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Abstract. We study two Einstein–Hilbert type actions on an almost-
product metric-affine manifold, considered as functionals of the contor-
sion tensor. The first one is the total mixed scalar curvature of the linear
connection, and the second one is based on a new type of curvature,
recently introduced by B. Opozda for statistical structures. We deduce
Euler–Lagrange equations of the actions and examine critical contorsion
tensors associated with general and distinguished classes of connections,
e.g. metric, statistical and adapted. The existence of such critical tensors
depends on simple geometric properties of the almost-product structure,
expressed only in terms of the Levi-Civita connection.
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1. Introduction

Distributions on manifolds appear in various situations, e.g. as tangent bundles
of foliations or kernels of differential forms. An important role in understand-
ing geometry of distributions and foliations play linear connections and the
mixed sectional curvature, i.e., sectional curvature of planes that non-trivially
intersect the distribution and its orthogonal complement, see [2,7]. The mixed
scalar curvature, i.e., an averaged mixed sectional curvature, is one of the sim-
plest curvature invariants of an almost product manifold. The Euler–Lagrange
equations for the total mixed scalar curvature, as functional on the space of
metrics, has been studied in [1] as analog of Einstein–Hilbert action, and then
in [8,9] for distributions of any dimension.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-018-0778-9&domain=pdf
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The Metric-Affine Geometry (founded by E. Cartan) generalizes Rie-
mannian Geometry: it uses an asymmetric connection with torsion, ∇̄, instead
of the Levi-Civita connection ∇ of g, and appears in such context as homo-
geneous and almost Hermitian manifolds, Finsler geometry and gauge theory
of gravity. The important distinguished cases are: Riemann–Cartan manifolds,
where metric connections, i.e., ∇̄g = 0, are used, e.g. [4], and statistical man-
ifolds [3,5], where the torsion is zero and the tensor ∇̄g is symmetric in all
its entries. The main notion of Information Geometry is that of statistical
manifold, and the theory of affine hypersurfaces in R

n+1 is a natural source of
such manifolds. Riemann–Cartan spaces are central in gauge theory of gravity,
where the torsion is represented by the spin tensor of matter.

The difference T := ∇̄ − ∇ is called the contorsion tensor. For the cur-
vature tensor R̄X,Y = [∇̄Y , ∇̄X ] + ∇̄[X,Y ] of ∇̄, using similar formula for the
curvature tensor R of ∇, we get

R̄X,Y − RX,Y = (∇Y T)X − (∇XT)Y + [TY , TX ]. (1)

Let Mn+p be a connected manifold with a pseudo-Riemannian metric g of
index q and complementary orthogonal non-degenerate distributions D and D⊥

(subbundles of the tangent bundle TM of ranks dimR Dx = n and dimR D⊥
x =

p for every x ∈ M) called an almost-product structure on M , see [2]. When
q = 0, g is a Riemannian metric, resp. a Lorentz metric when q = 1. Let � and
⊥ denote g-orthogonal projections onto D and D⊥, respectively. The following
convention is adopted for the range of indices:

a, b, c . . . ∈ {1 . . . n}, i, j, k . . .∈ {1 . . . p}. (2)

The function on (M, g, ∇̄) endowed with orthogonal complementary distribu-
tions (D,D⊥),

S̄mix =
1
2

∑
a,i

εaεi

(
g(R̄Ea,Ei

Ea, Ei) + g(R̄ Ei,Ea
Ei, Ea)

)
(3)

is called the mixed scalar curvature w.r.t. ∇̄. Here (and in further parts of the
paper), {Ea, Ei} is a local orthonormal frame on M adapted to D and D⊥,
and εi = g(Ei, Ei) ∈ {1,−1}, εa = g(Ea, Ea) ∈ {1,−1}. We will also use the
notation eμ and εμ = g(eμ, eμ) when we consider elements of the orthonor-
mal adapted frame without distinction to which distribution they belong. In
particular,

Smix =
∑

a,i
εaεi g(REa,Ei

Ea, Ei), (4)

is the mixed scalar curvature, see [10]. Definitions (3) and (4) do not depend
on the order of distributions and on the choice of a local frame.

In [5], the K-sectional curvature of a symmetric (1, 2)-tensor K (on any
subspace of a vector space endowed with a scalar product and a cubic form)
was introduced and applied to statistical connections. It is defined for any
X,Y ∈ XM by the following formula: K(X,Y ) = g([KX , KY ]Y,X). This way,
for any (1, 2)-tensor K on a pseudo-Riemannian manifold (M, g) endowed with
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a pair (D,D⊥), we introduce the following invariant, called the mixed scalar
K-curvature:

Smix,K :=
1
2

∑
a,i

εaεi

(
g( [Ki, Ka]Ea, Ei) + g( [Ka, Ki] Ei, Ea)

)
. (5)

If KX (X ∈ TM) is either symmetric or anti-symmetric then (5) reads

Smix,K =
∑

a,i
εaεi g( [Ki, Ka]Ea, Ei).

Observe that the mixed scalar T-curvature (associated with contorsion
tensor) can be recognized as a part of S̄mix, see (3). Indeed, using (1), one can
decompose S̄mix of (3) into the sum:

S̄mix = Smix + Smix,T +
1
2

Q, (6)

where

Q =
∑

a,i
εaεi

(
g((∇iT)aEa, Ei) − g((∇aT)iEa, Ei)

+ g((∇aT)i Ei, Ea) − g((∇iT)a Ei, Ea)
)
. (7)

Due to (6) and (7), we will consider S̄mix as a function of a (1, 2)-tensor T.
We study (1, 2)-tensors T on (M, g), which are critical for the functionals

J̄mix,Ω : T �→
∫

Ω

S̄mix(T) d volg, Imix,Ω : T �→
∫

Ω

Smix,T d volg . (8)

The integral is taken over M if it converges; otherwise, one integrates over
arbitrarily large, relatively compact domain Ω ⊂ M . We consider arbitrary
variations ∇̄t = ∇ + Tt,

Tt, T0 = T, |t| < ε, (9)

and variations corresponding to distinguished classes of connections (e.g. met-
ric and statistical), while Ω contains supports of infinitesimal variations ∂tT

t.
In such cases, the Divergence Theorem states that

∫
M

(div ξ) d volg = 0 when
ξ ∈ XM is supported in Ω.

