenstates of Ĥθ=π on T3

with boundary conditions twisted by ~m = (0, 0, 1) have certain degeneracies. In particular,
parity relates eigenstates of Ĥθ=π of the same energy E

P̂π : |E, e3〉 → |E, 1− e3 (modN)〉 . (3.41)

The implications of the above equation are different for even and odd N as we discuss
below.

3.2.1 Discussion

Let us now comment on the implications of the algebra (3.40) and eq. (3.41), as well as
on their manifestation in various calculable setups. Unless stated otherwise, the comments
below refer to the θ = π theory in the ~m = (0, 0, 1) background.

1. Remembering that the electric flux e3 is defined (mod N), it follows that if N is even,
there are no parity invariant states. This implies that all the eigenstates of Ĥθ=π are

22As well as by e1 and e2, the eigenvalues of T̂1,2. However, the symmetry algebra does not imply
degeneracies between states labeled by different e1 and e2, as T̂1,2 commute with P̂π, Ĥθ=π, and T̂3. Hence
to avoid cluttering, we omit denoting the energy eigenstate by |E, e1, e2, e3〉.
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at least doubly degenerate. In particular, the vacuum states must spontaneously
break the parity symmetry. This double degeneracy occurs at a finite T3 of any
size. Exact degeneracies of states related by a symmetry are usually not expected in
finite volume, but by now there are similar examples in quantum mechanics and 2d
field theories, all related to anomalies, as in [5, 6, 56]. One expects that tunnelling
amplitudes, which usually lift the degeneracies at finite volume, vanish due to delicate
cancellations involving complex phase factors.23 It would be interesting to see these
cancellations in an explicit controlled calculation in the 4d theory at hand.

The double degeneracy of the spectrum of Ĥθ=π for even N is a consequence of the
parity-center symmetry anomaly reflected in (3.39), (3.40). In the infinite volume
limit, one expects that local physics is independent of the twist ~m and that the
double degeneracy persists and is manifested as spontaneous breaking of parity in
the R3 theory.

In the R3-limit, it is natural to expect that two of the pairwise degenerate electric-flux
states related by P̂π (the ones of lowest energy, finite as Li → ∞, after subtracting
UV divergences) become the two parity-breaking vacua of the theory. There is no
reason for the other N/2 − 1 parity-partner electric-flux sectors to have the same
minimum energy. These are expected to become higher-energy degenerate pairs of
vacua whose (meta-)stability is a complicated dynamical issue.24

2. If N is odd, there is no anomaly25 and there is a parity invariant state, namely the
state with electric flux |e3 = (N + 1)/2〉. Hence, it is possible to avoid the sponta-
neous symmetry breaking. However, notice that the only parity invariant state at
θ = π is different from the parity invariant state at θ = 0, the state with |e3 = 0〉,
recalling (3.34) and footnote 21. Thus, there is a global inconsistency between these
two theories meaning there must exist level crossing, becoming a phase transition in
the R3 limit, as θ is changed.

3. The double degeneracy (global inconsistency) at θ = π forced upon us by (3.40)
has been explicitly seen in the limit of a small T3, the “femto-universe” with Li �
Λ−1 [35, 48], where the gauge coupling is small and a semiclassical weak-coupling
expansion is under control.

Again, we consider ~m = (0, 0, 1). In the small-Li limit, focusing on the lowest-lying
states, one neglects spatially dependent modes of Ai. One then constructs states
of (classically) zero energy, as first done in calculations of the Witten index [49],
and then studies the perturbative and nonperturbative corrections to their ener-
gies. Clearly, with constant transition functions, Aj = 0 obeys the twisted boundary
conditions (3.6) and has zero classical energy, Ba

i = 0. This classical background

23Here, these should arise due to the twist ~m 6= 0 and, possibly, various analytic continuations, e.g. [57].
24Semiclassical calculations on R3×S1 have explicitly exhibited such metastable or unstable vacua [44–46].
25Formally, one can redefine T3 = e−i

2πk
N T ′3, with 2k = N − 1. For odd N , this preserves det T3 = 1 and

removes the phase from [T̂3, P̂π] in (3.40). This reflects the freedom to add a 4d local counterterm [5].

– 16 –



J
H
E
P
1
0
(
2
0
2
1
)
0
6
9

corresponds to a state in the physical Hilbert space that we denote26 |[0]〉. There are
a total of N classical static backgrounds Aαj (α = 0, 1, . . . , N − 1) that also have zero
energy, Ba

i = 0, obey the boundary conditions (3.6), but are not gauge transforma-
tions of A0

j = 0. The corresponding classical backgrounds are Aαj ≡ −iTα3 ∂jT−α3 and
the states are given by T̂α3 |[0]〉. Eigenstates of T̂3 can be obtained by projecting

|e3〉 = 1
N

N−1∑
α=0

e−i
2π
N
e3α T̂α3 |[0]〉 , T̂3 |e3〉 = ei

2π
N
e3 |e3〉 . (3.42)

Therefore, the classically degenerate zero-energy states |e3〉 also satisfy, at θ = π,
P̂π |e3〉 = |1− e3〉 and, at θ = 0, P̂0 |e3〉 = |−e3〉. The N states (3.42) remain
degenerate to any finite order of perturbation theory [36, 52] but tunnelling effects
lift the degeneracy. To leading order in the semiclassical expansion,27 the electric
flux energies become e3- and θ-dependent [35, 48]:

E(θ, e3) = −Ce
− 8π2
g2N

Lg4 cos
(2π
N
e3 −

θ

N
m3

)
, (3.43)

where we restored m3 dependence and ignored perturbative corrections (C is a nu-
merical constant and L denotes the length of the torus sides, which are taken equal).28

A look at the electric flux energies (3.43) shows complete agreement with (3.40): all
levels are doubly degenerate at θ = π and even N , and there is a global inconsistency
between θ = 0 and θ = π at odd N .

4. To connect to the Euclidean formalism, note that the double degeneracy of the energy
eigenstates due to (3.40) imposes restrictions on the partition function twisted by a
center transformation in the time direction. Consider

Z[k, 1] = tr (e−βĤθ=π T̂ k3 ), (3.44)

where the trace is over the physical Hilbert space Hphys.θ=0 with our chosen twist ~m =
(0, 0, 1). In the Euclidean formalism (in the continuum or on the lattice), this is the
path integral of the θ = π theory in a particular 2-form gauge field background of
topological charge k/N . Inserting P̂ 2

π = 1 in the trace and using (3.40), we obtain
the relation

Z[k,m3] = Z[−k,m3] ei
2πkm3
N , (3.45)

26This state is obtained after averaging |Aj = 0〉 over appropriate gauge transformations, as in (3.9).
27The splittings are due to fractional instantons on T3 × R, of action 8π2/(g2N) and topological charge

1/N . The g−4 prefactor in (3.43) is due to the four translational zero modes of the instantons. There is no
size modulus as the size of the instantons is fixed by Li. There are no analytic solutions known, although it
is argued that they exist and that their action saturates the self-dual bound 8π2

g2N [48]. Clearly, this makes
higher-order calculations difficult, for recent progress see [58].

28Ref. [48] gives an expression equal to our E(θ, e3)−E(0, 0). We prefer the form in (3.43) as it emphasizes
the contribution of the various semiclassical objects and can be compared to a similar expression in dYM [41,
46]. Following remarks of [59], a virtually identical formula can be obtained in dYM, but the details will
not be given here.
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expressing the ’t Hooft anomaly in the path integral (here, we imagine restricting
to even-N , as for odd N one can add a counterterm, as per footnote 25; note that
we also restored explicit m3-dependence). The expression (3.45) is formal, as the
Hilbert space trace (3.44) diverges and needs a proper definition. Assuming that this
is provided, note that a simple solution of (3.45) is Z[k,m3] = ei

πkm3
N Ξ, with Ξ an

undetermined even function of k.

For example, in the case of the “femto-universe,” the partition function (3.44) in the
k,m3 background of only the two lightest fluxes, e3 = 0 and e3 = 1, with energies
given in (3.43), is of this form, with Ξ = e−βEvac 2 cos πkm3

N . More generally, this
solution of (3.45) can be thought of as the partition function of the IR TQFT whose
states correspond to the two vacua with spontaneously broken parity.29

5. Another calculable regime studied more recently is that of deformed Yang-Mills
(dYM) theory on R3 × S1, for S1 size L obeying ΛNL � 2π [27]. This can be
viewed as a T3 gauge theory, with added appropriate massive adjoint fermions (see
also [65, 66]) considered in the limit L1,2 → ∞ with L3 = L kept small. Here, the
semiclassical expansion is significantly friendlier than in the femto-universe, at least
to leading order. We shall not review the work on θ-dependence in dYM, as there is
extensive recent literature [41, 42, 44–46, 67, 68]. The upshot is that, to leading order
in the semiclassical expansion, spontaneous breaking of parity is found at θ = π in
all cases. In addition, a deformed algebra similar to (3.40) was also found in dYM,
within the abelian IR theory on R3 × S1 valid at energies below 1/(NL) [28].

It would be of interest to understand its precise relation to (3.39), e.g. by taking
~m 6= 0 on an asymmetric R × T3. The importance of studying ~m 6= 0 backgrounds
was also stressed, with a different motivation, in [59, 69]. In fact, it should be possible
to use the discussion there to explain why the centrally-extended algebra found in [28]
in the dYM framework coincides with the one in discrete flux backgrounds on T3 of
this paper. We also stress the striking similarity between the N electric flux energies
in the femto-universe of eq. (3.43) and the energies of the N (meta) stable vacuum
states in dYM [46], suggestive of a close relation between the semiclassical expansions
in the two limits, a subject worthy of further investigation.

To conclude, in this section we showed that the anomaly and global inconsistency struc-
tures between the parity and center symmetries are completely reproduced in the algebra of
the symmetry operators in the canonically quantized theory with twisted boundary condi-
tions. This has immediate consequences on the vacuum structure and, therefore, symmetry
breaking pattern of the theory as we reviewed above.

In the next section, we perform a similar analysis for the chiral symmetry in theories
with adjoint fermions.

