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The MM Alternative to EM
Tong Tong Wu and Kenneth Lange

Abstract. The EM algorithm is a special case of a more general algorithm
called the MM algorithm. Specific MM algorithms often have nothing to do
with missing data. The first M step of an MM algorithm creates a surrogate
function that is optimized in the second M step. In minimization, MM stands
for majorize–minimize; in maximization, it stands for minorize–maximize.
This two-step process always drives the objective function in the right direc-
tion. Construction of MM algorithms relies on recognizing and manipulat-
ing inequalities rather than calculating conditional expectations. This survey
walks the reader through the construction of several specific MM algorithms.
The potential of the MM algorithm in solving high-dimensional optimization
and estimation problems is its most attractive feature. Our applications to
random graph models, discriminant analysis and image restoration showcase
this ability.

Key words and phrases: Iterative majorization, maximum likelihood, in-
equalities, penalization.

1. INTRODUCTION

This survey paper tells a tale of two algorithms born
in the same year. We celebrate the christening of the
EM algorithm by Dempster, Laird and Rubin (1977)
for good reasons. The EM algorithm is one of the work-
horses of computational statistics with literally thou-
sands of applications. Its value was almost immedi-
ately recognized by the international statistics com-
munity. The more general MM algorithm languished
in obscurity for years. Although in 1970 the numer-
ical analysts Ortega and Rheinboldt (1970) allude to
the MM principle in the context of line search meth-
ods, the first statistical application occurs in two pa-
pers (de Leeuw, 1977; de Leeuw and Heiser, 1977)
of de Leeuw and Heiser in 1977 on multidimensional
scaling. One can argue that the unfortunate neglect
of the de Leeuw and Heiser papers has retarded the
growth of computational statistics. The purpose of the
present paper is to draw attention to the MM algo-
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rithm and highlight some of its interesting applica-
tions.

Neither the EM nor the MM algorithm is a concrete
algorithm. They are both principles for creating algo-
rithms. The MM principle is based on the notion of
(tangent) majorization. A function g(θ | θn) is said to
majorize a function f (θ) provided

f (θn) = g(θn|θn),

(1)
f (θ) ≤ g(θ |θn), θ �= θn.

In other words, the surface θ �→ g(θ |θn) lies above the
surface f (θ) and is tangent to it at the point θ = θn.
Here θn represents the current iterate in a search of the
surface f (θ). The function g(θ |θn) minorizes f (θ) if
−g(θ |θn) majorizes −f (θ). Readers should take heed
that the term majorization is used in a different sense
in the theory of convex functions (Marshall and Olkin,
1979).

In the minimization version of the MM algorithm,
we minimize the surrogate majorizing function
g(θ |θn) rather than the actual function f (θ). If θn+1

denotes the minimum of the surrogate g(θ |θn), then
one can show that the MM procedure forces f (θ)

downhill. Indeed, the relations

f (θn+1) ≤ g(θn+1|θn) ≤ g(θn|θn)n = f (θn)(2)
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follow directly from the definition of θn+1 and the
majorization conditions (1). The descent property (2)
lends the MM algorithm remarkable numerical stabil-
ity. Strictly speaking, it depends only on decreasing the
surrogate function g(θ |θn), not on minimizing it. This
fact has practical consequences when the minimum of
g(θ |θn) cannot be found exactly. In the maximization
version of the MM algorithm, we maximize the surro-
gate minorizing function g(θ |θn). Thus, the acronym
MM does double duty, serving as an abbreviation
of both pairs “majorize–minimize” and “minorize–
maximize.” The earlier, less memorable name “itera-
tive majorization” for the MM algorithm unfortunately
suggests that the principle is limited to minimization.

The EM algorithm is actually a special case of the
MM algorithm. If f (θ) is the log-likelihood of the ob-
served data, and Q(θ |θn) is the function created in the
E step, then the minorization

f (θ) ≥ Q(θ |θn) + f (θn) − Q(θn|θn)

is the key to the EM algorithm. Maximizing Q(θ | θn)

with respect to θ drives f (θ) uphill. The proof of the
EM minorization relies on the nonnegativity of the
Kullback–Leibler divergence of two conditional prob-
ability densities. The divergence inequality in turn de-
pends on Jensen’s inequality and the concavity of the
function lnx (Hunter and Lange, 2004; Lange, 2004).

In our opinion, the MM principle is easier to state
and grasp than the EM principle. It requires neither
a likelihood model nor a missing data framework. In
some cases, existing EM algorithms can be derived
more easily by isolating a key majorization or mi-
norization. In other cases, it is quicker and more trans-
parent to postulate the complete data and calculate the
conditional expectations required by the E step of the
EM algorithm. Many problems involving the multivari-
ate normal distribution fall into this latter category. Fi-
nally, EM and MM algorithms constructed for the same
problem can differ. Our second example illustrates this
point. Which algorithm is preferred is then a matter of
reliability in finding the global optimum, ease of im-
plementation, speed of convergence and computational
complexity.

This is not the first survey paper on the MM algo-
rithm and probably will not be the last. The previous ar-
ticles (Becker, Yang and Lange, 1997; de Leeuw, 1994;
Heiser, 1995; Hunter and Lange, 2004; Lange, Hunter
and Yang, 2000) state the general principle, sketch var-
ious methods of majorization and present a variety of
new and old applications. Prior to these survey papers,

the MM principle surfaced in robust regression (Hu-
ber, 1981), correspondence analysis (Heiser, 1987), the
quadratic lower bound principle (Bohning and Lind-
say, 1988), alternating least squares applications (Bi-
jleveld and de Leeuw, 1991; Kiers, 2002; Kiers and
Ten Berge, 1992; Takane, Young and de Leeuw, 1977),
medical imaging (De Pierro, 1995; Lange and Fessler,
1994) and convex programming (Lange, 1994). Recent
work has demonstrated the utility of MM algorithms in
a broad range of statistical contexts, including quantile
regression (Hunter and Lange, 2000), survival analy-
sis (Hunter and Lange, 2002), nonnegative matrix fac-
torization (Eldén, 2007; Lee and Seung, 1999, 2001;
Pauca, Piper and Plemmous, 2006), paired and mul-
tiple comparisons (Hunter, 2004), variable selection
(Hunter and Li, 2005), DNA sequence analysis (Sabatti
and Lange, 2002) and discriminant analysis (Groenen,
Nalbantov and Bioch, 2006; Lange and Wu, 2008).

