
Hindawi Publishing Corporation
Physics Research International
Volume 2011, Article ID 379604, 10 pages
doi:10.1155/2011/379604

Research Article

The Modal-Hamiltonian Interpretation of Quantum Mechanics
as a Kind of “Atomic” Interpretation

Juan Sebastián Ardenghi1 and Olimpia Lombardi2

1 CONICET-Instituto de Astronomı́a y Fı́sica del Espacio, Ciudad Universitaria, CP 1429, Buenos Aires, Argentina
2 CONICET-Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, CP 1429, Buenos Aires, Argentina

Correspondence should be addressed to Olimpia Lombardi, olimpiafilo@arnet.com.ar

Received 6 May 2011; Accepted 5 August 2011

Academic Editor: Weitao Yang

Copyright © 2011 J. S. Ardenghi and O. Lombardi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Modal interpretations are non-collapse interpretations, where the quantum state of a system describes its possible properties
rather than the properties that it actually possesses. Among them, the atomic modal interpretation (AMI) assumes the existence
of a special set of disjoint systems that fixes the preferred factorization of the Hilbert space. The aim of this paper is to analyze
the relationship between the AMI and our recently presented modal-hamiltonian interpretation (MHI), by showing that the MHI
can be viewed as a kind of “atomic” interpretation in two different senses. On the one hand, the MHI provides a precise criterion
for the preferred factorization of the Hilbert space into factors representing elemental systems. On the other hand, the MHI
identifies the atomic systems that represent elemental particles on the basis of the Galilei group. Finally, we will show that the MHI
also introduces a decomposition of the Hilbert space of any elemental system, which determines with precision what observables
acquire definite actual values.

1. Introduction

The modal interpretations of quantum mechanics are inter-
pretations where measurement plays no role in the assign-
ment of properties to physical systems. On the contrary,
quantum measurements are conceived as ordinary physical
interactions and measurements outcomes as properties of
measurement apparatuses. Therefore, modal interpretations
are non-collapse interpretations, where the quantum state of
a system describes its possible properties rather than the
properties that it actually possesses. The relationship be-
tween the quantum state and the values of any observable
is probabilistic. Therefore, the quantum state supplies the
grounds for modal statements, that is, statements about
what possibly or necessarily is the case (see [1–3]). On the
basis of this general idea, several modal interpretations were
presented. Among them, the atomic modal interpretation
(AMI, [4]) relies on the assumption that there exists a special
set of disjoint systems, which are the building blocks of all the
other systems, and that set fixes a preferred factorization of
the Hilbert space; the properties of a composite system super-
vene on the properties ascribed to its “atomic” subsystems.

The main challenge for the AMI is to provide some idea
about how such preferred partition of the universe should
look like.

In previous works (see [5–10]), we have contributed to
the family of modal interpretations with the so-called modal-
Hamiltonian interpretation (MHI), where the Hamiltonian
of the system acquires a central relevance, besides its well-
known role in representing a constant of motion and in
governing the dynamics of the system. In this interpretation,
the preferred context, that is, the set of observables that
acquire actual values, is defined by the Hamiltonian of
the closed system. In this work, our aim is to analyze the
relationship between the AMI and the MHI, by showing that
the MHI can be viewed as a kind of “atomic” interpretation
in two different senses. On the one hand, the MHI provides a
precise criterion for the factorization of the Hilbert space of
the universe into factors representing elemental systems. On
the other hand, the MHI identifies the atomic systems that
represent elemental particles on the basis of the Galilei group.
For this purpose, in Sections 2 and 3, we will introduce the
AMI and the MHI interpretations, respectively. In Section 4,
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we will stress the difference between elemental systems and
atomic systems in the context of the MHI, arguing that the
AMI cannot stress this difference because it does not consider
the difference between the non-interacting and the interact-
ing cases. In Section 5, we will show that the MHI also intro-
duces a decomposition of the Hilbert space of any elemental
system, which determines with precision what observ-
ables acquire definite actual values. Finally, in Section 6
we will draw our conclusions.

2. The Atomic Modal Interpretation

The conceptual motivation of the AMI relies on an argument
that runs as follows. As it is well known, the Hilbert space of
the universe Huniv, like any Hilbert space, can be factorized
in countless ways. Then, if one supposes that each factoriza-
tion defines a set of basic or atomic subsystems, the multiple
factorizability of a Hilbert space implies that there exists a
multiplicity of ways of defining the building blocks of nature.
Since the associated states of each quantum system can be
found by means of the partial trace with respect to the rest
of the universe, then a Boolean algebra could be established
over each atomic quantum system. But this would lead to a
contradiction because of the Kochen-Specker theorem [11].

The AMI ([4]) tries to overcome this obstacle by assum-
ing that, in nature, there is a set of mutually disjoint atomic
quantum systems S j that conform the building blocks of
all the other quantum systems. In other words, the set of
the building blocks of the universe is one and only one.
From the mathematical point of view, this means that the
Hilbert space Huniv of the entire universe can be factorized
in a single way, which defines the preferred factorization.
If each atomic quantum system S j is represented by its
corresponding Hilbert space H j , then the Hilbert space
Huniv of the universe results

H
univ =H

1 ⊗H
2 ⊗ · · · ⊗H

j . (1)

The main appeal of this idea is that it would be in consonance
with the standard model of particle physics, where the
fundamental blocks of nature are the elemental particles, for
example, quarks, electrons, photons, and so forth, and their
interactions.