29One can relate the anomalies represented by (3.45) (and by (3.56) for the discrete chiral symmetry) to
the variations of appropriate 5d “invertible TQFTs,” or “anomaly theories,” see e.g. [60–64], but we shall
not discuss this here.
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3.3 The algebra of discrete chiral and Z(1)
N operators

Consider now QCD(adj), the SU(N) gauge theory with nf ≤ 5 massless adjoint Weyl
fermions (the six-flavour theory is not asymptotically free). The fact that the fermions are
in the adjoint representation means that all the machinery we have developed surrounding
boundary conditions is unchanged. In particular, the fermions obey the same boundary
conditions (3.6) as the gauge field. In Hilbert space the fermions are represented by creation
and annihilation operators λ̂aα, λ̂

a †
α̇ (a = 1, . . . , N2 − 1; α, α̇ are SL(2, C) indices in the

convention of [70]) obeying the anticommutation relations

{λ̂a †α̇ (x)σ̄0 α̇α, λ̂bβ(y)} = δ(3)(x− y)δabδαβ . (3.46)

For brevity, we do not display the flavour index; in all our formulae below, flavour is
assumed to be summed over. The Hamiltonian (3.10) acting on the physical Hilbert space30

is modified to

Ĥ =
∫
d3x

(
g2

2 Π̂a
i Π̂a

i + 1
2g2 B̂

a
i B̂

a
i − iλ̂a †σ̄j∂j λ̂a + iλ̂a †σ̄jfabcÂbj λ̂

c

)
. (3.47)

Since the adjoint fermions obey (3.6), the Z(1)
N center-symmetry generators T̂i commute

with the Hamiltonian.
Classically, the nf Weyl fermions have a U(nf ) (0-form) global chiral symmetry. How-

ever, in the quantum theory, this is broken by the triangle anomaly to
Z2nfN×SU(nf )

Znf
. In

what follows, we shall only consider the discrete chiral symmetry which is defined as the
center of the full unbroken chiral symmetry, that is Z2nfN . The classical U(1) ∈ U(nf )
chiral current operator ĵµf = λ̂a †σ̄µλ̂a, with a sum over a and flavour understood, has an
anomaly given by the (Heisenberg picture) operator equation

∂µĵ
µ
f = ∂µ(λ̂a †σ̄µλ̂a) = 2nfN∂µK̂µ . (3.48)

This allows one to define a conserved but gauge variant current which we label Ĵµ5 for
historical reasons:31

Ĵµ5 = ĵµf − 2nfNK̂µ . (3.49)

The corresponding U(1) charge operator, Q̂5 =
∫
d3xĴ0

5 =
∫
d3xĵ0

f − 2nfN
∫
d3xK̂0, com-

mutes with the Hamiltonian but is not gauge invariant. However, the unitary operator
representing a Z(0)

2nfN subgroup of the chiral symmetry is gauge invariant32

X̂Z(0)
2nfN

= e
i 2π

2nfN
Q̂5 = e

i 2π
2nfN

∫
d3xĵ0

f V̂ −1
2π , (3.50)

with V̂2π from (3.23). Since the fermions are adjoint and the operator
∫
d3xĵ0

f contains a
trace in its definition, the fermion part of the chiral symmetry operator commutes with the

30The Gauss’ law constraint and the definition of the physical Hilbert space (3.9) is modified by adding
the fermions, but we will not need an explicit expression.

31See [71] for the calculation of the relevant field-current and current-current equal-time commutators.
32The discussion that follows parallels the one in the charge q > 1 Schwinger model [13]. In particular,

the algebra (3.51) with mj = 1, for one chosen j, is identical to the one found there.
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1-form center symmetry generators T̂j . Hence, the algebra between X̂Z(0)
2nfN

and the T̂j is

exactly the same as between V̂2π and Z(1)
N symmetry generators T̂j of eq. (3.26)

T̂j X̂Z(0)
2nfN

= e−i
2π
N
mj X̂Z(0)

2nfN
T̂j . (3.51)

This implies that the discrete chiral symmetry transformation results in a shift ~e→ ~e− ~m.
We can now return to our example of ~m = (0, 0, 1). We have, as in the pure gauge

theory, that T̂1,2 commute with the Hamiltonian and the chiral symmetry generator X̂Z(0)
2nfN

.

Similar to (3.40), the interesting part of the algebra is

[T̂3, Ĥ] = 0, [X̂Z(0)
2nfN

, Ĥ] = 0, T̂3 X̂Z(0)
2nfN

= e−i
2π
N X̂Z(0)

2nfN
T̂3. (3.52)

As Ĥ commutes with T̂3, as before, we can label energy eigenstates as |E, e3〉. Clearly, the
algebra (3.52) then requires that

X̂Z(0)
2nfN

|E, e3〉 = |E, e3 − 1〉 . (3.53)

Therefore, the discrete chiral symmetry transformation cyclically permutes all N electric
flux states. This suggests an N -fold degeneracy and the spontaneous breaking of the
discrete chiral symmetry, Z2nfN → Z2nf . This matches the effects of the mixed anomaly
in the usual picture, where the introduction of a non-trivial center background introduces
fractional topological charges that also break Z2nfN → Z2nf .33

Assuming, as in section 3.2, that the infinite volume limit is unique and independent
of the boundary-condition twist ~m, the N -fold degeneracy found at finite T3 above implies
that the N -fold degeneracy of ground states persists in the R3 theory and the discrete
chiral symmetry is spontaneously broken to at least Z2nf (as we discuss below, there can
be other degeneracies emerging in the R3 limit).

3.3.1 Discussion

We now make some comments regarding the main result of this section, eq. (3.53).

1. The result (3.53) about the degeneracy between eigenstates of Ĥ is based on the
deformed algebra (3.52) reflecting the mixed chiral-center anomaly. As such, it is
general, but provides no insight as to the nature of, say, the vacuum states on T3

that break the discrete chiral symmetry. Barring a solution of the theory, this is a
complicated dynamical question. Here, we will offer some limited34 insight into the
nature of the N classical ground states on a small T3. According to (3.53) these
N states are interchanged by the discrete chiral operator X̂Z(0)

2nfN
. We now take

33We also note that there other anomalies of the discrete chiral symmetry that we do not study here,
notably its mixed anomaly with gravity, see [63, 64].

34Recall that QCD(adj) has no supersymmetry for nf > 1 and our classical discussion below is subject
to quantum corrections, which we ignore.
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~m = (0, 0, 1), as in section 3.1.4, and perform an analysis of the states of lowest
classical energy on a small T3, with Li smaller than the inverse strong coupling scale.
Let us begin with the fermions. The λaα obey boundary conditions twisted by Γ1 ∼
WP ,Γ2 ∼ WQ. The lowest energy states must have a constant fermion background,
since non-constant fermion modes have a Kaluza-Klein mass of at least 1/Li, which
is large on a small T3. In order to satisfy our boundary conditions, this constant
must be su(N) valued and commute with Γ1 = WP and Γ2 = WQ. Any matrix that
commutes with WQ must be diagonal, and any diagonal matrix that commutes with
WP must take the form χI. Such a matrix is in su(N) if and only if χ = 0. Hence,
we must have λaα = 0 for all flavours in our deep IR states. Thus, in what follows we
ignore the fermions, taking them in their Fock-vacuum state.
This means that we can focus on the gauge fields. Their zero-energy states were
already analyzed in section 3.2 and we simply borrow the results here. The N de-
generate states of zero energy of eq. (3.42), |e3〉 also satisfy

V̂ −1
2π |e3〉 = |e3 − 1〉 , hence X̂Z(0)

2nfN
|e3〉 = |e3 − 1〉 , (3.54)

where we used the fact that V̂2π is the bosonic part of the chiral symmetry oper-
ator (3.50). Thus, it is the purely bosonic zero-energy states (3.42) that are in-
terchanged under the chiral symmetry, as required by (3.53). The fact that bosonic
states transform under the chiral symmetry is due to the anomaly (which led to (3.50)).
We also note that this is similar to how the bosonic dual photons transform under
the discrete chiral symmetry in QCD(adj) in the calculable regime on R3 × S1 [72].

2. As in section 3.2.1, we can connect with the Euclidean path integral formalism via
the partition function of the theory twisted by a center transformation in the time
direction. Consider, as in (3.44), the partition function

Z[k, 1] = tr (e−βĤ T̂ k3 ), (3.55)

where the trace is over the physical Hilbert space with ~m = (0, 0, 1). As before, (3.55)
defines the thermal partition function of the adjoint theory in a particular 2-form
gauge field background of topological charge k/N . Inserting X̂−1

Z(0)
2nfN

X̂Z(0)
2nfN

= 1 in

the trace and using (3.52), we obtain (again restoring m3)

Z[k,m3] = Z[k,m3] ei
2πkm3
N , (3.56)

expressing the ’t Hooft anomaly in the path integral.
As opposed to the θ = π partition function (3.45), the only solution of (3.56) with k 6=
0(mod N

gcd(N,m3)) is Z[k,m3] = 0. From the gauge theory path-integral perspective,
this can be understood by recalling that QCD(adj) has 2nfkm3 zero modes in the
background with topological charge km3/N .35

35We could also study the partition function with a (−1)F insertion, which becomes the Witten index
for nf = 1. Eq. (3.56) also holds for the partition function twisted by (−1)F . The vanishing of Z[k,m3] in
the high-temperature limit is explained in [13, 18].
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3. The Z2nfN → Z2nf breaking pattern leading to N ground states on R3 is realized
by the known IR behaviour of the theory with nf = 1 (super-Yang-Mills). This
breaking pattern is also seen in a setup where the IR dynamics for any nf ≤ 5 can
be solved using semiclassical tools, namely on R3 × S1 at a small-size S1 [72]. Here,
the continuous SU(nf ) chiral symmetry is not broken, but the discrete symmetry
is broken to Z2nf . Similar scenarios have also been proposed on R3 for various
nf [73, 74].

4. The N -fold degeneracy implied by (3.52) is also consistent with the “vanilla” scenario
for the realization of the continuous chiral symmetry on R3, where SU(nf )→ SO(nf ).
This breaking is due to the formation of a bilinear fermion condensate 〈λaαI λaαJ〉 ∼ δIJ ,
where I, J are SU(nf ) flavour indices. This condensate breaks the discrete chiral
symmetry to Z2, see the study [75]. This symmetry-breaking pattern is believed to
be realized at least for a range of “small enough” nf ≥ 2.

5. An interesting question that we shall not attempt to address here is about the fate
of the mixed chiral-center anomaly in theories that, on R3, are thought to flow to
fixed points in the IR. In particular, QCD(adj), a theory with such an anomaly, has
been argued to exhibit conformal IR behaviour for sufficiently “large” nf , although
this has not been shown without the trace of a doubt for any nf .36

In particular, for nf = 5, it has been argued (see e.g. [80] and references therein) that
the coupling g∗ at the IR fixed point of the two-loop beta-function is “small,” with
g2
∗/(4π) ∼ 0.13, so that the theory appears “Banks-Zaks-ish,” a “weakly-coupled”
conformal field theory.37 Accepting this picture, ref. [80] suggested that this “semi-
classical calculability” of the nf = 5 theory on R3×S1 implies that the discrete chiral
symmetry is broken, Z10N → Z10, at any size S1, with a mass gap that goes to zero as
L→∞. It might be interesting to study the theory on a large (asymmetric) T3 with
nonzero ~m in order to understand the implications of the algebra (3.52) in theories
which flow to fixed points in the R3 limit.

4 The mixed anomaly for all other gauge groups with a center

The discussion in this section will closely follow the study of the mixed 0-form/1-form
anomaly in SU(N) and we shall therefore be brief. In section 4.1, we consider the parity-
center mixed anomaly/global inconsistency at θ = 0 or π, the deformation of the center-
parity algebra and the degeneracy that occurs in each case. In the following section 4.2 we
do the same for the chiral symmetry.

We begin with table 1, where we show all the group theory data that we will need
for our analysis of the mixed parity-center and parity-chiral anomalies in the theories with

36The lattice literature on the subject is quite voluminous, beginning with [76–78], while [79] has the
most recent update and references.

37The multiple use of quotation marks is to indicate the uncertain nature of this argument. As opposed
to the Banks-Zaks limit [81], the fixed-point coupling can not be made arbitrarily small by adjusting Nf
and Nc and there is no controlled expansion.
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Group Center Qtop (mod 1) = Qtop[~m,~k] Zdiscrete chiral
p

SU(N) ZN − 1
N Pf(n) = 1

N ~m · ~k Z2nfN

Sp(N) Z2
N
2 Pf(n) = −N

2 ~m · ~k Z2nf (N+1)

Spin(8N) Z+
2 × Z−2 1

2

(
1
4εµνλσn

+
µνn
−
λσ

)
= −1

2(~m+ · ~k− + ~m− · ~k+) Z2nf (8N−2)

Spin(8N + 4) Z+
2 × Z−2 1

2
(
Pf(n+) + Pf(n−)

)
= −1

2(~m+ · ~k+ + ~m− · ~k−) Z2nf (8N+2)

Spin(4N + 2) Z4
1+2N

4 Pf(n) = −1+2N
4 ~m · ~k Z8nfN

Spin(2N + 1) Z2 0 = 0 Z2nf (2N−1)

E6 Z3
1
3 Pf(n) = −1

3 ~m · ~k Z24nf

E7 Z2
1
2 Pf(n) = −1

2 ~m · ~k Z36nf

Table 1. Summary of the topological charges mod1 on T4 for all gauge groups with non-trivial
center. There are two twists, n±

µν , in Spin(4N). The last column shows the discrete chiral symmetry
in the theory with nf massless adjoint Weyl fermions.

general gauge groups. The fractional topological charges are derived in appendix B.2. In
the last column, we also show the order of the discrete Zp chiral symmetry in the theory with
nf massless adjoint Weyl fermions,38 which has a mixed anomaly with the corresponding
center symmetry.

