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Abstract. We consider the mixing set with flows:

s + xt ≥ bt, xt ≤ yt for 1 ≤ t ≤ n; s ∈ R
1
+, x ∈ R

n

+, y ∈ Z
n

+.

It models a “flow version” of the basic mixing set introduced and studied by Günlük and
Pochet [5], as well as the most simple stochastic lot-sizing problem with recourse. More gener-
ally it is a relaxation of certain mixed integer sets that arise in the study of production planning
problems.

We study the polyhedron defined as the convex hull of the above set. Specifically we provide an
inequality description, and we also characterize its vertices and rays.
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1. Introduction. We give an inequality (external), and extreme point and ex-
treme ray (internal) description for the convex hull of the mixing set with flows XFM :

s + xt ≥ bt for 1 ≤ t ≤ n(1.1)

xt ≤ yt for 1 ≤ t ≤ n(1.2)

s ∈ R1
+, x ∈ Rn

+, y ∈ Zn
+(1.3)

where 0 ≤ b1 ≤ . . . ≤ bn, b ∈ Rn.

This set is a relative of the mixing set XMIX :

s + yt ≥ bt for 1 ≤ t ≤ n(1.4)

s ∈ R1
+, y ∈ Zn

+(1.5)

with b ∈ Rn introduced formally by Günlük and Pochet [5] and studied by Pochet
and Wolsey [7] and Miller and Wolsey [6]. Internal and external descriptions of the
convex hull of XMIX are given in [5].

The original motivation for studying XFM was to generalize XMIX by introduc-
ing the continuous (flow) variables x, noting that conv(XMIX) is a face of conv(XFM ).
However XFM is also closely related to two lot-sizing models that we now present.

The constant capacity lot-sizing model can be formulated as

s0 +
∑t

u=1 wu ≥
∑t

u=1 du for 1 ≤ t ≤ n(1.6)

wu ≤ zu for 1 ≤ u ≤ n(1.7)

s0 ∈ R1
+, w ∈ Rn

+, z ∈ {0, 1}n(1.8)

∗This work was partly carried out within the framework of ADONET, a European network in
Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438. This text presents research
results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State,
Prime Minister’s Office, Science Policy Programming. The scientific responsibility is assumed by the
authors.

†Dipartimento di Matematica Pura ed Applicata, Università degli Studi di Padova. Via Trieste
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where dt is the demand in period t, s0 is the initial stock variable, wt is the amount
produced in t bounded above by the capacity C (we take C = 1 throughout wlog),
and zt is a 0-1 set-up variable with zt = 1 if xt > 0. Summing the constraints (1.7)
over 1 ≤ u ≤ t (for each t = 1, . . . , n) leads to the relaxation

s0 +
∑t

u=1 wu ≥
∑t

u=1 du for 1 ≤ t ≤ n
∑t

u=1 wu ≤
∑t

u=1 zu for 1 ≤ t ≤ n

s0 ∈ R1
+,

∑t

u=1 wu ∈ R1
+,

∑t

u=1 zu ∈ Z1
+ for 1 ≤ t ≤ n.

With s := s0, xt :=
∑t

u=1 wu and yt :=
∑t

u=1 zu, this is precisely the set XFM .

The second link is to the two period stochastic lot-sizing model with constant
capacities. Specifically, at time 0 one must choose to produce a quantity s at a per
unit cost of h. Then in period 1, n different outcomes are possible. For 1 ≤ t ≤ n,
the probability of event t is φt, the demand is bt and the unit production cost is pt,
with production in batches of size up to C = 1. There are also a fixed cost of qt per
batch and a possible bound kt on the number of batches. If we want to minimize the
total expected cost, the resulting problem is

min{hs +

n
∑

t=1

φt(ptxt + qtyt) : (s, x, y) ∈ XFM ; yt ≤ kt, 1 ≤ t ≤ n}.(1.9)

Note that when kt = 1, 1 ≤ t ≤ n, this is the standard lot-sizing variant. Also the
uncapacitated case when bt ≤ 1, 1 ≤ t ≤ n has been treated in Guan et al. [4].

It is also interesting to view XMIX and XFM as simple mixed integer sets with
special structure. One observation is that the associated constraint matrices are to-
tally unimodular, but the right-hand sides are typically non-integer as b ∈ Qn. Miller
and Wolsey [6] and Van Vyve [9] have introduced and studied a different extension,
called a continuous mixing set, again having a totally unimodular system of con-
straints.

We now describe the contents of this paper. We terminate the introduction with
some notation. In §2 we develop a polyhedral result used later to establish that a
given polyhedron is “integral” (i.e. its vertices are points of the mixed integer set
under consideration). In §3 we find an external description of conv(XFM ) and two
closely related sets, and in §4 we give an internal description that leads to a simple
polynomial time algorithm for optimization over the set XFM . We conclude in §5
with a brief indication of related work on other generalizations of mixing sets.

Notation. Throughout we will use the following notation: N := {1, . . . , n}, eS for the
characteristic vector of a subset S ⊆ N , ei := e{i} for the ith unit vector, and 0 := e∅
and 1 := eN for the n-vectors of 0s and 1s respectively.

2. Some Equivalences of Polyhedra. In the next section we will relate the
polyhedra conv(XFM ) and conv(XMIX). To do this, we will need some polyhedral
equivalences that we introduce here.