In the paper, we deduce the Euler–Lagrange equations of (8)1 and (8)2
and examine critical contorsion tensors T (and their connections) in general
and in distinguished classes. In Sect. 2, we prove (Theorems 1, 2) that T is
critical for (8)1 if and only if both distributions are totally umbilical with
respect to the Levi-Civita connection and T obeys certain linear system; for
statistical connections the geometrical condition is integrability of distributions
instead of their umbilicity (Theorem 3). In Sect. 3, we prove (Theorem 4) that
a tensor T is critical for (8)2 if and only if it obeys certain linear system, and for
adapted connections the necessary geometric conditions are integrability and
minimality of distributions. These results show how the Riemannian geometry
of an almost-product manifold restricts existence of linear connections critical
for (8)1 and (8)2. As an example, in Sect. 4 we discuss double-twisted product
of metric-affine manifolds, where above conditions can be realized. Throughout
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the paper everything (manifolds, distributions, etc.) is assumed to be smooth
and oriented.

2. The Mixed Scalar Curvature of Connection

2.1. Preliminaries

We will define several geometric objects for the almost-product structure
(M,D,D⊥, g). Let XM (resp., XD) be the module over C∞(M) of all vec-
tor fields on M (resp. all vector fields with values in D). A metric-affine space
is a manifold M endowed with a metric g of certain signature and a linear
connection ∇̄. A connection ∇̄ : XM ×XM → XM on TM has the properties:

∇̄fX1+X2Y = f∇̄X1Y + ∇̄X2Y, ∇̄X(fY + Z) = X(f)Y + f∇̄XY + ∇̄XZ.

A unique metric and torsion free connection on (M, g) is the Levi-Civita con-
nection ∇, it is given by

2 g(∇X Y,Z) = X(g(Y,Z)) + Y (g(X,Z)) − Z(g(X,Y ))
+ g([X,Y ], Z) − g([X,Z], Y ) − g([Y,Z],X).

Let T⊥, h⊥ : D × D → D⊥ be the integrability tensor and the second funda-
mental form (w.r.t. ∇) of D, respectively,

T⊥(X,Y ) = (1/2) [X, Y ]⊥, h⊥(X,Y ) = (1/2) (∇XY + ∇Y X)⊥.

The mean curvature vector of D is H⊥ = Trg h⊥ =
∑

a εah⊥(Ea, Ea). Let
g� = g|D×D. A distribution D is called totally umbilical, harmonic, or totally
geodesic, if h⊥ = 1

nH⊥g�, H⊥ = 0, or h⊥ = 0, respectively. Similarly, we
define T, h : D⊥ × D⊥ → D by

T (X,Y ) = (1/2) [X, Y ]�, h(X,Y ) = (1/2) (∇XY + ∇Y X)�,

and H = Trg h =
∑

i εih(Ei, Ei).
For Z ∈ D⊥, X,Y ∈ D, the shape operator AZ (of D w.r.t. Z) and the

operator T �
Z are defined by

g(AZ(X), Y ) = g(h⊥(X,Y ), Z), g(T �
Z(X), Y ) = g(T⊥(X,Y ), Z).

Similarly, for X ∈ D and W,Z ∈ D⊥ we have g(AX(W ), Z) = g(h(W,Z),X)
and g(T �

X(W ), Z) = g(T (W,Z),X). We will use the following convention for
various tensors: T �

i := T �
Ei

, Ai := AEi
, Ti = TEi

etc. Using the adapted
orthonormal frame, we calculate

〈h⊥, h⊥〉 =
∑

a,b
εaεb g(h⊥(Ea, Eb), h⊥(Ea, Eb)),

〈T⊥, T⊥〉 =
∑

a,b
εaεb g(T⊥(Ea, Eb), T⊥(Ea, Eb)).

The following formula, see [8,10]:

Smix = g(H,H)−〈h, h〉+〈T, T 〉+g(H⊥,H⊥)−〈h⊥, h⊥〉+div(H +H⊥), (10)
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has found many applications.
Given T, define the (1,2)-tensor T∗ by

g(T∗
XY,Z) = g(TXZ, Y ), X, Y, Z ∈ XM .

Two partial traces of T (and similarly, of T∗) are defined by

Tr� T :=
∑

a
εaTaEa, Tr⊥ T :=

∑
i
εiTiEi.

Define T�
i : D → D by T�

i X := (Ti(X�))�. Similarly, put T⊥
a X = (Ta(X⊥))⊥

for T⊥
a : D⊥ → D⊥. We have the following decomposition into symmetric and

antisymmetric parts:

T�
i = (T�

i + T�∗
i )/2 + (T�

i − T�∗
i )/2.

Set IdD(X) = X� for all X ∈ XM .