For the purpose of canonical quantization, the third column in the table, giving the
fractional value of topological charge in terms of ~m and ~k, called Qtop[~m,~k] there, is the
most important one. For each gauge group, without loss of generality, we shall consider
quantization in the ~m = (0, 0, 1) background of section 3.1.4. As usual, ~m is defined
modulo p, where p is the order of the cyclic center-symmetry group. For Spin(4N), we
take ~m+ = ~m− = (0, 0, 1).

Quantization proceeds in complete analogy with the SU(N) case and we shall not re-
peat the steps here. Again, the transition functions can be taken to be constant matrices Γi
obeying the appropriate generalization of (3.4). Such constant twist matrices exist and can
be explicitly constructed by embedding the SU(2) (or SU(4)/SU(3)/ for Spin(4N+2)/E6/)
matrices in the corresponding convenient representation [50]. The matrix ΓP which deter-
mines the parity transformation, see eq. (3.30), can also be constructed from (3.32) using
the same embedding.39 The explicit form of Γi and ΓP plays no role in the commutation
relations that we are interested in.

The Zp center symmetry generators along the z-direction are, as before, labeled by
T̂3 (for Spin(4N), there are two Z+

2 × Z−2 generators T̂+
3 and T̂−3 ). The center-symmetry

generators obey the boundary conditions (3.12) with ~k = (0, 0, 1) (or with ~k± = (0, 0, 1) as
appropriate). The data of table 1, the fractional value of the topological charge Qtop[~m,~k],
determines the commutation relation of the center symmetry generator with the operator

38For super-Yang-Mills these are all given in e.g. [82], and here we simply multiply them by nf .
39For example, in Sp(N) one can take Γ1 = iσ1 ⊗ 1N , Γ2 = iσ3 ⊗ 1N , Γ3 = 12N , ΓP = iσ1 ⊗ 1N .
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shifting the theta angle by 2π, eq. (3.29). This commutation relation now becomes

T̂3 V̂2π = ei2πQtop[from table 1, with ~m·~k→1] V̂2π T̂3, (4.1)

where the notation “Qtop[from table 1, with ~m·~k → 1]” means that we take it equal to 1/N
for SU(N) (thus reproducing (3.29)), −N/2 for Sp(N), −(1+2N)/4 for Spin(4N+2), −1/3
for E6, and −1/2 for E7. The relation (4.1) holds also for each of the center symmetry
generators T̂±3 of Spin(4N) in our chosen ~m+ = ~m− = (0, 0, 1) background. Here, we
simply take Qtop[. . .] = −1/2 in (4.1).

4.1 The parity center-symmetry anomaly

We are now ready to discuss the parity-center algebra at θ = 0 and θ = π for all gauge
groups. For all gauge groups, we have the following algebras involving T̂3 and the parity
generators at θ = 0 or π, P̂0 or P̂π:

θ = 0 : P̂0 T̂3 P̂0 = T̂ †3 ,

θ = π : T̂3P̂π = ei2πQtop[from table 1, with ~m·~k→1]P̂πT̂
†
3 , (4.2)

where we use the notation explained after (4.1). We now discuss the implications of these
algebras for the various groups in turn (yet again, the θ = 0 algebras are those of appro-
priate dihedral groups, and the θ = π ones are their central extensions). We note that the
T3 operator algebra at θ = π for Spin(2N + 1) and Sp(2k) is not deformed and there is no
anomaly or global inconsistency.

Sp(2k − 1). Now the fractional part of the topological charge in (4.1) is Qtop = 1/2.
The energy eigenstates on the torus are labeled by Z2-electric flux e3. States with |e3〉
and |1− e3(mod 2)〉 are degenerate at θ = π, implying an anomaly and spontaneous parity
breaking, as in the case of SU(N) with even N .

Spin(4N). In the chosen background the algebras for both T̂+
3 and T̂−3 at θ = π have a Z2

central extension, implying that energy eigenstates labeled by electric fluxes
∣∣∣e+

3 , e
−
3

〉
and

their parity partners
∣∣∣1− e+

3 (mod 2), 1− e−3 (mod 2)
〉
are degenerate. Again, this situation

is as in even-N SU(N).

Spin(4N + 2). For even N , the fractional part of the topological charge in (4.1) is
Qtop = −1/4, while for odd N , Qtop = +1/4. Thus, for even N , Z4 electric fluxes |e3〉 and
their parity partners |3− e3(mod 4)〉 are degenerate, while for odd N , these are replaced by
|e3〉 and |1− e3(mod 4)〉. In each case, the deformed algebra implies a double-degeneracy
at θ = π, absent at θ = 0.

E6. Here, the Z3 electric flux states |e3〉 and |2− e3(mod 3)〉 are degenerate. At θ = π

the electric flux |e3 = 1〉 state is parity invariant, while at θ = 0 it is the |e3 = 0〉 state,
implying a global inconsistency, as for odd-N SU(N).
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E7. Here, the situation is that of an anomaly, as parity maps |e3〉 to |1− e3(mod 2)〉
energy eigenstates, implying their degeneracy.

We end with a few comments:

1. Based on our study of the electric flux degeneracies on T3, the pattern that emerges is
clear: groups whose center is of an even order have a parity-center symmetry anomaly
at θ = π, while groups whose center has an odd order have a global inconsistency.

2. There exist almost no semiclassical calculations studying the θ = π behaviour for
gauge groups other than SU(N). The only available semiclassical calculation (known
to us) for groups other than SU(N) focusing on θ = π and the implications of the
anomaly is that of ref. [83]. This work considered Yang-Mills theories with minimal
supersymmetry on R4, compactified on R3 × S1 with S1 of small size L and with
supersymmetric boundary conditions. To introduce θ-dependence, a small gaugino
massm was added. The theory can be studied analytically for L andm appropriately
small, for details see [82]. The target pure Yang-Mills theory on R4 is obtained in the
large L, m limits, where semiclassical calculability is lost. In the small-m,L regime of
validity of the semiclassical expansion, spontaneous breaking of parity at θ = π was
found for all simple gauge groups, even for the ones without center symmetry. It is
not known whether this pattern persists in the R4 pure gauge theory limit. The parity
breaking found at θ = π in the calculable limit appears unrelated to a parity-center
anomaly and may be due to the closeness to the supersymmetric theory.

4.2 The discrete chiral-symmetry/center-symmetry mixed anomaly

Now we discuss the mixed Zp-chiral/1-form center anomaly for the theories with nf Weyl
fermions with general gauge groups. The discussion here will be shorter than in the previous
section. The chiral-center algebra for SU(N) of eq. (3.52), generalizes for other gauge
groups to

T̂3 X̂Z(0)
p

= e−i2πQtop[from table 1, with ~m·~k→1] X̂Z(0)
p
T̂3 , (4.3)

where, in addition to the notation introduced after (4.1), we used X̂Z(0)
p

to denote the
generator of the appropriate Zp chiral symmetry listed in table 1. As before, for Spin(4N),
T̂3 in (4.3) refers to any of the T̂±3 generators of the Z+

2 ×Z−2 center. Yet again, for Sp(2N)
and Spin(2N + 1) the chiral-center algebras on T3 are not deformed and we do not discuss
them further.

Sp(2k − 1). Now the fractional part of the topological charge in (4.1) is Qtop = 1/2 and
the chiral symmetry is Z4nfk. The chiral generator changes maps Z2 electric flux state |e3〉
to |−1 + e3〉, implying a two-fold degeneracy of the energy eigenstates on T3.

Spin(4N). The chiral symmetry is Z2nf (4N−2) and its generator maps energy eigenstates
labeled by Z+

2 ×Z−2 electric fluxes
∣∣∣e+

3 , e
−
3

〉
into

∣∣∣1 + e+
3 (mod 2), 1 + e−3 (mod 2)

〉
, implying

a two-fold degeneracy.
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Spin(4N + 2). The chiral symmetry is Z8nfN . For even N , the fractional part of the
topological charge in (4.1) is Qtop = −1/4, while for odd N , Qtop = +1/4. Thus, for even
N , the chiral generator maps |e3〉 into |1 + e3(mod 4)〉. On the other hand, for odd N ,
|e3〉 is mapped to |−1 + e3(mod 4)〉. It is easy to see that in each case, there is a four-fold
degeneracy on T3.

E6. The chiral symmetry is Z24nf and it maps states labeled by the Z3 electric flux |e3〉
into |1 + e3(mod 3)〉. This is a Z3 orbit, implying that the states are triply-degenerate.

E7. The chiral symmetry is Z36nf and maps the electric flux states as |e3〉 to
|1 + e3(mod 2)〉 energy eigenstates, implying double degeneracy of the T3 energy eigen-
states.

Again, we end with some comments and questions for the future:

1. We see that the central extension of the chiral-center algebra alone implies certain
degeneracies. Groups with a Z2 (or Z2×Z2) center have a double degeneracy on T3,
while the groups with Z3 and Z4 center have a three-fold and four-fold degeneracy,
respectively.

2. The only case where some aspects of the dynamics are understood is super-Yang-
Mills theory, nf = 1. Here, on R4 the chiral symmetry is known to break, by gaugino
condensation, to fermion number Z2 for each group, implying a large emergent de-
generacy in the R4 limit. The same symmetry-breaking pattern is also known to
occur, in a semiclassically-calculable manner, in the small-S1 limit of R3 × S1, for
super-Yang-Mills with all gauge groups [84].

In this respect, we notice that the vacuum degeneracy between the electric flux states
implied by the mixed 0-form/1-form anomaly for groups other than SU(N) is very
modest, equal to the order of the center-symmetry group. On the other hand, the
“observed” chiral symmetry breaking pattern suggests a vacuum degeneracy equal to
the dual Coxeter number of the gauge group. The simplest case in point is SP (N),
where the dual Coxeter number is equal to N + 1, while the center symmetry is
Z2. There is a mixed chiral-center anomaly only for N = 2k + 1, suggesting two
degenerate vacua with Z2 electric fluxes 0 and 1, while the R3×S1 analysis [84] and
the Witten index40 show that there are 2k+2 vacua. We shall only make two remarks
in this regard. First, we note that other ’t Hooft anomalies, e.g. the mixed anomaly
between the discrete chiral symmetry and gravity impose more severe constraints on
the chiral symmetry realization, discussed in [63]; these constraints, however, require
the validity of dynamical assumptions, namely the existence of a mass gap. Second,
one might also wonder if there are any other not-yet-identified symmetries, like the
subtle “noninvertible” ones of [16, 25, 85], that might also play a role in determining
the vacuum degeneracy and symmetry realization. At the moment, we are not aware
of the answer and only note that these are interesting questions to pursue.