For a nonempty polyhedron P in Rn and a vector α ∈ Rn, define µP (α) :=
min{αx : x ∈ P} and let MP (α) be the face {x ∈ P : αx = µP (α)}, where MP (α) = ∅
whenever µP (α) = −∞.

Lemma 2.1. Let P ⊆ Q be two nonempty polyhedra in Rn and let α be a nonzero
vector in Rn. Then the following conditions are equivalent:

1. µP (α) = µQ(α);
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2. MP (α) ⊆ MQ(α).

Proof. Suppose µP (α) = µQ(α). Since P ⊆ Q, every point in MP (α) belongs to
MQ(α). So if 1 holds, then 2 holds as well. The converse is obvious.

Lemma 2.2. Let P ⊆ Q be two nonempty polyhedra in Rn, where P is not an
affine variety. Suppose that for every inequality αx ≥ β that is facet-inducing for P ,
at least one of the following holds:

1. µP (α) = µQ(α);
2. MP (α) ⊆ MQ(α).

Then P = Q.

Proof. We prove that if MP (α) ⊆ MQ(α) for every inequality αx ≥ β that is
facet-inducing for P , then every facet-inducing inequality for P is a valid inequality
for Q and every hyperplane containing P also contains Q. This shows Q ⊆ P and
therefore P = Q. By Lemma 2.1, the conditions µP (α) = µQ(α) and MP (α) ⊆ MQ(α)
are equivalent and we are done.

Let αx ≥ β be a facet-inducing inequality for P . Since MP (α) ⊆ MQ(α), then
β = µP (α) = µQ(α) and αx ≥ β is an inequality which is valid for Q. Now let γx = δ
be a hyperplane containing P . If Q 6⊆ {x : γx = δ}, then there exists x̄ ∈ Q such
that γx̄ 6= δ. We assume wlog σ = γx̄ − δ > 0. Since P is not an affine variety, there
exists an inequality αx ≥ β which is facet-inducing for P (and so it is valid for Q).
Then, for λ > 0 the inequality (λα − γ)x ≥ λβ − δ is also facet-inducing for P , so
it is valid for Q. Choosing λ > 0 such that λ(αx̄ − β) < σ gives a contradiction, as
(λα − γ)x̄ = λαx̄ − γx̄ < λβ + σ − γx̄ = λβ − δ.

If P is not full-dimensional, for each facet F of P there are infinitely many distinct
inequalities that define F (two inequalities are distinct if their associated half-spaces
are distinct: that is, if one is not the positive multiple of the other). Observe that the
hypotheses of the lemma must be verified for all distinct facet-defining inequalities
(not just one facet-defining inequality for each facet), otherwise the result is false. For
instance, consider the polyhedra P = {(x, y) : 0 ≤ x ≤ 1, y = 0} ⊂ Q = {(x, y) : 0 ≤
x ≤ 1, 0 ≤ y ≤ 1}. The hypotheses of Lemma 2.1 are satisfied for the inequalities
x ≥ 0 and x ≤ 1, which define all the facets of P .

Also note that the assumption that P is not an affine variety cannot be removed:
indeed, in such a case P does not have proper faces, so the hypotheses of the lemma
are trivially satisfied, even if P 6= Q.

Corollary 2.3. Let P ⊆ Q be two pointed polyhedra in Rn, with the property
that every vertex of Q belongs to P . Let Cx ≥ d be a system of inequalities that are
valid for P such that for every inequality γx ≥ δ of the system, P 6⊂ {x ∈ Rn : γx = δ}.

If for every α ∈ Rn such that µP (α) is finite but µQ(α) = −∞, Cx ≥ d contains
an inequality γx ≥ δ such that MP (α) ⊆ {x ∈ Rn : γx = δ}, then P = Q ∩ {x ∈ Rn :
Cx ≥ d}.

Proof. We first show that dim(P ) = dim(Q). If not, there exists a hyperplane
αx = β containing P but not Q. Wlog we can assume that µQ(α) < β = µP (α).
So µQ(α) = −∞, otherwise there would exist an α-optimal vertex x̄ of Q such that
αx̄ < β, contradicting the fact that x̄ ∈ P . Now the system Cx ≥ d must contain an
inequality γx ≥ δ such that P = MP (α) ⊆ {x ∈ Rn : γx = δ}, a contradiction.

Let Q′ = Q ∩ {x ∈ Rn : Cx ≥ d}. Note that P ⊆ Q′ ⊆ Q, thus dim(P ) =
dim(Q′) = dim(Q). Let αx ≥ β be a facet-inducing inequality for P . If µQ(α) is
finite, then Q contains an α-optimal vertex which is in P and therefore β = µP (α) =
µQ′(α) = µQ(α). If µQ(α) = −∞, the system Cx ≥ d contains an inequality γx ≥ δ
such that MP (α) ⊆ {x ∈ Rn : γx = δ} and P 6⊆ {x ∈ Rn : γx = δ}. It follows that
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γx ≥ δ is a facet-inducing inequality for P and that it defines the same facet of P as
αx ≥ β (that is, MP (α) = MP (γ)). This means that there exist ν > 0, a vector λ and
a system Ax = b which is valid for P such that γ = να + λA and δ = νβ + λb. Since
dim(P ) = dim(Q′) and P ⊆ Q′, the system Ax = b is valid for Q′, as well. As γx ≥ δ
is also valid for Q′, it follows that αx ≥ β is valid for Q′ (because α = 1

ν
γ − λ

ν
A and

β = 1
ν
δ − λ

ν
b). Therefore β = µP (α) = µQ′(α).