The property ascription to the atomic quantum systems
in the AMI follows the general idea of the traditional modal
interpretations, where the ascription depends on the state
of the system (see [12]). According to standard quantum
mechanics, if ρ j is the state of the atomic quantum system

S j , then the probability that some projector Π
j
a in S j has

value 1 is p(Π
j
a) = Tr j(ρ jΠ

j
a). The property ascription rule

of the AMI assigns the value 1 to the projector Π
j
a when that

probability is p(Π
j
a) = Tr j(ρ jΠ

j
a) = 1, that is, if and only if

Π
j
a is an eigenprojector of ρ j .

In turn, the property ascription for a non-atomic quan-
tum system Sσ is defined by means of the reduced states of its
atomic subsystems. In fact, if the composite quantum system
Sσ consists of the atomic quantum subsystems S1, S2, . . . , Sn,
and ρσ is the state of Sσ , then we can compute the reduced

states of the atomic subsystems by applying partial traces
on ρσ , and the eigenprojectors of those reduced states are
Π

1
i , . . . ,Πn

j , respectively. The property ascription rule of the
AMI for Sσ assigns a definite value 1 to the projector
Πσ

α = Π1
a ⊗ Π

2
b ⊗ · · · ⊗ Π

n
d if and only if the property

ascriptions to the atomic quantum subsystems S1, S2, . . . , Sn

assign simultaneously a definite value 1 to the projectors
Π1

a,Π2
b, . . . ,Πn

d. And since the atomic quantum systems are
mutually disjoint, one can also compute the probability
that the projector Πσ

α of Sσ has value 1, that is, the joint
probability that all the projectors Π1

a,Π2
b, . . . ,Πn

d have the
value 1, as

p
(

Π
σ
α

)

= p
(

Π
1
a,Π2

b, . . . ,Πn
d

)

= Trσ
(

ρσΠ1
a ⊗Π

2
b ⊗ · · · ⊗Π

n
d

)

.

(2)

This implies that the properties of composite non-atomic
quantum systems can be deduced from the properties of
their atomic subsystems. In mathematical terms, this means
that the algebra of properties for a composite system is just
the Cartesian product of the algebras of properties for the
component atomic subsystems (see [4]).

The main challenge for the AMI is to justify the
assumption that there is a preferred partition of the universe,
and to provide some idea about how such factorization
should look like. Nevertheless, AMI also leads to a conceptual
problem. In this interpretation, a non-atomic quantum
system Sσ , defined as composite of atomic quantum systems,
does not necessarily have the properties that measurement in
quantum mechanics predicts. The reason is that the system
Sσ might be in the quantum state ρσ with an eigenprojector
Πσ such that Trσ(ρσΠσ) = 1. This implies that if one
measured the property represented by Πσ , one would obtain
a positive outcome with probability 1. But it may be the case
that the projector Πσ is not composite of atomic properties
and, therefore, according to the AMI, it is not a property
possessed by the composite quantum system Sσ .

Two answers to this conceptual problem have been
proposed. The first one was given by Clifton [13], who
admits the existence of dispositional properties, that is,
properties that may have probability 1 but, nevertheless, do
not reveal in measurements. According to this view, reality
has a dual description, since there are properties that the
system actually possesses and dispositional properties that
the system might possess without revealing them.

The second answer is that proposed by Dieks [14],
who claims that the projection Πσ of the composite system
Sσ shows that Sσ has a collective dynamical effect onto
the measurement device, that is, an effect that cannot be
explained by the action of the atomic components. In other
words, the composite quantum system, when interacting
with its environment, can behave as a collective entity,
screening the contribution of the atomic quantum systems.
This means that sometimes a non-atomic quantum systems
Sσ may be taken as if it were an atomic quantum system,
which is equivalent to a coarse-grained description. Dieks
argues that this is an everyday exercise in physics where,
for certain descriptions of physical processes, it is necessary
to take into account not all the components of the system,
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but rather only the emergent properties. This happens, for
instance, in the interaction between matter and radiation: in
order to explain the absorption and emission of photons in
a molecule, one does not need to describe in great detail the
properties of all the atoms in this molecule, but only has to
give an account of the collective properties. This shows that,
in the context of the theory of radiation, the molecule is in
itself an atomic entity.

As we will see in the following sections, the MHI supplies
a different viewpoint for addressing the question of the
ascription of properties to quantum systems, a viewpoint
that does not have to face these just explained difficulties.

3. The Modal-Hamiltonian Interpretation

Our MHI of quantum mechanics (see [5–10]) also belongs
to the modal family, and, therefore, it is also a realist,
non-collapse interpretation according to which the quantum
state describes the possible properties of a system but
not its actual properties. The main difference between the
MHI and previous members of the family relies on the
property ascription rule: whereas, in the traditional modal
interpretations, the rule depends on the state of the system,
in the MHI the rule is defined by the Hamiltonian of the
closed system. Therefore, the Hamiltonian acquires a central
role, both in the definition of systems and subsystems and
in the rule that selects the definite valued observables whose
possible values become actual.

If we accept the idea that the physical world is made
up of quantum systems, we have to identify them. We can
cut out the physical reality in many different and arbitrary
ways, but only when a portion of reality does not interact
with others, we have a nonarbitrary, objective criterion to
identify that portion as a system. For this reason, we have
designed our interpretation to account for those pieces of
reality non-interacting with other pieces, and, so, we have
conceived only closed systems as quantum systems. On this
basis, and by adopting an algebraic perspective, a quantum
system is defined as the following.