2.2. Arbitrary Variations

Theorem 1. Let (M, g, ∇̄) be a metric-affine manifold endowed with a non-
degenerate distribution D. A tensor T is critical for action (8)1 if and only
if D and its orthogonal distribution D⊥ are both totally umbilical and T
satisfies the linear system:

(TiEj + T∗
jEi)� = −2T (Ei, Ej), (11a)

(Tr⊥ T∗)� = H = −(Tr⊥ T)�, for n > 1, (11b)

T�
i − (T�

i )∗ = 2T �
i , (11c)

T�
i + (T�

i )∗ − g(Tr⊥ T + Tr⊥ T∗, Ei) IdD = 0, (11d)

(Tr⊥ T − Tr⊥ T∗)⊥ =
2(n − 1)

n
H⊥, (11e)

(TaEb + T∗
bEa)⊥ = −2T⊥(Ea, Eb), (11f)

(Tr� T∗)⊥ = H⊥ = −(Tr� T)⊥, for p > 1, (11g)

T⊥
a − (T⊥

a )∗ = 2T �
a, (11h)

T⊥
a + (T⊥

a )∗ − g(Tr� T + Tr� T∗, Ea) IdD⊥ = 0, (11i)

(Tr� T − Tr� T∗)� =
2(p − 1)

p
H. (11j)

Proof. For the terms of Q, see (7), we have
∑

a,i
εaεi g((∇iT)aEa, Ei) = div((Tr� T)⊥) + g(Tr� T,H⊥ − H)

+
∑

a,i,j
εaεiεj [ g(TjEa, Ei) + g(TaEj , Ei) ] g((Aa + T �

a) Ei, Ej),
∑

a,i
εaεi g((∇aT)iEa, Ei) = div((Tr⊥ T∗)�) + g(Tr⊥ T∗,H − H⊥)

+
∑

a,b,i
εaεbεi [ g(TiEa, Eb) + g(TbEa, Ei) ] g((Ai + T �

i )Ea, Eb).
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From the above formula, its dual (with respect to interchanging distributions
D and D⊥) and (7) we obtain

Q = div
(
(Tr� T)⊥ − (Tr⊥ T∗)� + (Tr⊥ T)� − (Tr� T∗)⊥)

+ Q1, where

Q1 =
∑

a,i
εaεi

[
g(TiEa+T∗

i Ea+TaEi+T∗
aEi, (Aa − T �

a) Ei+(Ai −T �
i )Ea)

]

+ g(Tr� T − Tr⊥ T + Tr⊥ T∗ − Tr� T∗, H⊥ − H). (12)

Since Smix does not depend on T,

d
dt

J̄mix,Ω(Tt) =
d
dt

Imix,Ω(Tt) +
1
2

d
dt

∫

Ω

Q1(Tt) d volg .

Set S = ∂tT
t
| t=0 for one-parameter family (9) of (1, 2)-tensors. We have

∂tg(TiTaEa, Ei) =
∑

b

εbg(SiEb, Ei) g(TaEa, Eb)

+
∑

j

εjg(SiEj , Ei) g(TaEa, Ej)

+
∑

b

εbg(SaEa, Eb) g(Eb,T
∗
i Ei)

+
∑

j

εjg(SaEa, Ej) g(Ej ,T
∗
i Ei), (13a)

− ∂tg(TaTiEa, Ei) = −
∑

b

εbg(SaEb, Ei) g(TiEa, Eb)

−
∑

j

εjg(SaEj , Ei) g(TiEa, Ej)

−
∑

b

εbg(SiEa, Eb) g(TaEb, Ei)

−
∑

j

εjg(SiEa, Ej) g(TaEj , Ei). (13b)

Since Q1 is linear in T, to get its t-derivatives one should replace T by S
in (12)2. Using this together with (13a)–(13b) and their dual equations, and
removing integrals of divergences of compactly supported vector fields, we get

(
d

dt

∫

Ω

S̄mix(T
t)

)

| t=0

=
1

2

∫

Ω

{ ∑
g(SaEb, Ec)

(
g(Tr⊥ T∗− H, Ec)δab + g(H+Tr⊥ T, Eb)δac

)

+
∑

g(SaEb, Ei)
(
g(Tr⊥ T∗ + H⊥, Ei)δab − g((Ai − T �

i )Ea, Eb) − g(TiEa, Eb)
)

+
∑

g(SaEi, Eb)
(
g(Tr⊥ T − H⊥, Ei)δab + g((Ai + T �

i )Eb, Ea) − g(TiEb, Ea)
)

+
∑

g(SaEi, Ej)
(
g((Aa − T �

a)Ei, Ej) − g((Aa + T �
a)Ei, Ej) − g(TiEj + T∗

j Ei, Ea)
)

+
∑

g(SiEj , Ek)
(
g(Tr� T∗ − H⊥, Ek)δij + (g(H⊥ +Tr� T, Ej))δik

)
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+
∑

g(SiEj , Ea)
(
g(Tr� T∗ + H, Ea)δij − g((Aa + T �

a)Ej , Ei) − g(TaEi, Ej)
)

+
∑

g(SiEa, Ej)
(
g(Tr� T − H, Ea)δij + g((Aa + T �

a)Ej , Ei) − g(TaEj , Ei)
)

+
∑

g(SiEa, Eb)
(
g((Ai − T �

i )Ea, Eb)

− g((Ai + T �
i )Ea, Eb) − g(TaEb + T∗

bEa, Ei)
)}

, (14)

where both integrals are with respect to the volume form d volg, all sums
are taken over repeated indices and factors εμ are omitted. Since no further
assumptions are made about S or T, all the components g(Sμeλ, eρ) are inde-
pendent and the above formula gives rise to the following Euler–Lagrange
equations:

g(Tr⊥ T∗ − H,Ec)δab + g(H + Tr⊥ T, Eb)δac = 0, (15a)

g(Tr� T∗ − H⊥, Ek)δij + g(H⊥ + Tr� T, Ej)δik = 0, (15b)

g(Tr⊥ T∗ + H⊥, Ei)δab − g((Ai − T �
i )Ea, Eb) − g(TiEa, Eb) = 0, (15c)

g(Tr� T∗ + H,Ea)δij − g((Aa − T �
a)Ei, Ej) − g(TaEi, Ej) = 0, (15d)

g(Tr⊥ T − H⊥, Ei)δab + g((Ai + T �
i )Eb, Ea) − g(TiEb, Ea) = 0, (15e)

g(Tr� T − H,Ea)δij + g((Aa + T �
a)Ej , Ei) − g(TaEj , Ei) = 0, (15f)

