
The Mobile Robot RHINO

Joachim Buhmann, Wolfram Burgard, Armin B. Cremers, Dieter Fox,
Thomas Hofmann, Frank E. Schneider, Jiannis Strikos and Sebastian Thrun

Institut für Informatik III
Universität Bonn

Römerstr. 164, D-53117 Bonn, Germany

to appear in: AI Magazine, 16:1, Spring 1995

Abstract— RHINO was the University of Bonn’s
entry in the 1994 AAAI Robot Competition and Exhi-
bition. RHINO is a mobile robot designed for indoor
navigation and manipulation tasks. The general sci-
entific goal of the RHINO project is the development
and the analysis of autonomous and complex learn-
ing systems. This paper briefly describes the major
components of the RHINO control software as they
were exhibited at the competition. It also sketches the
basic philosophy of the RHINO architecture and dis-
cusses some of the lessons that we learned during the
competition.

I. GENERAL OVERVIEW

RHINO, shown in Figure 1, is a B21 mobile robot plat-
form manufactured by Real World Interface Inc. It is
equipped with 24 sonar proximity sensors, a dual color
camera system mounted on a pan/tilt unit, and two on-
board i486 computers. Sonar information is obtained at
a rate of 1.3 Hertz, and camera images are processed at
a rate of 0.7 Hertz. RHINO communicates with exter-
nal computers (two SUN Sparcstations) by a tetherless
Ethernet link.

The RHINO project is generally concerned with the de-
sign of autonomous and complex learning systems [8].
The AAAI competition ended an initial six-month period
of software design. Key features of RHINO’s control
software, as exhibited at the competition, are as follows:

� Autonomy. RHINO operates completely au-
tonomously. It has been operated repeatedly for dura-
tions as long as one hour in populated office environ-
ments without human intervention.

� Learning. To increase the flexibility of the software,
learning mechanisms support the adaptation of the

robot to its sensors and the environment. For example,
neural network learning is employed to interpret sonar
measurements.

� Real-time operation. To act continuously in real-time,
any-time solutions [2] are employed wherever possi-
ble. Any-time algorithms are able to make decisions
regardless of the time spent for computation. The more
time that is available, however, the better the results.

� Reactive control and deliberation. RHINO’s naviga-
tion system integrates a fast, reactive on-board obstacle
avoidance routine with knowledge- and computation-
intense map building and planning algorithms.

RHINO’s software consists of a dozen different modules.
The interface modules (a base/sonar sensor interface, a
camera interface, and a speech interface) control the ba-
sic communication to and from the hardware components
of the robot. On top of these, a fast obstacle avoidance
routine analyzes sonar measurements to avoid collisions
with obstacles and walls at a speed as high as 90 centime-
ters per second. Global metric and topological maps are
constructed on-the-fly using a neural network-based ap-
proach combined with a database of maps showing typical
rooms, doors and hallways. RHINO employs a dynamic
programming planner to explore unknown terrain and to
navigate to arbitrary target locations. It locates itself by
continuously analyzing sonar information. In addition,
a fast vision module segments images from two color
cameras to find target objects and obstacles that block the
path of the robot. RHINO’s control flow is monitored by
an integrated task planner and a central user interface.

The integration of a dozen different software modules,
which all exhibit different timing and response charac-
teristics, requires a flexible scheme for the flow and syn-
chronization of information. The key principles for the
design of RHINO’s software are as follows:



Figure 1: The RHINO robot of the University of Bonn,
Germany .

� Distributed control and communication. Each mod-
ule communicates with several other modules through
Ethernet [3]. There is no single control unit, and com-
munication is not centralized.

� Asynchronous communication. RHINO’s software
lacks a central clock. Each of the modules runs in-
dependently of the other modules. To resolve con-
flicts, certain modules (such as the on-board obstacle
avoidance module) can take priority over other mod-
ules (such as the planner) in determining the robot’s
motion direction.

� Software fault tolerance. RHINO’s software is de-
signed to accommodate sudden failures of most of its
software components. Almost all modules can be
stopped and restarted at any time. Effective mecha-
nisms ensure that restarted modules will immediately
obtain the currently available global information.