Now assume that P consists of a single point and P 6= Q. Then Q is a cone
having P as apex. Given a ray α of Q, µP (α) is finite while µQ(α) = −∞, so the
system Cx ≥ d contains an inequality γx ≥ δ such that P ⊆ {x ∈ Rn : γx = δ}, a
contradiction. So we can assume that P is not a single point and thus P is not an
affine variety, as it is pointed. Now we can conclude by applying Lemma 2.2 to the
polyhedra P and Q′.

We remark that in the statement of Corollary 2.3 the condition that the two
polyhedra are pointed is not necessary: if we replace the property “every vertex of Q
belongs to P” with “every minimal face of Q belongs to P”, the proof needs a very
slight modification to remain valid. (However, in this case we should assume that P
is not an affine variety, so that we can apply Lemma 2.2 in the proof.)

We also observe that the condition “for every inequality γx ≥ δ of the system,
P 6⊂ {x ∈ Rn : γx = δ}” is necessary. For instance, consider the polyhedra P =
{(x, y) : 0 ≤ x ≤ 1, y = 0} ⊂ Q = {(x, y) : x ≥ 0, y = 0} and the system consisting of
the single inequality y ≥ 0.

3. An external description of XFM . The approach taken to derive an in-
equality description of conv(XFM ) is first outlined briefly. We work with two inter-
mediate mixed integer sets Z and XINT for which we establish several properties.
The first two link conv(XFM ) and conv(Z), and the next two provide an external
description of conv(Z):

(i) First we observe that XFM = Z ∩ {(s, x, y) : 0 ≤ x ≤ y}.
(ii) Using Corollary 2.3, we prove that conv(XFM ) = conv(Z) ∩ {(s, x, y) : 0 ≤

x ≤ y}.
(iii) We then show that the polyhedra conv(Z) and conv(XINT ) are in 1-1 cor-

respondence via an affine transformation.
(iv) Finally we note that XINT is the intersection of mixing sets, and therefore

external descriptions of conv(XINT ) and conv(Z) are known.

3.1. A relaxation of XFM . Consider the set Z:

s + yt ≥ bt for 1 ≤ t ≤ n(3.1)

s + xk + yt ≥ bt for 1 ≤ k < t ≤ n(3.2)

s + xt ≥ bt for 1 ≤ t ≤ n(3.3)

s ∈ R1
+, x ∈ Rn, y ∈ Zn

+.(3.4)

Proposition 3.1. Let XFM and Z be defined on the the same vector b. Then
XFM ⊆ Z and XFM = Z ∩ {(s, x, y) : 0 ≤ x ≤ y}.

Proof. To see that XFM ⊆ Z, observe that for (s, x, y) ∈ XFM , s+ yt ≥ s+xt ≥
bt, so s + yt ≥ bt is a valid inequality. Also s + yt ≥ bt and xk ≥ 0 imply that
s + xk + yt ≥ bt is a valid inequality. The only inequalities that define XFM but do
not appear in the definition of Z are the inequalities 0 ≤ x ≤ y.

Since the left-hand sides of inequalities (1.1)–(1.3) and (3.1)–(3.4) have integer
coefficients, the recession cones of XFM and Z coincide with the recession cones of
their linear relaxations. Thus we have the following:
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Observation 1. The extreme rays of conv(XFM ) are the following 2n + 1 vec-
tors: (1, 0, 0), (0, 0, ek), (0, ek, ek). The 2n + 1 extreme rays of conv(Z) are (0, 0, ek),
(0, ek, 0), (1,−1, 0). Therefore both recession cones of conv(XFM ) and conv(Z) are
full-dimensional simplicial cones, thus showing that conv(XFM ) and conv(Z) are both
full-dimensional polyhedra.

Observation 2. Let (s∗, x∗, y∗) be a vertex of conv(Z). Then

s∗ = max















0
bt − y∗

t , 1 ≤ t ≤ n
bt − x∗

t , 1 ≤ t ≤ n
bt − y∗

t − x∗
k, 1 ≤ k < t ≤ n

x∗
k = max

{

bk − s∗

bt − s∗ − y∗
t , k < t ≤ n.

Lemma 3.2. Let (s∗, x∗, y∗) be a vertex of conv(Z). Then 0 ≤ x∗ ≤ y∗.
Proof. Assume x∗

k < 0 for some index k. Then s∗ > 0, otherwise, if s∗ = 0, the
constraints s + xk ≥ bk, bk ≥ 0 imply x∗

k ≥ 0.
We now claim that there is an index t ∈ N such that s∗ = bt − y∗

t . If not,
s∗ > bt − y∗

t , 1 ≤ t ≤ n, and there is an ε 6= 0 such that (s∗, x∗, y∗) ± ε(1,−1, 0)
belong to conv(Z), a contradiction.

So there is an index t ∈ N such that s∗ = bt − y∗
t > 0. Since bt − y∗

t ≥ bt −
y∗

t − x∗
k, 1 ≤ k < t, this implies x∗

k ≥ 0, 1 ≤ k < t. Observation 2 also implies
bt − y∗

t ≥ bk − x∗
k, 1 ≤ k ≤ n. Together with y∗

t ≥ 0 and bt ≤ bk, k ≥ t, this implies
x∗

k ≥ y∗
t ≥ 0, k ≥ t. This completes the proof that x∗ ≥ 0.