2 g(T �
aEi, Ej) + g(TiEj + T∗

jEi, Ea) = 0, (15g)

2 g(T �
i Ea, Eb) + g(TaEb + T∗

bEa, Ei) = 0. (15h)

To simplify (15a)–(15h), first we consider (15a). It may yield three equations,
in the following cases:

1. a = b = c:
g(Tr⊥ T + Tr⊥ T∗, Ea) = 0. (16)

From here it follows that (Tr⊥ T + Tr⊥ T∗)� = 0.
2. a = b 	= c (note that this requires n > 1):

g(Tr⊥ T∗ − H,Ec) = 0.

From this we obtain (11b)1.
3. a = c 	= b (note that this requires n > 1):

g(H + Tr⊥ T, Eb) = 0.

From this we obtain (11b)2. Note that case a 	= b 	= c 	= a gives no new
conditions.

Next, we consider (15c), which can be presented as:

g(H⊥+ Tr⊥ T∗, Ei) IdD − Ai + T �
i − T�

i = 0. (17)

Then we examine (15e), which can written as

g(Tr⊥ T − H⊥, Ei) IdD + Ai + T �
i − T�

i = 0. (18)

Finally, we consider (15g):

2 g(T �
aEi, Ej) + g(TiEj + T∗

jEi, Ea) = 0,
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which can be presented as (11a) and implies (16). Equations (15b), (15d), (15f)
and (15h) are dual to the ones considered above.

The antisymmetric part of (17), which is the same as antisymmetric part
of (18), yields (11c), while the symmetric part of (17) is the following:

g(H⊥ + Tr⊥ T∗, Ei) IdD − Ai − (T�
i + T�∗

i )/2 = 0. (19)

On the other hand, the symmetric part of (18) reads as

g(Tr⊥ T − H⊥, Ei) IdD + Ai − (T�
i + T�∗

i )/2 = 0. (20)

Taking the sum of (19) and (20), we obtain (11d), while taking the difference
of those equations yields

2(h⊥ − H⊥g�) + (Tr⊥ T − Tr⊥ T∗)⊥g� = 0. (21)

Equation (21) yields that h⊥ is proportional to g�, and so h⊥ = 1
n H⊥g�

follows. From the trace of (21) we obtain (11e). In this way, we obtain the first
half, (11a)–(11e), of the Euler–Lagrange equations. The second half, (11f)–
(11j), follows by interchanging the roles of D and D⊥. �

Remark 1. Solutions of (11a)–(11j) form an affine subspace in the linear space
of all tensors T. Among all solutions there exists one with minimal norm, whose
properties might be interesting.

Corollary 1. Let n + p > 2, then T = 0 (corresponding to the Levi-Civita
connection) is critical for action (8)1 if and only if both distributions D and
D⊥ are totally geodesic and integrable.

Proof. Let T = 0 in (11a)–(11j) and use (11c) to get T⊥ = 0, then either (11e)
or (11g) to get H⊥ = 0, which together with h⊥ = 1

n H⊥g� yields h⊥ = 0.
Then use the dual equations to get T = 0 = h⊥. �

Proposition 1. All tensors critical for action (8)1 are parameterized by p3 +
p2n + n3 + n2p − 2n + 2nδn1 − 2p + 2pδp1 functions on M , that correspond to
independent components of T.

Proof. First observe that Ti and Ta are independent, so we can consider two
halves of the Euler–Lagrange equations separately. Components T⊥

i fully deter-
mine components (T⊥

i )∗ and are restricted only for p > 1, by p scalar equations
(11e) (for p = 1 (11e) yields H⊥ = 0 and no restrictions on Ti). All components
T�

i are fully determined by T⊥
i according to (11c) and (11d) (antisymmetric

and symmetric part of T�
i , respectively). Components (TiEj)� and (T∗

i Ej)�

are restricted by p2n scalar equations (11a) and for n > 1, additionally by
n equations (11b)1. Note that from (11a) it follows that (TiEi)� = (T∗

i Ei)�;
hence, (11b)2 yields no new restrictions.

In total, we have p3 components of T⊥
i restricted for p > 1 by p scalar,

linear equations; 2p2n components (TiEj)� and (T∗
i Ej)�, which are restricted

by p2n scalar, linear equations and for n > 1 by p2n+n scalar, linear equations.
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For the second half of the Euler–Lagrange equations we obtain the dual result
(with n and p interchanged). �

Proposition 2. Let n + p > 2, then a critical point of the action (8)1 is not an
extremal point (also for variations in the subspaces of tensors T corresponding
to metric connections and corresponding to statistical connections).

Proof. Let Tt = T + t · S. Then the only part of S̄mix that is quadratic in t
comes from the difference g(Tt

iT
t
a Ea, Ei) − g(Tt

aT
t
iEa, Ei) and its dual w.r.t.

interchanging the distributions. Hence, S̄mix(Tt) = O(t) + t2σ, where

σ =
∑

a,i
εaεi

(
g([Si, Sa]Ea, Ei) + g([Sa, Si]Ei, Ea)

)
. (22)

Let p ≥ 2, and assume that we have SE1E1 = E2, SE1E1 = 0, SE1E2 = −E1,
and if n > 1 then for b > 1 we have SEb

= 0. Assume further that for i = 1 we
have SE1E1 = 0, SE1E1 = ±E2, SE1E2 = ∓E1, and for j > 1 we have SEj

= 0.
Then we have

σ = 2
∑

a,i
εaεi

(
g(SiEa, SaEi) − g(SaEa, SiEi)

)

= 2 g(E1, E1) g(E1, E1) g(E2,±E2).

