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Instrumental behavior depends on both goal-directed and habitual mechanisms of choice.

Normative views cast these mechanisms in terms of model-free and model-based methods

of reinforcement learning, respectively. An influential proposal hypothesizes that model-

free and model-based mechanisms coexist and compete in the brain according to their

relative uncertainty. In this paper we propose a novel view in which a single Mixed Instru-

mental Controller produces both goal-directed and habitual behavior by flexibly balancing

and combining model-based and model-free computations. The Mixed Instrumental Con-

troller performs a cost-benefits analysis to decide whether to chose an action immediately

based on the available “cached” value of actions (linked to model-free mechanisms) or to

improve value estimation by mentally simulating the expected outcome values (linked to

model-based mechanisms). Since mental simulation entails cognitive effort and increases

the reward delay, it is activated only when the associated “Value of Information” exceeds

its costs.The model proposes a method to compute the Value of Information, based on the

uncertainty of action values and on the distance of alternative cached action values. Overall,

the model by default chooses on the basis of lighter model-free estimates, and integrates

them with costly model-based predictions only when useful. Mental simulation uses a sam-

pling method to produce reward expectancies, which are used to update the cached value

of one or more actions; in turn, this updated value is used for the choice. The key predic-

tions of the model are tested in different settings of a double T-maze scenario. Results are

discussed in relation with neurobiological evidence on the hippocampus – ventral striatum

circuit in rodents, which has been linked to goal-directed spatial navigation.

Keywords: model-based reinforcement learning, hippocampus, ventral striatum, goal-directed decision-making,

exploration-exploitation, value of information, forward sweeps

1. INTRODUCTION

Goal-directed decision-making describes choice as depending on

the evaluation of action-outcome contingencies (Balleine and

Dickinson, 1998). Consider the case of a thirsty rat facing a T-maze

with water in its left end. When behavior is controlled by goal-

directed mechanisms of choice, the rat goes left because it predicts

a water outcome (expectancy), and wants to reach it (goal state).

Goal-directed mechanisms are considered to be very flexible as

they rapidly readapt choice after changed conditions (e.g., devalu-

ation of stimuli previously associated with high value). In contrast,

habitual choice mechanisms rely on fixed stimulus-response reac-

tions arising after extensive training. Consider again the case of

the rat in the T-maze. If it has been rewarded a sufficient number

of times for going left, it will tend to choose left again even if there

is no reward. Compared to goal-directed mechanisms, habitual

mechanisms are less flexible (e.g., they readapt very slowly after

devaluation) but also faster and less demanding.

Normative views of animal behavior cast habitual and goal-

directed mechanisms of choice in terms of model-free and model-

based methods of reinforcement learning (RL), respectively (Daw

et al., 2005). Model-free methods use “cached” action values

to choose actions (i.e., aggregated values that can be recalled

quickly). A long tradition of experimental and theoretical work

in neuroscience uses model-free methods of RL, and in partic-

ular temporal-difference (TD) methods (Schultz et al., 1997), Q

learning (Watkins and Dayan, 1992), and actor-critic architectures

(Houk et al., 1995), to explain essential aspects of decision circuits

such as dopamine bursts and the functioning of the basal ganglia.

Model-based methods use instead internal forward models to

mentally simulate future action possibilities and their associated

values. Model-based mechanisms are well known in the reinforce-

ment learning literature (Sutton and Barto, 1981, 1998) and are

nowadays increasingly studied in neuroscience and neuroeconom-

ics in relation to perceptual, value-based, and economic choices

(Pezzulo et al., 2007; Glimcher et al., 2009; Daw, 2012; Pezzulo

and Rigoli, 2011; O’Doherty, 2012; Solway and Botvinick, 2012).

Here we focus on goal-directed spatial navigation, which has been

linked to the hippocampus – ventral striatum circuit in the rodent

brain. It has been reported that rats navigating in mazes stop at

decision points and turn the head in one of the possible directions,
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then to the other. When they turn their heads, place cells in the

hippocampus “sweep forward” in the corresponding branch of

the maze, as if the rat had really moved in that direction (Johnson

and Redish, 2007). In correspondence of forward sweeps, ven-

tral striatum activation is observed as well (van der Meer and

Redish, 2009). Based on such evidence, it has been proposed that

the hippocampus – ventral striatum circuit implements a mental

simulation mechanism that realizes goal-directed choice, with the

hippocampus linked to forward modeling and the ventral stria-

tum linked to the evaluation of covert expectations of rewards

constructed by the hippocampus (van der Meer and Redish, 2009,

2010, 2011; Battaglia et al., 2011; Pennartz et al., 2011; Chersi and

Pezzulo, 2012; Erdem and Hasselmo, 2012; Penner and Mizumori,

2012; van der Meer et al., 2012). This view links well with the idea

of a “vicarious trial and error” mechanism in rats (Tolman, 1948).

Habitual and goal-directed mechanisms of choice coexist and

interact in the brain (Balleine and Dickinson, 1998). However, the

proximal mechanisms that are responsible for their interactions

are incompletely known. An influential theory proposes a contin-

uous competition between habitual and goal-directed mechanisms

of choice (implemented as two separate controllers) regulated by

their relative uncertainty (Daw et al., 2005; Niv et al., 2006; Dayan,

2009). This theory captures the key role of uncertainty in the arbi-

tration of goal-directed and habitual mechanisms of choice, and

can reproduce (among the other things) the effects of habitization,

or the gradual passage from goal-directed to habitual mechanisms

after sufficient learning (Balleine and Dickinson, 1998). Mecha-

nistically, this is due to the fact that the initial uncertainty of the

habitual controller (compared to the goal-directed one) is higher

(as it learns less efficiently from experience) but becomes lower

after sufficient learning. This theory assumes that the model-free

and model-based controllers are actively engaged in every decision

(although ultimately only one of them is selected) and therefore it

cannot explain why the hippocampal forward sweeps, putatively

associated with model-based computations, vanish with habitiza-

tion (van der Meer and Redish, 2009). Furthermore, this theory

does not consider that model-based computations might have

costs, linked to the cognitive effort due to planning (Gershman

and Daw, 2011) and to the temporal discounting of rewards due

to the time required for planning (Shadmehr, 2010).