40See both the early [49] and late [50] work, especially for groups other than SU and SP .
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3. Not much is known about the dynamics of the nonsupersymmetric versions of these
theories with other gauge groups. We note that the minimal degeneracies implied
by the mixed anomaly on T3 may be consistent with symmetry-breaking by higher-
dimensional multi-fermion condensates on R3, much like the ones argued for in [73].
Again, we leave this for future work.
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A Summary of relevant group theory data

We begin by summarizing some known facts about Lie groups, algebras, and representations
that we shall use. Our intention here is largely to set the notation; for more details and
proofs, see e.g. [37, 86].

A.1 Notation and conventions

We consider a general gauge group G with Lie algebra g, and Cartan subalgebra h. We use
r to denote the rank of the group. We denote the roots by α, with αi for 1 ≤ i ≤ r the
simple roots, and use Eα to denote the corresponding root vectors. The co-root to the root
α is α∗ ≡ 2 α

α·α . Roots live in the root-lattice, Λr, which is spanned by the simple roots,
and similarly co-roots live in the co-root lattice, Λ∗r , spanned by the co-roots of the simple
roots. We denote the set of roots by ∆, and the set of positive roots (with respect to a
choice of simple roots) by ∆+. The fundamental weights are wi for i = 1, . . . , r and satisfy
2wi·αjαj ·αj = δij . For each fundamental weight, wi, the corresponding co-weight is w∗i ≡ 2wi

αi·αi .
Similar to the roots, weights live in the weigh lattice Λw spanned by the fundamental
weights, and co-weights live in the co-weight lattice, Λ∗w, spanned by the co-weights of
the fundamental weights. Finally, we take the weights of the defining representation to
be νA for A = 1, . . . , dimRfund.. Weights live in the weight lattice, Λw, spanned by the
fundamental weights.

The Cartan-Weyl basis for g. This basis of the Lie algebra is defined by the following
commutation relations [

Ha, Hb
]

= 0 (A.1)

[Ha, Eα] = (α)aEα (A.2)

[Eα, Eβ ] =


Nα,βEα+β α+ β is a root
α∗ ·H α+ β = 0
0 otherwise

, (A.3)
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where {Ha}ra=1 are the Cartan generators, (Ha)† = Ha, which form a basis for h with
H = (H1, H2, . . . ,Hr), Eα are the root vectors, (Eα)† = E−α, and Nα,β = −Nβ,α is some
number. We can extend the definition of Nα,β to include the cases when α + β is either
not a root or zero, by setting Nα,β = 0 in those cases and remembering that Eα+β really
has no meaning when α+ β is not a root.

We also recall that irreducible representations are specified by their highest weight,
λ ∈ Λw, and that the weights of a given representation are the eigenvalues of the Cartan
generators in that representation. For example, in the defining representation Rfund., we
take Ha to be diagonal matrices with components (Ha)AB = δAB (νA)a where A,B =
1, . . . , dimRfund. and a = 1, . . . , r, with νA — the weights of fundamental representation.

The Cartan-Weyl basis and the usual orthogonal basis
{
T i, i = 1, . . . dim(g)

}
of Her-

mitean generators are related by

T a = Ha , a = 1, . . . , r (A.4)

Tα1 = |α|2 (Eα + E−α) , α ∈ ∆+ (A.5)

Tα2 = |α|2i (Eα − E−α) , α ∈ ∆+, (A.6)

where T i were enumerated as {T a, Tα1 , Tα2 }.

Dynkin index and dimension. The Dynkin index C(Rλ) of an irreducible representa-
tion Rλ of highest weight λ is:

TrRλ(T iT j) = C(Rλ)δij , where C(Rν) = dim(Rλ)
dim(g) λ · (λ+ 2ρ), (A.7)

where ρ = 1
2
∑
α∈∆+ α is the Weyl vector. Note that this may differ by a factor of 1

2
from definitions seen elsewhere. For use below, notice how C(Rλ) scales with a change of
normalization of roots: under α→ cα, both λ and ρ scale with c, so C(Rλ) scales with c2.

Finally, if Rλ is an irreducible representation with highest weight λ, then the dimension
of R may be computed from the Weyl dimension formula:

dim(Rλ) =
∏
α∈∆+ α · (λ+ ρ)∏

α∈∆+ α · ρ
,

where ρ is the Weyl vector, defined after eq. (A.7).
For the Spin(2N) groups we will work with a direct sum of two irreducible repre-

sentations, corresponding to positive- and negative-chirality spinors, for which we can-
not directly apply the above. Suppose we have two irreducible representations Rλ1 and
Rλ2 , with highest weights λ1 and λ2 respectively, and we are interested in the repre-
sentation Rλ1⊕λ2 ≡ Rλ1 ⊕ Rλ2 . Suppose that a generator X ∈ g is represented by a
dim(Rλ1) × dim(Rλ1) matrix Xλ1 in the representation Rλ1 , and a dim(Rλ2) × dim(Rλ2)
matrix Xλ2 in the representation Rλ2 . Then, as a matrix representation for Rλ1⊕λ2 we can
simply take Xλ1⊕λ2 to be the block diagonal matrix diag(Xλ1 , Xλ2). Thus, we see that
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Group Rank Dim(R) C(R)/α2
max

SU(N) N − 1 N 1
2

Sp(N) N 2N 1
2

Spin(2N) N 2N 2N−3

Spin(2N + 1) N 2N 2N−3

E6 6 27 3
E7 7 56 6

Table 2. Groups with nontrivial centers: their ranks, dimension and Dynkin indices C(R) of the
“convenient” representation, normalized by the length of the longest root squared.

traces simply add across the representations, TrRλ1⊕Rλ2
= TrRλ1

+ TrRλ2
, allowing us to

immediately write down an expression for C(Rλ1 ⊕Rλ2):

C(Rλ1 ⊕Rλ2) = C(Rλ1) + C(Rλ2) = dim(Rλ1)λ1 · (λ1 + 2ρ) + dim(Rλ2)λ2 · (λ2 + 2ρ)
dim(g) .

(A.8)
This result can be easily generalized to a direct sum of an arbitrary number of irreducible
representations.

The center of the group and the convenient choice of co-weight µ∗. A group
element g ∈ G is in the center, Z(G), if and only if gXg−1 = X for all generators X ∈ g.
In the Cartan-Weyl basis, a center element of G is given by

g = e2πiµ∗·H with µ∗ ·α ∈ Z for all roots α, i.e. µ∗ ∈ Λ∗w , (A.9)

or, in words, µ∗ is an element of the co-weight lattice.41 Equation (A.9) implies that the
center of a group is trivial if µ∗ · ν ∈ Z for all weights ν ∈ Λw since then g is the unit
matrix in all representations R. If the group has trivial center,42 the weights are sums of
roots with integer coefficients. Similarly, the roots are integer sums of the weights (thus,
neither Λr or Λw is finer than the other, and Λr/Λw is trivial).

For groups with nontrivial Zk centers, in a representation Rλ of highest weight λ
where (A.9) is nontrivial, we shall call a choice of co-weight µ∗, such that µ∗ ·λ = 1

k +Z a
convenient choice of µ∗. In table 2, we list all groups with nontrivial centers, the dimensions
and Dynkin indices of their corresponding “convenient” representations.43

41The commutation relations (A.1) imply gEαg
−1 = e2πiµ∗·αEα, from which the statement in (A.9)

follows.
42We shall not prove whether the center is trivial or not for a given group. This can be seen, e.g.

by examining the explicit expressions for the roots and weights. A general criterion is to evaluate the
determinant of the Cartan matrix relating the root and weight lattices (it equals unity for the groups with
trivial center).

43For lack of better terminology, we call the “convenient” representation a choice of representation where
the center of the group acts faithfully. In each case they are identified by their highest weight, see table 3.
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Group Representation Center Convenient Co-Weight
SU(N) w1 ZN w∗N−1

Sp(N) w1 Z2 w∗N

Spin(4N + 2) w2N Z4 w∗2N for N even and w∗2N+1 for N odd
Spin(4N + 2) w2N+1 Z4 w∗2N+1 for N even and w∗2N for N odd
Spin(8N) w4N−1 Z+

2 w∗4N or w∗2k−1 for 1 ≤ k < 2N
Spin(8N) w4N Z−2 w∗4N−1 or w∗2k−1 for 1 ≤ k < 2N
Spin(8N + 4) w4N+1 Z+

2 w∗4N+1 or w∗2k+1 for 0 ≤ k < 2N
Spin(8N + 4) w4N+2 Z−2 w∗4N+2 or w∗2k+1 for 0 ≤ k < 2N
Spin(2N + 1) wN Z2 w∗2k+1 for 0 ≤ k < (N − 1)/2
E6 w1 Z3 w∗a for a = 1, 4 and 2w∗b for b = 2, 5
E6 w5 Z3 w∗a for a = 1, 4 and 2w∗b for b = 2, 5
E7 w6 Z2 w∗a for a = 4, 6, 7

Table 3. Centers of irreducible “convenient” representations of groups, listed by their highest
weights, along with the “convenient co-weights,” which correspond to the generators (A.9) of the
centers. These results are obtained in section A.2.

A.2 Groups with nontrivial centers and choice of “convenient co-weight”

In this section we review the simple Lie groups and their algebras and discuss some of their
properties of relevance to us, notably the convenient choice of co-weight µ∗ to represent the
center element (A.9). The results of this section are conveniently summarized on table 3.

We use Mn(F) to denote the set of n × n matrices with entries in F (we take F to
be either R or C), U(N) ⊂ MN (C) to denote the set of N × N unitary matrices, and
O(N) ⊂MN (R) to denote the set of N ×N orthogonal matrices. For all algebras, we take
the roots and weights to be r-dimensional vectors where r is the rank of the algebra.44 We
use ei for i = 1, . . . , r to denote r-dimensional unit vectors, ei · ej = δij , where r is always
assumed to be the rank of the group in question.

A.2.1 SU(N)

The most familiar case, SU(N), is the group of N × N unitary matrices with unit deter-
minant. The algebra is su(N), and the root system is AN−1, thus r = N − 1. Below, we
enumerate the defining properties of the group and algebra, the simple roots, fundamental
weights and their inner products:

SU(N) := {U ∈ U(N) | det(U) = 1} (A.10)
su(N) :=

{
t ∈MN (C) | t = t†, tr (t) = 0

}
, (A.11)

44We note that this is not always the conventional choice, for example su(N) roots are easily (and
commonly) written down in an N -dimensional vector space, even though the rank is N − 1.
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where the simple roots, fundamental weights, and their inner products are

αa = −
√
a− 1

2a ea−1 +
√
a+ 1

2a ea , a = 1, . . . , N − 1, e0 ≡ 0 (A.12)

wa = a
N−1∑
j=a

1√
2j(j + 1)

ej =
a−1∑
b=1

b(N − a)
N

αb +
N−1∑
b=a

a(N − b)
N

αb (A.13)

ρ = 1
2

N−1∑
j=1

√
j(j + 1)

2 ej (A.14)

wa ·wb

∣∣∣∣
a≤b

= α2
max
2

a(N − b)
N

=⇒ w∗a ·wb = min(a, b)(N −max(a, b))
N

(A.15)

The fundamental representation, �, has highest weight w1. The center of SU(N) is
ZN , ie the N th roots of unity, which is generated by e2πi/N1. We see from the inner
product relation above that w∗N−1 ·w1 = 1

N , and thus from the earlier discussion we find
exp

(
2πiw∗N−1 ·H

)
= e2πi/N1, so we have found the generator of the ZN center. Thus,

µ∗ = w∗N−1 is a convenient choice. Then, an arbitrary center element can be written as

e2πix/N1 = e2πixw∗N−1·H , x ∈ Z (modN) (A.16)

The weights of the fundamental representation are given by νA = w1 −
∑A−1
a=1 αa.