Systems Postulate (SP). A quantum system S is represented
by a pair (O,H) such that (i) O is a space of self-adjoint
operators on a Hilbert space H , representing the observables
of the system, (ii) H ∈ O is the time-independent
Hamiltonian of the system S, and (iii) if ρ0 ∈ O′ (where
O′ is the dual space of O) is the initial state of S, it evolves
according to the Schrödinger equation in its von Neumann
version.

Of course, any quantum system can be partitioned in
many ways; however, not any partition will lead to parts
which are, in turn, quantum systems (see [15, 16]). Then,
a composite system is defined as the following.

Composite Systems Postulate (CSP). A quantum system
represented by S : (O,H), with initial state ρ0 ∈ O′, is
composite when it can be partitioned into two quantum
systems S1 : (O1,H1) and S2 : (O2,H2) such that (i) O =

O1 ⊗ O2 and (ii) H = H1 ⊗ I2 + I1 ⊗ H2, (where I1 and I2

are the identity operators in the corresponding tensor

product spaces). In this case, the initial states of S1 and S2 are
obtained as the partial traces ρ1

0 = Tr(2)ρ0 and ρ2
0 = Tr(1)ρ0;

we say that S1 and S2 are subsystems of the composite system,
S = S1 ∪ S2. If the system is not composite, it is elemental.

From this viewpoint, a composite system S, composed
by two non-interacting elemental systems S1 and S2, may
become an elemental system S′ from the time t1 at which
the interaction between S1 and S2 begins, If, at a later
time t2 the interaction ends, the system S′ may become
the original composite system S, composed again by the
elemental systems S1 and S2. If the interaction during the
time interval t2 − t1 results in the entanglement between
the states ρ1 of S1 and ρ2 of S2, there will be quantum
correlations between S1 and S2. In other words, according
to the MHI, two systems may be nonlocally correlated if they
interacted in the past although at present they do not longer
interact and, as a consequence, they are elemental.

Since the contextuality of quantum mechanics, as
implied by the Kochen-Specker theorem (see [11]), prevents
us from consistently assigning actual values to all the
observables of a quantum system in a given state, the second
step is to identify the preferred context, that is, the set of the
actual-valued observables of the system. Whereas the dif-
ferent rules of actual-value ascription proposed by previous
modal interpretations rely on mathematical properties of
the theory, our MHI places an element with a clear physical
meaning, the Hamiltonian, at the heart of its rule.

Actualization Rule (AR). Given an elemental quantum sys-
tem represented by S : (O,H), the actual-valued observables
of S are H and all the observables commuting with H and
having, at least, the same symmetries as H .

The MHI preferred context where actualization occurs is
independent of time; the actual-valued observables always
commute with the Hamiltonian, and, therefore, they are
constants of motion of the system. In other words, the
observables that receive actual values are the same during
all the “life” of the quantum system as such—precisely, as
a closed system—: there is no need of accounting for the
dynamics of the actual properties of the quantum system as
in other modal interpretations (see [17]).

The fact that the Hamiltonian always belongs to the
preferred context agrees with the many physical cases where
the energy has definite value. The MHI has been applied
to several well-known physical situations (hydrogen atom,
Zeeman effect, fine structure, etc.), leading to results consis-
tent with experimental evidence (see [5]). Moreover, it has
proved to be effective not only for solving the measurement
problem in its ideal versions, but also for overcoming the
deep challenges that non-ideal measurements pose to other
modal interpretations (see [18, 19]). In particular, the MHI
distinguishes between reliable and nonreliable non-ideal
measurements (see [5]). Furthermore, in spite of the fact
that MHI applies to closed systems, we have proved its
compatibility with environment-induced decoherence (see
[20, 21]).

Once the MHI was clearly formulated, our further
question was whether it satisfies the Galilei invariance of
quantum mechanics. In fact, any continuous transformation
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admits two interpretations. Under the active interpretation,
the transformation corresponds to a change from one system
to another transformed system; under the passive interpreta-
tion, the transformation consists in a change of the viewpoint
reference frame from which the system is described (see
[22]). Nevertheless, in both cases, the validity of a group
of symmetry transformations expresses the fact that the
identity and the behavior of the system are not altered by
the application of the transformations: in the active inter-
pretation language, the original and the transformed systems
are equivalent; in the passive interpretation language, the
original and the transformed reference frames are equivalent.
Then, any realist interpretation should agree with that
physical fact: the rule of actual-value ascription should select
a set of actual-valued observables that remains unaltered
under the transformations. Since the Casimir operators of
the central-extended Galilei group are invariant under all the
transformations of the group, one can reasonably expect that
those Casimir operators belong to the preferred context.

As we have seen, the preferred context selected by AR
only depends on the Hamiltonian of the system. Then,
the requirement of invariance of the preferred context
under the Galilei transformations is directly fulfilled when
the Hamiltonian is invariant, that is, in the case of time
displacement, space displacement, and space rotation,

H′ = eiHτHe−iHτ = H (since [H ,H] = 0), (3)

H′ = eiPiriHe−iPiri = H (since [Pi,H] = 0), (4)

H′ = eiJiθiHe−iJiθi = H (since [Ji,H] = 0). (5)

However, it is not clear that the requirement is completely
satisfied, since the Hamiltonian is not invariant under Galilei
boosts. In fact, under a Galilei boost corresponding to a
velocity ux, H changes as

H′ = eiK
(G)
x uxHe−iK

(G)
x ux /=H

(

since
[

K (G)
x ,H

]

= iPx /= 0
)

.