We propose that a single instrumental process of decision-

making produces both goal-directed and habitual behavior by

flexibly combining aspects of model-based and model-free com-

putations. We call this system a Mixed Instrumental Controller

(MIC). At decision points, the MIC performs a cost-benefits analy-

sis, comparing the advantage of mental simulation (in terms of

improving reward information) with its costs. More specifically,

the MIC calculates the Value of Information (VoI ; Howard, 1966)

of mental simulation on the basis of uncertainty and of how much

the alternative “cached” action values differ against each other.

Then, the Value of Information is compared against the cost of

mental simulation (in terms of cognitive effort and time). As a

consequence of this, goal-directed mechanisms (mental simula-

tions) are activated only when necessary, in line with evidence

on rats’ forward sweeps. In sum, the MIC combines model-

based and model-free computations and does not lend itself to

a complete separation of goal-directed and habitual controllers

FIGURE 1 |The rat navigation scenario used in the simulations: a

doubleT-maze.

(in the strict sense devised in Daw et al., 2005); hence the label

“mixed.”

In the rest of the article, we introduce the proposed Mixed

Instrumental Controller model and test it in a simulated rat naviga-

tion scenario, in which decisions (going right or left) correspond

to the selection of a branch in a double T-maze; see Figure 1.

Rewards can be allocated at any of the seven points indicated as

S1–S7. This scenario permits studying how selection of habitual

vs. goal-directed processes at decision points changes as a function

of learning, and to link elements of the model to neurobiological

findings in rodents.

2. METHODS: THE MIXED INSTRUMENTAL CONTROLLER

MODEL

Figure 2 illustrates the algorithm followed by the mixed instru-

mental controller model. This algorithm can be separated in

four sub-processes, called meta-choice (between cached values

and mental simulation), mental simulation, choice, and learning.

Below, we describe each sub-process in details.

2.1. META-CHOICE BETWEEN CACHED VALUES AND MENTAL

SIMULATION

At decision points (S1, S2, and S3), the agent (a simulated rat)

has to decide whether to turn right or left. The agent has stored

a prior estimate of each action value (Q value, see Watkins and

Dayan, 1992), together with an estimate of each Q value uncer-

tainty. Based on this information, at decision points, the agent

first chooses whether to mentally explore the action consequences,

in order to improve the action value estimates, or to simply rely

on prior Q value estimates. This process can be viewed as a meta-

choice between habitual (corresponding to“cached”Q values) and

goal-directed processes (corresponding to mental simulation). At

every decision point, this meta-choice is performed separately for

each action (going left and right). In other words, the system

might mentally simulate only the more uncertain action(s), not

necessarily all.

This meta-choice amounts to computing the Value of Infor-

mation (VoI ; Howard, 1966) obtained with a mental simulation

related to a given action Act1 (e.g., going left at a decision point

when left or right actions are possible). As solving an optimal

solution to this problem is generally intractable in non-stationary
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FIGURE 2 | Overview of the mixed instrumental controller (MIC).

environments, to determine VoI Act 1 we adopt a simpler method

described in equation (1):

VoIAct1 =
CAct1

|QAct1 − QAct2| + ǫ
(1)

This equation indicates that, for each action, our model con-

siders two elements: (1) the difference between the QAct 1 value

and the QAct 2 value of the alternative action (plus an ǫ to ensure

that the sum is non-zero); (2) the uncertainty (CAct 1) relative to

QAct 1. The ratio between the two elements represents the estimated

VoI Act 1 obtained with mental simulation. This value is compared

with the cost of mental simulation, which can be thought to be

connected to the cognitive effort due to search (Gershman and

Daw, 2011) and the temporal discounting of rewards due to the

passing of time (Shadmehr, 2010). This cost is implemented here

as a fixed threshold γ .

2.2. MENTAL SIMULATION

When VoI Act 1 is smaller than the threshold γ , the agent relies on

the cached QAct 1 value estimates for choice. On the contrary, when

VoI Act 1 is bigger than the threshold, forward sweeps are performed

to simulate the effects of possible action executions. These simu-

lated effects are then considered as pseudo-observations and are

used to improve the estimation of QAct 1.

Figure 3 shows the graphical model (Dynamic Bayesian Net-

work; Murphy, 2002) used for mental simulation (see Botvinick

and An, 2008; Dindo et al., 2011; Pezzulo and Rigoli, 2011; Solway

and Botvinick, 2012 for related models). Nodes represent ran-

dom variables including policies (π), actions (A), belief states (S),

rewards (R), pseudo-observations (O) along with their temporal

index t. Arrows connecting nodes indicate conditional probabili-

ties among corresponding variables. Mental simulation consists in

“clamping” current state and policy nodes (in other words, in con-

sidering these nodes as observed), and compute the conditional

aggregated “value,” which depends on the rewards gained at every

time steps. The clamped policy at the first time step corresponds to

the simulated action, while the policies clamped at following time

steps are randomly chosen with equal probability. For instance, at

FIGURE 3 | Graphical model for mental simulations, unrolled for three

time steps. Filled nodes are “clamped” (i.e., considered as observed)

during mental simulation (seeTable 1).

S1 the agent could simulate the “going left” action by clamping the

policy of going left at the first time step, and clamping a random

policy (e.g., going right) at the second time step.

Mental simulations are repeated for several times, and every

time the computed value is stored. The number of simulations is

proportional to uncertainty (CAct 1); the proportion is regulated

by a parameter λ. In addition, the number of simulated time steps

for every simulation depends on uncertainty as well. Specifically,

when uncertainty is higher than a threshold ζ , the agent simulates

a sequence of actions (i.e., a whole path in the T-maze) and uses

rewards to compute its aggregated value. Alternatively, the agent

simulates a shorter path (whose length is regulated by a parameter

η) and retrieves the Q value of one of the actions associated to
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Table 1 | Nodes of the graphical model of Figure 3.