The primary purpose of this paper is to present MM
algorithms not featured in previous surveys. Some of
these algorithms are novel, and some are minor varia-
tions on previous themes. Except for our first two ex-
amples in Sections 2 and 3, it is unclear whether any
of the algorithms can be derived from a missing data
perspective. This fact alone distinguishes them from
standard EM fare. In digesting the examples, read-
ers should notice how the MM algorithm interdigi-
tates with other algorithms such as block relaxation
and Newton’s method. Classroom expositions of com-
putational statistics leave the impression that differ-
ent optimization algorithms act in isolation. In reality,
some of the best algorithms are hybrids. The examples
also stress penalized estimation and high-dimensional
problems that challenge traditional algorithms such as
scoring and Newton’s method. Such problems are apt
to dominate computational statistics and data mining
for some time to come. The MM principle offers a
foothold in the unforgiving terrain of large data sets
and high-dimensional models.

Two theoretical skills are necessary for constructing
new MM algorithms. One is a good knowledge of sta-
tistical models. Another is proficiency with inequali-
ties. Most inequalities are manifestations of convexity.
The single richest source of minorizations is the sup-
porting hyperplane inequality

f (x) ≥ f (y) + df (y)(x − y)

satisfied by a convex function f (x) at each point y

of its domain. Here df (y) is the row vector of partial
derivatives of f (x) at y.
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The quadratic lower bound principle of Bohning and
Lindsay (1988) propels majorization when the objec-
tive function has bounded curvature. Let d2f (x) be the
second differential (Hessian) of the objective function
f (x), and suppose B is a positive definite matrix such
that B − d2f (x) is positive semidefinite for all argu-
ments x. Then we have the majorization

f (x) = f (y) + df (y)(x − y)

+ 1
2(x − y)td2f (z)(x − y)

≤ f (y) + df (y)(x − y)

+ 1
2(x − y)tB(x − y),

where z falls on the line segment between x and y.
Minimization of the quadratic surrogate is straightfor-
ward. In the unconstrained case, it involves inversion
of the matrix B , but this can be done once in contrast
to the repeated matrix inversions of Newton’s method.
Other relevant majorizations and minorizations will
be mentioned as needed. Readers wondering where to
start in brushing up on inequalities are urged to consult
the elementary exposition (Steele, 2004). The more ad-
vanced texts (Boyd and Vandenberghe, 2004; Lange,
2004) are also useful for statisticians.

Finally, let us stress that neither EM nor MM is a
panacea. Optimization is as much art as science. There
is no universal algorithm of choice, and a good deal
of experimentation is often required to choose among
EM, MM, scoring, Newton’s method, quasi-Newton
methods, conjugate gradient, and other more exotic al-
gorithms. The simplicity of MM algorithms usually ar-
gues in their favor. Balanced against this advantage is
the sad fact that many MM algorithms exhibit excru-
ciatingly slow rates of convergence. Section 8 derives
the theoretical criterion governing the rate of conver-
gence of an MM algorithm. Fortunately, MM algo-
rithms are readily amenable to acceleration. For the
sake of brevity, we will omit a detailed development of
acceleration and other important topics. Our discussion
in Section 9 will take these up and point out pertinent
references.

2. ESTIMATION WITH THE MULTIVARIATE T

The multivariate t-distribution has density

f (x) = �

(
ν + p

2

)

·
{
�

(
ν

2

)
(νπ)p/2|�|1/2

·
[
1 + 1

ν
(x − μ)t�−1(x − μ)

](ν+p)/2}−1

for all x ∈ Rp . Here μ is the mean vector, � is the
positive definite scale matrix and ν > 0 is the degrees
of freedom. Let x1, . . . , xm be a random sample from
f (x). To estimate μ and � for ν fixed, the well-known
EM algorithm (Lange, Little and Taylor, 1989; Little
and Rubin, 2002) iterates according to

μn+1 = 1

sn

m∑
i=1

wn
i xi,(3)

�n+1 = 1

m

m∑
i=1

wn
i (xi − μn+1)(xi − μn+1)t ,(4)

where sn = ∑m
i=1 wn

i is the sum of the case weights

wn
i = ν + p

ν + dn
i

, dn
i = (xi − μn)t (�n)−1(xi − μn).

The derivation of the EM algorithm hinges on the rep-
resentation of the t-density as a hidden mixture of mul-
tivariate normal densities.