Plugging in our expressions for the simple roots and w1 we find an expression for νA:

νA = −

√
A− 1

2A eA−1 +
N−1∑
j=A

1√
2j(j + 1)

ej . (A.17)

The positive roots are αab =
∑b
c=aαc, for 1 ≤ a ≤ b ≤ N − 1, where the simple roots

are αaa, and it is easily seen that there are N(N − 1)/2 positive roots. As a quick check,
we know that the dimension of any g is twice the number of positive roots plus the rank
of g, so here we have N(N − 1) + (N − 1) = N2 − 1 as expected. The Weyl vector is
ρ = 1

2
∑N−1
a=1

∑N−1
b=a αab Using equation (A.7) we can calculate the Dynkin index of the

fundamental

C(�) = α2
max
2 , (A.18)

where α2
max is the length squared of any root, which we have taken above to be 1.

A.2.2 Sp(N)

Sp(N), sometimes written as USp(2N), is the compact symplectic group, defined as the

subgroup of SU(2N) which preserves the symplectic form J =
(

0 1N

−1N 0

)
:

Sp(N) :=
{
U ∈ SU(2N) | UTJU = J

}
(A.19)

sp(N) :=
{
t ∈M2N (C) | t = t†, tTJ + Jt = 0

}
(A.20)
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The algebra is denoted by sp(N), the root system is CN , thus r = N . The simple roots
and fundamental weights are

αa<N = ea − ea+1, αN = 2eN (A.21)

wa =
a∑
j=1
ej (A.22)

ρ =
N∑
j=1

(N − j + 1)ej (A.23)

and the inner products of the (co-) weights are:

wa ·wb = α2
max
4 min(a, b) (A.24)

w∗a ·wb =

min(a, b) a < N
1
2 min(a, b) = b

2 a = N
(A.25)

The positive roots come in four types:

ea − eb+1 =
b∑

c=a
αc, 1 ≤ a ≤ b < N (A.26)

ea + eN =
N∑
c=a

αc, 1 ≤ a ≤ N (A.27)

ea + eb =
N∑
c=a

αc +
N−1∑
c=b

αc, 1 ≤ a < b < N (A.28)

2ea = 2
N−1∑
c=a

αc +αN , 1 ≤ a < N. (A.29)

There are N(N −1)/2 positive roots of the first type, N of the second, (N −1)(N −2)/2 of
the third type, and N − 1 of the fourth type, giving us a total of N2 positive roots. Thus,
the dimension of sp(N) is 2N2 +N = N(2N + 1).

The fundamental representation has highest weight w1. Sp(N) has a Z2 center, so we
just need to find a co-weight which gives an odd integer when dotted with w1. From the
inner product relation above we see that only (2k+1)w∗N for k ∈ Z works, and thus the Z2
center is generated by exp(2πiw∗N ·H) = −1, thus µ∗ = w∗N is a convenient choice. Then
an arbitrary center element can be written as

e2πix/21 = e2πixw∗N ·H , x ∈ Z (mod 2). (A.30)

We can calculate the Dynkin index quite easily. It is clear that w1 · w1 = 1 and
w1 · ρ = N , and we know dim(Rw1) = 2N while dim(sp(N)) = N(2N + 1), so we find
C(Rw1) = 2, where the longest root has length 2. With an arbitrary normalization of roots,
where the longest root, αN in this case, has length squared α2

max we find

C(Rw1) = α2
max
2 . (A.31)
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A.2.3 Spin(2N)
Spin(k) is defined as the universal cover of the special orthogonal group, SO(k), and as such
has the same algebra, so(k). The root system depends on whether k is even or odd. For
Spin(2N) the root system is DN and the rank is r = N . The simple roots and fundamental
weights are:

αa<N = ea − ea+1, αN = eN−1 + eN (A.32)

wa≤N−2 =
a∑
j=1
ej , wN−1 = 1

2

N−1∑
j=1

ej − eN

 , wN = 1
2

N∑
j=1
ej (A.33)

ρ =
N−1∑
j=1

(N − j)ej (A.34)

The inner products of the weights and co-weights are:

wa ·wb

∣∣∣∣
a≤b

= α2
max
2


a a, b ≤ N − 2
min(a,b)

2 min(a, b) < N − 1 ≤ max(a, b)
N
4 −

|b−a|
2 a, b ≥ N − 1

(A.35)

w∗a ·wb = wa ·w∗b =


min(a, b) a, b ≤ N − 2
a
2 a < N − 1 ≤ b
N
4 −

|b−a|
2 a, b ≥ N − 1

. (A.36)

Spin(2N) has two irreducible fundamental representations, corresponding to left- and
right-chirality spinors, which have highest weights wN−1 and wN , each of dimension 2N−1.
Since all the simple roots have length 2, we identify weights with co-weights. As a con-
vention, we call the representation with highest weight wN−1 the positive chirality rep-
resentation, S+, and the representation with highest weight wN the negative chirality
representation, S−. The center of Spin(2N) is Z4 if N is odd, and Z+

2 × Z−2 if N is even,
and will be discussed in more detail below.

The weights of the positive chirality representation, S+, are the 2N−1 vectors with
entries of ±1

2 where there are an odd number of −1
2 entries. Similarly, the weights of S−

are those with an even number of −1
2 entries.

Both of the highest weights have the same length squared, w2
N−1 = w2

N = N
4 . Further,

they both have the same first N − 1 components, so they will have the same inner product
with ρ, namely wN−1 · ρ = wN · ρ = N(N−1)

4 . As noted above both spinor representations
have dimension 2N−1, and the dimension of the algebra is N(2N − 1). Thus, we compute
the Dynkin index of the two spinor representations as C(S−) = C(S+) = 2N−3 for our
normalization of roots, and for an arbitrary normalization as

C(S−) = C(S+) = α2
max2N−4, (A.37)

where α2
max above is taken to be 2. As per (A.8), the Dynkin index of the direct sum

representation S+ ⊕ S− is simply the sum of the two Dynkin indices above,

C(S+ ⊕ S−) = α2
max2N−3. (A.38)

We now discuss the odd- and even-N cases of Spin(2N) in turn:
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Spin(4N + 2). In this case we have w∗2N+1 · w2N+1 = w∗2N · w2N = 2N+1
4 = 1

4 + N
2

and w∗2N+1 · w2N = w∗2N · w2N+1 = 2N−1
4 = −1

4 + N
2 , so either w∗2N+1 or w∗2N

can work for generating the Z4 center. Thus we find that both exp
(
2πiw∗2N+1 ·H

)
and exp(2πiw∗2N ·H) generate the Z4 center, for both representations. In particular,
on the positive chirality representation, exp(2πiw∗2N ·H) = e2πi( 1

4 +N
2 )1 = (−1)Ne2πi/4

and exp
(
2πiw∗2N+1 ·H

)
= e2πi(− 1

4 +N
2 )1 = (−1)Ne−2πi/4. When N is even, we have

exp(2πiw∗2N ·H) = e2πi/41 so it is most convenient to take µ∗ = w∗2N . Similarly, when N
is odd, it is most convenient to take µ∗ = w∗2N+1. For the negative chirality representation
we find that it is most convenient to take µ∗ = w∗2N+1 when N is even, and µ∗ = w∗2N
when N is odd. In practice however, we can only choose one of these, for instance if we
take µ∗ to be the convenient choice for the positive chirality representation, then in the
direct sum representation we will have exp(2πiµ∗ ·H) = e2πi/41+ ⊕ e−2πi/41−. In general
the action of a Z4 element on the one representation will be the conjugate of that on the
other, and we can write it in the most general way as

e2πix/41+ ⊕ e−2πix/41− =

e2πixw∗2N ·H N even
e2πixw∗2N+1·H N odd

, x ∈ Z (mod 4) (A.39)

where H is understood to be in the direct sum representation S+ ⊕ S− of Spin(4N + 2).

Spin(4N). For this case we have to worry about each of the two chiral representations
separately. For the positive chirality representation, S+ with highest weight w2N−1, we
want to find a co-weight, µ∗, which satisfies µ∗ ·w2N−1 = 1

2 + Z. Consider µ∗ = w∗2N =
w2N : w∗2N · w2N−1 = (2N−1)−1

4 = N−1
2 which will be half-integer when N is even, so

exp(2πiw∗2N ·H+) generates Z+
2 when N is even.45 When N is odd we can instead take

µ∗ = w∗2N−1: w∗2N−1 · w2N−1 = 2N
4 = N

2 , so exp
(
2πiw∗2N−1 ·H+

)
generates Z+

2 when
N is odd. It is clear that µ∗ = w∗2N and µ∗ = w∗2N−1 are convenient choices, for N
even and odd respectively. We also stress that the Z+

2 part of the center acts trivially on
S−, as follows upon inspection by replacing H+ with H− and using the inner products of
weights (A.35).46

For the negative chirality representation, S− with highest weight w2N , only Z−2 acts
nontrivially. Essentially we just need to swap w2N and w2N−1, since we are looking for
a co-weight µ∗ such that µ∗ · w2N = 1

2 + Z and we identify weights with co-weights for
Spin(2N). We found above that w∗2N · w2N−1 = 1

2 + Z when N is even, and since we
identify weights with co-weights we immediately see that w∗2N−1 · w2N = 1

2 + Z. Thus
we find that exp

(
2πiw∗2N−1 ·H−

)
generates Z−2 when N is even. Similarly, we find that

exp(2πiw∗2N ·H−) generates Z−2 whenN is odd. It is clear that µ∗ = w∗2N−1 and µ∗ = w∗2N
are convenient choices for N even and odd respectively.

45We use H+ to denote the Cartan generators in the S+ representation (and H− for S−).
46The reader is warned to avoid a notational pitfall while using the formulae given in this section. This

is due to our choice of notation and should be self-explanatory, but is nonetheless worth pointing out.
For example, in the expression for the center elements given in (A.40), (A.41), N refers to the group
Spin(4N), while in the Dynkin index formula for S+ ⊕ S− given in (A.38) as well as in the inner product
relations (A.35), N refers to Spin(2N).
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On the direct sum representation S+ ⊕ S− of Spin(4N), we can then write arbitrary
center elements as

e2πix+/21+ ⊕ e2πix−/21− =

e2πix+w∗2N ·H+ ⊕ e2πix−w∗2N−1·H− N even
e2πix+w∗2N−1·H+ ⊕ e2πix−w∗2N ·H− N odd

, x+(−) ∈ {0, 1}.

(A.40)
Conveniently, we can write the right hand side in terms of the direct sum generators, which
we write explicitly as H = diag(H+,H−),

e2πix+/21+ ⊕ e2πix−/21− =

e
2πi(x+w∗2N+x−w∗2N−1)·H N even
e2πi(x+w∗2N−1+x−w2N )·H N odd

, x+(−) ∈ {0, 1}. (A.41)

since whenever e2πiµ∗·H = −1 on one representation, it is the identity on the other.
Also note that µ∗ = w∗2k+1 for 1 ≤ 2k + 1 < 2N − 1 is a convenient choice for both

representations, but it isn’t much help to us since it treats the two centers the same, that
is, exp

(
2πixw∗2k+1 ·H

)
= exp(2πix/2)(1+ ⊕ 1−). Thus, when working in the direct sum

representation, we can’t separate the two centers if we use w∗2k+1, so we opt to use the
others described above.