Assume x∗
k > y∗

k for some index k. Then y∗
k ≥ 0 implies x∗

k > 0. Assume
x∗

k = bk − s∗. Then y∗
k ≥ bk − s∗ implies that x∗

k ≤ y∗
k, a contradiction. Therefore by

Observation 2, x∗
k = bt − s∗ − y∗

t for some t > k. Since x∗
k > 0, then bt − s∗ − y∗

t > 0,
a contradiction to s∗ + y∗

t ≥ bt. This shows x∗ ≤ y∗.
We now can state the main theorem of this section:
Theorem 3.3. Let XFM and Z be defined on the the same vector b. Then

conv(XFM ) = conv(Z) ∩ {(s, x, y) : 0 ≤ x ≤ y}.
Proof. By Proposition 3.1, conv(XFM ) ⊆ conv(Z). By Lemma 3.2 and Proposi-

tion 3.1, every vertex of conv(Z) belongs to conv(XFM ).
Let α = (h, p, q), h ∈ R1, p ∈ Rn, q ∈ Rn be such that µconv(XF M )(α) is finite

and µconv(Z)(α) = −∞. Since by Observation 1, the extreme rays of conv(Z) that are
not rays of conv(XFM ) are (0, ek, 0) and (1,−1, 0), then either pk < 0 for some index
k or h <

∑n

t=1 pt.
If pk < 0, then Mconv(XF M )(α) ⊆ {(s, x, y) : xk = yk}.
If h <

∑n

t=1 pt, let N+ = {j ∈ N : pj > 0} and k = min{j : j ∈ N+}. We show
that Mconv(XF M )(α) ⊆ {(s, x, y) : xk = 0}. Suppose that xk > 0 in some optimal
solution. As the solution is optimal and pk > 0, we cannot decrease only the variable
xk and remain feasible. Thus s + xk = bk, which implies that s < bk. However this
implies that for all j ∈ N+, we have xj ≥ bj − s > bj − bk ≥ 0 as j ≥ k. Now as
xj > 0 for all j ∈ N+, we can increase s by ε > 0 and decrease xj by ε for all j ∈ N+.
The new point is feasible in XFM and has lower objective value, a contradiction.

To complete the proof, since conv(XFM ) is full-dimensional, the system 0 ≤ x ≤ y
does not contain an improper face of conv(XFM ). So we can now apply Corollary 2.3
to conv(XFM ), conv(Z) and the system 0 ≤ x ≤ y.



6 M. CONFORTI, M. DI SUMMA AND L. A. WOLSEY

3.2. The intersection set. The following set is the intersection set XINT :

σk + yt ≥ bt − bk for 0 ≤ k < t ≤ n

σ ∈ Rn+1
+ , y ∈ Zn

+.

where 0 = b0 ≤ b1 ≤ . . . ≤ bn.

Note that XINT is the intersection of the following n+1 mixing sets XMIX
k , each

one associated with a single variable σk:

σk + yt ≥ bt − bk for k < t ≤ n

σk ∈ R1
+, y ∈ Zn−k

+ .

Theorem 3.4. Let XINT be an intersection set and let XFM be defined on the
same vector b. The affine transformation σ0 = s and σt = s + xt − bt, 1 ≤ t ≤ n,
maps conv(XFM ) into conv(XINT ) ∩ {(σ, y) : 0 ≤ σk − σ0 + bk ≤ yk, 1 ≤ k ≤ n}.

Proof. Let Z be defined on the same vector b. It is straightforward to check that
the affine transformation σ0 = s and σt = s + xt − bt, 1 ≤ t ≤ n, maps conv(Z) into
conv(XINT ). By Theorem 3.3, conv(XFM ) = conv(Z) ∩ {(s, x, y) : 0 ≤ x ≤ y} and
the result follows.

The above theorem shows that an external description of conv(XFM ) can be
obtained from an external description of conv(XINT ). Such a description is already
known:

Proposition 3.5 (Günlük and Pochet [5]). Consider the mixing set XMIX

defined in (1.4)–(1.5). For t = 1, . . . , n we define ft := bt − ⌊bt⌋. Let T ⊆ N and
suppose that i1, . . . , i|T | is an ordering of T such that fi|T |

≥ · · · ≥ fi1 ≥ fi0 := 0.
Then the mixing inequalities

s ≥

|T |
∑

t=1

(fit
− fit−1

)(⌊bit
⌋ + 1 − yit

),

s ≥

|T |
∑

t=1

(fit
− fit−1

)(⌊bit
⌋ + 1 − yit

) + (1 − fi|T |
)(⌊bi1⌋ − yi1)

are valid for XMIX . Moreover, adding all mixing inequalities to the linear constraints
defining XMIX gives the convex hull of XMIX .

Proposition 3.6 (Miller and Wolsey [6]). Let XMIX
k (nk, sk, yk, bk) for 1 ≤ k ≤

m be m mixing sets with some or all y variables in common. Let X∗ = ∩m
k=1X

MIX
k .