Hence, σ is neither positive definite, nor negative definite. This proof can be
used also for variation among metric connections, because S defined above has
all necessary symmetries.

For variation in the subspaces of tensors T corresponding to statistical
connections the (1, 2)-tensor S is symmetric in all its indices; hence,

σ = 2
∑

a,i
εaεi

(
g(SaEa, SiEi) − g(SiEa, SaEi)

)

= 2
∑

a,i
εaεi g(SaEa, SiEi) − 2

∑
a,b,i

εaεbεi g(SaEb, Ei)2

−2
∑

a,i,j
εaεiεj g(SaEi, Ej)2.

Since for n + p > 2 not every component of S is determined by TrD S and
TrD⊥ S, we see that again σ is neither positive definite, nor negative definite.

�

2.3. Variations Corresponding to Metric Connections

Let us examine the case when T corresponds to a metric connection, i.e.,
∇̄ = ∇+T preserves the metric: ∇̄g = 0. Then we have the following symmetry:

T∗
X = −TX . (23)

Using (23), we obtain

g((∇iT)aEa, Ei) − g((∇aT)iEa, Ei) + g([Ti, Ta]Ea, Ei)
= g((∇aT)iEi, Ea) − g((∇iT)aEi, Ea) + g([Ta, Ti] Ei, Ea).
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Considering a variation Tt with S = ∂tT
t
| t=0 and differentiating (23), while

keeping the metric g fixed, leads to the following condition:

g(SXY,Z) + g(SXZ, Y ) = 0. (24)

Also, the curvature tensor R̄ of a metric connection ∇̄ has the same symmetries
as R, its sectional curvature K̄(X,Y ) is well defined and we can interpret the
mixed scalar curvature as the sum

S̄mix =
∑

a,i
K̄(Ea, Ei).

Theorem 2. Let (M, g) be a pseudo-Riemannian manifold endowed with orthog-
onal complementary non-degenerate distributions (D,D⊥). Then a tensor T
obeying (23) is critical for (8)1 in the subspace of tensors obeying (23) if and
only if (D,D⊥) are both totally umbilical and T satisfies

(TjEi − TiEj)� = 2T (Ei, Ej), (25a)

T�
i = T �

i , (25b)

(Tr⊥ T)⊥ =
n − 1

n
H⊥, (25c)

(Tr⊥ T)� = −H for n > 1, (25d)

(TbEa − TaEb)⊥ = 2T⊥(Ea, Eb), (25e)

T⊥
a = T �

a, (25f)

(Tr� T)� =
p − 1

p
H, (25g)

(Tr� T)⊥ = −H⊥ for p > 1. (25h)

Proof. By (24) components of S in (14) are no longer independent and from
(23) we obtain T∗ = −T, which leads to the Euler–Lagrange equations (25a)–
(25h). �

Assuming (23) in (11a)–(11e) yields equations equivalent to (25a)–(25h).
This implies the following.

Corollary 2. Any tensor T obeying (23) and critical for action (8)1 w.r.t.
variations restricted only to the space of tensors obeying (23) is also critical
w.r.t. arbitrary variations of T.

Remark 2. Instead of using ∇, the Euler–Lagrange equations (25a)–(25h) can
be presented in terms of extrinsic geometry of the metric connection ∇̄ = ∇+T.
For example, the second fundamental form h̄⊥ of D w.r.t. ∇̄ is given by

h̄⊥(X,Y ) = h⊥(X,Y ) +
1
2

(TXY + TY X)⊥, X, Y ∈ XD,

and the mean curvature vector w.r.t. ∇̄ is H̄⊥ = H⊥ +(Tr� T)⊥. By the above
and (25a)–(25h), the distributions are no longer totally umbilical w.r.t. ∇̄ if
n, p > 1, but are minimal, i.e., H̄⊥ = 0 = H̄.
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2.4. Variations Corresponding to Statistical Connections

Let us examine the case when T corresponds to a statistical connection, i.e.,
∇̄ = ∇+T is torsionless, with symmetric tensor ∇̄g. Then we have the following
symmetries:

TXY = TY X, T∗ = T. (26)

Theorem 3. Let (M, g) be a pseudo-Riemannian manifold endowed with orthog-
onal complementary non-degenerate distributions (D,D⊥). Then a tensor T
obeying (26) is critical for (8)1 for variations in the subspace of tensors obey-
ing (26) if and only if (D,D⊥) are both integrable and T satisfies

(TiEj)� = 0 = (TaEb)⊥, (27)

(Tr⊥ T)⊥ = 0 = (Tr� T)�,

if n > 1 then H = 0, and if p > 1 then H⊥ = 0.

Proof. Note that Tr⊥ T∗ = Tr⊥ T and Tr� T∗ = Tr� T. Substituting (26) into
(14), we find that the Euler–Lagrange equations consist of the system

g(Tr⊥ T − H,Ec)δab + g(H + Tr⊥ T, Eb)δac = 0, (28a)

− g(T �
aEi, Ej) − g(TiEj , Ea) = 0, (28b)

g(Tr⊥ T, Ei)δab − g(T �
i Ea, Eb) − 2 g(TaEb, Ei) = 0, (28c)

and the equations dual to the above (with interchanged roles of distributions
D and D⊥), which we do not write here. From (28a) with a = b = c it follows
that (Tr⊥ T)� = 0.