(6)

Nevertheless, when space is homogeneous and isotropic, a
Galilei boost only introduces a change in the subsystem that
carries the kinetic energy of translation; the internal energy
W remains unaltered under the transformation. This should
not sound surprising to the extent that W—multiplied by
m—is a Casimir operator of the central-extended Galilei
group. On this basis, we can reformulate AR in an explicit
Galilei-invariant form in terms of the Casimir operators of
the central-extended group.

Actualization Rule’ (AR’). Given an elemental quantum
system free from external fields and represented by S :
(O,H), its actual-valued observables are the observables
CG
i represented by the Casimir operators of the central-

extended Galilei group in the corresponding irreducible
representation, and all the observables commuting with the
CG
i and having, at least, the same symmetries as the CG

i .

Since the observables CG
i —in the reference frame of the

center of mass—are M, mW , and m2S2, this reformulation
AR’ is in agreement with the original AR when applied to a
system free from external fields (see [7, 9]).

(i) The actual valuedness of M and S2, postulated by AR’,
follows from AR; these observables commute with H
and do not break its symmetries because, in non-
relativistic quantum mechanics, both are multiples of
the identity in any irreducible representation.

(ii) The actual valuedness of W might seem to be in
conflict with AR because W is not the Hamiltonian,
whereas W is Galilei invariant, and H changes under
the action of a Galilei boost. However, this is not a
real obstacle because a Galilei-boost transformation
only introduces a change in the subsystem that
carries the kinetic energy of translation, which can be
considered a mere shift in an energy defined up to a
constant (see [7, 9]).

Summing up, the application of AR’ leads to reasonable
results, since the actual-valued observables turn out to be
invariant and, therefore, objective magnitudes. The assump-
tion of a strong link between invariance and objectivity is
rooted in a natural idea; what is objective should not depend
on the particular perspective used for the description; or,
in group-theoretical terms, what is objective according to
a theory is what is invariant under the symmetry group of
the theory. This idea is not new; it was widely discussed
in the context of special and general relativity with respect
to the ontological status of space and time (see [23]), and
it reappeared in several works (see [24–27]). From this
perspective, AR’ says that the observables that acquire actual
values are those representing objective magnitudes. On the
other hand, from any realist viewpoint, the fact that certain
observables acquire an actual value is an objective fact in
the behavior of the system; therefore, the set of actual-
valued observables selected by a realist interpretation must
be also Galilei invariant. But the Galilei-invariant observables
are always functions of the Casimir operators of the Galilei
group. As a consequence, one is led to the conclusion that any
realist interpretation that intends to preserve the objectivity
of actualization may not stand very far from the MHI.

4. The “Atomic” Systems in the MHI

On the basis of the two previous sections, it is quite clear that
the AMI and the MHI, although both belonging to the modal
family, are very different approaches to the problem of the
interpretation of quantum mechanics. Nevertheless, when
analyzed in the light of the basic assumptions of the AMI, the
MHI can also be viewed as a kind of “atomic” interpretation,
in two different senses.

4.1. Factorization in Elemental Systems. As we have seen,
the AMI supposes that there are certain building blocks in
nature, the atomic systems, in such a way that the universe is
built by those fundamental blocks. This means that there is a
preferred factorization of the universe, and any non-atomic
quantum systems is a composite system whose components
are the atomic systems. Therefore, the ascription of proper-
ties to the composite systems is determined by the properties
ascribed to its atomic components.
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When the main idea of the AMI is expressed in these
simple terms, the same characterization can be applied to
the MHI, which, as a consequence, can be considered as
an atomic interpretation. In fact, the composite systems
postulate CSP states that a composite system S, represented
by its space of observables O, can be factorized into its
non-interacting components SA and SB in such a way that
O = OA ⊗ OB. It is not difficult to see that the recursive
application of this postulate to the universe as a whole, then
to its components SA and SB, then to the components of
these components and so on, will finally lead to a set of
systems S1, S2, . . . , Sn, which cannot be further decomposed:
these systems are not called “atomic” systems in the MHI, but
“elemental” systems, and they also play the role of fixing the
preferred factorization of the universe

O
univ = O

1 ⊗O
2 ⊗ · · · ⊗O

j . (7)

Moreover, although the MHI is formulated from the alge-
braic perspective, it can also be expressed in the Hilbert space
language of the AMI. According to the algebraic formalism
of quantum mechanics (see [28]), given a ∗-algebra A of
operators, (i) the set of the self-adjoint elements of A is
the space O, whose elements represent observables, O ∈ O,
and (ii) states are represented by functionals on O, that is,
by elements of the dual space O′, ρ ∈ O′. The traditional
presentations of the algebraic formalism adopt a C∗-algebra
of operators as the departing point: a C∗-algebra can be
represented by a Hilbert space (GNS theorem) and, in this
particular case, O = O′; therefore, O and O′ are both
represented by H ⊗ H . As a consequence, in the Hilbert
space formalism, the factorization into elemental systems
introduced by the MHI can also be expressed (see (1)) as

H
univ =H

1 ⊗H
2 ⊗ · · · ⊗H

j . (8)

As we have pointed out in Section 3, a composite system
may become an elemental system from the time at which
the interaction between its elemental component subsystems
begins. As a consequence, the factorization of the universe
into elemental systems introduced by the MHI is not time
independent but changes with time. Nevertheless, this is
not a shortcoming of the interpretation to the extent that,
according to the MHI, the elemental systems resulting from
this preferred factorization are not the building blocks of the
universe; as we will discuss in detail in the next subsection,
this role is played by the atomic irreducible systems.