A.2.4 Spin(2N + 1)

For Spin(2N+1) the root system is BN , r = N , with simple roots and fundamental weights
given by:

αa<N = ea − ea+1, αN = eN (A.42)

wa≤N−1 =
a∑
j=1
ej , wN = 1

2

N∑
j=1
ej (A.43)

ρ =
N∑
j=1

(
N − j + 1

2

)
ej (A.44)

and inner products of (co-) weights

wa ·wb

∣∣∣∣
a≤b

= α2
max
2


a a, b ≤ N − 1
a
2 a < N = b
N
4 a = b = N

(A.45)

w∗a ·wb =

min(a, b) b < N
1
2 min(a, b) = a

2 b = N
. (A.46)

For Spin(2N + 1) there is just one spinor representation, with highest weight wN . We
consider N ≥ 2 since Spin(3) ∼= SU(2). The center is Z2, so we want to find a co-weight, µ∗,
such that µ∗ ·wN = 1

2 +Z. From the inner product above we see that w∗2k+1 ·wN = 1
2 +Z

for 0 ≤ k < (N−1)/2, giving us a whole set of equivalent generators. Each of these choices
of µ∗ are convenient choices, and thus an arbitrary center element can be written as

e2πix/21 = e2πixw∗2k+1·H , 1 ≤ k < (N − 1)/2, x ∈ Z (mod 2) . (A.47)
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The weights of the spinor representation are the 2N vectors with entries of ±1
2 . Thus,

we find dim(RwN ) = 2N . We see that w2
N = N

4 , and wN ·ρ =
(
N
2

)2
. The dimension of the

algebra is N(2N + 1), and the dimension of the spinor representation is 2N , so the Dynkin
index is C(RwN ) = 2N−2, where the longest roots have length squared 2. In arbitrary root
normalization we get

C(RwN ) = α2
max2N−3, (A.48)

similar to the even spin groups.

A.2.5 E6

E6 and its root system share the same name, and the same occurs for all the other excep-
tional algebras. Here, r = 6 and the list of simple roots and fundamental weights is as
follows:

αa<4 = ea − ea+1, α4 = e4 + e5, α5 = 1
2

(
√

3e6 −
5∑
i=1
ei

)
, α6 = e4 − e5 (A.49)

wa<4 =
a∑
j=1
ej + a√

3
e6, w4 = 1

2

 5∑
j=1
ej + 5√

3
e6

 ,
w5 = 2√

3
e6, w6 = 1

2

 4∑
j=1
ej − e5 +

√
3e6


ρ =

4∑
j=1

(5− j)ej + 4
√

3e6 . (A.50)

The inner product of weights are

[wa ·wb] = α2
max
2



4/3 5/3 2 4/3 2/3 1
5/3 10/3 4 8/3 4/3 2
2 4 6 4 2 3

4/3 8/3 4 10/3 5/3 2
2/3 4/3 2 5/3 4/3 1
1 2 3 2 1 2


(A.51)

[w∗a ·wb] =



4/3 5/3 2 4/3 2/3 1
5/3 10/3 4 8/3 4/3 2
2 4 6 4 2 3

4/3 8/3 4 10/3 5/3 2
2/3 4/3 2 5/3 4/3 1
1 2 3 2 1 2


(A.52)

There are two equivalent fundamental representations of E6, with highest weight w1
and w5 respectively. We start off by using the representation with highest weight w1. The
center is Z3, so we want to find a co-weight µ∗ such that µ∗ ·w1 = l

3 +Z for l = 1 or l = 2.
Again here all the roots have length

√
2, so we identify weights with co-weights. We find

that w∗1 ·w1 = w∗4 ·w1 = 1
3 + 1, w∗2 ·w1 = 2

3 + 1, and w∗5 ·w1 = 2
3 , so we conclude that the
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Z3 center of the representation with highest weight w1 is generated by exp(2πiw∗a ·H) for
a = 1, 2, 4, 5. Of these choices of µ∗, only a = 1, 4 are convenient choices, while for a = 2, 5
we must scale µ∗ by 2 to make them convenient choices. We can then write an arbitrary
center element in the following ways

e2πix/31 = e2πixw∗1,4·H = e2πi2xw∗2,5·H , x ∈ Z (mod 3) , (A.53)

where w∗a,b could be either w∗a or w∗b .
Similarly, for the representation with highest weight w5 we find that the Z3 center

is generated by exp(2πiw∗a ·H) for a = 1, 2, 4, 5, exactly the same as before, where now
a = 2, 5 are convenient, and a = 1, 4 must be scaled by 2 to be convenient.

The weights of the fundamental representation with highest weight w1 are given below
(in no particular order, except that ν1 = w1)

ν1≤A≤5 = eA + 1√
3
e6, ν6≤A≤10 = −eA−5 + 1√

3
e6,

ν11 = − 2√
3
e6, νA≥12 = 1

2

( 5∑
a=1

(−1)qaea −
1√
3
e6

)
,

where
∑
a qa is odd. There are 27 weights, each with multiplicity one, so the dimension of

Rw1 is 27. We see that w2
1 = 4

3 , while w1 · ρ = 8. The dimension of the algebra is 78, and
thus the Dynkin index is C(Rw1) = 6 with α2

max = 2, so in general we get

C(Rw1) = 3α2
max (A.54)

We get the same result if we use the representation with highest weight w5.

A.2.6 E7

The rank of this group is 7 and the simple roots and fundamental weights are

α1 = 1
2

(
√

2e7 −
6∑
i=1
ei

)
, α2 = e5 + e6, α3≤a≤6 = e7−a − e7−a+1, α7 = e5 − e6 (A.55)

w1 =
√

2e7, w2 = 1
2

 6∑
j=1
ej + 3

√
2e7

 , w3≤a≤6 =
7−a∑
j=1

ej + 7− a√
2
e7,

w7 = 1
2

 5∑
j=1
ej − e6 + 2

√
2e7


ρ=

5∑
j=1

(6− j)ej + 17√
2
e7 (A.56)
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[wa ·wb] = α2
max
2



2 3 4 3 2 1 2
3 6 8 6 4 2 4
4 8 12 9 6 3 6
3 6 9 15/2 5 5/2 9/2
2 4 6 5 4 2 3
1 2 3 5/2 2 3/2 3/2
2 4 6 9/2 3 3/2 7/2


(A.57)

[w∗a ·wb] =



2 3 4 3 2 1 2
3 6 8 6 4 2 4
4 8 12 9 6 3 6
3 6 9 15/2 5 5/2 9/2
2 4 6 5 4 2 3
1 2 3 5/2 2 3/2 3/2
2 4 6 9/2 3 3/2 7/2


(A.58)

There is a single fundamental representation of E7 which has highest weight w6. The
center is Z2, so we want to find a co-weight µ∗ such that µ∗ ·w6 = 1

2 + Z. Again, we can
identify weights with co-weights here. We find that w∗6 ·w6 = w∗7 ·w6 = 1

2 + 1 and that
w∗4 · w6 = 1

2 + 2, so we conclude that the Z2 center is generated by exp(2πiw∗a ·H) for
a = 4, 6, 7, all of which are convenient choices. Then, an arbitrary center element can be
written as

e2πix/21 = e2πixw∗a·H , a = 4, 6, 7, x ∈ Z (mod 2) . (A.59)

The 56 weights of the fundamental representation are of the form ±ei ± 1√
2e7 for

1 ≤ i ≤ 6, as well as 1
2
∑6
i=1(−1)qiei where

∑
i qi is odd. We see that w2

6 = 3
2 and

w6 · ρ = 27
2 . The dimension of the algebra is 133, so the Dynkin index is C(Rw6) = 12, or

in an arbitary normalization,
C(Rw6) = 6α2

max. (A.60)

B ’t Hooft twists for all gauge groups

In this appendix, we describe in detail the introduction of twisted boundary conditions
on T4 (and, by restriction, T3) for all compact simple Lie groups with nontrivial center.
While the results are not new and have been already given47 in [50], our derivation using
transition functions and co-cycle conditions on T4 is quite explicit and physicist-friendly.

To the best of our knowledge a discussion along the lines of [31, 32] for general gauge
groups has not previously appeared in the literature. The formulae of this appendix may
also be helpful in the studies of other types of generalized anomalies and we hope they will
be of use to physicists.

47More recently, these were used in ref. [87], also in the framework of generalized anomalies. This
reference also considered non-spin manifolds. For completeness, we use discussion of [10] to study the
fractional topological charge for all groups on the non-spin manifold CP2 in appendix B.3.
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Group Root Lengths C(R)/α2
max N(G) = α2

max
C(R)

SU(N) 1 1
2 2

Sp(N)
√

2, 2 1
2 2

Spin(2N)
√

2 2N−3 23−N

Spin(2N + 1) 1,
√

2 2N−3 23−N

E6
√

2 3 1
3

E7
√

2 6 1
6

Table 4. Groups with their root lengths, “convenient” representation Dynkin indices C(R), as well
as the normalization N(G) of the topological charge (B.1).

B.1 Normalizing the topological charge: the BPST instanton

Here, we shall properly normalize the topological charge Qtop in any representation. We
need to dwell on this detail, because our explicit description of the T4 bundle and the
’t Hooft twists on T3 requires us to study the gauge field using the generators of the
“convenient” representation of G, where the center of G acts nontrivially. We begin by the
expression for the topological charge in a general representation R

Qtop = N(G)
32π2

∫
d4xTrR

(
FµνF̃

µν
)
, (B.1)

where N(G) is normalization factor that we want to determine. The above expression for
Qtop is valid on T4 as well as in the R4 limit. Being an integral of a total divergence,
Qtop only depends on appropriate transition functions, a fact that we explicitly use below,
see (B.13).

We shall determine the normalization factor N(G), such that upon embedding an R4

BPST instanton solution into an SU(2) subgroup of the gauge group G, the minimum
topological charge we obtain is Qtop = 1. For the reader interested only in the results, in
table 4 we give the root lengths and, most importantly, the result for the normalization
factor N(G) for all groups, as determined in the rest of this section.48

For those interested in the details, we begin by noting that given a positive root α we
can construct su(2) generators τa:

τ1 = 1
2(Eα + E−α), τ2 = 1

2i(Eα − E−α), τ3 = 1
2α
∗ ·H, (B.2)

where α∗ = 2
α·αα is the co-root associated to the root α. These generators will satisfy the

su(2) algebra provided that E±α are normalized properly:

[Eα, E−α] = α∗ ·H =⇒
[
τa, τ b

]
= iεabcτ c.

48We also stress that the topological charge for the twisted bundles on T4 that we calculate in section B.2
is independent on the normalization of roots, see the discussion after eq. (B.17).
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If the root vectors are not normalized as above, then we will have
[
τa, τ b

]
∝ iεabcτ c,

where the value of the proportionality is different for the different values of a, b. Further,
the su(2) commutation relations guarantee that Tr(τaτa) is the same for all choices of
a. To see this, we consider Tr

(
τ3τ3). Then, use τ3 = −i

[
τ1, τ2] to get Tr

(
τ3τ3) =

Tr
(
−i
[
τ1, τ2]τ3) = −iTr

(
τ1[τ2, τ3]) = −iTr

(
τ1iτ1) = Tr

(
τ1τ1). In the same way we can

show that Tr
(
τ3τ3) = Tr

(
τ2τ2). Note that this would still be true if

[
τa, τ b

]
= ixεabcτ c

for some constant x. Then, for the embedding corresponding to the root α, following from
our definition of the Dynkin index, C(R), we have

Tr
(
τaτ b

)
= Tr

(
τ3τ3

)
δab = δabC(R)

(1
2α
∗
)2

= C(R)
α2 δab . (B.3)

In table 2, we give the relevant (fundamental) Dynkin indices for all groups.
Now, we consider the SU(2) BPST instanton solution with field strength F aµν , a =

1, 2, 3, embedded into G via (B.2),

Fµν = τaF aµν = −4τaηaµν
ρ2

[(x− x0)2 + ρ2]2
, with

∫
d4xF aµνF̃

a,µν = 32π2, (B.4)

where ρ is the size of the instanton, x0 is its position, and ηaµν are the ’t Hooft symbols
(e.g. [88]). For the embedding (B.2) according to the root α, the topological charge is then
given by

Qtop = N(G)
32π2

∫
d4xTrR

(
FµνF̃

µν
)

= N(G)C(R)
α2 , (B.5)

where we used (B.4) and (B.3).
As already discussed, in our study of T4 bundle, we want to define Qtop so that the

minimum possible charge for an embedding of the BPST instanton is Qtop = 1, so we must
set N(G) as

N(G) = α2
max

C(R) , (B.6)

where α2
max is the length squared of the longest root. Embeddings with shorter roots

correspond to multi-instantons, see e.g. [88]. Finally, notice that N(G) is independent of
the normalization of the roots, as required. The results for the root lengths and N(G) for
the various groups are summarized in table 4.