Node Explanation Values

π Policies {S1 → left, S2 → left, S3 → left} . . . {S1 → right,

S2 → right, S3 → right}

A Actions Left, right (or equivalently: Act1, Act2)

R Rewards [0 . . . n]

S Belief states S1, S2, S3, S4, S5, S6, S7

O Pseudo-

observations

[0 . . . n]

the last simulated state. This Q value incorporates the cumulative

expected value from that state on, rather than only the value of the

state (i.e., it is a return and not a reward in reinforcement learning,

see Sutton and Barto, 1998). Values relative to future states are

discounted with a factor δ.

Once all mental simulations have been executed, the computed

values are considered as pseudo-observations (O1, O2, . . ., On,

one for each simulation) and are used to improve the estimate of

QAct 1. The stored value is used as a prior(QPrior
Act 1 ) and the pseudo-

observations are used to compute a posterior value (QPosterior
Act 1 ).

This computation is described by equation (2) (assuming that the

distribution variance of the QAct 1 value is known and is equal to

1, see Bishop, 2006):

QPosterior
Act 1 =

QPrior
Act 1 + CAct 1 ·

∑N
i=1 Oi

1 + CAct 1 · N
(2)

where CAct 1 is the uncertainty, namely the prior variance on the

mean of the QPrior
Act 1 value distribution, Oi is the pseudo-observation

i, and N is the number of pseudo-observations.

2.3. CHOICE

At every decision point, a choice between actions is made by con-

sidering the value of the different possible actions (QAct 1 and

QAct 2). Note that this value can be either the cached Q value (if

mental simulation was not used) or the posterior Q value cal-

culated with equation (2) (if mental simulation was used). The

choice is made according to the following softmax equation:

P (Action = Act 1|QAct 1, QAct 2)

=
exp (β · QAct 1)

exp (β · QAct 1) + exp (β · QAct 2)
(3)

where QAct 1 and QAct 2 are the Q values relative to the two possible

actions (say going left or right at a decision point), and β is the

inverse temperature parameter.

2.4. LEARNING

The MIC has two forms of learning.

2.4.1. On-line learning of C and Q values

Once the agent executes an action, he moves toward a new posi-

tion and, in some cases, collects a reward. On the base of this novel

experience, the agent learns. First, the QAct 1 value corresponding

to the executed action is updated. The obtained reward, which

FIGURE 4 | Graphical model for learning C and Q values, unrolled.

is summed up to the Q value corresponding to the best action

associated to the new position, is considered as an observation O.

This observation is used to estimate the Q value at the follow-

ing trial using the generative model represented by the graphical

model shown in Figure 4. At every trial x, the prior QAct 1,x value

and uncertainty CAct 1,x are used by a particle filtering algorithm

to compute the QAct 1,x+1 value and the uncertainty CAct 1,x+1 at

trial x + 1. The prior QAct 1,x value considered here is the “cached”

QAct 1 value that is available before mental simulations (if any)

were made.

The specific particle filtering algorithm is the following: for

n = 1 to N, random vectors [CAct 1,nQAct 1,n] are sampled from

the prior Gaussian distributions of uncertainty N ∼ (CAct 1,x , k)

(where k is a known parameter) and of Q value N ∼ (QAct 1,x ,

CAct 1,n). Then, the sampled vectors are weighted proportionally

to P(OAct 1,x /QAct 1,n). After this, N vector samples are drawn

from the previous vector set, each with a probability propor-

tional to its weight. Finally, the posterior uncertainty is com-

puted as CAct 1,x+1 =
∑

CAct 1,n/N and the posterior Q value as

QAct 1,x+1 =
∑

QAct 1,n/N.

2.4.2. Value learning

The model uses a model-based method to learn state values (i.e.,

the rewards R in the graphical model shown in Figure 3). Every

time a reward is encountered in a state s, the mean of the expected

reward conditional to that state R(s)x+1 is updated according to

equation (4):

R(s)t+1 = R(s)t + α (Robserved − R (s)t ) (4)

where α is a learning rate.

3. RESULTS OF THE SIMULATIONS

We tested the MIC model in five simulated experiments. In

the simulations, an artificial agent faced a double T-maze (see

Figure 1) and, for several trials, had to choose twice to go either

right or left. The simulations tested two key predictions of the

model. First, we expected that the MIC model was able to learn the

correct policy based on available rewards. Second, we expected that

the MIC model executed forward sweeps only in certain circum-

stances, namely when the VoI was high. Specifically, we expected
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Table 2 | Parameters and constants used in all the simulations.

Label Explanation Value

α Learning rate for the model-based value

representations

0.2

β Inverse temperature parameter of the

softmax function

0.4

γ Threshold for mental simulation 0.5

– Discount factor 1

ǫ Small number used in the VoI to avoid

division by zero

0.0001

ζ Threshold relative to uncertainty for

shortening the mental simulation

3

η Length of the simulation when

uncertainty is lower than ζ

1

– Starting reward values for the

model-based representations

1

– Initial value of uncertainty in the

simulations

4

κ Uncertainty variance 1

λ Number of forward sweeps during mental

simulation

C × 3

– Prior Q values at the first trial 1

to observe forward sweeps at the beginning of learning in all sim-

ulations. In addition, forward sweeps were expected to gradually

decrease and disappear in simulations where variances were small

and/or alternative Q values were not close to each other (sim-

ulations 1, 2, 4), contrary to simulation 5 where variances were

high and alternative Q values were close to each other. Finally,

we expected forward sweeps to reappear following unexpected

changes in reward (simulation 3), and to decrease and disappear

again as learning proceeded. In all the simulations, we assumed

that the agent already knew the transition function, namely the

conditional probabilities of outcomes given previous states and

actions in the graphical model shown in Figure 3. The parameters

and constants used in all the simulations are shown in Table 2.

3.1. SIMULATION 1: SIMPLE AND STABLE ENVIRONMENT WITH LOW

VARIANCE

In the first simulation, a reward having a mean of 5 (r = 5)

was placed at S7 (i.e., top right), while other positions had zero

mean reward. Reward variance was relatively small for all posi-

tions, namely 0.2. The aim of this experiment was studying the

gradual transition from goal-directed to habitual mechanisms of

choice as a function of learning. Indeed, in stable environments, a

given sequence of actions (in this case, right-right) is always rein-

forced and, after a certain amount of learning, can be selected by

using habitual mechanisms, without the effort entailed by mental

simulations. We hypothesized, as experience increased, a decrease

in number and length of mental simulations (corresponding to

goal-directed control), leading to relying on prior Q estimates

(corresponding to habitual control).