Then

conv(X∗) =

m
⋂

k=1

conv(XMIX
k ).(3.5)

Observation 3. Günlük and Pochet [5] have shown that there is a compact
formulation of the polyhedron conv(XMIX), see also [2]. Therefore it follows from
Theorem 3.4 and Proposition 3.6 that a compact formulation of conv(XFM ) can be
obtained by writing the compact formulations of all the mixing polyhedra conv(XMIX

k ),
together with the inequalities 0 ≤ σt − σ0 + bt ≤ yt, 1 ≤ t ≤ n and then applying the
transformation s = σ0 and xt = −s + σt + bt, 1 ≤ t ≤ n.
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3.3. Variants of XFM . Here for the purpose of comparison we examine the
convex hulls of two sets closely related to XFM .

The first is the relaxation obtained by dropping the non-negativity constraint on
the flow variables x. The unrestricted mixing set with flows XUFM is the set:

s + xt ≥ bt for 1 ≤ t ≤ n

xt ≤ yt for 1 ≤ t ≤ n

s ∈ R1
+, x ∈ Rn, y ∈ Zn

+

where 0 < b1 ≤ . . . ≤ bn, b ∈ Qn. Its convex hull turns out to be much simpler and
in fact the unrestricted mixing set with flows and the mixing set are closely related.

Proposition 3.7. For an unrestricted mixing set with flows XUFM and the
mixing set XMIX defined on the same vector b,

conv(XUFM ) = {(s, x, y) : (s, y) ∈ conv(XMIX); bt − s ≤ xt ≤ yt, 1 ≤ t ≤ n}.

Proof. Let P = {(s, x, y) : (s, y) ∈ conv(XMIX); bt − s ≤ xt ≤ yt, 1 ≤ t ≤ n}.
The inclusion conv(XUFM ) ⊆ P is obvious. In order to show that P ⊆ conv(XUFM ),
we prove that the extreme rays (resp. vertices) of P are rays (resp. feasible points) of
conv(XUFM ).

The cone {(s, x, y) ∈ R1
+ × Rn × Rn

+ : −s ≤ xt ≤ yt, 1 ≤ t ≤ n} is the recession
cone of both P and conv(XUFM ), thus P and conv(XUFM ) have the same rays.

We now prove that if (s∗, x∗, y∗) is a vertex of P , then (s∗, x∗, y∗) belongs to
conv(XUFM ). It is sufficient to show that y∗ is integer. We do so by proving that
(s∗, y∗) is a vertex of conv(XMIX). If not, there exists a nonzero vector (u,w) ∈ R×Rn

such that (s∗, y∗)±(u,w) ∈ conv(XMIX) and wt = −u whenever y∗
t = bt−s∗. Define a

vector v ∈ Rn as follows: If x∗
t = bt−s∗, set vt = −u and if x∗

t = y∗
t , set vt = wt. (Since

x∗
t satisfies at least one of these two equations, this assignment is indeed possible).

It is now easy to check that, for ε > 0 sufficiently small, (s∗, x∗, y∗) ± ε(u, v, w) ∈ P ,
a contradiction. Therefore (s∗, y∗) is a vertex of conv(XMIX) and thus (s∗, y∗) ∈
XMIX . Then (s∗, x∗, y∗) ∈ XUFM and the result is proved.

The second set we consider is a restriction of the set XFM in which we add simple
bounds and network dual constraints on the integer variables y. Specifically, consider
the following inequalities:

li ≤ yi ≤ ui, 1 ≤ i ≤ n(3.6)

αij ≤ yi − yj ≤ βij , 1 ≤ i, j ≤ n(3.7)

where li, ui, αij , βij ∈ Z ∪ {+∞,−∞} and define the following set:

W = {(s, x, y) ∈ R1 × Rn × Zn : y satisfies (3.6)–(3.7)}.

We assume that for every index i, W contains a vector with yi > 0.
Theorem 3.8.

conv(XFM ∩ W ) = conv(XFM ) ∩ W.

Proof. The proof uses the same technique as in §3.1–3.2, where Z (resp. XFM ) has
to be replaced with Z ∩W (resp. XFM ∩W ). We only point out the main differences.

To see that the proof of Theorem 3.3 is still valid, note that the extreme rays of
conv(Z ∩ W ) are of the following types:
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(i) (1, 0, 0) and (0, ek, 0);
(ii) (0, 0, y) for suitable vectors y ∈ Zn.

However, the rays of type (ii) are also rays of conv(XFM ∩ W ). Also, the condition
that for every index i, W contains a vector with yi > 0, shows that none of the
inequalities 0 ≤ xi ≤ yi defines an improper face of conv(XFM ∩ W ) and Corollary
2.3 can still be applied. Thus the proof of Theorem 3.3 is still valid.

Finally, the following extension of equation (3.5) (due to Miller and Wolsey [6])
is needed: conv(X∗ ∩ W ) = ∩m

k=1conv(XMIX
k ) ∩ W.

Note that since the feasible region of problem (1.9) is of the type XFM ∩ W ,
Theorem 3.8 yields a linear inequality description of the feasible region of the two
period stochastic lot-sizing model with constant capacities.

4. An internal description of XFM . Since the extreme rays of conv(XFM )
are described in Observation 1, in order to give a complete internal description of
conv(XFM ) we only have to characterize its vertices. These will then be used to
describe a simple polynomial algorithm for optimizing over XFM .