Derivation of the same algorithm from the MM per-
spective ignores the missing data and exploits the con-
cavity of the function lnx. Thus, the supporting hyper-
plane inequality

− lnx ≥ − lny − x − y

y

implies the minorization

−1

2
ln |�| − ν + p

2
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≥ −1
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[
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+ (
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)
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(ν + p)/wn

i

)−1
]

= −1

2
ln |�| − wn

i

2
[ν + (xi − μ)t�−1(xi − μ)]

+ cn
i

for case i, where cn
i is a constant that depends on nei-

ther μ nor �. Summing over the different cases pro-
duces the overall surrogate. Derivation of the updates
(3) and (4) reduces to standard manipulations with the
multivariate normal (Lange, 2004).
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Kent, Tyler and Vardi (1994) suggest an alternative
algorithm that replaces the EM update (4) for � by

�n+1 = 1

sn

m∑
i=1

wn
i (xi − μn+1)(xi − μn+1)t .(5)

Megan and van Dyk (1997) justify this modest amend-
ment by expanding the parameter space to include a
working parameter that is tweaked to produce faster
convergence. It is interesting that a trivial variation of
our minorization produces the Kent, Tyler and Vardi
(1994). We simply combine the two log terms and mi-
norize via

−1

2
ln |�| − ν + p

2
ln[ν + (xi − μ)t�−1(xi − μ)]

= −ν + p

2
ln{|�|a[ν + (xi − μ)t�−1(xi − μ)]}

≥ − wn
i

2|�n|a {|�|a[ν + (xi − μ)t�−1(xi − μ)]}
+ cn

i ,

with working parameter a = 1/(ν + p).
For readers wanting the full story, we now indicate

briefly how the second step of the MM algorithm is de-
rived. This revolves around maximizing the surrogate
function

−
m∑

i=1

wn
i {|�|a[ν + (xi − μ)t�−1(xi − μ)]}

with respect to μ and �. Regardless of the value of �,
one should choose μ as the weighted mean (3). If we
let R be the square root of �n+1 as defined by (5) and
substitute μn+1 in the surrogate, then the refined surro-
gate function can be expressed

−sn{|�|a[ν + tr(�−1R2)]}
= −sn{|R−1�R−1|a[ν + tr(R�−1R)]}|R|2a.

To show that � = R2 minimizes the surrogate, let
λ1, . . . , λp denote the eigenvalues of the positive def-
inite matrix R−1�R−1. This allows us to express the
surrogate as a negative multiple of the function

h(λ) = ν

p∏
j=1

λa
j +

p∏
j=1

λa
j

p∑
j=1

λ−1
j .

The choice λ = 1 corresponds to � = R2 and yields
the value h(1) = ν + p. The identity � = R2 can now
be proved by showing that ν + p is a lower bound for
h(λ). Setting λj = eθj , a simple rearrangement of the

bounding inequality shows that it suffices to prove the
alternative inequality

e
−1/(ν+p)

∑p
j=1 θj ≤ ν

ν + p
e0 + 1

ν + p

p∑
j=1

e−θj ,

which is a direct consequence of the convexity of ex .

3. GROUPED EXPONENTIAL DATA

The EM algorithm for estimating the intensity of
grouped exponential data is well known (Dempster,
Laird and Rubin, 1977; McLachlan and Krishnan,
1997; Meilijson, 1989). In this setting the complete
data corresponds to a random sample x1, . . . , xm from
an exponential density with intensity λ. The observed
data conforms to a sequence of thresholds t1 < t2 <

· · · < tm. It is convenient to append the threshold t0 = 0
to this list and to let ci record the number of values that
fall within the interval (ti, ti+1]. The exceptional count
cm represents the number of right-censored values. One
can derive a novel MM algorithm by close examination
of the log-likelihood

L(λ) = c0 ln(1 − e−λt1)

+
m−1∑
i=1

ci ln(e−λti − e−λti+1) − cmλtm

= −λ

m−1∑
i=0

citi+1 − cmλtm +
m−1∑
i=0

ci ln(eλdi − 1),

where di = ti+1 − ti .
The above partial linearization of the log-likelihood

L(λ) focuses our attention on the remaining nonlin-
ear parts of L(λ) determined by the function f (λ) =
ln(eλd − 1). The derivatives

f ′(λ) = eλdd

eλd − 1
, f ′′(λ) = − eλdd2

(eλd − 1)2

indicate that f (λ) is increasing and concave. It is im-
possible to minorize f (λ) by a linear function, so we
turn to the quadratic lower bound principle. Hence, in
the second-order Taylor expansion

f (λ) = f (λn) + f ′(λn)(λ − λn)

+ 1
2f ′′(μ)(λ − λn)2,

with μ between λ and λn, we seek to bound f ′′(μ)

from below. One can easily check that f ′′(μ) is
increasing on (0,∞) and tends to −∞ as μ ap-
proaches 0. To avoid this troublesome limit, we re-
strict λ to the interval (1

2λn,∞) and substitute f ′′(1
2λn)
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TABLE 1
Comparison of MM and EM on grouped exponential data

MM algorithm EM algorithm

n λn L(λn) λn L(λn)

0 1.00000 −3.00991 1.00000 −3.00991
1 0.50000 −1.75014 0.27082 −1.34637
2 0.25000 −1.32698 0.21113 −1.30591
3 0.18924 −1.30528 0.20102 −1.30443
4 0.19762 −1.30438 0.19904 −1.30437
5 0.19848 −1.30437 0.19864 −1.30437
6 0.19853 −1.30437 0.19856 −1.30437
7 0.19854 −1.30437 0.19854 −1.30437

for f ′′(μ). Minorizing the nonlinear part of L(λ) term
by term now gives a quadratic minorizer q(λ) of L(λ).
Because the coefficient of λ2 in q(λ) is negative, the
restricted maximum λn+1 of q(λ) occurs at the bound-
ary 1

2λn whenever the unrestricted maximum occurs to
the left of 1

2λn. In symbols, the MM update reduces to

λn+1 = max
{

1

2
λn,

λn +
∑m−1

i=0 ci(v
n
i − ti+1) − cmtm∑m−1
i=0 ciw

n
i

}
,

where

vn
i = eλndi di

eλndi − 1
, wn

i = eλndi/2d2
i /4

(eλndi/2 − 1)2 .

Table 1 compares the MM algorithm and the traditional
EM algorithm on the toy example of Meilijson (1989).
Here we have m = 3 thresholds at 1, 3 and 10 and as-
sign proportions 0.185, 0.266, 0.410 and 0.139 to the
four ordinal groups. It is clear that the MM algorithm
hits its lower bound on iterations 1 and 2. Although its
local rate of convergence appears slightly better than
that of the EM algorithm, the differences are minor.
The purpose of this exercise is more to illustrate the
quadratic lower bound principle in deriving MM algo-
rithms.