The next sections present some of the key components
of the RHINO approach in more detail: the obstacle
avoidance module, the modules concerned with sensor
interpretationand map building, the planner and explorer,
and the visual routines. The article concludes with a
discussion that highlights some of the lessons that were
learned during the AAAI competition.

II. FAST OBSTACLE AVOIDANCE

The obstacle avoidance runs on-board, independent of
other software components such as the planner. Every
0.25 seconds, a new velocity and motion direction are
chosen according to the most recent sonar measurements.
To rapidly adapt to new situations,only the last three sonar
sweeps are considered. RHINO can react immediately to
changes in the environment and hard-to-see and moving
obstacles such as humans.

The obstacle avoidance module controls both the velocity
and the motion direction of the robot. At every instant
in time, the velocity is determined such that no collision
will occur within the next two seconds (2-sec rule). The
motion direction is determined based on target points,
which are generated by the planner (see below). To reach
a given target, the robot can choose among different tra-
jectories on which it will travel with different velocities.
RHINO selects its motion direction by maximizing its
translational velocity, denoted by v, while minimizing
the angle to the target point, denoted by �.

To determine v, a simplified model of the robot’s envi-
ronment is constructed. Proximity information, obtained
from RHINO’s sonar sensors, is used to construct a two-
dimensional obstacle line field. Every sonar reading is
converted to a line in this field, as depicted in Figure 2.
To avoid collisions with obstacles, the obstacle avoid-
ance routine considers a variety of circular trajectories,
one of which is shown in Figure 2. For each trajectory,
the distance between the robot and the closest obstacle
line along the projected trajectory is computed. This
distance determines the translational velocity v, accord-
ing to the 2-sec rule. The projected angle to the target
point, �, is calculated for the estimated robot position
and orientation after 0.25 seconds. For both values v

and � a smoothed histogram is constructed. Because of
the dynamic constraints, only a small number of trajec-
tories are reachable within the next 0.25 seconds, and are
consequently considered in the histogram. Finally, the
trajectory that maximizes a weighted difference of v and
� is chosen. In order to increase the safety of the robot, a
security distance of 10 centimeters is kept to surrounding
objects. This security distance is increased to up to 30



Figure 2: Obstacle line field. Each sonar reading is indi-
cated by a line, centered around the robot. The trajectory,
which is finally chosen by RHINO, is also shown.

centimeters, as the robot’s velocity increases.

RHINO’s obstacle avoidance approach is easily ex-
tendible to other sensors. For example, prior to the com-
petition we successfully employed camera information
to identify small obstacles on the floor, which block the
path of the robot, as described below. Each visually
detected obstacle is mapped into a few lines in the obsta-
cle field, very much like the sonar information described
above. However, visual information was not used by the
obstacle avoidance routine during the AAAI competition,
basically because sonar informationwas fast and accurate
enough in the competition ring.

III. MAP BUILDING AND POSITION CONTROL

RHINO’s global navigation system builds and utilizes oc-
cupancy maps of the robot’s environment. More specif-
ically, when traveling through possibly unknown ter-
rain, RHINO interprets its sonar readings to generate a
two-dimensional, discrete probabilistic occupancy map.
Sonar sensors are interpreted using an artificial neural
network, which estimates the likelihood of occupancy of
any point in a 3 meter-circle around the robot [7]. Mul-
tiple measurements are integrated using Bayesian infer-
ence [5]. Figure 3a shows a map which was constructed

while we manually steered the robot through the compe-
titionarena. This map describes an area of approximately
30�20 meters. The hallways, rooms, large obstacles and
doors can clearly be recognized.

To navigate based on global metric information, it is im-
perative that the robot be able to locate itself accurately in
its map. RHINO is equipped with fairly accurate wheel
encoders. However, even small angular errors in dead-
reckoning can have devastating effects on the internal po-
sition estimation. In order to compensate for such error,
the robot continuously matches its current sonar readings
with its global occupancy map. If a mismatch is found
between the occupancy map and the obstacles predicted
based on the most recent sonar sweep, the internal posi-
tion is corrected accordingly. In addition, RHINO reg-
isters the angular orientation of walls with respect to its
current location to correct more accurately for rotational
errors. This mechanism, which rests on the assumption
that walls are typically perpendicular or parallel to each
other, has been found to be very effective for the detec-
tion of rotational errors at the competition as well as in
various office environments. If RHINO operates some 30
minutes with velocities of up to 90 centimeters per sec in
unknown terrain, the total error is usually smaller than 30
centimeters. Without correcting the dead-reckoning, this
error often accumulates as much as 30 meters.