First we state a result concerning the vertices of any mixed integer set.
Lemma 4.1. Let P = {(x, y) ∈ Rn ×Zp : Ax + By ≤ c}. If (x∗, y∗) is a vertex of

conv(P ), then x∗ is a vertex of the polyhedron P (y∗) = {x ∈ Rn : Ax ≤ c − By∗}.
Proof. If x∗ is not a vertex of P (y∗), there exists a nonzero vector ε ∈ Rn, ε 6= 0,

such that A(x∗ ± ε) ≤ c − By∗. But then (x∗, y∗) ± (ε, 0) is in P and thus (x∗, y∗) is
not a vertex of conv(P ).

In the following, given a point p = (s̄, x̄, ȳ) in conv(XFM ), we denote by fs̄ the
fractional part of s̄.

Claim 4.2. Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). If s∗ > 0, there exists
j ∈ N such that s∗ + x∗

j = bj, fs∗ = fj and s∗ ≤ bj.
Proof. By Lemma 4.1, (s∗, x∗) is a vertex of the polyhedron P (y∗) defined by

s + xt ≥ bt for 1 ≤ t ≤ n(4.1)

xt ≤ y∗
t for 1 ≤ t ≤ n(4.2)

s ∈ R1
+, x ∈ Rn

+.(4.3)

Then among the constraints defining P (y∗) there exist n + 1 inequalities which are
tight for (s∗, x∗) and whose left-hand sides form a nonsingular (n+1)×(n+1) matrix.
Therefore, if s∗ > 0 there exists an index j such that s∗ + x∗

j = bj and either x∗
j = y∗

j

or x∗
j = 0. Thus x∗

j ∈ Z and thus fs∗ = fj . Also x∗
j ≥ 0 implies s∗ ≤ bj .

Claim 4.3. Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). Then for 1 ≤ t ≤ n

y∗
t = max{0, ⌈bt − s∗⌉}.(4.4)

Proof. Suppose bt − s∗ < 0. Then either x∗
t = 0 or x∗

t = y∗
t . Now if y∗

t ≥ 1, in
the first case both points v ± (0, 0, et) are in XFM , in the second case both points
v ± (0, et, et) are in XFM , a contradiction.

Suppose bt − s∗ ≥ 0. If y∗
t ≥ ⌈bt − s∗⌉+1 then, setting ε = min{x∗

t − (bt − s∗), 1},
both points v ± (0, εet, et) are in XFM , a contradiction.

Claim 4.4. Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). Then for 1 ≤ t ≤ n

x∗
t =

{

0 if bt − s∗ < 0,
bt − s∗ or ⌈bt − s∗⌉ if bt − s∗ ≥ 0.

(4.5)
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Proof. As (s∗, x∗) is a vertex of the polyhedron P (y∗) defined by (4.1)–(4.3),
it is easy to verify as in the proof of Claim 4.2 that for each t one of the following
holds: either s∗ + x∗

t = bt or x∗
t = 0 or x∗

t = y∗
t = max{0, ⌈bt − s∗⌉} (where the last

equality follows from Claim 4.3). It follows that if bt − s∗ < 0 then x∗
t = 0 (otherwise

inequality x∗
t ≥ 0 would be violated) and that if bt−s∗ ≥ 0 then x∗

t ∈ {bt−s∗, ⌈bt−s∗⌉}
(otherwise inequality s∗ + x∗ ≥ bt would be violated).

Given a point p = (s̄, x̄, ȳ) in conv(XFM ), we define the following subsets of N :

Np = {t ∈ N : −1 < bt − s̄ ≤ 0},

Pp = {t ∈ N : 0 < bt − s̄ < 1}.

Claim 4.5. Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). If s∗ ≥ 1 then
Nv ∪ Pv 6= ∅. Moreover, if s∗ ≥ 1 and Nv = ∅ then there exists t ∈ Pv such that
0 < x∗

t < 1.
Proof. Suppose s∗ ≥ 1 and Nv ∪ Pv = ∅. Then |bt − s∗| ≥ 1, 1 ≤ t ≤ n. Let

I ⊆ N be the set of indices t such that bt − s∗ ≥ 1. Note that if t ∈ I, then x∗
t ≥ 1

by Claim 4.4, and that if t /∈ I, then s∗ + x∗
t ≥ bt + 1. It follows that both points

v ± (1,−eI ,−eI) are in XFM , a contradiction as v is a vertex of conv(XFM ).
Now suppose s∗ ≥ 1 and Nv = ∅ and assume that for every t ∈ Pv either x∗

t = 0
or x∗

t ≥ 1. Then Claim 4.4 implies that x∗
t = 1 for every t ∈ Pv. If t /∈ Pv then

either bt − s∗ ≤ −1 or bt − s∗ ≥ 1, as Nv = ∅. Let I be the set of indices t such
that bt − s∗ ≥ 1. Note that if t ∈ I, then x∗

t ≥ 1, and that if t /∈ Pv ∪ I, then
s∗+x∗

t ≥ bt +1. Thus it follows that both points v±(1,−ePv∪I ,−ePv∪I) are in XFM ,
again a contradiction.

We need the following Lemma.
Lemma 4.6. Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Suppose that the components of

p satisfy both conditions (4.4) and (4.5). If for every convex combination of points
in XFM giving p, all the points appearing with nonzero coefficient have s-component
equal to s̄, then p is a vertex of conv(XFM ).