On the other hand, in the MHI, the ascription of
properties to the composite systems is also determined by
the properties ascribed to its atomic components. In fact,
the actualization rule AR applies to elemental quantum
systems. In turn, the original detailed formulation of the
MHI (see [5]) includes a precise interpretative postulate that
establishes the links between the properties of a composite
system and the properties of its components.

Composite Properties Postulate (CPP). Given a composite
quantum system S = S1 ∪ S2 : (O,H), where S1 : (O1,H1)
and S2 : (O2,H2), and given the observables A1 ∈ O1

of S1, A2 ∈ O2 of S2, and the observables A1 ⊗ I2 ∈ O

and A f = f (A1 ⊗ I2, I1 ⊗ A2) ∈ O of S, where f is
an analytical function, then, (i) the observables A1 and
A1 ⊗ I2 represent the same property with values a1

i , where
the a1

i are the eigenvalues of both A1 and A1 ⊗ I2, and
(ii) the observable A f represents a property with values
f (a1

i , a2
j ), where the a1

i , a2
j are the eigenvalues of A1 and A2,

respectively; A f is equivalent to the combination between A1

and A2, represented by the function f .

The interpretational postulate CPP expresses the usual
quantum assumption according to which the observable
A1 of a subsystem S1 and the observable A1 ⊗ I2 of the
composite system S = S1 ∪ S2 represent the same property.
On the other hand, this postulate establishes the necessary
connections between the properties of the composite system
and the properties of its subsystems. The assumption of these
connections is not a specific feature of quantum mechanics
but is also usual in classical mechanics where we consider,
for instance, the energy of a two-particles composite system
as a particular combination (expressed by the sum) of the
energies of the component subsystems.

Let us recall that the original AMI also leads to a concep-
tual problem when the property ascription to atomic systems
is compared with the supposed results of measurements.
Our MHI undercuts that problem from the very beginning
by supplying a detailed account of quantum measurements,
which takes into account that their final goal is not to
“discover” the actual value of a system’s observable, but to
reconstruct the state of the system just before the beginning
of the measurement process. Therefore, the only relevant fact
is the definite reading of the apparatus’ pointer; the task
consists in explaining how the repetition of single detections
where the pointer is definite valued allows us to reconstruct
the state of the measured system. According to the MHI,
no matter what happens with the measured system, in
each single measurement, the apparatus’ pointer is always
definite valued because its Hamiltonian commutes with its
pointer. And this commutation relation is not required by
the interpretation, but by the fact that, for the reading of the
pointer to be possible, the eigenvectors of the pointer have
to be stationary; thus, the apparatus has to be constructed in
such a way that its pointer commutes with its Hamiltonian
(we refer the reader to [5]).

On the basis of this account of the quantum measure-
ment, the definite value of the measurement apparatus is
explained both in the ideal and in the non-ideal cases, and
this treatment even allows us to distinguish between reliable
and nonreliable non-ideal measurements (see Section 6.2
of [5]). Moreover, we have also shown the compatibility
between the MHI account of measurement and the explana-
tions given in the context of the theory of the environment-
induced decoherence (see [20, 21]). Therefore, in the MHI
framework there is no inconsistency between the property
ascription to elemental systems and the properties effectively
detected as definite valued in measurements.

Summing up, in a relevant sense, the MHI can be con-
ceived as a case of AMI, but, with an important advantage:
by contrast to the original AMI, the MHI provides a precise
criterion of factorization. Such a criterion is given by the
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Hamiltonian of the whole universe, and the possibility of
decomposing it into non-interacting elemental Hamiltoni-
ans. The justification of this criterion is not based on a priori
arguments or principles, but on the fruitfulness of the MHI
itself, which relies on the physical relevance of the interpre-
tation when applied to well-known physical situations and
on its capability of solving some traditional interpretational
challenges. In turn, once the actualization rule is applied to
the elemental systems, the assignment of properties to any
composite system is derived from the equivalence between
its properties and the properties of its component subsystems
on the basis of the composite properties postulate CPP. This
bottom-up “constructive” strategy for assigning properties is
a further point of agreement between the MHI and the AMI.

4.2. Atomic Irreducible Systems. In the previous subsection
we have seen a close analogy between the roles played by the
atomic systems in the AMI and the elemental systems in the
MHI. Nevertheless, the MHI also incorporates conceptual
resources to think about of atomic systems in a new
sense. These resources come from the theoretical perspective
supplied by group theory.

As stressed by Lévi-Leblond (see [29]), although it is
usual to read that non-relativistic quantum mechanics is
covariant, and even invariant, under the Galilei transforma-
tions, this issue has been scarcely treated in the standard
literature on the theory. For instance, the commutation
relations defining the Galilei group are often not even quoted
in the textbooks on the matter (an exception is [30]). This
situation has its counterpart in the field of the interpretation
of quantum mechanics; the relevance of the Galilei group is
rarely discussed in the impressive amount of literature on the
subject.

By contrast with this trend, our MHI places the Galilei
group at the very heart of the interpretation. As we have
seen, when the actualization rule is expressed under a
Galilei invariant form, the properties that acquire definite
values are those represented by the Casimir operators of
the Galilei group (see [7, 9]). Besides endowing the actual-
valued observables with the objectivity required by any realist
interpretation, this group-theoretical approach allows us to
identify atomic systems in a sense different from that under-
lying the concept of elemental system. In fact, in complete
agreement with the assumptions of quantum field theory,
we can also say in non-relativistic quantum mechanics that
the atomic systems are the elemental particles, which are
represented by the irreducible representations of the Galilei
group.