Figure 5 describes the experimental results. Figure 5A shows

the probability of choosing left turns at S1, S2, and S3. It shows a

rapid decrease of preference for left turns at S1 and S3, as it was

expected given that reward could be collected with two right turns.

Turning right or left at S2 was equiprobable as neither S4 nor S5

were rewarded. Figure 5B shows the value of uncertainty along

trials for going right at S1, which diminished rapidly. Figure 5C

shows the number of samples used for the mental simulation for

going right at S1, which is proportional to uncertainty. A value of

zero indicates that the mental simulation is not used at all. Our

results show that, during learning, mental simulations decreased

in number, suggesting a gradual shift from goal-directed to habit-

ual control. Moreover, Figure 5D indicates that, along learning,

the length of forward sweeps decreased as well. The mechanisms

tested in the present simulation can explain why learning in stable

and simple environments produces habitization, which parallels a

reduction (in number and length) of hippocampal forward sweeps

and covert expectation of reward in ventral striatum (van der Meer

and Redish, 2009). The development of habits entails also a “shift”

of activation in dorsolateral striatum from actual reward locations

to decision points and then to starting points (Jog et al., 1999). In

our framework, this corresponds to the states in which the agent

is highly confident of acquiring reward (i.e., at S7 before learning,

at S3, and successively at S1 after learning).

3.2. SIMULATION 2: COMPLEX AND STABLE ENVIRONMENT WITH

LOW VARIANCE

In the second simulation, multiple rewards were placed in the

maze: S2 (r = 2), S4(r = 1), S7 (r = 5). Like in the previous sim-

ulation, reward variances were relatively small (0.2). The goal of

this simulation was to test whether the agent was able to shift from

goal-directed to habitual control in a more complex environment.

Figure 6 describes the results. Figure 6A indicates that the agent

was able to learn the correct policy. Figure 6B shows a decrease

in uncertainty along learning for the action “going right” at S1.

Figures 6C,D indicate that both the number and length of forward

sweeps diminished along learning. The results of this simulation

show that the MIC model can choose adaptively even in envi-

ronments that have multiple rewards. In addition, due to the low

reward variance, the model habituated (i.e., diminished forward

sweeps) almost as fast as simulation 1. Compared to simulation 1,

the choice of actions was more variable, matching the amount of

rewards at different branches of the T-maze. This is due to the use

of a softmax rule, which selects actions in proportion to their Q

values rather than always selecting the action having the highest Q

value.

3.3. SIMULATION 3: NON-STATIONARY ENVIRONMENT

In the third simulation, a single reward (r = 5) was initially placed

at S7, and then moved to S4 after 50 trials. Reward variances were

relatively small (0.2). The aim of this simulation was studying

how the model re-adapts to novel contingencies. In other words,

the agent had to learn an action sequence (right twice) and, after

contingencies had changed, to re-learn a novel action sequence

(left twice).

Figure 7 describes the results. Figure 7A shows that the policy

was updated correctly in correspondence with the introduction

of novel contingencies (Balleine and Dickinson, 1998). Figure 7B

indicates that uncertainty decreased from trial 1 to 50, but, at

this point, it increased again because previous contingencies had
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FIGURE 5 | Results of simulation 1, simple and stable

environment with low variance, for 100 trials. (A) (top left) Shows

the probability of going left at S1, S2, and S3 during the trials. (B) (top

right) Plots the uncertainty for going right at S1. (C) (bottom left)

Shows the number of forward sweeps (associated to mental

simulation) used for the choice at S1; zero means that mental

simulation is not used. (D) (bottom right) Shows the length of forward

sweeps used for the choice at S1.

changed. This pattern was mirrored by the number and length of

forward sweeps, shown in Figures 7C,D. These results show that

the habitual system takes control in stationary environments but,

after surprising outcomes are encountered, goal-directed mecha-

nisms (corresponding to mental simulations) are activated again,

due to a rapid uncertainty increase. This pattern of results sug-

gests a specific prediction done by the MIC model in relation to

the mechanisms regulating forward sweeps in rats, which requires

empirical testing.

3.4. SIMULATION 4: SIMPLE ENVIRONMENT WITH HIGH VARIANCE

In this simulation, mean rewards were as in simulation 1 (i.e., r = 5

at S7), but with 5-times larger variances (var = 1). We hypothe-

sized that uncertainty was bigger and less stable in this condition,

compared to simulation 1. Figure 8 describes the results. Figure 8A

shows that the agent learned the correct policy (although beliefs

were less stable compared to simulation 1). Figure 8B confirms

that uncertainty was bigger and less stable than simulation 1.

Figures 8C,D shows that, at the beginning of learning, mental

simulations were activated for more trials compared to simula-

tion 1. This is consistent with the idea that forward sweeps in

the hippocampus are not only a function of experience (i.e., the

more experience, the less forward sweeps) but also a function of

environmental uncertainty (Gupta et al., 2010). However, with a

certain amount of learning, in this simulation the habitual system

took control as in simulation 1, and forward sweeps were no more

activated. The reason was that, although variance was high, the

environment was “simple.” In other words, the difference between

alternative Q values was big and the animal was quite confident

about the best choice to take. This pattern of results represents a

specific prediction of the MIC model, which requires empirical

testing.

3.5. SIMULATION 5: COMPLEX ENVIRONMENT WITH HIGH VARIANCE

In the last simulation, mean rewards were like simulation 2 (i.e.,

r = 2 in S2; r = 1 in S4, r = 5 in S7); however, in this case, reward

variances were bigger, namely they were equal to 1. The goal of

this simulation was to observe the artificial agent in a complex

environment with high variance. Figure 9 describes the results.

Figure 9A confirms that the agent was able to learn the correct

policy, although beliefs were more noisy than in simulation 2.