4. POWER SERIES DISTRIBUTIONS

A family of discrete density functions pk(θ) defined
on {0,1, . . .} and indexed by a parameter θ > 0 is said
to be a power series family provided for all k

pk(θ) = ckθ
k

q(θ)
,(6)

where ck ≥ 0 and q(θ) = ∑∞
k=0 ckθ

k is the appropriate
normalizing constant (Rao, 1973). The binomial, nega-
tive binomial, Poisson and logarithmic families are ex-
amples. Zero truncated versions of these families also
qualify. Fisher scoring is the traditional approach to
maximum likelihood estimation with a power series
family. If x1, . . . , xm is a random sample from the dis-
crete density (6), then the log-likelihood

L(θ) =
m∑

i=1

xi ln θ − m lnq(θ)

has score s(θ) and expected information J (θ)

s(θ) = 1

θ

m∑
i=1

xi − mq ′(θ)

q(θ)
, J (θ) = mσ 2(θ)

θ2 ,

where σ 2(θ) is the variance of a single realization.
Functional iteration provides an alternative to scor-

ing. It is clear that the maximum likelihood estimate θ̂

is a root of the equation

x̄ = θq ′(θ)

q(θ)
,(7)

where x̄ is the sample mean. This result suggests the
iteration scheme

θn+1 = x̄q(θn)

q ′(θn)
= M(θn)(8)

and raises two obvious questions. First, is the algo-
rithm (8) an MM algorithm? Second, is it likely to
converge to θ̂ even in the absence of such a guaran-
tee? Local convergence hinges on the derivative con-
dition |M ′(θ̂)| < 1. When this condition holds, the
map θn+1 = M(θn) is locally contractive near the fixed
point θ̂ . It turns out that

M ′(θ̂) = 1 − σ 2(θ̂)

μ(θ̂)
,
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TABLE 2
Performance of the algorithm (8) for truncated Poisson data

n θn L(θn) n θn L(θn)

0 1.00000 −5.41325 7 1.59161 −4.34467
1 1.26424 −4.63379 8 1.59280 −4.34466
2 1.43509 −4.40703 9 1.59329 −4.34466
3 1.52381 −4.35635 10 1.59349 −4.34466
4 1.56424 −4.34670 11 1.59357 −4.34466
5 1.58151 −4.34501 12 1.59360 −4.34466
6 1.58867 −4.34472 13 1.59362 −4.34466

where

μ(θ) = θq ′(θ)

q(θ)

is the mean of a single realization X. Thus, conver-
gence depends on the ratio of the variance to the mean.
To prove these assertions it is helpful to differenti-
ate q(θ). The first derivative delivers the mean and the
second derivative the second factorial moment

E[X(X − 1)] = θ2q ′′(θ)

q(θ)
.

If one substitutes these into the obvious expression for
M ′(θ̂) and invokes equality (7) at θ̂ , then the moment
form of M ′(θ̂) emerges.

To address the question of whether functional itera-
tion is an MM algorithm, we make the assumption that
q(θ) is log-concave. This condition holds for the bino-
mial and Poisson distributions but not for the negative
binomial and logarithmic distributions. The convexity
of − lnq(θ) entails the minorization,

L(θ) ≥
m∑

i=1

xi ln θ − m lnq(θn) − m[lnq(θn)]′(θ − θn)

=
m∑

i=1

xi ln θ − m lnq(θn) − m
q ′(θn)

q(θn)
(θ − θn).

Setting the derivative of this surrogate function equal
to 0 leads to the MM update (8). One can demonstrate
that log-concavity implies σ 2(θ) ≤ μ(θ). The local
contraction condition |M ′(θ̂)| < 1 is consistent with
the looser criterion σ 2(θ) ≤ 2μ(θ). Thus, there is room
for a viable local algorithm that fails to have the ascent
property.

The truncated Poisson density has normalizing func-
tion q(θ) = eθ − 1. The second derivative test shows
that q(θ) is log-concave. Table 2 records the well-
behaved MM iterates (8) for the choices x̄ = 2 and
m = 10. The geometric density counting failures until a
success has normalizing function q(θ) =
(1−θ)−1, which is log-convex rather than log-concave.
The iteration function is now M(θ) = x̄(1 − θ). Since
M ′(θ) = −x̄, the algorithm diverges for x̄ > 1. Fi-
nally, the discrete logarithmic density has normaliz-
ing constant q(θ) = − ln(1 − θ), which is also log-
convex rather than log-concave. The choices x̄ = 2 and
m = 10 lead to the iterates in Table 3. Although the
algorithm (8) converges for the logarithmic density, it

TABLE 3
Performance of the algorithm (8) for logarithmic data

n θn L(θn) n θn L(θn)

0 0.99000 −15.47280 9 0.71470 −8.98294
1 0.09210 −24.32767 10 0.71565 −8.98293
2 0.17545 −18.35307 11 0.71517 −8.98293
3 0.31814 −13.30624 12 0.71542 −8.98293
4 0.52221 −9.96349 13 0.71529 −8.98293
5 0.70578 −8.98560 14 0.71535 −8.98293
6 0.71991 −8.98355 15 0.71532 −8.98293
7 0.71291 −8.98310 16 0.71534 −8.98293
8 0.71655 −8.98297 17 0.71533 −8.98293
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cannot be an MM algorithm because the log-likelihood
experiences a decline at its first iteration.