B.2 Fractional topological charge on T4

In this section, we calculate the topological charge for a T4-bundle twisted by the center, for
general simple gauge group. We assume that the center is a cyclic group Zk for some k, and
follow van Baal’s work for SU(N) [32].49 The discussion here holds for all gauge groups,
except Spin(4N) which gets a similar, but notably different, treatment in the relevant
section below.

We take the side lengths of T4 to be Lµ for µ = 1, 2, 3, 4. We use Ωµ to denote the
transition function relating the gauge field at xµ = Lµ with the field at xµ = 0:

A(xµ = Lµ) = Ωµ ◦ A(xµ = 0) , (B.7)
49Ref. [32] calculates the SU(N) topological charge with N(G) = 2, consistent with our table 4.
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where in accordance with usual notation, we do not display the arguments of Ωµ (noting
only that, obviously, Ωµ does not depend on xµ). With a co-cycle condition relaxed by a
center element, transition functions in the corners must commute up to a center element.
In the µ-ν plane we call this center element Zµν ∈ Zk:

Zµν = Ωµ(xν = Lν)Ων(xµ = 0)Ω−1
µ (xν = 0)Ω−1

ν (xµ = Lµ) ≡ e2πinµν/k1, (B.8)

which defines the integer nµν = −nνµ. In Theorem 3.1 of [32], whose proof holds for any
simple Lie group with trivial π2(G), it was shown that for the purposes of calculating the
non-integer part of the topological charge it suffices to take the transition functions to lie
in the maximal torus. Thus, we take

Ωµ = exp{2πifµ(x) ·H}, (B.9)

where H are the Cartan generators in the appropriate “convenient” representation R.
Define nµν as follows

nµν ≡ fµ(xν = Lν) + fν(xµ = 0)− fµ(xν = 0)− fν(xµ = Lµ). (B.10)

Notice that, by continuity, nµν = −nνµ does not depend on the transverse coordinates. In
fact, as in Theorem 3.1 of [32], it suffices to take

fµ =
∑
ν

nµν
xν

2Lν . (B.11)

Then, we have for Zµν :
Zµν = exp(2πinµν ·H). (B.12)

To be consistent with the definition of nµν we require that nµν = nµνµ
∗+α∗µν where α∗µν is

an arbitrary vector in the co-root lattice and can be different for each µ−ν plane, and µ∗ is
the co-weight which generates the center. We have assumed that for the representation Rν
with highest weight ν, µ∗ is a convenient choice - which can always be done, as discussed
in the previous section.

From [32], see Lemma 3.1 there,50 we find that the topological charge, for Ωµ in the
maximal torus, is given by

Qtop = N(G)
2

1
8π2

∑
µ,ν

∫
d2Sµνεµναβ Tr

[(
Ω−1
ν ∂αΩν

)
xµ=Lµ

(
Ωµ∂βΩ−1

µ

)
xν=0

]
, (B.13)

where
∫

d2S12 =
L3∫
0

dx3
L4∫
0

dx4, etc. We can plug in Ω from (B.9):

Ω−1
ν ∂αΩν = 2πi∂αfν(x) ·H , Ωµ∂βΩ−1

µ = −2πi∂βfµ(x) ·H , (B.14)

50Eq. (B.13) follows from (B.1) upon integrating by parts on T4 and repeated use of the co-cycle condi-
tions.
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and obtain

Qtop = N(G)
2

1
8π2

∑
µ,ν

∫
d2Sµνεµναβ Tr [(2πi∂αfν(xµ = Lµ) ·H) (−2πi∂βfµ(xν = 0) ·H)]

= N(G)
2

C(R)
2

∑
µ,ν

∫
d2Sµνεµναβ∂αfν(xµ = Lµ) · ∂βfµ(xν = 0)

= α2
max

2C(R)
C(R)

2 εµναβ
nνα

2 · nµβ2 = α2
max
4 εµναβ

nναµ
∗ +α∗να
2 ·

nµβµ
∗ +α∗µβ
2

= α2
max
4

[
(µ∗)2 2 Pf(n) + µ∗ · εµναβ α∗µβ

nνα
2 + εµναβ

α∗να
2 ·

α∗µβ
2

]
, (B.15)

where Pf(n) is the Pfaffian of n, defined as

Pf(n) ≡ 1
8εµναβnµνnαβ (B.16)

in four dimensions.51

Now, we examine the various terms above. Examining the second term in (B.15)
closer, consider 1

8α
2
maxµ

∗ · α∗µβ . We know that µ∗ ∈ Λ∗w so µ∗ =
∑
i µiw

∗
i for µi ∈ Z,

and similarly α∗µβ ∈ Λ∗r so α∗µβ =
∑
i(αµβ)iα∗i for (αµβ)i ∈ Z. We then have µ∗ · α∗µβ =∑

i,j µi(αµβ)jw∗i ·α∗j , but by definition we have w∗i ·α∗j = 2
α2
i
δij , so we find 1

8α
2
maxµ

∗ ·α∗µβ =
1
8α

2
max

∑
i µi(αµβ)i 2

α2
i

= 1
4
∑
i µi(αµβ)iα

2
max
α2
i
. Finally, recall that the ratio of the lengths of

any two roots (with the longer root in the numerator) is one of 1,
√

2,
√

3, and thus α
2
max
α2
i
∈ Z.

Now we define ξµβ ≡
∑
i µi(αµβ)iα

2
max
α2
i
, which must be an integer, as just argued, and is

antisymmetric since α∗µβ is antisymmetric. Including the Levi-Cevita symbol and nνα we
find the total second term to be 1

4εµναβnνβξµα. It is not hard to see that this must be an
integer, since we get a factor of 4 coming from the antisymmetry of both n and ξ, canceling
the overall factor of 1

4 .
Looking at the last term in (B.15), consider α∗να · α∗µβ . Recalling that the co-weight

lattice spans the co-root lattice, we can directly import our previous work with µ∗ ·α∗µβ to
find that (α2

max)α∗να · α∗µβ ∈ 2Z. Defining ζναµβ ≡ 1
2(α2

max)α∗να · α∗µβ ∈ Z, it is clear that
ζ is antisymmetric in its first two indices and its last two indices, and is symmetric with
respect to swapping the first two indices with the second two (να ↔ µβ). We then have
1
8εµναβζναµβ . Again, it is not too difficult to see that this must also be an integer, since we
can swap the first two indices of ζ, the last two, and the first two with the last two, each
of which contributes a factor of 2.

In conclusion, we see that the second and third term in equation (B.15) are integers,
and hence we find

Qtop = α2
max (µ∗)2

2 Pf(n) + Z, (B.17)

with Pf(n) defined in (B.16). Now we ask if this Qtop is invariant under changes of nor-
malization of roots. Recall that if we rescale our roots α → cα, then the weights must

51For an antisymmetric matrix with integer-valued entries nµν , Pf(n) is an integer. The simplest example
is the matrix with all entries zero but n12 = −n21 = n34 = −n43 = 1 which has Pf(n) = 1.
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Group Center Qtop (mod 1) QCP2
top (mod 1)

SU(N) ZN − 1
N Pf(n) − 1

2N n2

Sp(N) Z2
N
2 Pf(n) N

4 n2

Spin(8N) Z2 × Z2
1
2

(
1
4εµνλσn

+
µνn
−
λσ

)
N
2 (n2

+ + n2
−)− 1

2 n+n−

Spin(8N + 4) Z2 × Z2
1
2
(
Pf(n+) + Pf(n−)

) (
N
2 + 1

4

)
(n2

+ + n2
−)

Spin(4N + 2) Z4
1+2N

4 Pf(n) 1+2N
8 n2

Spin(2N + 1) Z2 0 1
2 n

2

E6 Z3
1
3 Pf(n) 2

3 n
2

E7 Z2
1
2 Pf(n) 1

4 n
2

Table 5. Summary of the topological charges mod1 on T4 for all gauge groups with non-trivial
center, derived in section B.2. The third column shows the result of our calculation of the topo-
logical charge on the non-spin manifold CP2, where n, n± are the corresponding integer twists, for
derivation and explanation, see appendix B.3.

also scale with c, while co-roots and co-weights scale with 1
c . Thus, in our above expres-

sion α2
max → c2α2

max will be compensated by (µ∗)2 → 1
c2 (µ∗)2. We then find that the

topological charge is invariant, as it should be.
Table 5 summarizes our results for the various groups. The numbers given in the table

follow from eq. (B.17) and are obtained in what follows, beginning with the groups with
cyclic center.

B.2.1 Groups with cyclic center

SU(N). For SU(N) we have µ∗ = w∗N−1 =
√

2(N−1)
N eN−1 giving us (µ∗)2 = 2(N−1)

N , and
α2

max = 1, so we find Qtop = N−1
N Pf(n) + Z, as expected.

Sp(N). For Sp(N) we have µ∗ = w∗N = 1
2
∑N
j=1 ej giving us (µ∗)2 = N

4 , and α
2
max = 4,

so we find Qtop = N
2 Pf(n) + Z.

Spin(4N + 2). For Spin(4N + 2) since the two chiral representations share the same
center, we can compute the topological charge in the direct sum representation. Indeed,
the normalizations were computed with this in mind. We have µ∗ = w∗2N if N is even and
µ∗ = w∗2N+1 if N is odd. In either case we find (µ∗)2 = 2N+1

4 = 1
4 + N

2 . We have α2
max = 2,

so the topological charge is Qtop =
(

1
4 + N

2

)
Pf(n) + Z = 1+2N

4 Pf(n) + Z.

Spin(2N + 1). For Spin(2N + 1) we have µ∗ = w∗2k+1 for 1 ≤ k < (N − 1)/2 giving us
(µ∗)2 = 2k + 1, and α2

max = 2, so we find Qtop = (2k + 1) Pf(n) + Z ∈ Z.

E6. For E6 we have µ∗ = w∗a for a = 1, 4 or µ∗ = 2w∗b for b = 2, 5, each of these gives us
(µ∗)2 = 1

3 + Z, and α2
max = 2, so we find Qtop = 1

3 Pf(n) + Z.
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E7. For E7 we have µ∗ = w∗a for a = 4, 6, 7 giving us (µ∗)2 = 1
2 + Z, and α2

max = 2, so
we find Qtop = 1

2 Pf(n) + Z.

B.2.2 Spin(4N)

For Spin(4N) we have to treat the two chiral representations separately in Zµν , where now
we have nµν = n+

µνµ
∗
+ + n−µνµ

∗
− +α∗µν , where the Z+

2 × Z−2 twists n±µν are mod 2 integers.
We take µ∗+ = w∗2N for even N , and µ∗+ = w∗2N−1 for odd N , while we take µ∗− = w∗2N−1
for even N , and µ∗− = w∗2N for odd N .