For n > 1, (28a) with a = b 	= c yields additionally: H = 0 = (Tr⊥ T)�.
From (28b), we obtain

T (Ej , Ei) = (TiEj)�, (29)

but from the symmetry TiEj = TjEi it follows that T = 0; hence, (TiEj)� = 0.
From the dual equation we obtain that also D must be integrable. Finally,

from (28c) we get

δab g(Tr⊥ T, Ei) − 2 g(TiEb, Ea) + g(T �
i Eb, Ea) = 0,

and furthermore,

δab(Tr⊥ T)⊥ − 2(TaEb)⊥ + T⊥(Eb, Ea) = 0;

hence, 2(TaEb)⊥ = δab(Tr⊥ T)⊥. Equation dual to (29) yields (TaEb)⊥ = 0;
thus we obtain (Tr⊥ T)⊥ = 0. �

Remark 3. By (26)1 and (27)1 we get g(TiEa, Ej) = 0; hence, Ti : D → D. By
(26)2 and (27)2 we get g(TiEa, Eb) = 0; hence, Ti : D → D⊥. By the above,
Ti | D = 0. Similarly, Ta | D⊥ = 0.

The Weyl–Cartan connections ∇̄, i.e., Tr(∇̄X g) = 0 (X ∈ XM ), have
been classified in [4].
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Corollary 3. Any tensor T obeying (26) that is critical for (8)1 in the subspace
of tensors obeying (26) corresponds to a Weyl–Cartan connection ∇̄ = ∇ +T.

Proof. It follows from Theorem 3, that Tr� T = 0 and Tr⊥ T = 0, which –
given the symmetries of T – implies Tr(∇̄X g) = 0 for every X ∈ XM . �

As expected, varying T corresponding to statistical connection in the
space of tensors obeying (26) gives weaker conditions for being a critical point
of (8)1 than what we get from (11a)–(11j).

2.5. Critical Adapted Connections

Let us examine the case when T corresponds to an adapted connection ∇̄ =
∇ + T, i.e., see [2]:

∇̄ZX ∈ XD, ∇̄ZY ∈ XD⊥ , X ∈ XD, Y ∈ XD⊥ , Z ∈ XM .

An example is the contorsion tensor T of the Schouten–Van Kampen connec-
tion,

TXY = −(∇X�Y �)⊥ − (∇X⊥Y ⊥)� + (AY ⊥ + T �
Y ⊥)X� + (AY � + T �

Y �)X⊥.

Recall that the Schouten–Van Kampen connection ∇̂ is defined by

∇̂XY = ∇XY − (∇X�Y ⊥)� − (∇X�Y �)⊥ − (∇X⊥Y ⊥)� − (∇X⊥Y �)⊥,

see [2], which can be also written as

∇̂XY = ∇XY − (∇X�Y �)⊥ − (∇X⊥Y ⊥)�

+(AY ⊥ + T �
Y ⊥)X� + (AY � + T �

Y �)X⊥.

It follows that ∇̂ is metric and

Ta Eb = −(h⊥ + T⊥)(Ea, Eb), Ti Ej = −(h + T )(Ei, Ej),

Ta Ei = (Ai + T �
i )Ea, Ti Ea = (Aa + T �

a) Ei,

which yields (Ti Ej)⊥ = 0 = (TiEa)�.
Using these formulas in (25b), (25c) and their dual equations, we obtain

the following.

Corollary 4. Let distributions D and D⊥ be both totally umbilical w.r.t. ∇.
(i) If n, p > 1 then the contorsion tensor T of Schouten–Van Kampen con-

nection ∇̂ satisfies (25a)–(25h) if and only if distributions D and D⊥ are
both totally geodesic and integrable.

(ii) If n = 1 and p > 1 then the contorsion tensor T of ∇̂ satisfies (25a)–
(25h) if and only if D⊥ is totally geodesic and integrable.

We shall now examine the case when T corresponds to a metric adapted
connection ∇̄ = ∇ + T, which is given by the formula, see [2]:

∇̄XY = ∇̂XY + (TX(Y �))� + (TX(Y ⊥))⊥,
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with Schouten–Van Kampen connection ∇̂ and TXY = ∇̄XY − ∇XY . Its
contorsion tensor T satisfies

TXY = −(∇X�Y �)⊥ − (∇X⊥Y ⊥)� + (AY ⊥ + T �
Y ⊥)X� + (AY � + T �

Y �)X⊥

+(TX(Y �))� + (TX(Y ⊥))⊥.

Note that components (TμEa)� and (TμEi)⊥ are not restricted by the defini-
tion of adapted connection.

Corollary 5. Let distributions D and D⊥ be totally umbilical. A tensor T cor-
responding to an adapted metric connection obeys (25a)–(25h) if and only
if it obeys (25b), (25c) and their dual (25f), (25g).

Note that components (TbEa)� and (TjEi)⊥ are restricted only by the
symmetry (23), the scalar equations (25c) and (25g). Thus, on a manifold
with two totally umbilical, orthogonal distributions there exist many adapted,
metric connections critical for action (8)1.

Next, we consider T corresponding to arbitrary (not necessarily metric)
adapted connections.

Corollary 6. A tensor T corresponding to an adapted connection satisfies
(11a)–(11e), respectively, (11f)–(11j), if and only if it satisfies (11c)–(11e),
respectively, (11h)–(11j).