Figure 9B shows that uncertainty was bigger and less stable than

in simulation 2. This led to activate mental simulations along the

whole learning period (see Figures 9C,D) although to a larger

extent at the beginning. The use of mental simulations along

the whole learning period is caused by two factors. First, high
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FIGURE 6 | Results of simulation 2, complex and stable environment with low variance. (A–D): see Figure 5.

reward variance increased uncertainty. Second, in this simulation,

the environment was complex, namely different paths were not

much different to each other in terms of total reward. Indeed,

going left at S1 led to r = 3, whereas going right led to r = 5, which

are relatively close to each other. These results suggest that in com-

plex and uncertain environments the forward sweeps could persist

for a longer time, and the passage from goal-directed to habitual

strategies could be incomplete.

4. GENERAL DISCUSSION

The Mixed Instrumental Controller (MIC) is an integrative model

describing how model-based (mental simulation) and model-

free mechanisms (Q learning) could interact in both cooperative

and competitive ways, producing a continuum of habitual and

goal-directed strategies of choice.

In the Mixed Instrumental Controller, model-free mechanisms

are used by default and supported by model-based computa-

tions when the Value of Information of the latter surpasses its

costs; this is typically true when uncertainty is high and alterna-

tive cached action values are close to each other. Furthermore,

the relative contribution of model-based mechanisms can vary:

the less the uncertainty, the fewer the samples used to imple-

ment the forward sweeps. In sum, the MIC permits to flexi-

bly balance model-free and model-based methods depending on

environmental circumstances.

To decide when mental simulation is necessary, the Mixed

Instrumental Controller solves a “dilemma” that is similar to the

well known exploration-exploitation dilemma, except that in this

context the exploration is “mental” and not overt. Specifically,

the mental exploration consists in performing mental simula-

tions to access expectancies and associated reward predictions,

and ultimately to better estimate action values. The exploita-

tion consists in choosing an action on the basis of the already

available (“cached”) estimate of action values, rather than per-

forming mental simulation. The dilemma can be solved by com-

paring the Value of Information that can be retrieved using

mental simulation with the cost of the simulation. Computing

an optimal solution to this problem is generally intractable in

non-stationary environments, and it is still unclear if and how

the brain does so (Aston-Jones and Cohen, 2005; Daw et al.,

2006; Pezzulo and Couyoumdjian, 2006; Behrens et al., 2007;

Cohen et al., 2007; Bromberg-Martin and Hikosaka, 2011; Niv

and Chan, 2011). The MIC model implements an approximate

solution to this problem that considers accuracy of choice (i.e.,

probability of acquiring higher reward) and uses a fixed cost of

acquiring information (in terms of cognitive effort and time); the

former factor favoring mental exploration, and the latter exploita-

tion. Overt exploration is not explicitly modeled in the MIC,

but it results from the adoption of a softmax function for the

choice.
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FIGURE 7 | Results of simulation 3, non-stationary environment. (A–D): see Figure 5.

Our simulations in environments having different character-

istics (stable or volatile, low or high variance) show that there

are multiple factors that can cause the Value of Information to

be higher, and most notably the variance and the difference in

value between the competing alternatives. Generally, mental sim-

ulations at decision points diminish after sufficient learning, in

line with evidence showing that in this condition habitization

replaces goal-directed mechanisms of choice (Jog et al., 1999).

However, if variance is high or if the values of the alternatives

are too close, the system is slower in developing habits. Dif-

ferent from alternative models, in the MIC the habitization is

accompanied by a reduced use of model-based computations;

this mechanism can explain why hippocampal-striatal forward

sweeps, possibly encoding covert simulations at decision points,

vanish after sufficient experience (van der Meer and Redish,

2009).

When environmental contingencies change, mental simula-

tions are used anew, consistent with evidence of a passage from

habitual to goal-directed strategies after outcome devaluation

(unless it occurs after“overtraining”). When contingencies change,

the goal-directed system can immediately change behavior. Fur-

thermore, changed environmental conditions increase the VoI and

speeds up the updating of C and Q values; see Figure 4. However,

the reaction to outcome devaluation can be slower (or impaired)

when actions are over-trained (Dickinson, 1985) because the

(non-active) goal-directed system cannot instruct an immediate

change of strategy and updating C and Q values takes longer.

It is worth noting that although the MIC model is sensible to the

volatility of the environment, this element is not explicitly modeled

(but, see below for a possible extension of the model). Finally, our

results in the more complex environments (with high uncertainty

and variance) are in keeping with evidence that forward sweeps

are not a simple replay of previous experience but are modulated

by task uncertainty (Gupta et al., 2010). Moreover, the MIC model

makes the further prediction that the difference between alterna-

tive cached action values has a role as well in influencing forward

sweeps.

5. CONCLUSION

We proposed that essential aspects of goal-directed and habit-

ual control can be captured within a single instrumental process

of decision-making, the Mixed Instrumental Controller (MIC),

which flexibly balances and combines model-based and model-

free computations. We linked the functioning of the MIC model

to a neural circuit formed by the hippocampus and the ventral

striatum, which has been shown to be active during goal-directed

navigation and the choice between spatially defined goals.

The MIC model elaborates on a previous influential model

(Daw et al., 2005; Niv et al., 2006; Dayan, 2009) which emphasizes

that goal-directed and habitual mechanisms of choice are linked
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FIGURE 8 | Results of simulation 4, simple environment with high variance. (A–D): see Figure 5.

to model-based and model-free methods of reinforcement learn-

ing, respectively, and which assigns a key role to uncertainty. At

the same time, the MIC departs from this model in that it assumes

that model-based calculations are only used when the Value of

Information they can furnish is higher than their costs. Another

distinguishing point is the fact that while in the previous theory

model-free and model-based processes produce two competing

instrumental controllers, in the MIC they act in concert. First,

although generally mental simulations are used to retrieve the

rewards associated to future states, they can also retrieve Q values

that permit to aggregate the value of several time steps, as it is typ-

ical of model-free algorithms. Combining these two methods (for

instance, performing forward search until a reliable cached value

is available) is typical in game playing set-ups (Baum and Smith,

1997) and understanding how the brain might do so is an impor-

tant avenue for future research (Glascher et al., 2010; Simon and

Daw, 2011a). Second, model-free and model-based processes pro-

vide complementary information to calculate action values. This

is evident if one considers that, in equation (2), the cached Q value

is used as a prior and updated using model-based calculations.