Proof. Consider any convex combination of points in XFM giving p and let C
be the set of points in XFM appearing with nonzero coefficient in such combination.
Given t ∈ N , either ȳt = 0 or ȳt = ⌈bt − s̄⌉. If ȳt = 0 then, since all points in C
satisfy yt ≥ 0, they all satisfy yt = 0. If ȳt = ⌈bt − s̄⌉ then, since all points in C
satisfy yt ≥ ⌈bt − s̄⌉, they all satisfy yt = ⌈bt − s̄⌉. Thus all points in C have the same
y-components. As to the x-components, either x̄t = 0 or x̄t = bt − s̄ or x̄t = ⌈bt − s̄⌉.
If x̄t = 0 then, since all points in C satisfy xt ≥ 0, they all satisfy xt = 0. If x̄t = bt− s̄
then, since all points in C satisfy xt ≥ bt−s̄, they all satisfy xt = bt−s̄. If x̄t = ⌈bt−s̄⌉
then x̄t = ȳt and so, since all points in C satisfy xt ≤ yt, they all satisfy xt = yt. Thus
all points in C have the same x-components. Therefore all points in C are identical.
This shows that p cannot be expressed as a convex combination of points in XFM

distinct from p, thus p is a vertex of conv(XFM ).
Claim 4.7. Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Suppose that the components of p

satisfy both conditions (4.4) and (4.5). If s̄ = 0, or s̄ = fj for some j ∈ N , or s̄ = bj

for some j ∈ N , then p is a vertex of conv(XFM ).
Proof. Consider an arbitrary convex combination of points in XFM giving p and

let C be the set of points appearing with nonzero coefficient in such combination.
Suppose s̄ = 0. Then all points in C satisfy s = 0. Thus, by Lemma 4.6, p is a vertex
of conv(XFM ). Suppose s̄ = fj for some j. Condition (4.4) implies that s̄ + ȳj = bj .
Then all points in C satisfy s + yj = bj and thus they all have fs = fj , in particular
s ≥ fj . It follows that they all satisfy s = fj . The conclusion now follows from
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Lemma 4.6. Suppose s̄ = bj for some j. Then x̄j = 0, thus all points in C satisfy
xj = 0 and so they satisfy s ≥ bj . It follows that they all satisfy s = bj . Again the
conclusion follows from Lemma 4.6.

Claim 4.8. Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Let s̄ = m+fj for some j ∈ N , where
0 < m < ⌊bj⌋, m ∈ Z. Suppose that there exists an index h such that −1 < bh− s̄ < 0.
Suppose that the components of p satisfy both conditions (4.4) and (4.5). Then p is a
vertex of conv(XFM ).

Proof. Consider an arbitrary convex combination of points in XFM giving p and
let C be the set of points appearing with nonzero coefficient in such a combination.
Since bj − s̄ ≥ 0 by assumption, condition (4.4) implies that s̄ + ȳj = bj ; then all
points in C satisfy s + yj = bj and thus they all have fs = fj = fs̄. Since bh − s̄ < 0,
Claim 4.4 implies that x̄h = 0; then all points in C satisfy xh = 0. Suppose that there
exists a point in C satisfying s 6= s̄. Then there exists a point in C satisfying s < s̄,
i.e. s ≤ s̄ − 1. Therefore, for such point, s + xh = s ≤ s̄ − 1 < bh, a contradiction.
Thus all points in C satisfy s = s̄. Lemma 4.6 concludes the proof.

Claim 4.9. Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Let s̄ = m+fj for some j ∈ N , where
0 < m < ⌊bj⌋, m ∈ Z. Suppose that there exists an index h such that 0 < bh − s̄ < 1.
Suppose that the components of p satisfy both conditions (4.4) and (4.5) and that
x̄h = bh − s̄. Then p is a vertex of conv(XFM ).

Proof. Consider an arbitrary convex combination of points in XFM giving p and
let C be the set of points appearing with nonzero coefficient in such combination.
Since by assumption bj − s̄ ≥ 0, condition (4.4) implies that s̄ + ȳj = bj ; then all
points in C satisfy s+ yj = bj and thus they all have fs = fj = fs̄. Since s̄+ x̄h = bh,
all points in C satisfy s + xh = bh. Suppose that there exists a point in C satisfying
s 6= s̄. Then there exists a point in C satisfying s > s̄, i.e. s ≥ s̄ + 1 since fs = fs̄.
Therefore, for such point, xh = bh − s ≤ bh − s̄ − 1 < 0, a contradiction. Thus all
points in C satisfy s = s̄. Lemma 4.6 concludes the proof.