Proof. In our case, we have

TXY = T�
XY + T⊥

XY − h(X,Y ) − h⊥(X,Y )

−T⊥(X,Y ) − T (X,Y ) + (AY ⊥ + T �
Y ⊥)X� + (AY � + T �

Y �)X⊥,

(30)

T∗
XY = (T�∗)XY + (T⊥∗)XY + h(X,Y ) + h⊥(X,Y )

+T⊥(X,Y ) + T (X,Y ) − (AY ⊥ + T �
Y ⊥)X� − (AY � + T �

Y �)X⊥,

(31)

where T� and T�∗ are defined in Sect. 2.2. From the above we immediately
see that (11b) and the dual ones are satisfied, regardless of the dimensions of
distributions. Also we obtain

TiEj + T∗
jEi = −T (Ei, Ej) + T (Ej , Ei) = −2T (Ei, Ej);

thus, (11a) is satisfied. Equations (11c), (11e) and (11d) are restrictions on
(otherwise free) components: T�

i , Tr⊥ T−Tr⊥ T∗ and Tr⊥ T+Tr⊥ T∗. Finally,
h⊥ = 1

n H⊥g� is a geometric condition in terms of ∇. �

We do not consider variations of S̄mix on the space of tensors T cor-
responding to adapted connections because (8)1 is identically zero on this
subspace, since for every such tensor we have S̄mix(T) = 0.
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3. The Mixed Scalar Curvature of Contorsion Tensor

In this section we search for (1, 2)-tensors T on (M, g) endowed with orthogonal
complementary distributions (D,D⊥), critical for the action (8)2. We deduce
Euler–Lagrange equations for (8)2 and find examples of critical connections in
general and particular classes of almost product metric-affine manifolds. Since

Smix,T =
1
2

∑
a,i

εaεi

(
g( [Ti, Ta]Ea, Ei) + g( [Ta, Ti] Ei, Ea)

)

does not contain covariant derivatives and is quadratic in T, the Euler–
Lagrange equations for (8)2 will not contain any terms related to the geometry
of distributions. Using the same approach as in Sects. 2.2, 2.3, 2.4, and 2.5, we
obtain the following.

Theorem 4. A (1, 2)-tensor T is critical for (8)2 among all (1, 2)-tensors if
and only if

(T∗
a Eb + Tb Ea)⊥ = 0, (32a)

(Ti Ej + T∗
j Ei)� = 0, (32b)

δacg(Tr⊥ T, Eb) + δab g(Tr⊥ T∗, Ec) = 0, (32c)

δijg(Tr� T∗, Ek) + δik g(Tr� T, Ej) = 0, (32d)

T�
i = g(Tr⊥ T, Ei) IdD, (32e)

T⊥
a = g(Tr� T∗, Ea) IdD⊥ , (32f)

(Tr⊥ T − Tr⊥ T∗)⊥ = 0, (32g)

(Tr� T − Tr� T∗)� = 0 (32h)

for all a, b, c, i, j, k of (2). Moreover, if n > 1 and p > 1 then (32c)–(32d) read
as

(Tr⊥ T)� = 0 = (Tr⊥ T∗)�, (Tr� T∗)⊥ = 0 = (Tr� T)⊥.

Proof. We have Smix,T = 1
2 (Q1,T + Q2,T), where

Q1,T =
∑

a,i
εaεi g([Ti, Ta]Ea, Ei), Q2,T =

∑
a,i

εaεi g([Ta, Ti] Ei, Ea).

Consider one-parameter family of connections, ∇̄t = ∇+Tt. Let S = ∂tT
t
| t=0.

Since

Q1,T =
∑

a,i
εaεi

[
g((TiTa − TaTi)Ea, Ei)

]

and Q1,T and Q2,T are dual w.r.t. interchanging the distributions D and D⊥,
we can use equations (13a) and (13b) (and their dual equations) to obtain the
following:

∂t(Q1,T + Q2,T) =
∫

Ω

∑ {
g(SaEb, Ec)(δacg(Tr⊥ T, Eb) + δabg(Tr⊥ T∗, Ec))

+ g(SiEj , Ek)(δijg(Tr� T∗, Ek) + δikg(Tr� T, Ej))
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− g(SiEb, Ea)(g(TaEi, Eb) + g(TbEa, Ei))
− g(SaEi, Ej)(g(TiEj , Ea) + g(TjEa, Ei))

− g(SiEj , Ea)(g(TaEi, Ej) − δijg(Tr� T∗, Ea))

− g(SaEi, Eb)(g(TiEb, Ea) − δabg(Tr⊥ T, Ei))

− g(SaEb, Ei)(g(TiEa, Eb) − δabg(Tr⊥ T∗, Ei))

− g(SiEa, Ej)(g(TaEj , Ei) − δijg(Tr� T, Ea))
}

d volg,

where summing is over repeated indices and factors εμ are omitted. Since no
further assumptions are made about S or T, all the components g(Sμeλ, eρ) are
independent and the above formula gives rise to the Euler–Lagrange equations
stated above. �

Clearly, the Levi-Civita connection is a critical point for the total mixed
scalar T-curvature.

For either metric or statistical connection ∇̄ = ∇ + T, we have

Smix,T =
∑

a,i
εaεi g( [Ti, Ta] Ei, Ea).

Corollary 7. A (1, 2)-tensor T corresponding to statistical connection is
critical for (8)2 among all tensors corresponding to statistical connections if
and only if for all a, b, i, j:

(Tr� T)⊥ = 0 = (Tr⊥ T)�,

(TjEi)� = (1/2) δij (Tr� T)� (∀ i, j),

(TaEb)⊥ = (1/2) δab (Tr⊥ T)⊥ (∀ a, b).

If, in addition,
∑

a εa 	= 0 	= ∑
i εi then the above Euler–Lagrange equations

are reduced to

(Tr� T)� = 0 = (Tr⊥ T)⊥,

(Ta Eb)⊥ = 0 = (Tj Ei)� (∀ a, b, i, j).