Another peculiarity of our model is the way mental simula-

tion is realized. In the MIC, mental simulation is computationally

implemented as a sequential sampling procedure using the graph-

ical model described in Figure 3. The method we adopt consists in

“clamping” one policy at a time (see Solway and Botvinick, 2012),

which produces a serial process of (simulated) internal experience

sampling. This method is different from the idea of a “tree search”

as it is typically described in normative approaches (Niv et al.,

2006), and from models of parallel “diffusion” processes for plan-

ning (Ivey et al., 2011). It produces a serial forward search that

better captures the nature of forward sweeps in the hippocampus

(see also Lengyel and Dayan, 2008; Bornstein and Daw, 2011).

Furthermore, the specific algorithm used for the forward search,

i.e., particle filtering, produces a (noisy) accumulation of evidence

about rewards, which links well to sequential sampling dynam-

ics used for perceptual decisions and memory search (Ratcliff,

1978) and the“ramping”activity of primate neurons during choice

(typically, in the neuronal areas that control the effectors used

for the choice; Shadlen and Newsome, 2001; Cisek and Kalaska,

2005; Ding and Gold, 2010). Overall, then, our mental simulation

system describes the value-based computations of the hippocam-

pus – ventral striatum circuit in terms that are analogous to those

of perceptual-based decisions, and are coherent with the idea of

“decision by sampling” (Stewart et al., 2006).

All these characteristics distinguish the MIC from the model

of Daw et al. (2005) and from several others, which we shortly

review below. Similar to the MIC, it has been recently proposed

that model-based computations are activated only when the Value

of Information they add is bigger than the cost of waiting they

entail (Keramati et al., 2011). Similar to the MIC model, the Value
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FIGURE 9 | Results of simulation 5, complex environment with high variance. (A–D): see Figure 5.

of Information is computed by considering the uncertainty and the

distance between alternative action values; however, different from

the MIC model the model-based component is expected to have

perfect information. The major difference between the model of

Keramati et al. (2011) and the MIC is that how model-based com-

putations are performed and used. Indeed, the former model shifts

completely from habitual to goal-directed control when the Value

of Information is sufficiently high. Conversely, the latter model

integrates “cached” values and model-based estimation, and thus

results in a “mixed” control. In addition, in the MIC model model-

based computations are performed using a serial sampling process;

the samples vary in number and length and model-based compu-

tations can be performed only for a sub-set of available actions.

These features have been adopted to fit better with the evidence

available on rats’ forward sweeps, which are thought to correspond

to model-based computations.

The aforementioned models (Daw et al., 2005; Keramati et al.,

2011) and others (Simon and Daw, 2011b) assume that model-

based and model-free methods can only compete, not cooperate.

The DYNA model is one of the few systems in which model-based

and model-free methods cooperate (Sutton, 1990). In DYNA, only

the habitual system is responsible for making decisions, but the

goal-directed system can train it by providing off-line predictions.

A recent study uses the DYNA system to explain the shift between

habitual and goal-directed systems and retrospective revaluation

(Gershman et al., 2012). In the MIC model mental simulations

are used on-line, during the choice, and are responsible for the

forward sweeps in the hippocampus at decision points. Below we

discuss a straightforward extension of the MIC model that uses

mental simulations both on-line and off-line.

An alternative view of the memory consolidation process is

that it consists in a chunking of action sequences. In this view,

model-free methods are not used: all actions are first executed in

a model-based way and then gradually chunked and transformed

into habits (Dezfouli and Balleine, 2012). Different from this the-

ory, the MIC uses both model-free and model-based methods, and

describes the transition from goal-directed to habitual behavior in

terms of changed Value of Information rather than chunking.

5.1. FUTURE IMPROVEMENTS OF THE MIC MODEL

There are several aspects of the MIC model that can be further

elaborated. First, the MIC currently uses simplified methods to

calculate Value of Information and the costs of simulation. The

method we devised has several limitations; for instance, it does not

consider the absolute value of the actions but only their relative

values, and only uses a fixed threshold. The current formal analyses

of Value of Information take some of these aspects into considera-

tion but are computationally impractical; furthermore, it is unclear

how they link to neural computations (Howard, 1966). As our

knowledge of how the brain addresses these problems increases,
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better methods can be devised that permit to quantify the costs and

benefits of mental exploration, and to realize a better cost-benefits

analysis.

The proposed model can be easily extended by permitting the

model-based part to train the model-free part off-line and in

absence of overt behavior, similar to other RL algorithms such

as DYNA (Sutton, 1990) and prioritized sweeping (Moore and

Atkeson, 1993). The values of C and Q can be updated even when

the agent is not acting by endogenously steering mental simula-

tions to produce “fake” reward observations O, and then using the

same learning methods as described in sec. 2.4. With this straight-

forward extension the MIC can benefit from both on-line and

off-line mental simulations using the same mechanisms. We chose

not to use off-line mental simulations in our experiments because

in the scenarios we simulated there could be too little time to com-

plete the off-line training within experimental trials (otherwise we

would never observe forward sweeps at decision points). Rather,

we hypothesize that off-line training could have a more promi-

nent role when there is enough time for memory consolidation

(e.g., during pauses and sleep, but also when there is enough time

between experimental trials). In the proposed “extended” version

of the MIC model, mental simulations support both decision-

making (when used on-line) and memory consolidation (when

used off-line). Indeed, there are various demonstrations that the

rat hippocampus replays (forward and backward) sequences of

neural activity experienced during overt behavior both when the

animal pauses (and is awake) and when it is asleep (Foster and

Wilson, 2006; Diba and Buzski, 2007; Koene and Hasselmo, 2008;