One of the morals of this example is that many nat-
ural algorithms only satisfy the descent or ascent prop-
erty in special circumstances. This is not necessarily a
disaster, but without such a guarantee, safeguards must
usually be instituted to prevent iterates from going
astray. Proof of the descent or ascent property almost
always starts with majorization or minorization. Be-
cause so much of statistical inference revolves around
log-likelihoods, log-convexity and log-concavity are
possibly more important than ordinary convexity and
concavity in constructing MM algorithms.

There are a variety of criteria that help in check-
ing log-concavity. Besides the obvious second deriv-
ative test, one should keep in mind the closure prop-
erties of the collection of log-concave functions on a
given domain (Bergstrom and Bagnoli, 2005; Boyd and
Vandenberghe, 2004). For example, the collection is
closed under the formation of products and positive
powers. Any positive concave function is log-concave.
If f (x) > α ≥ 0 for all x, then f (x)−α is log-concave.
In some cases, integration preserves log-concavity. If
f (x) is log-concave, then

∫ x
a f (y) dy and

∫ b
x f (y) dy

are log-concave. When f (x, y) is jointly log-concave
in (x, y),

∫
f (x, y) dy is log-concave in x. As a spe-

cial case, the convolution of two log-concave func-
tions is log-concave. One of the more useful recent
tests for log-concavity pertains to power series (An-
derson, Vamanamurthy and Vuorinen, 2007). Suppose
f (x) = ∑∞

k=0 akx
k has radius of convergence r around

the origin. If the coefficients ak are positive and the
ratio (k + 1)ak+1/ak is decreasing in k, then f (x) is
log-concave on (−r, r). This result also holds for fi-
nite series f (x) = ∑m

k=0 akx
k . In minorization, log-

convexity plays the linearizing role of log-concavity.
The closure properties of the set of log-convex func-
tions are equally impressive (Boyd and Vandenberghe,
2004).

5. A RANDOM GRAPH MODEL

Random graphs provide interesting models of con-
nectivity in genetics and internet node ranking. Here
we consider the random graph model of Blitzstein,
Chatterjee and Diaconis (2008). Their model assigns
a nonnegative propensity pi to each node i. An edge
between nodes i and j then forms independently with
probability pipj/(1 + pipj ). The most obvious statis-
tical question in the model is how to estimate the pi

from data. Once this is done, we can rank nodes by
their estimated propensities.

If E denotes the edge set of the graph, then the log-
likelihood can be written as

L(p) = ∑
{i,j}∈E

[lnpi + lnpj ]
(9)

− ∑
{i,j}

ln(1 + pipj ).

Here {i, j} denotes a generic unordered pair. The log-
arithms ln(1 + pipj ) are the bothersome terms in the
log-likelihood. We will minorize each of these by ex-
ploiting the convexity of the function − ln(1 + x). Ap-
plication of the supporting hyperplane inequality yields

− ln(1 + pipj ) ≥ − ln(1 + pn
i pn

j )

− 1

1 + pn
i pn

j

(pipj − pn
i pn

j )

and eliminates the logarithm. Note that equality holds
when pi = pn

i for all i. This minorization is not quite
good enough to separate parameters, however. Separa-
tion can be achieved by invoking the second minorizing
inequality

−pipj ≥ −1

2

(pn
j

pn
i

p2
i + pn

i

pn
j

p2
j

)
.

Note again that equality holds when all pi = pn
i .

These considerations imply that up to a constant
L(p) is minorized by the function

g(p|pn) = ∑
{i,j}∈E

[lnpi + lnpj ]

− ∑
{i,j}

1

1 + pn
i pn

j

1

2

(pn
j

pn
i

p2
i + pn

i

pn
j

p2
j

)
.

The fact that g(p|pn) separates parameters allows us
to compute pn+1

i by setting the derivative of g(p|pn)

with respect to pi equal to 0. Thus, we must solve

0 = ∑
{i,j}∈E

1

pi

− ∑
j �=i

1

1 + pn
i pn

j

pn
j

pn
i

pi.

If di = ∑
{i,j}∈E 1 denotes the degree of node i, then

the positive square root

pn+1
i =

[
pn

i di∑
j �=i p

n
j /(1 + pn

i pn
j )

]1/2

(10)

is the pertinent solution. Blitzstein, Chatterjee and Di-
aconis (2008) derive a different and possibly more ef-
fective algorithm by a contraction mapping argument.

The MM update (10) is not particularly intuitive, but
it does have the virtue of algebraic simplicity. When
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TABLE 4
Convergence of the MM random graph algorithm

n pn
0 pn

m/2 pn
m L(pn)

0 0.00100 0.48240 0.95613 −40572252.7109
1 0.00000 0.48281 0.97251 −40565250.8333
2 0.00000 0.48220 0.98274 −40562587.5350
3 0.00000 0.48151 0.98950 −40561497.1411
4 0.00000 0.48093 0.99408 −40561038.9534
5 0.00000 0.48050 0.99720 −40560843.3998

10 0.00000 0.47963 1.00299 −40560695.6515
15 0.00000 0.47950 1.00387 −40560693.1245
20 0.00000 0.47948 1.00400 −40560693.0770
25 0.00000 0.47948 1.00403 −40560693.0761
30 0.00000 0.47948 1.00403 −40560693.0761
35 0.00000 0.47948 1.00403 −40560693.0764

di = 0, it also makes the sensible choice pn+1
i = 0.

As a check on our derivation, observe that a stationary
point of the log-likelihood satisfies

0 = di

pi

− ∑
j �=i

pj

1 + pipj

,

which is just a rearranged version of the update (10)
with iteration superscripts suppressed.

The MM algorithm just derived carries with it certain
guarantees. It is certain to increase the log-likelihood at
every iteration, and if its maximum value is attained at
a unique point, then it will also converge to that point.
It is straightforward to prove that the log-likelihood
is concave under the reparameterization pi = e−qi .
The requirement of two successive minorizations in
our derivation gives us pause because if minorization is
not tight, then convergence is slow. On the other hand,
if the number of nodes is large, then competing algo-
rithms such as Newton’s method entail large matrix in-
versions and are very expensive.