Corollary 8. A (1, 2)-tensor T corresponding to a metric connection is crit-
ical for (8)2 among all (1, 2)-tensors corresponding to metric connections if
and only if

(TbEa + T∗
aEb)⊥ = 0 = (TiEj + T∗

jEi)�, (33a)

(Tr� T)� = 0 = (Tr⊥ T)⊥, (33b)

T⊥
a = 0 = T�

i , (33c)

and

(i) if n > 1 then (Tr⊥ T)� = 0; (ii) if p > 1 then (Tr� T)⊥ = 0.
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Proof. For variation among metric connections S = ∂tT
t is antisymmetric, and

for metric connection T is antisymmetric – using this we obtain the following
Euler–Lagrange equations:

g(T∗
aEb + TbEa, Ei) = 0 = g(TiEj + T∗

jEi, Ea), (34a)

g(Tr⊥ T, δacEb) + g(Tr⊥ T∗, δabEc) = 0, (34b)

g(Tr� T∗, δijEk) + g(Tr� T, δikEj) = 0, (34c)

g(TaEi, Ej) + g(Tr� T, δijEa) = 0, (34d)

g(TiEb, Ea) − g(Tr⊥ T, δabEi) = 0 (34e)

for all a, b, c, i, j, k of (2). From (34a) we obtain (33a). Taking symmetric parts
of (34d) and (34e) leads to (33b), while the antisymmetric parts of (34d) and
(34e) yield (33c). Finally, setting a = b 	= c for n > 1 in (34b) and i = j 	= k
for p > 1 in (34c) yields the remaining conditions. �

Corollary 9. A (1, 2)-tensor T corresponding to an adapted connection is
critical for (8)2 among all (1, 2)-tensors T corresponding to adapted connec-
tions if and only if both D and D⊥ are integrable and

if n > 1 then D⊥ is minimal w.r.t. ∇;
if p > 1 then D is minimal w.r.t. ∇.

Proof. Let T be the contorsion tensor of an adapted connection. From (30) and
(31) we obtain that for all X ∈ XM all the components of T except T�

X and
T⊥

X are determined only by the Levi-Civita connection—hence they remain
the same for all adapted connections. It follows that for S := ∂tT

t, where Tt

are contorsion tensors of adapted connections from some one-parameter fam-
ily, we have g(SμEa, Ei) = g(SμEi, Ea) = 0. Hence, the only Euler–Lagrange
equations that remain to be considered are

g(TbEa + T∗
aEb, Ei) = 0, (35a)

g(TiEj + T∗
jEi, Ea) = 0, (35b)

g(Tr⊥ T, δacEb) + g(Tr⊥ T∗, δabEc) = 0, (35c)

g(Tr� T∗, δijEk) + g(Tr� T, δikEj) = 0 (35d)

for all a, b, c, i, j, k of (2). Using (30) and (31) we can write (35a) as follows

0 = g((Ai + T �
i )Ea, Eb) + g(−h⊥(Eb, Ea) − T⊥(Eb, Ea), Ei)

= g(T �
i Ea, Eb) − g(T �

i Eb, Ea) = 2g(T �
i Ea, Eb), (36)

and (35c) as

0 = δacg(−H,Eb) + δabg(Ec,H) = g(δabEc − δacEb,H). (37)

For n = 1, (37) is always satisfied, for n ≥ 2 and a = b 	= c we obtain H = 0.
From (36) we obtain that T⊥ = 0 and the claim follows from the fact that
(35b), (35d) are dual to (35a), (35c), resp. �
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Proposition 3. Let n + p > 2, then a critical point of the action (8)2 is not an
extremal point (also for variations in the subspaces of tensors T corresponding
to metric connections and corresponding to statistical connections).

Proof. The claim follows from the proof of Proposition 2 as for Tt = T + t · S
we have Smix,T(Tt) = O(t) + t2σ, with σ as in (22). �

4. Double-Twisted Metric-Affine Products

The doubly-twisted product of metric-affine manifolds (B, gB ,TB) and
(F, gF ,TF ) is a manifold M = B × F with the metric g = g� + g⊥ and
the contorsion tensor T = T� + T⊥, where

g�(X,Y ) = v2gB(X�, Y �), g⊥(X,Y ) = u2gF (X⊥, Y ⊥),

T�
XY = u2(TB)X�Y �, T⊥

XY = v2(TF )X⊥Y ⊥,

and the warping functions u, v ∈ C∞(M) are positive. For v = 1 we have
the twisted metric-affine product ; if, in addition, u ∈ C∞(B) then this is a
warped metric-affine product, and for u = v = 1 – the product. Denote this
double-twisted metric-affine product by B ×(v,u) F . Its second fundamental
forms (w.r.t. ∇) are h = −∇�(log u) g⊥ and h⊥ = −∇⊥(log v) g�, see [6], and
the mean curvature vectors are H = −n∇�(log u) and H⊥ = −p∇⊥(log v).
Hence, the leaves B×{y} and the fibers {x}×F of a RC doubly-twisted product
B×(v,u)F are totally umbilical w.r.t. ∇̄ and ∇. By (7) and (10) we have Smix =
−n (Δ�u)/u − p (Δ⊥ v)/v and S̄mix = Smix + nu(TrT�)(u) + p v(TrT⊥)(v),
where Δ� is the leafwise Laplacian and Δ⊥ is the fiberwise Laplacian.

One may show that if given connections on B and F are either metric or
statistical connections then the new connection ∇̄ = ∇ + T on B ×(v,u) F has
the same property.

Corollary 10 (of Theorem 1). A double-twisted product is critical for action
(8)1 w.r.t. variations of T if and only if

∇�u = 0 = ∇⊥v (hence, h⊥ = 0 = h), (38a)

TrTB = 0 = TrTF . (38b)

Corollary 11 (of Theorem 2). A double-twisted product of Riemann–Cartan
manifolds is critical for action (8)1 w.r.t. variations of T obeying (23) if and
only if (38a)–(38b) hold.

Corollary 12 (of Theorem 3). A double-twisted product of statistical mani-
folds is critical for action (8)1 w.r.t. variations of T obeying (26) if and only
if (38a)–(38b) hold.

For the mixed scalar T-curvature we obtain the following.
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Corollary 13 (of Theorem 4). A double-twisted product B×(v,u)F with
∑

a εa 	=
0 	= ∑

i εi is critical for action (8)2 w.r.t. variations of T if and only if (38b)
hold.

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
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