As Spin(4N) is a special case, let us be more explicit. Each of the transition func-
tions (B.9) is periodic up to a center element, eq. (A.41), in the S+ ⊕ S− representation
with generators H = diag(H+,H−). Explicitly, for even N , we take

Ωµ = exp
(

2πi
∑
ν

(
n+
µν

xν

2Lν
w∗2N + n−µν

xν

2Lν
w∗2N−1

)
·H

)
, (B.18)

where, for brevity, we ignored α∗µν (restored below). We then evaluate (B.13) as in deriv-
ing (B.15), using (A.38) and keeping in mind footnote 46. For even N , we find

Qtop = α2
max
4 εµναβ

n+
ναw

∗
2N + n−ναw

∗
2N−1 +α∗να

2 ·
n+
µβw

∗
2N + n−µβw

∗
2N−1 +α∗µβ

2

= α2
max
2

(
(w∗2N )2 Pf(n+) + (w∗2N−1)2 Pf(n−)

+
w∗2N ·w∗2N−1

8 εµναβ(n+
ναn

−
µβ + n+

ναn
−
µβ)
)

+ Z (B.19)

= α2
max
2

(
(w∗2N )2 Pf(n+) + (w∗2N−1)2 Pf(n−)

+w∗2N ·w∗2N−1(Pf(n+ + n−)− Pf(n+)− Pf(n−))
)

+ Z,

where we made use of the identity Pf(a+ b) = Pf(a) + Pf(b) + 1
4εµναβaµνbαβ . When N is

odd we simply swap n+ for n−, and we can see that Qtop will still be of the same form since
(w∗2N−1)2 = (w∗2N )2. In particular, (w∗2N−1)2 = 2N

4 = N
2 and w∗2N ·w∗2N−1 = (2N−1)−1

4 =
N−1

2 . Plugging these in, and using the fact that α2
max = 2, we find the following expression

for Qtop,

Qtop = N

2
(
Pf(n+) + Pf(n−)

)
+ N − 1

2
(
Pf(n+ + n−)− Pf(n+)− Pf(n−)

)
+ Z (B.20)

=


Pf(n++n−)−Pf(n+)−Pf(n−)

2 + Z N even
Pf(n+)+Pf(n−)

2 + Z N odd
. (B.21)

We note the difference between N even and N odd: when N is even we can get fractional
topological charge only when we turn on ’t Hooft fluxes for both representations, while
when N is odd we can get fractional topological charge only when we turn on just one ’t
Hooft flux out of the two representations.
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B.3 Fractional topological charge on CP2

This appendix is included here merely for completeness, due to its close resemblance of
the calculations already done on T4. At present, we are not aware of any relation to the
Hamiltonian framework which is our main interest in this paper. Nonetheless, we note
that ref. [87] quoted the fractional topological charges due to backgrounds gauging the
1-form symmetry on non-spin manifolds. In particular, their results imply the existence of
a “θ-periodicity anomaly” on such manifolds in cases when no anomaly is present on spin
manifolds, as in the Spin(2N + 1) case on T4, as per table 5.

We feel that for future applications, it may be useful to have a more pedestrian deriva-
tion of the fractional topological charge on non-spin manifolds as well, akin to our T4

calculation. The main point of this appendix is that the results quoted in [87] can be
understood in the explicit framework of [10]. It is based on considering “’t Hooft flux”
backgrounds proportional to the Kähler 2-form of CP2, the well-known explicit example of
a compact non-spin manifold. In [10], only SU(N) gauge groups were considered. Here,
we generalize the computation of the fractional Qtop in ’t Hooft flux backgrounds to the
other gauge groups.

To set the stage, let us return to T4 and note that our calculation of Qtop relied on using
transition functions Ωµ (B.9) which obey a co-cycle condition twisted by center elements, as
in (B.8). The fractional part of the topological charge, naturally, only depends on the twists
nµν . Thus, the calculation of Qtop can be made using any particular gauge background
on T4, periodic up to transition function Ωµ which obey the same co-cycle conditions. For
example, we can take the following background, switching to form notation to be used later:

A = Aλdx
λ = µ∗ ·H

∑
ν,µ

πxνdxµnµν
LµLν

, (B.22)

which obeys

A(xν = Lν) = Ων ◦A(xν = 0) , with Ων = e
i2π xµ

2Lµ
nνµµ∗·H

, (B.23)

exactly as in (B.7), (B.9), (B.11) (with the convenient co-weight µ∗ inserted in nµν) showing
that this background obeys the co-cycle conditions with the chosen twists. To calculate
the topological charge, we can then use the constant field strength of (B.22)

F = µ∗ ·H
∑
ν,µ

πnµν
LµLν

dxν ∧ dxµ , (B.24)

and use (B.1), rewritten in form notation, to obtain (B.17):

Qtop = α2
max

C(R)

∫
T4

TrR
F ∧ F
16π2 = α2

max (µ∗)2

2 Pf(n) , (B.25)

the result obtained earlier.52

52For Spin(4N) we need to simply replace µ∗nµν by w∗2Nn+
µν +w∗2N−1n

−
µν for even N (and the identical

expression with n+
µν and n−µν interchanged for odd N).
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Next, following [10], we generalize the background flux (B.24) to one appropriate to
CP2. CP2 is a compact manifold, the set of lines in the three-dimensional complex space,
C3, passing through the origin. CP2 can be described by the complex coordinates Ξ =
(ξ1, ξ2, ξ3) 6= (0, 0, 0) (here ξ1,2,3 ∈ C) modulo the identification Ξ ≡ λΞ for any complex
number λ 6= 0.

We now quickly review some facts about CP2 that we shall need, see [89, 90] or the
appendix of [10] for details and derivations. One can cover CP2 with three patches Ui
(i = 1, 2, 3, where Ui covers ξi 6= 0) such that the transition functions on the overlap
Ui ∩ Uj are holomorphic. In our discussion below, we shall consider one patch, the U3
patch with ξ3 6= 0. Thus, we take z1 ≡ ξ1/ξ3, z2 ≡ ξ2/ξ3. At the points ξ3 = 0 in CP2, we
have (ξ1, ξ2) ≡ λ(ξ1, ξ2), i.e. a two-sphere S2 = CP1. We now introduce polar coordinates
r, θ, φ, ψ

z1 = r cos θ2 ei
ψ+φ

2 , z2 = r sin θ2 ei
ψ−φ

2 , (B.26)

where 0 ≤ r <∞, 0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π, and note that the S2 is at r →∞.
In these coordinates, the Fubini-Study metric on CP2 is

ds2 = dr2

(1 + r2)2 + r2

4(1 + r2)2 (dψ + cos θdφ)2 + r2

4(1 + r2)(dθ2 + sin2 θdφ2) . (B.27)

To study the points at r → ∞, one can introduce a new coordinate u = 1/r and observe
that at u = 0 there is a S2 (or CP1) of area π (the metric is well behaved at u = 0
and the singularity apparent in the first two terms of (B.27) at 1/r = u → 0 is only a
coordinate one). We also note that we have scaled to dimensionless coordinates, where the
Ricci tensor of the metric (B.27) is Rab = 6δab and that CP2 is a solution of the Euclidean
vacuum Einstein equations with cosmological constant Λ = 6.

Of most importance to us are the following two facts.
First, CP2 is a Kähler manifold, with an anti-selfdual Kähler 2-form. In the coordinates

we use, it is

K = r

(1 + r2)2dr ∧ (dψ + cos θdφ)− 1
2

r2

1 + r2 sin θdθ ∧ dφ, (B.28)

and obeys ∫
CP2

K ∧K = 8π2

2 and
∮
S2
K = −2π . (B.29)

The first integral above is a straightforward integration of K over CP2, while the second is
an integral over the S2 (or CP1) located at r → ∞ in the coordinates of (B.27) (take the
limit r → ∞ and integrate K over the S2 parametrized by θ and φ). The importance of
the S2 is that one can thread a ’t Hooft flux through it.

Second, CP2 is a classic example of a non-spin manifold [91–93]. A quick way to see
the difficulty of defining spinors is to calculate the index of the Dirac operator in the CP2

gravitational background via the index theorem and find that it has the non-integer value
−1/8, clearly implying an inconsistency (see, e.g. [10] for the relevant formulae). Here,
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we will use the procedure of [10] to turn on ’t Hooft fluxes, consistent with the transition
functions on CP2 with gauged 1-form symmetry. As discussed in that reference, to avoid
backreaction on the manifold, we turn on an anti-self dual field strength proportional to
the Kähler form (its energy momentum tensor is zero owing to the self-duality).

We shall now show that the background generalizing the T4 background from
eq. (B.24), for groups with cyclic center (see below for a generalization to Spin(4N)), is

F = Cµ∗ ·H K , (B.30)

where C is a constant and K is the Kähler form (B.28). One way to argue53 for the
value of C is to consider the S2 at r → ∞ and study the transition functions for the
gauge potential. On S2, K = −1

2 sin θdθ ∧ dφ = d
(

cos θdφ
2

)
. Thus, F = dA±, where

A± = Cµ∗ · H 1
2 (±1 + cos θ)dφ. The connection A+ should be taken at θ 6= 0 (the

southern hemisphere) and A− at θ 6= π (the northern hemisphere). The transition function
Ω(φ) on the equator can be found from A+ − A− = −iΩdΩ−1 to equal Ω(φ) = eiCµ

∗·Hφ;
it is not periodic, Ω(2π) = eiC2πµ∗·HΩ(0). However, it is periodic up to a center element
provided that C is an integer. Thus, from now on we take C = n, n ∈ Z.

Now we can repeat the computation of the topological charge (B.25) of the back-
ground (B.24) on T4 for the case of on CP2 in the background (B.30), making use of (B.29),

Qtop = α2
max

C(R)

∫
CP2

TrR
F ∧ F
16π2 = α2

max (µ∗)2 n2

16π2

∫
CP2

K ∧K = α2
max (µ∗)2

4 n2 . (B.31)

For the groups with cyclic center, this is 1/2 the expression (B.25) obtained on T4, with
Pf(n)→ n2. To translate this into the actual fractional value of Qtop on CP2 shown in the
third column of table 5 requires some care (notably for E6).

For Spin(4N), with even N , we take instead F = (n+w∗2N + n−w∗2N−1) ·H K, where
n± are now two integers; and we replace (µ∗)2n2 in (B.31) by (n+w∗2N + n−w∗2N−1)2. For
odd N , we instead replace (µ∗)2n2 by (n−w∗2N + n+w∗2N−1)2, i.e. interchange n+ and n−.
Collecting everything, we now summarize the result for the groups with Z2 × Z2 center

Qtop[Spin(8p)] = p

2(n2
+ + n2

−)− 1
2n+n− + Z , (B.32)

Qtop[Spin(8p+ 4)] =
(
p

2 + 1
4

)
(n2

+ + n2
−) + Z . (B.33)

Our results for CP2 topological charges in the backgrounds with ’t Hooft fluxes (labeled
by n for the groups with cyclic centers and n± for Spin(4N)) summarized in table 5 agree
with the results quoted in [87].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

53A quick consistency check is to note that the expression (B.30) for F , upon integration over the non-

contractible S2 ∈ CP2 yields ei
∮
S2 F = e−2πiCµ∗·H ∈ Z(G) for C ∈ Z, as appropriate for a ’t Hooft flux.
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