As a test case for the MM algorithm, we gener-
ated a random graph on m = 10,000 nodes with a
propensity pi for node i of (i − 1

2)/m. To derive ap-
propriate starting values for the propensities, we es-
timated a common background propensity q by set-
ting q2/(1 + q2) equal to the ratio of observed edges
to possible edges and solving for q . This background
propensity was then used to estimate each pi by set-
ting piq/(1 + piq) equal to di/m and solving for pi .
Table 4 displays the components pn

0 , pn
m/2 and pn

m

of the parameter vector pn at iteration n. The log-
likelihood actually fails the ascent test in the last it-
eration because its rightmost digits are beyond ma-
chine precision. Despite this minor flaw, the algorithm

performs impressively on this relatively large and de-
cidedly nonsparse problem. As an indication of the
quality of the final estimate p̂, the maximum error
maxi |(i − 1

2)/m − p̂i | was 0.0825 and the average ab-
solute error 1

m

∑
i |(i − 1

2)/m − p̂i | was 0.0104.

6. DISCRIMINANT ANALYSIS

Discriminant analysis is another attractive applica-
tion. In discriminant analysis with two categories, each
case i is characterized by a feature vector zi and a cat-
egory membership indicator yi taking the values −1
or 1. In the machine learning approach to discriminant
analysis (Scholkopf and Smola, 2002; Vapnik, 1995),
the hinge loss function [1 − yi(α + zt

iβ)]+ plays a
prominent role. Here (u)+ is shorthand for the convex
function max{u,0}. Just as in ordinary regression, we
can penalize the overall loss

g(θ) =
n∑

i=1

[1 − yi(α + zt
iβ)]+

by imposing a lasso or ridge penalty (Hastie, Tibshirani
and Friedman, 2001). Note that the linear regression
function hi(θ) = α + zt

iβ predicts either −1 or 1. If
yi = 1 and hi(θ) overpredicts in the sense that hi(θ) >

1, then there is no loss. Similarly, if yi = −1 and hi(θ)

underpredicts in the sense that hi(θ) < −1, then there
is no loss.

Most strategies for estimating θ pass to the dual of
the original minimization problem. A simpler strat-
egy is to majorize each contribution to the loss by a
quadratic and minimize the surrogate loss plus penalty.
A little calculus (Groenen, Nalbantov and Bioch, 2006)
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shows that (u)+ is majorized at un �= 0 by the quadratic

q(u|un) = 1

4|un|(u + |un|)2.(11)

In fact, this is the best quadratic majorizer (de Leeuw
and Lange, 2009). To avoid the singularity at 0, we rec-
ommend replacing q(u | un) by

r(u|un) = 1

4|un| + ε
(u + |un|)2.

In double precision, a good choice of ε is 10−5. If
we impose a ridge penalty, then the majorization (11)
leads to a pure MM algorithm exploiting weighted least
squares.

If the number of predictors is large, then the matrix
inversions entailed in updating all parameters simulta-
neously become burdensome. Coordinate descent of-
fers a viable alternative because it updates a single pa-
rameter at a time. The large number of iterations un-
til convergence required by coordinate descent is often
outweighed by the extreme simplicity of each parame-
ter update. Quadratic majorization of the hinge losses
keeps the updates simple and guarantees a reduction in
the objective function. The decisions to use a lasso or
ridge penalty and apply pure MM or coordinate descent
with majorization will be dictated in practical problems
by considerations of model selection and the number of
potential predictors.

In discriminant analysis with more than two cate-
gories, it is convenient to pass to ε-insensitive loss
and multiple linear regression. Our recently introduced
method of vertex discriminant analysis (VDA) (Lange
and Wu, 2008) operates in this fashion and relies on
an MM algorithm. If there are k + 1 categories and p

predictors, the basic idea is situate the class indicators
at the vertices of a regular simplex in Rk and minimize
the criterion

R(A,b) = 1

n

n∑
i=1

‖yi − Azi − b‖ε(12)

+ λ

k∑
j=1

‖aj‖2,

where yi is the vertex assigned to case i, at
j is the j th

row of a k × p matrix A of regression coefficients, b is
a k × 1 column vector of intercepts, and

‖v‖ε = max{‖v‖ − ε,0}(13)

is ε-insensitive Euclidean distance. Once A and b are
estimated, we can assign a new case to the closest ver-
tex, and hence category. One can design a quadratic
surrogate by application of the Cauchy–Schwarz in-
equality and minimize the surrogate by solving k co-
ordinated least squares problems. The combination of
a parsimonious loss function and an efficient MM al-
gorithm make VDA one of the most effective discrim-
inant analysis methods tested (Lange and Wu, 2008).

As a comparison of hinge-loss discriminant analy-
sis versus VDA, we now consider four typical exam-
ples from the UCI machine learning repository (Asun-
cion and Newman, 2007). All four examples involve
just two categories. For each data set, Table 5 lists the
numbers of cases, features, and iterations until con-
vergence, as well as the training error rates and the
computing times in seconds under both hinge loss and
ε-insensitive loss. For VDA we set ε = 0.9999, just be-
low the recommended cutoff of

√
(2k + 2)/k/2 = 1

for k + 1 = 2 categories. The cutoff is the largest ε

avoiding overlap of the ε-insensitive spheres around
each vertex of the regular simplex. We chose the value
10−2 for the tuning parameter λ in all four examples.
Our previous numerical experience shows that VDA is
relatively insensitive to the choice of λ. Inspection of
the training errors suggests that the two methods have
similar accuracy. To our surprise, VDA is considerably
faster.