Peyrache et al., 2009; Gupta et al., 2010; Carr et al., 2011); still the

behavioral significance of these findings is disputed. Some studies

emphasize the importance of forward sweeps for decision-making

(van der Meer and Redish, 2009), while other studies highlight

the consolidation of recent memories into long-term memory

and the formation of “cognitive maps” of the environment (Tol-

man, 1948; O’Keefe and Dostrovsky, 1971; Morris et al., 1982). We

hypothesize that these apparently distinct views can be reconciled

if one considers the aforementioned distinction between on-line

and off-line uses of mental simulations in the MIC model. It is

worth noting that the precise mechanisms regulating off-line men-

tal simulations remain to be established. Off-line training could

be regulated by similar principles of optimization as in the meta-

choice we described. For example, the agent could simulate being

at a decision point, decide whether or not to activate the model-

based component using the Value of Information computations

of equation (1), and use the particle filtering algorithm of sec. 2.4

for training the habitual system. Alternatively, it could eschew the

Value of Information computations and only consider the accu-

racy of the habitual system (e.g., the variance of Q values) or more

simply try to systematically update all the Q values. The plausibility

of these and other hypotheses remains to be established.

The proposed model can also be improved by explicitly mod-

eling environmental volatility. The MIC is implicitly sensible to

volatility and changed reward contingencies. However, it is plausi-

ble that living organisms explicitly model volatility (Behrens et al.,

2007; Kepecs et al., 2008). In turn, an estimate of volatility permits

to better regulate the Value of Information (as in volatile environ-

ment uncertainty cannot be reduced using mental simulation), to

adjust learning rates adaptively, and to modulate the rate of overt

exploration (which is at the moment sidestepped using a parame-

terized softmax function). A related issue is considering the quality

of the internal model and the controllability of the environment

when choosing a controller; computational modeling studies sug-

gest that it might be favorable to select closed-loop methods in

well-modeled regions and open-loop methods in regions that are

not (or cannot) be modeled with high accuracy (Kolter et al.,

2010).

Another important direction for future studies is devising bio-

logically plausible and scalable algorithms to implement the pro-

posed model-based computations. At the moment, model-based

methods are computationally prohibitive for large state spaces, but

progresses on sampling methods (Doucet et al., 2000) and Monte

Carlo search (Silver and Veness, 2010) are encouraging. Not only

these methods are interesting from a computational viewpoint,

but they could also shed light on how mental simulations and for-

ward planning are mechanistically implemented in the brain, as

suggested by recent studies that link brain activity with probabilis-

tic computations (Ma et al., 2006; Doya et al., 2007) and sampling

methods (Fiser et al., 2010; Berkes et al., 2011).

Furthermore, the MIC uses model-based computations and

mental simulations for action selection and learning, but it leaves

unspecified if they can be also used for other purposes. An intrigu-

ing proposal is that mental simulations can be used to monitor

actions initiated by the habitual system until their successful com-

pletion (Alexander and Brown, 2011). This would permit a rapid

initiation of action, and also its subsequent revision if mental sim-

ulation uncovers negative consequences that the habitual system

did not take into consideration. It is worth noting that this mech-

anism could be another way how model-free and model-based

methods cooperate.

We have linked the model-based computations of the MIC

to a neural circuit formed by the hippocampus and the ventral

striatum. The reason for our choice is that this circuit has been

linked to goal-directed computations in spatial navigation (i.e.,

the scenario that we chose to exemplify the characteristics of the

MIC). However, it is plausible that the brain uses additional (or

different) neuronal circuits for model-based computations out-

side the spatial domain. We hypothesize that the MIC captures

essential principles of instrumental control that are not restricted

to goal-directed spatial navigation; however, understanding if the

model-based computations of the MIC apply to instrumental

choice at large remains an open objective for future research.

A further aspect to consider is how the MIC architecture could

potentially include Pavlovian mechanisms. In relation to this, two

possibilities should be considered. Pavlovian processes might sub-

stantially act in parallel with instrumental ones. Alternatively,

Pavlovian and instrumental representations might largely over-

lap. Although contrasting findings have been reported, evidence

suggests that Pavlovian and goal-directed values are segregated

functionally and neurally. For instance, following devaluation,

Pavlovian effects, contrary to goal-directed ones, are visible even

without incentive learning. Moreover, lesions of different portions

of amygdala, ventromedial prefrontal cortex, and striatum, have

differential impact on Pavlovian and goal-directed mechanisms

(Balleine and O’Doherty, 2009). Overall, this evidence suggests
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that Pavlovian and instrumental mechanisms work in parallel (see

also Rigoli et al., 2012), and future implementations of the MIC

should consider this fact.

Finally, the MIC model is currently limited in that it only con-

siders one level of granularity of actions and states. In contrast,

the control of behavior has been recently linked to hierarchical

reinforcement learning models (Botvinick, 2008; Botvinick et al.,

2009; Frank and Badre, 2012), in which actions can be specified

at different levels of abstractness and temporal extension (see

also Verschure et al., 2003). Extending the MIC with hierarchi-

cal action organization would provide extra flexibility, allowing

it, for example, to select and plan actions at more abstract levels,

and to connect with the growing literature on prefrontal control

hierarchies (Fuster, 1997; Koechlin and Summerfield, 2007; Wise,

2008).

5.2. REAL-TIME DYNAMICS AND PUTATIVE NEURONAL

ARCHITECTURE OF THE MIXED INSTRUMENTAL CONTROLLER

The MIC model offers a computational-level explanation of

the interactions between habitual and goal-directed processes of

choice in the context of spatial navigation. While the real-time

dynamics of mental simulation are explicitly modeled using the

particle filtering algorithm, the moment-by-moment dynamics

of the action selection process are sidestepped using the process

model described in Figure 2. Below we discuss how the MIC model

could implement real-time dynamics of choice through a neural

architecture.