To obtain topological information concerning the loca-
tion of rooms, doors and hallways, RHINO analyses its
metric occupancy map continuously. Walls are identified
by thresholding. In addition, a large database of examples
of door regions, hallways and rooms (and parts thereof) is
continuously matched to assign topological labels to the
unoccupied areas in the occupancy map. By analyzing
the connectivity of the labeled map, RHINO is able to
recognize doors, hallways and rooms. An example of a
topologically labeled map is shown in Figure 3b. This
map, which is based on the metrical map shown in Figure
3a, subdivides the terrain into 7 rooms and/or hallways
(gray) by 9 door regions (white). As is easy to see, most
of the rooms and hallways have been identified correctly.
In the bottom left corner of that figure, however, a small
room has not been identified. This is because due to
sensor noise the occupancy map failed to capture a small
wall—a problem that may particularly occur with very
thin walls, such as those that were found at the competi-
tion.

The topological map-analyzer works continuously. At
any point in time, it can be queried to output a topolog-
ical map. However, the quality of the topological maps
increases in time. The generation of the labels shown



(a) (b)

B
B
B

BBM

unidentified room

Figure 3: sonar measurements. Bright regions indicate free-space, and dark regions indicate walls and obstacles.
Walls and obstacles are enlarged by a robot diameter. (b) Shown here is a topological analysis of the map. Obstacles
are shown in black. As indicated by the different shading, the free-space is divided into 7 rooms/hallways (gray) by 9
door regions (white). The arrow points to an unidentified room in the competition ring.

in Figure 3b requires approximately 15 minutes of pro-
cessing time on a SUN Sparcstation 10. Note that the
underlying database of topological examples consists of
preselected prototypes based on occupancy maps which
were constructed at the University of Bonn prior to the
competition.

IV. PLANNING AND EXPLORATION

The previous section presented RHINO’s approach to
mapping its environment. In this section we describe
how occupancy maps are used when controllingthe robot.
RHINO’s planner generates minimum-cost paths to arbi-
trary goal locations or, as described below, to unexplored
regions. These paths are constantly refined and com-
municated to the obstacle avoidance routine, which then
determines the final motion direction and velocity of the
robot.

RHINO’s main planning engine consists of a dynamic
programming routine, which computes trajectories with
minimum cost to a goal location [4]. The occupancy map
is translated into a cost function, such that occupied terri-
tory results in high traversal cost, and free territory in low
traversal cost. Dynamic programming propagates path
information from the goal(s) to arbitrary locations in the
map. Consequently, steepest descent results in a mini-
mum cost path to the “cost-nearest” goal. Control can be
generated at any time without any significant computa-
tion. However, deliberation time is traded for the quality
of the resulting path.

Because occupancy maps are often too inaccurate to gen-
erate collision-free motion control, in dynamic environ-
ments, RHINO’s planner commands only the rough mo-
tion direction, which is then finalized by the collision
avoidance routine. Consequently, if unmodeled obsta-
cles block the robot’s path, the planner is faced with



start

robot

Figure 4: Occupancy map, constructed from scratch dur-
ing 15 minutes of autonomous robot exploration. The
robot’s path, which starts at the upper left corner, is also
shown.

unexpected robot actions. Dynamic programming pre-
plans for arbitrary robot locations. This is because goal
information is propagated for every location in the map,
not just the current location of the robot. Consequently,
RHINO can quickly react if it finds itself to be in an unex-
pected location, and generate appropriate motion direc-
tions without any additional computational effort. This
rapid exception handling ability provides the necessary
freedom for the collision avoidance routine to modify
actions commanded by the planner at its own will.