7. IMAGE RESTORATION AND INPAINTING

The MM algorithm is also employed in image decon-
volution (Bioucas-Dias, Figueiredo and Oliveira, 2006;

TABLE 5
Empirical examples from UCI machine learning repository

Data set Hinge loss VDA

(Cases, features) Iters Error Time Iters Error Time

Diabetes (768, 8) 44 0.2266 0.063 11 0.2240 0.015
SPECT (80, 22) 326 0.2000 0.359 7 0.1750 0.000
Tic-tac-toe (958, 9) 274 0.0167 0.578 26 0.0167 0.062
Ionosphere (351, 33) 483 0.0513 2.984 42 0.0570 0.266
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Liao et al., 2002). Suppose a photograph is divided into
pixels and yij is the digitized intensity for pixel (i, j).
Some of the yij are missing or corrupted. Smoothing
pixel values can give a visually improved image. Cor-
rection of pixels subject to minor corruption is termed
denoising; correction of missing or grossly distorted
values is termed inpainting. Let S be the set of pixels
with acceptable values. We can restore the photograph
by minimizing the criterion∑
(i,j)∈S

(yij − μij )
2 + λ

∑
i

∑
j

∑
(k,l)∈Nij

‖μij − μkl‖TV,

where Nij denotes the pixels neighboring pixel (i, j),
‖x‖TV = √

x2 + ε is the total variation norm with
ε > 0 small and λ > 0 is a tuning constant. Let μn

ij be
the current iterate. The total variation penalties are ma-
jorized using

‖x‖TV ≤ ‖xn‖TV + 1

2‖xn‖TV
[x2 − (xn)2]

based on the concavity of the function
√

t + ε. These
maneuvers construct a simple surrogate function ex-
pressible as a weighted sum of squares. Other rough-
ness penalties are possible. For instance, the scaled
sum of squares λ

∑
i

∑
j

∑
(k,l)∈Nij

(μij −μkl)
2 is plau-

sible. Unfortunately, this choice tends to deter the for-
mation of image edges. The total variation alternative
is preferred in practice because it is gentler while re-
maining continuously differentiable.

If the pixels are defined on a rectangular grid, then
we can divide them into two blocks in a checkerboard
fashion, with the red checkerboard squares falling into
one block and the black checkerboard squares into the
other block. Within a block, the least squares problems
generated by the surrogate function are parameter sep-
arated and hence trivial to solve. Thus, it makes sense
to alternate the updates of the blocks. Within a block
we update μij via

μn+1
ij = 2yij + λ

∑
(k,l)∈Nij

μn
kl/‖μn

ij − μn
kl‖TV

2 + λ
∑

(k,l)∈Nij
1/‖μn

ij − μn
kl‖TV

for (i, j) ∈ S or via

μn+1
ij =

∑
(k,l)∈Nij

μn
kl/‖μn

ij − μn
kl‖TV∑

(k,l)∈Nij
1/‖μn

ij − μn
kl‖TV

for (i, j) /∈ S. Here each interior pixel (i, j) has four
neighbors. If the singularity constant ε is too small or if
the tuning λ is too large, then small residuals generate
very large weights. When this pitfall is avoided, the de-
scribed algorithm is apt to be superior to the fused lasso
algorithm of Friedman, Hastie and Tibshirani (2007).

We applied the total variation algorithm to the stan-
dard image of the model Lenna. Figure 1 shows the
original 256×256 image with pixel values digitized on
a gray scale from 0 to 255. To the right of the original
image is a version corrupted by Gaussian noise (mean
0 and standard deviation 10) and a scratch on the shoul-
der. The images are restored with λ values of 10, 15, 20
and 25 and an ε value of 1. Although we tend to prefer
the restoration on the right in the second row, this is a
matter of judgment. Variations in λ clearly control the
balance between image smoothness and loss of detail.

8. LOCAL CONVERGENCE OF MM ALGORITHMS

Many MM and EM algorithms exhibit a slow rate of
convergence. How can one predict the speed of conver-
gence of an MM algorithm and choose between com-
peting algorithms? Consider an MM map M(θ) for
minimizing the objective function f (θ) via the surro-
gate function g(θ |θn). According to a theorem of Or-
tega (1990), the local rate of convergence of the se-
quence θn+1 = M(θn) is determined by the spectral
radius ρ of the differential dM(θ∞) at the minimum
point θ∞ of f (θ). Well-known calculations (Demp-
ster, Laird and Rubin, 1977; Lange, 1995a) demon-
strate that

dM(θ∞) = I − d2g(θ∞|θ∞)−1d2f (θ∞).

Hence, the eigenvalue equation dM(θ∞)v = λv can be
rewritten as

d2g(θ∞|θ∞)v − d2f (θ∞)v = λd2g(θ∞|θ∞)v.

Taking the inner product of this with v, we can solve
for λ in the form

λ = 1 − vtd2f (θ∞)v

vtd2g(θ∞|θ∞)v
.

Extension of this line of reasoning shows that the spec-
tral radius satisfies

ρ = 1 − min
v �=0

vtd2f (θ∞)v

vtd2g(θ∞|θ∞)v
.