We take as our starting point the affordance competition hypoth-

esis (Cisek and Kalaska, 2010): a parallel model of decision-making

that describes choice as a dynamic competition between two (or

more) action alternatives (say, go left or right). In the affordance

competition hypothesis, multiple plans for action are formed

in parallel and compete over time until one has sufficient sup-

port to win the competition. In terms of the MIC, the default

habitual processes (plausibly including mappings between stimuli

and motor representations) mediate this selection by instruct-

ing previously reinforced stimulus-response associations. In this

architecture, response dynamics correspond to the activity of neu-

ronal populations in frontoparietal cortex, forming a sort of motor

map for the potential responses (Cisek, 2006), whose selection is

plausibly supported by the basal ganglia (Redgrave et al., 1999;

Chersi et al., 2012; Lepora and Gurney, 2012). In the context of

spatial navigation and the choice between spatially defined goals,

the hippocampus is also involved to support (among the other

things) spatial representation and processing. During the choice,

the presence of an appropriate stimulus (say, the sight of a branch

of the T-maze) could produce a strong peak of activation in the

motor map in correspondence of the to-be-selected action. How-

ever, this is only effective when the stimulus-response associations

are strong enough (e.g., after habitization). When the potential

action plans have little support (e.g., before sufficient learning), or

when the choice is highly uncertain, the motor map could encode

several low-intensity and high variance peaks of activation. In

these cases, cognitive control and monitoring mechanisms could

inhibit action execution and allow for more information to be col-

lected via model-based computations, until confidence is high or

the costs of acquiring it surpasses the benefits.

In the MIC, there is not a univocal value representation, but

different aspects of valuation correspond to different parts of

the model; this is consistent with recent theories that recognize

the contribution of different brain areas to utility representation

and processing (Ito and Doya, 2011; Pennartz et al., 2011). State

values (and reward expectancies) could be associated to ventral

striatum (Lansink et al., 2009; van der Meer and Redish, 2009),

ventrotegmental area, basolateral amygdala, and orbitofrontal cor-

tex (Padoa-Schioppa and Assad, 2006; Yin et al., 2008; McDannald

et al., 2012). In our model, state values correspond to S → R tran-

sitions; in a previous work we have also shown how these values

can be modulated by the agent’s internal motivational state (Pez-

zulo and Rigoli, 2011). Dorsolateral striatum could encode cached

action values and could have a role in encoding uncertainty (Yin

et al., 2004; Kepecs et al., 2008; represented in our model by Q and

C, respectively). It is worth noting that although the dorsal/ventral

division of the striatum (which we also re-propose here) has been

associated to segregated habitual and goal-directed controllers,

respectively, our model does not necessarily imply a complete seg-

regation, but is compatible with the view that the controllers could

partially overlap. The mapping of specific parts of the striatum

with different computations (model-based and model-free) and

modes of control (goal-directed and habitual) is still controversial

(see Bornstein and Daw, 2011).

The MIC is consistent with the idea that the ventral striatum

supports model-based reward representations (activated during

forward sweeps), as suggested by van der Meer and Redish (2010).

This idea is distinct from the standard view that the ventral stria-

tum plays the role of “critic” in actor-critic RL theories, and is

recruited exclusively during learning (Houk et al., 1995). However,

the MIC is consistent also with an alternative possibility, coher-

ent with the ventral striatal role as “critic.” It is indeed possible

that this structure encodes the “fictive” prediction error which,

in the MIC model, is used to update prior Q “cached” values

with pseudo-observations produced by mental simulation. This

hypothesis generates the specific prediction that the signal in ven-

tral striatum correlates with the“fictive”prediction error (i.e., with

the discrepancy between “cached” and goal-directed values) rather

than with goal-directed values. By using devaluation, for example,

it could be possible to test these alternative hypotheses.

Another aspect of the MIC model is relative to the meta-choice,

the calculation of the Value of Information, and the cognitive con-

trol of the computations. A relatively simple form of cognitive

control has been linked to optimal stopping problems, in which it

is necessary to consider the confidence of actions and the cost to

be late before taking an action (Gold and Shadlen, 2001, 2007).

It has been argued that optimal stopping and more sophisticated

forms of meta-choice could be based on mechanisms for moni-

toring, uncertainty consideration and behavioral inhibition. With

these mechanisms, the architectures for action specification and

selection described before can become able of goal-directed choice

and cognitive control, consistent with the view that these more

advanced abilities could derive from elaborations of brain designs

that solve simpler sensorimotor processes (Pezzulo, 2008, 2011;

Pezzulo and Castelfranchi, 2009; Cisek and Kalaska, 2010; Cisek,

2012). In the MIC, these mechanisms could improve the choice by

permitting model-based mechanisms to support or even substitute
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the default habitual control mode. In the current implementa-

tion, this is done by mentally simulating and collecting covert

expectations of reward and goals, but anatomical considerations

point also to more sophisticated mechanisms such as mental time

travel and the construction of novel episodic memories (Schacter

et al., 2007, 2012; Buckner, 2010). Although the neural under-

pinnings of the control architecture are incompletely known, we

speculate that monitoring processes in the anterior cingulate cor-

tex could signal the opportunity to overcome stimulus-bound

responses (Botvinick et al., 2001; Alexander and Brown, 2011),

the Value of Information computations could reuse cached action,

and uncertainty values, and the passage from stimulus-bound to

internally generated (simulated) contexts necessary for the model-

based computations could be linked to rostral prefrontal cortex

(Burgess et al., 2007).

These and other aspects of brain implementations of goal-

directedness remain open objectives for future research. Indeed,

our study is part of a large initiative investigating model-based

decision-making in the brain (Balleine and Dickinson, 1998; Daw

et al., 2005; Dayan, 2009; Green et al., 2010; Rao, 2010; Daw,

2012; Pezzulo and Rigoli, 2011; Simon and Daw, 2011b; Sol-

way and Botvinick, 2012). Model-free RL methods have provided

useful insights to study the neural neurobiology of action val-

ues and habitual behavior. Analogously, model-based RL mech-

anisms could help studying the neural underpinnings of men-

tal simulations, outcome predictions, and goal-directed choice

(O’Doherty, 2012). It is important to consider that there are

many possible variants of model-based RL methods (as there are

multiple forms of model-free RL computations), possibly link-

ing to different neural substrates (Daw, 2012). So, it remains

to be evaluated what computational proposals better capture

the brain’s ability to flexibly choose and act in a goal-directed

manner.
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