Let us notice the difference between an elemental system
and an atomic-irreducible system, which can be captured by
the MHI. The atomic systems are the final building blocks of
the universe, in the sense that there is no simpler system that
can exist as an individual entity in the quantum world. When
two or more atomic systems do not interact, the resulting
system is trivially composite since the atomic systems still
persist as such. But when two or more atomic systems
interact with each other, the result is a new system where
the original components do not preserve their individuality;
the resulting system may be elemental in the sense that

cannot be further decomposed into independently evolving
subsystems.

The original AMI cannot stress this difference because it
does not consider the difference between the non-interacting
and the interacting cases: in the AMI framework, the
problem is always the question about the factorization
of the Hilbert space, without taking into account that
such a factorization does not always represent physical
independence between subsystems. For this reason, whereas
the AMI interprets the atomic systems as representing the
elemental particles, at the same time Dieks admits that, in
the interaction between matter and radiation, the molecule
in itself can be treated as an atomic entity. However, Dieks’
claim sounds dissonant when one expects that the atomic
systems play the role of the building blocks of the universe; a
molecule is not an elemental particle. But when we take into
account interactions, we can say that the elemental particles
are the atoms, the building blocks of reality, and at the same
time we can explain that a molecule, being a non-atomic sys-
tem, is nevertheless an elemental system that can no longer be
decomposed into independent subsystems whose evolution
is ruled by the dynamical postulate of quantum mechanics.

5. Decomposition of the Hilbert Space

As we have stressed in the previous section, the MHI provides
a precise criterion for the factorization of the Hilbert space of
a composite system into the Hilbert spaces of its elemental
subsystems. In this section, we will see that the MHI also
introduces a partition of the Hilbert space of any elemental
system, which determines what observables acquire definite
actual values.

As it is well known, any observable can be described in
terms of its spectral decomposition, where each eigenprojec-
tor projects onto a subspace of a Hilbert space, which may be
degenerate or not; each one of those subspaces corresponds
to a definite eigenvalue of the observable. Formally, let us
consider the space of the observables O acting on the Hilbert
space H . Let us also consider a certain observable A ∈ O,
which can be written in terms of its spectral decomposition
as

A =
∑

n,in

an|n, in〉〈n, in|, (9)

where an is the eigenvalue associated to the eigenvectors
|n, in〉, an /= an′ , the index n corresponds to the eigenvalue,
and the index in corresponds to the degeneracy of each
eigenvalue. Then, an equivalence relation between eigenvec-
tors corresponding to the same eigenvalue can be defined as
follows

Definition 1. Two vectors |a〉 and |b〉 are equivalent with
respect to an observable A, |a〉 ∼

A
|b〉, if A|a〉 = an|a〉 and

A|b〉 = an|b〉.

This means that |a〉 and |b〉 are equivalent with respect
to the observable A if they are eigenvectors of the same
eigenvalue an. When the eigenvalue is not degenerate, the
only possibility is that |a〉 = c|b〉; equivalent vectors are
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colinear. If the eigenvalue is degenerate, then the relation
implies that all the vectors belonging to the degenerate
subspace associated to an are equivalent. This equivalence
relation introduces a decomposition of the Hilbert space into
the eigensubspaces [An] of the observable A, such that for
any |a〉, |b〉 ∈ [An], |a〉 ∼

A
|b〉. Moreover, given the subspace

[An], the subspace ¬[An] can be defined as the orthogonal
complement of the subspace corresponding to the eigenvalue
an. Then, for each eigenvalue an, the Hilbert space H can be
decomposed into two disjoint and exhaustive subspaces [An]
and ¬[An], where ¬[An] is subspace corresponding to the
remaining eigenvalues of the observable A.

Among all the decomposition of the system’s Hilbert
space, there are two extreme cases. One of them is the
case of any nondegenerate observable, say B, whose spectral
decomposition is given by

B =
∑

m

bm|m〉〈m|, (10)

where bm /= bm′ and {|m〉} is a basis of the Hilbert space H .
Here B decomposes H into its unidimensional subspaces.
The other extreme case is the the completely degenerate
observable, that is, the identity I , which has only one
eigenvalue; therefore, a single subspace [I] can be defined,
which is precisely the whole H .

From the perspective of the formal structure of quantum
mechanics, all the observables are on the same footing.
However, from a physical viewpoint, there is a substantial fact
that makes the Hamiltonian different from the remaining
observables of the system; it is the observable that rules the
evolution of the quantum systems through the dynamical law
of the theory. The MHI takes the central role played by the
Hamiltonian in the theory and translates it to interpretation.
Therefore, here we are interested in the decomposition of the
Hilbert space introduced by the Hamiltonian.

Let us consider an elemental quantum system repre-
sented by S : (O,H), where O =H ⊗H and M = dim(H).
Let us also suppose that the Hamiltonian H has a discrete
spectrum, and, in the generic case, it is degenerate; then, it
can be expressed as

H =

N
∑

n=1

ωnΠn, (11)

where ωn /=ωn′ and N is the number of different eigenvalues
of H . Each projector Πn, corresponding to the eigenvalue ωn,
projects onto its corresponding eigensubspace [Hn] resulting
from the decomposition of H introduced by H and can be
expressed as

Πn =

f (n)
∑

in=1

|n, in〉〈n, in|, (12)

where the index in expresses the degeneracy of the energy
eigenvalue ωn, and f (n) is the dimension of the eigen-
subspace [Hn]. According to the actualization rule AR,
the actual-valued observables of the system S are those

commuting with the Hamiltonian H and having, at least, the
same symmetries as H . Therefore, those observables have the
following form:

A =
N
∑

n=1

anΠn =

N
∑

n=1

an

f (n)
∑

in=1

|n, in〉〈n, in|. (13)

In fact, it is clear that [A,H] = 0. Moreover, if an /= an′ ,
A has the same degeneracy as H since they have the same
eigenprojectors; the eigensubspace [An] spanned by the
eigenvectors corresponding to the degenerate eigenvalue an
of A is the same as the eigensubspace [Hn] spanned by the
eigenvectors corresponding to the degenerate eigenvalue ωn.
In turn, if an /= an′ does not hold, then the observable A
has more symmetries than H since it does not distinguish
between certain eigensubspaces [Hn] resulting from the
decomposition of H introduced by H . On the other hand,
any observable of the form

B =
N
∑

n=1

bn,inΠn =

N
∑

n=1

bn,in

f (n)
∑

in=1

|n, in〉〈n, in| (14)

will not acquire an actual value, in spite of commuting with
H . This is due to the fact that the observable B, through
its eigenvalues, would discriminate among the eigenvectors
of H corresponding to a single degenerate eigenvalue of
H . In other words, B would distinguish among vectors
belonging to the same eigensubspace [Hn] resulting from the
decomposition of H introduced by H , that is, among vectors
that are equivalent with respect to H .

Summing up, besides defining a preferred factorization
of the universe into elemental quantum systems, the MHI
introduces a preferred decomposition of the Hilbert space
of each elemental system into subspaces. In this way, the
interpretation identifies with precision the definite actual-
valued observables of the system (and it also gives the
number of the different kinds of those observables, see the
Appendix). The preferred decomposition can be viewed as
a coarse graining of the Hilbert space; no observable whose
actualization would discriminate among eigenvectors not
distinguished by the Hamiltonian can become actual. It is
precisely this coarse-grained decomposition what identifies
with precision the observables that acquire a definite actual
value according to our interpretation.

6. Conclusions

The modal interpretations of quantum mechanics were
designed to solve the measurement problem from a realist
perspective without the collapse hypothesis. Among them,
the AMI intended to accomplish that task without breaking
the Kochen-Specker restrictions, by postulating the existence
of a preferred factorization of the Hilbert space of the
universe. According to the AMI, such a factorization defines
the Hilbert spaces representing the atomic systems that
populate the quantum reality; those atomic systems are
conceived as the building blocks of the universe, that is, the
elemental particles postulated by physics. However, its main
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problem was the fact that it did not supply a precise criterion
for that factorization; for this reason, the AMI did not have
as much relevance as other modal interpretations.

In this paper, we have compared our recently presented
MHI with the AMI, in order to show that the MHI can
be viewed as a kind of atomic interpretation that over-
comes the main difficulty of the original AMI by precisely
identifying the preferred factorization. Nevertheless, the
systems defined by that factorization are not “atoms”, but
elemental systems that cannot be further decomposed in
quantum systems independently evolving according to the
Schrödinger equation. Those elemental systems may be
the result of the interaction of atomic systems conceived
as elemental particles. Moreover, the MHI also provides
a precise criterion for defining those atomic systems, the
elemental particles, which can be viewed as the building
blocks of the universe; they are the systems represented by
the irreducible representations of the Galilei group. On the
other hand, on the basis of the decomposition of the Hilbert
space of a system into the eigensubspaces of the Hamiltonian,
the MHI also unequivocally identifies the observables that
acquire definite actual values in any elemental system. The
original AMI cannot introduce all these distinctions because
it does not take into account the great relevance of the
interactions in the quantum world.

Finally, we want to stress that the central role conferred
to group theory by the MHI allows us to expect that the
interpretation can be transferred to quantum field theory by
replacing the Galilei group with the Poincaré group plus the
group of the internal symmetries. At present, this is a work
in progress (see [31, 32]).

Appendix

Let us consider a system S : (O,H) whose Hamiltonian H
has a discrete spectrum with N different eigenvalues and,
therefore, N eigensubspaces [Hn] that may be degenerate
or not. The dimension of the Hilbert space H is M =

dim(H) =
∑N

i=1 dim([Hn]). Then, H can be decomposed
in C(M) ways according to the following equation:

M = 1 f
(M)

1 (k) + 2 f
(M)

2 (k) + · · · + N f
(M)
M (k) =

M
∑

j=1

j f
(M)
j (i),

(A.1)

where j = 1, 2, . . . ,M are the different dimensions that the

Hamiltonian’s eigensubspaces [Hn] may have, f
(M)
j is the

number of eigensubspaces of dimension j, and i denotes
the particular solution of (A.1). The number C(M) is the
number of solutions of (A.1).

Let us see an example with M = dim(H) = 4; in this
case, (A.1) reads

4 = 1 f
(4)

1 + 2 f
(4)

2 + 3 f
(4)

3 + 4 f
(4)

4 . (A.2)

There are five possible solutions to this equation, and,
therefore, C(4) = 5. If each solution is denoted by g(M)(i),
then

g(4)(1)=
{

f
(4)

1 (1)=4, f
(4)

2 (1)=0, f
(4)

3 (1)=0, f
(4)

4 (1)=0
}

,

g(4)(2)=
{

f
(4)

1 (2)=2, f
(4)

2 (2)=1, f
(4)

3 (2)=0, f
(4)

4 (2)=0
}

,

g(4)(3)=
{

f
(4)

1 (3)=1, f
(4)

2 (3)=0, f
(4)

3 (3)=1, f
(4)

4 (3)=0
}

,

g(4)(4)=
{

f
(4)

1 (4)=0, f
(4)

2 (4)=2, f
(4)

3 (4)=0, f
(4)

4 (4)=0
}

,

g(4)(5)=
{

f
(4)

1 (5)=0, f
(4)

2 (5)=0, f
(4)

3 (5)=0, f
(4)

4 (5)=1
}

,

(A.3)

where

(i) g(4)(1) corresponds to the decomposition of H into
four one-dimensional eigensubspaces.