In both stages of the competition, RHINO explored and
mapped unknown terrain. RHINO’s planning mecha-
nism can easily be applied to generate explorative paths,
lacking a specific goal point. If the set of goal posi-
tions is defined as the set of positions, for which no map
information is available, RHINO moves straight to the

unexplored. Figure 4 illustrates the path of some 15 min-
utes autonomous robot exploration in the competition
ring. In this prototypical example, the main hallways
have already been traversed, and RHINO continues to
explore the unexplored rooms. RHINO’s speed at the
straight-line segments of the exploration path was gener-
ally between 50 and 90 centimeters per second. Further
details on planning and exploration can be found in [7].

V. VISION AND OBJECT RECOGNITION

The images from the color camera system are the input
to a four-stage vision system, which solves two different
tasks. First, it has to recognize important objects typically
found in the environment (e.g., objects in an office envi-
ronment). Second, it supplies valuable information for
the robot navigation task by providing local occupancy
maps to the map builder and obstacle locations relative
to the robots position to the collision avoidance module.
This second task, however, was not performed during
the final runs at the competition. Here, map building
and obstacle avoidance relied solely on sonar informa-
tion, which turned out to be sufficiently reliable in the
competition ring.

In the first stage of low-level processing, images are low-
pass filtered and sub-sampled, to reduce the data transfer
via the radio link and to pre-process the image for the next
stage. This process is performed on one of the on-board
i486 computers. Sampling in space (image size) and in
time (frame rate) is done dynamically, dependent on the
actual velocity of the robot. Thereby the transmission
channel capacity is allocated in a task-driven way.

The second processing stage is done by an image seg-
mentation algorithm which partitions the transmitted im-
age into homogeneous, connected regions (cf. Fig. 5).
Homogeneity is measured by a dissimilarity measure be-
tween neighboring image sites (pixels or blocks of pixels).
For reasons of efficiency, the dissimilarity measure is re-
stricted to a weighted squared sum of color and luminance
differences between sites (with an additional threshold).
Formally, the segmentation task can be described as a
minimization problem of a cost function, which sums up
the local inhomogeneities of all regions for a given parti-
tion. To achieve real-time performance without the need
for special hardware, the segmentation is implemented by
a fast region-merging scheme. The decision whether or
not two neighboring regions should be merged depends
on a comparison between the current costs and the costs
after merging.

The third stage takes the segmented image as an input and



Figure 5: (a) Raw image and (b) segmented image in coarse resolution (9 segments).

seeks to identify and label certain elements of a typical
indoor scene, e.g., the floor, walls and doors. Impor-
tant further information for both navigation and object
recognition can be derived: The distances and sizes of
all objects or regions located on the floor are calculated
based on knowledge of the position, viewing angle, etc.
of the cameras. This distance and size information for
walls and objects is incorporated into the occupancy map.

At the top of RHINO’s vision processing architecture, a
feature-based object recognizer detects objects of inter-
est in the environment. The recognition module is able to
learn from labeled examples of feature vectors, extracted
from example images. For every type object, a Gaus-
sian model (mean and covariance matrix) is estimated
according to the maximum likelihood principle. Typical
features are the normalized mean and the variance of ob-
ject luminance, the mean and the variance of object color
(hue and saturation), and geometrical features like the
absolute size, width and height of the object, estimated
based on the object location calculated in the third stage
of the vision system. At the competition, we used be-
tween 30 and 50 training examples to model each of the
7 object classes. These example images showed differ-
ent objects varying in object distance, lighting conditions
and the choice of the class representative. The assign-
ment to a class is done by minimizing the Mahalanobis
distance to the class mean. If the likelihood is below a
certain threshold, the candidate object is not accepted as a
member of a known class and is considered unclassified.

Once a target object has been found, its location is com-
municated to the planner and other modules concerned

with task and motion control.

VI. RESULTS AND DISCUSSION

This paper surveys the software architecture of the fully
autonomous RHINO robot, as it was exhibited at the
AAAI Robot Competition and Exhibition. RHINO is
controlled by a dozen software modules which work and
communicate asynchronously. Special emphasis is put on
real-time operation, learning, and the integration of reac-
tivity and global map knowledge. RHINO does not re-
quire prior knowledge on the locations of walls/obstacles,
nor on the topology of its environment.