Theorem 4.10. The point p = (s∗, x∗, y∗) is a vertex of conv(XFM ) if and only
if its components satisfy one of the following conditions:

(i) s∗ = 0
x∗

t = bt or x∗
t = ⌈bt⌉ for 1 ≤ t ≤ n

y∗
t = ⌈bt⌉ for 1 ≤ t ≤ n

(ii) s∗ = fj for some 1 ≤ j ≤ n

x∗
t =

{

0 if bt − fj < 0
bt − fj or ⌈bt − fj⌉ if bt − fj ≥ 0

y∗
t = max{0, ⌈bt − fj⌉} for 1 ≤ t ≤ n

(iii) s∗ = bj for some 1 ≤ j ≤ n

x∗
t =

{

0 if bt − bj < 0
bt − bj or ⌈bt − bj⌉ if bt − bj ≥ 0

y∗
t = max{0, ⌈bt − bj⌉} for 1 ≤ t ≤ n

(iv) s∗ = m + fj for some 1 ≤ j ≤ n, where 0 < m < ⌊bj⌋, m ∈ Z, and
−1 < bh − s∗ < 0 for some 1 ≤ h ≤ n

x∗
t =

{

0 if bt − s∗ < 0
bt − s∗ or ⌈bt − s∗⌉ if bt − s∗ ≥ 0

y∗
t = max{0, ⌈bt − s∗⌉} for 1 ≤ t ≤ n



MIXING SET WITH FLOWS 11

(v) s∗ = m + fj for some 1 ≤ j ≤ n, where 0 < m < ⌊bj⌋, m ∈ Z, and
0 < bh − s∗ < 1 for some 1 ≤ h ≤ n

x∗
t =







0 if bt − s∗ < 0
bt − s∗ or ⌈bt − s∗⌉ if bt − s∗ ≥ 0 and t 6= h
bt − s∗ if t = h

y∗
t = max{0, ⌈bt − s∗⌉} for 1 ≤ t ≤ n

Proof. Claim 4.7 shows that points of types (i), (ii) and (iii) are vertices of
conv(XFM ). Claim 4.8 and Claim 4.9 show that points of types (iv) and (v) are
vertices of conv(XFM ). It remains to prove that there are no other vertices. If
p = (s∗, x∗, y∗) is a vertex of conv(XFM ) then its components satisfy conditions (4.4)
and (4.5). By Claim 4.2, either s∗ = 0 or fs∗ ∈ {f1, . . . , fn}. If s∗ = 0, p satisfies the
conditions of case (i). If s∗ = fj for some j, p satisfies the conditions of case (ii). If
s∗ = bj for some j, then p satisfies the conditions of case (iii). Otherwise, by Claim 4.2
there exists j ∈ N such that fs∗ = fj and 1 ≤ s∗ < bj . Then s∗ = m + fj , where
0 < m < ⌊bj⌋, m ∈ Z. Claim 4.5 implies that Np ∪ Pp 6= ∅. If Np 6= ∅ then p satisfies
the conditions of case (iv). Otherwise Pp 6= ∅ and Claim 4.5 implies the existence of
an index h ∈ Pp such that 0 < x∗

h < 1. But then necessarily x∗
h = bh − s∗ and thus p

satisfies the conditions of case (v).
Corollary 4.11. The problem of optimizing a rational linear function over the

set XFM (defined on a rational vector b) can be solved in polynomial time.
Proof. Let α = (h, p, q) ∈ Q1 × Qn × Qn and consider the optimization problem

min{hs + px + qy : (s, x, y) ∈ XFM}.(4.6)

Observation 1 shows that problem (4.6) is unbounded if and only if h < 0 or pt+qt < 0
or qt < 0 for some t ∈ N . Otherwise there exists an optimal extreme point solution.
Let S be the set of all possible values taken by variable s at a vertex of conv(XFM ).
By Theorem 4.10, |S| = O(n2). For each s̄ ∈ S, let Vs̄ be the set of vertices of
conv(XFM ) such that s = s̄ and let vs̄(α) be an optimal solution of the problem

min{hs + px + qy : (s, x, y) ∈ Vs̄}.

The components of vs̄(α) satisfy s = s̄, yt = max{0, ⌈bt − s̄⌉} for 1 ≤ t ≤ n and

x∗
t =







0 if bt − s̄ < 0
bt − s̄ if bt − s̄ ≥ 0 and pt ≥ 0
⌈bt − s̄⌉ if bt − s̄ ≥ 0 and pt < 0

if the value s = s̄ corresponds to one of cases (i)–(iv), and similarly for case (v).
Since solving problem (4.6) is equivalent to solving the problem min{αvs̄(α) : s̄ ∈

S}, we only need to compute the objective function in O(n2) points. This requires
O(n3) time.

5. Concluding Remarks. Several other generalizations of the mixing set ap-
pear to be interesting, some of which are already being investigated.

A common generalization of the set studied in this paper and the continuous
mixing set [6, 9] is the continuous mixing set with flows

XCFM = {(s, r, x, y) ∈ R1
+ × Rn

+ × Rn
+ × Zn

+ : s + rt + xt ≥ bt, xt ≤ yt, 1 ≤ t ≤ n}.

Though a compact extended formulation of this set has been found recently [1], the
question of finding an inequality description in the original space of variables is still
open.
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The mixing-MIR set with divisible capacities

XMMIX = {(s, y) ∈ R1
+ × Zn : s + Ctyt ≥ bt},

where C1|C2| · · · |Cn, has been studied by de Farias and Zhao [3]. An interesting
question is to give a polyhedral description of conv(XMMIX). The special case when
the Ci only take two distinct values has been treated in Van Vyve [8].

Another intriguing question is the complexity status of the problem of optimizing
a linear function over the divisible mixing set

XDMIX = {(s, y) ∈ R1
+ × Zmn

+ : s +

m
∑

j=1

Cjyjt ≥ bt},

with again C1|C2| · · · |Cn. For the case m = 2, a compact extended formulation of
conv(XDMIX) is given in Conforti and Wolsey [2].
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