(ii) g(4)(2) corresponds to the decomposition of H

into two one-dimensional eigensubspaces and one
eigensubspace of dimension 2.

(iii) g(4)(3) corresponds to the decomposition of H

into one one-dimensional eigensubspace and one
eigensubspace of dimension 3.

(iv) g(4)(4) corresponds to the decomposition of H into
two eigensubspaces of dimension 2.

(v) g(4)(5) corresponds to the decomposition of H into
one eigensubspace of dimension 4.

Let us now suppose for a moment that the eigensubspaces
[Hn] of H are all one dimensional. Then, we can compute
the number Obs(M) of different kinds of the observables
that can be built from the preferred factorization, that is,
of the observables that commute with H and do not break
its symmetry. For this purpose, we can use the properties
of the permutation group SM of M objects, which can
be written in terms of cycles, where a cycle is a cyclic
permutation of a subset of the group. An arbitrary element

has f
(M)
j (i) cycles of order j, according to (A.1). In turn, in

this permutation group, conjugacy classes can be defined,
which give the cyclic structure; those classes are labeled by

the integer numbers f
(M)
j (i). The number of elements of each

conjugacy class will be the number of possible combinations
that can be performed with the decomposition introduced
by the Hamiltonian. If each conjugacy class consists of

permutations with f
(M)

1 (i) cycles of order 1, f
(M)

2 (i) cycles of
order 2, and so forth, which satisfy (A.1), then the number
PM of different permutations in the conjugacy class is (see
[33, page 37, equation (1.141)])

PM =
M!

∏

j

(

j!
) f

(M)
j (i)

f
(M)
j (i)!

. (A.4)

Therefore, the number Obs(M) of different kinds of observ-
ables that will acquire definite actual values according the
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actualization rule of our MHI is the sum of all the possible
decompositions

Obs(M)

=

C(M)
∑

i=1

M!
(

Max
(

g(M)(i)
)

− 1
)

!

(

∏M
j=1

(

j!
) f

(M)
j (i)

f
(M)
j (i)!

) ,

(A.5)

where the value Max(g(M)(i)) is the maximum dimension of
all the eigensubspaces corresponding to the decomposition
g(M)(i). The coefficient (Max(g(M)(i)) − 1) must be intro-
duced because the permutations of cyclic order inside one
conjugacy class should not be counted.

Let us see how (A.5) works in the same example treated
above: a Hilbert space of dimension M = 4. If all the
eigenvalues of the Hamiltonian are nondegenerate, there are
4 eigensubspaces [Hn]. Then,

Obs(4) =
5
∑

i=1

4!
(

Max
(

g(4)(i)
)

− 1
)

!
∏4

j=1

(

j!
) f

(4)
j (i)

f
(4)
j (i)!

=
4!

4!
+

4!

2!2!
+

4!

3!
+

4!

2!2!2!
+

4!

4!

= 1 + 6 + 4 + 3 + 1 = 15,

(A.6)

where:

(i) g(4)(1) corresponds to the four one-dimensional
eigensubspaces of H , that is, H = {[H1,H2,H3,H4]}.
Therefore, for this decomposition, we have only one
kind of observables, represented by the first value 1 in
the second member of (A.6).

(ii) g(4)(2) corresponds to the composition of
eigensubspaces of H into two one-dimensional
subspaces and one subspace of dimension 2.
Therefore, in this case, we obtain 6 different kinds of
observables: {[H1,H2,H34]}, {[H1,H3,H24]}, {[H1,
H4,H23]}, {[H2,H3,H14]}, {[H2,H4,H13]}, and
{[H3,H4,H12]}. These six kinds of observables are
represented by the value 6 in the second member of
(A.6).

(iii) g(4)(3) corresponds to the composition of the eigen-
subspaces of H into one one-dimensional subspace
and one subspace of dimension 3. Therefore, in
this case, we obtain 4 different kinds of observ-
ables: {[H1,H234]}, {[H2,H134]}, {[H3,H124]}, and
{[H4,H123]}. These four kinds of observables are
represented by the value 4 in the second member of
(A.6).

(iv) g(4)(4) corresponds to the composition of the eigen-
subspaces of H into two subspaces of dimension
2. Therefore, in this case, we obtain 3 different
kinds of observables: {[H12,H34]}, {[H13,H24]}, and
{[H14,H23]}. These three kinds of observables are
represented by the value 3 in the second member of
(A.6).

(v) g(4)(5) corresponds to the composition of the eigen-
subspaces of H into only one subspace of dimension
4. The only kind of observables is given by [H1234] =
H , which defines the observables that are multiples
of the identity. This kind is represented by the second
value 1 in the second member of (A.6).

Up to now, we have considered the case where all the
Hamiltonian’s eigenvalues are not degenerate, and, then,
the eigensubspaces [Hn] of H are all one dimensional.
However, the strategy can be extrapolated to a general case.
For instance, let us suppose that H has a single degenerate
eigenvalue, say, that corresponding to the subspace [H34]. In
this case, we can rename [H1] → [H1]′, [H2] → [H2]′, and
[H34] → [H3]′, and we can repeat the computation as if we
were working with a Hilbert space of dimension 3.
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