In the first stage of the competition (“office delivery”),
RHINO had to move to a designated target location (see
[6] for a detailed description of the competition). This
stage consisted of three trials, two of which counted for
the final score. Because we are specifically interested in
navigationwithout prior information, we attempted to use
the first trial for exploring and mapping the competition
ring, and only the remaining two trials for the delivery
task. However, although RHINO traveled fast, we learned
that the arena could not be explored completely without
prior information in the allotted time. Consequently, we
had to “buy” a metric map for subsequent trials.

One of the major problems we encountered at the com-
petition was RHINO’s unreliable radio link. Unpre-
dictable radio communication, possibly based on inter-
ference with other radio links, caused RHINO’s on-board
operating system (Linux, a PC-version of Unix) to sus-
pend obstacle avoidance for periods of 10 seconds or



more. In the second and third trial of stage one, RHINO
suffered from severe communication failures and collided
repeatedly with walls. Because of this, the first stage of
the competition could not be completed, and RHINO was
excluded from the finals of this stage.

The communication problem was fixed in the second
stage of the competition by moving the radio link closer
to the competition ring. In this stage (“cleaning-up an of-
fice”), RHINO was required to find and fetch objects like
soda cans and paper wads, to pick them up, and to drop
them in groups of three into a nearby trash bin. Since
RHINO is currently not supplied with a manipulator, it
indicated its intention to pick up and to drop objects by
voice. RHINO used essentially the same exploration rou-
tines as in the first stage but at a reduced speed. In addi-
tion, the visual routines described above were employed
for the identification of obstacles. At the competition,
RHINO found most of the objects in the starting room
and then continued to clean up the hallway. Here RHINO
scored second, defeated only by a collaborating team of
three robots, described in a different article in the same
volume [1].

The AAAI competition ends an initial six-month period
of software engineering. RHINO’s software is generally
applicable to autonomous navigation in indoor environ-
ments. In the future, RHINO shall operate 24 hours a day,
interrupted only by battery charging. Our main scientific
interest is the study and the design of autonomous, com-
plex learning systems, which in the domain of robotics
includes adaptive approaches to sensory processing and
lifelong robot learning [8]. We are currently implement-
ing various learning techniques that allow RHINO to
adapt to new situations, and to acquire new skills nec-
essary for achieving a broad variety of tasks.

ACKNOWLEDGMENT

Some of the low-level software (TCX [3], device drivers
for the speech board and the cameras) were provided
by Carnegie Mellon University, which is gratefully ac-
knowledged. We also acknowledge the steady and help-
ful support by Real World Interface Inc. Travel to the
competition would not have been possible without a gen-
erous travel grant by AAAI, and the invaluable assistance
by Peter Lachart, Wolli Steiner and Peter Wallossek. One
of the authors (T.H.) was partially supported by the Min-
istry of Science and Research of the state North Rhine-
Westphalia.

REFERENCES

[1] T. Balch, G. Boone, T. Collins, H. Forbes,
D. MacKenzie, and J. C. Santamaria. Io, Ganymede
and Callisto – a multiagent robot janitorial team. AI
Magazine, 16(1), Spring 1995. (this issue).

[2] T. L. Dean and M. Boddy. An analysis of time-
dependent planning. In Proceeding of Seventh Na-
tional Conference on Artificial Intelligence AAAI-92,
pages 49–54, Menlo Park, CA, 1988. AAAI, AAAI
Press/The MIT Press.

[3] C. Fedor. TCX. An interprocess communication sys-
tem for building robotic architectures. programmer’s
guide to version 10.xx. Carnegie Mellon University,
Pittsburgh, PA 15213, December 1993.

[4] R. A. Howard. Dynamic Programming and Markov
Processes. MIT Press and Wiley, 1960.

[5] H. P. Moravec. Sensor fusion in certainty grids for
mobile robots. AI Magazine, pages 61–74, Summer
1988.

[6] R. Simmons. The 1994 AAAI robot competition and
exhibition. AI Magazine, 16(1), Spring 1995. (this
issue).

[7] S. Thrun. Exploration and model building in mo-
bile robot domains. In Proceedings of the ICNN-93,
pages 175–180, San Francisco, CA, March 1993.
IEEE Neural Network Council.

[8] S. Thrun. A lifelong learning perspective for mobile
robot control. In Proceedings of the IEEE/RSJ/GI
International Conference on Intelligent Robots and
Systems, September 1994.