Thus, the rate of convergence of the MM iterates is
determined by how well d2g(θ∞|θ∞) approximates
d2f (θ∞). In practice, the surrogate function g(θ |θn)

should hug f (θ) is tightly as possible for θ close to θn.
Meng and van Dyk (1997) use this Rayleigh quo-

tient characterization of the spectral radius to prove that
the Kent et al. multivariate t algorithm is faster than
the original multivariate t algorithm. In essence, they
show that the second differential d2g(θ |θ) is uniformly
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FIG. 1. Restoration of the Lenna photograph. Top row left: the original image; top row right: image corrupted by Gaussian noise (mean 0
and standard deviation 10) and a scratch; second row left: restored image with λ = 10; second row right: restored image with λ = 15; third
row left: restored image with λ = 20; third row right: restored image with λ = 25. The same value ε = 1 is used throughout.

more positive definite for the alternative algorithm. de
Leeuw and Lange (2009) make substantial progress in
designing optimal quadratic surrogates. For most other
MM algorithms, however, such theoretical calculations
are too hard to carry out, and one must rely on numer-
ical experimentation to determine the rate of conver-
gence. The uncertainties about rates of convergence are
reminiscent of the uncertainties surrounding MCMC
methods. This should not deter us from constructing
MM algorithms. On large-scale problems, many tradi-
tional algorithms are simply infeasible. If we can con-
struct a MM algorithm, then there is always the chance
of accelerating it. We take up this topic briefly in the
discussion. Finally, let us stress that the number of iter-
ations until convergence is not the sole determinant of

algorithm speed. Computational complexity per itera-
tion also comes into play. On this basis, a standard MM
algorithm for transmission tomography is superior to a
plausible but different EM algorithm (Lange, 2004).

9. DISCUSSION

Perhaps the best evidence of the pervasive influence
of the EM algorithm is the sheer number of citations
garnered by the Dempster et al. paper. As of April
2008, Google Scholar lists 11,232 citations. By con-
trast, Google Scholar lists 58 citations for the de Leeuw
paper and 47 citations for the de Leeuw and Heiser pa-
per. If our contention about the relative importance of
the EM and MM algorithms is true, how can one ac-
count for this disparity? Several reasons come to mind.
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One is the venue of publication. The Journal of the
Royal Statistical Society, Series B, is one of the most
widely read journals in statistics. The de Leeuw and
Heiser papers are buried in a hard to access conference
proceedings. Another reason is the prestige of the au-
thors. Four of the five authors of the three papers, Nan
Laird, Donald Rubin, Jan de Leeuw and Willem Heiser,
were quite junior in 1977. On the other hand, Arthur
Dempster was a major figure in statistics and well es-
tablished at Harvard, the most famous American uni-
versity. Besides these extrinsic differences, the papers
have intrinsic differences that account for the better re-
ception of the Dempster et al. paper. Its most striking
advantage is the breadth of its subject matter. Dempster
et al. were able to unify different branches of computa-
tional statistics under the banner of a clearly enunciated
general principle. de Leeuw and Heiser stuck to mul-
tidimensional scaling. Their work and extensions are
well summarized by Borg and Groenen (1997).

The EM algorithm immediately appealed to the sto-
chastic intuition of statisticians, who are good at cal-
culating the conditional expectations required by the
E step. The MM algorithm relies on inequalities and
does not play as well to the strengths of statisticians.
Partly for this reason the MM algorithm had difficulty
breaking out of the vast but placid backwater of so-
cial science applications where it started. It remained
sequestered there for years, nurtured by several highly
productive Dutch statisticians with less clout than their
American and British colleagues.

Our emphasis on concrete applications neglects
some issues of considerable theoretical and practical
importance. The most prominent of these are global
convergence analysis, computation of asymptotic stan-
dard errors, acceleration, and approximate solution of
the optimization step (second M) of the MM algorithm.
Let us address each of these in turn.

Virtually all of the convergence results announced
by Dempster et al. (1977) and corrected by Wu (1983)
and Boyles (1983) carry over to the MM algorithm.
The known theory, both local and global, is summa-
rized in the references (Lange, 2004; Vaida, 2005). As
anticipated, the best results hold in the presence of con-
vexity or concavity. The SEM algorithm of Meng and
Rubin (1991) for computation of asymptotic standard
errors also carries over to the MM algorithm (Hunter,
2004). Numerical differentiation of the score function
is a viable competitor, particularly if the score can be
evaluated analytically. The simplest form of acceler-
ation is step doubling (de Leeuw and Heiser, 1980;
Lange and Fessler, 1994). This maneuver replaces the

point delivered by an algorithm map θn+1 = M(θn) by
the new point θn + 2[M(θn) − θn]. Step doubling usu-
ally halves the number of iterations until convergence
in an MM algorithm. More effective forms of acceler-
ation are possible using matrix polynomial extrapola-
tion (Varadhan and Roland, 2008) and quasi-Newton
and conjugate gradient elaborations of the MM algo-
rithm (Jamshidian and Jennrich, 1997; Lange, 1995b).
Finally, if the optimization step of an MM algorithm
cannot be accomplished analytically, it is possible to
fall back on the MM gradient algorithm (Hunter and
Lange, 2004; Lange, 1995a). Here one substitutes one
step of Newton’s method for full optimization of the
surrogate function g(θ |θn) with respect to θ . Fortu-
nately, this approximate algorithm has exactly the same
rate of convergence as the original MM algorithm. It
also preserves the descent or ascent property of the
MM algorithm close to the optimal point.

The reader may be left wondering whether EM or
MM provides a clearer path to the derivation of new
algorithms. In the absence of a likelihood function, it
is difficult for EM to work its magic. Even so, criteria
such as least squares can involve hidden likelihoods.
Perhaps the best reply is that we are asking the wrong
question. After all, one man’s mathematical meat is of-
ten another man’s mathematical poison. A better ques-
tion is whether MM broadens the possibilities for de-
vising new algorithms. In our view, the answer to the
second question is a resounding yes. Our last four ex-
amples illustrate this point. Of course, it may be possi-
ble to derive one or more of these algorithms from the
EM perspective, but we have not been clever enough to
do so.

In highlighting the more general MM algorithm, we
intend no disrespect to the pioneers of the EM algo-
rithm. If the fog of obscurity lifts from the MM al-
gorithm, it will not detract from their achievements.
It may, however, propel the ambitious plans for data
mining underway in the 21st century. Even with the
expected advances in computer hardware, the statistics
community still needs to concentrate on effective algo-
rithms. The MM principle is poised to claim a share of
the credit in this enterprise. Statisticians with a numer-
ical bent are well advised to add it to their toolkits.
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