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The Modal Logic of Agreement and Noncontingency

Lloyd Humberstone

Abstract The formula 4A (it is noncontingent whether A) is true at a point
in a Kripke model just in case all points accessible to that point agree on the
truth-value of A. We can think of 4-based modal logic as a special case of what
we call the general modal logic of agreement, interpreted with the aid of models
supporting a ternary relation, S, say, with OA (which we write instead of 4A to
emphasize the generalization involved) true at a point w just in case for all points
x, y, with Swxy, x and y agree on the truth-value of A. The noncontingency
interpretation is the special case in which Swxy if and only if Rwx and Rwy,
where R is a traditional binary accessibility relation. Another application, related
to work of Lewis and von Kutschera, allows us to think of OA as saying that A
is entirely about a certain subject matter.

1 Introduction

We say that two valuations for a language—assignments of the truth-values T, F
to its formula—agree on a formula if they both assign the same value to that for-
mula. Humberstone [14] distinguishes two ways for a class of valuations V for a
language to induce a consequence relation on that language, which we describe here
in a slightly different notation. On the one hand, we have the consequence relation
inference-determined by V, denoted |HV , defined thus, where ‘0’ ranges over sets of
formulas of the language, and ‘A’ over individual formulas:

0 |HV A if and only if for all v ∈ V, if v(C) = T for each C ∈ 0, then v(A) = T.

On the other hand, we have the consequence relation supervenience-determined by
V, denoted V , defined thus:

0 V A if and only if for all u, v ∈ V,

if u(C) = v(C) for each C ∈ 0, then u(A) = v(A).
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The inference-determined consequence relation, in other words, is defined in terms of
preservation of truth on arbitrarily selected valuations in the determining class, while
the supervenience-determined consequence relation is defined in terms of preserva-
tion of agreement between arbitrarily selected pairs of valuations in the determining
class. Sometimes the two will coincide, as with the case of the language with (for
definiteness) countably many propositional variables (or sentence letters), p1, p2, . . .

and a single binary connective ↔. The class of valuations we are interested in for
this language is the class of all valuations v which are “↔-Boolean” in the sense
of respecting the familiar truth-table account of ↔, that is, those v for which we
have v(A ↔ B) = T if and only if v(A) = v(B) for all formulas A, B. For this
choice of V, it turns out that |HV = V ([14], Corollary 2.7), though in general the
two relations will be quite different.1 (When there is a standard truth-table account
for a connective, we call it a Boolean connective. The Boolean connectives we as-
sume to be present in the language are the binary ↔, →, ∧, and ∨, singulary ¬,
and nullary > and ⊥; formulas are constructed with their aid in the usual fashion
from a countable stock of propositional variables p1, p2, . . . , pn, . . .—and we will
generally write ‘p’ and ‘q’ for ‘p1’ and ‘p2’ in what follows.)2

The ↔-Boolean valuations are those valuations which associate a particu-
lar binary truth-function with the connective ↔ (namely, that mapping 〈T, T〉

and 〈F, F〉 to T, 〈T, F〉 and 〈F, T〉 to F), in the sense (of “associates”) given by
the following definition: A valuation v associates the n-ary truth-function f
with the n-ary connective # just in case for all formulas B1, . . . , Bn we have
v(#(B1, . . . , Bn)) = f (v(B1), . . . , v(Bn)). We say that the (n-ary) connective # is
truth-functional with respect to V just in case there is some (n-ary) truth-function f
such that for all v ∈ V, v associates f with #. (Note the prefix form ‘∃ f ∀v ∈ V’,
rather than ‘∀v ∈ V∃ f ’. The latter gives the weaker notion of pseudo-truth-
functionality with respect to V discussed in Humberstone [18] and cannot replace
truth-functionality proper in the following claim.) If # is truth-functional with
respect to V, then this has a striking and simple effect on V in the shape of

(# Composition) B1, . . . , Bn V #(B1, . . . , Bn), for all B1, . . . , Bn .

For suppose that we have the truth-function f associated on every v ∈ V with #, and
we have u, v ∈ V agreeing on B1, . . . , Bn(u(Bi) = v(Bi ), for i = 1, . . . , n, that
is). Then of course u and v must agree on #(B1, . . . , Bn) since each must assign to
this formula the result of applying the function f to the same n-tuple of arguments,
the u, v-agreed truth-values of B1, . . . , Bn . We will not be further concerned (ex-
cept in passing) with the supervenience-determined consequence relations, but will
turn instead to a somewhat different apparatus for registering the agreement and dis-
agreement between valuations on formulas, in terms of which, however, the above
point about the principle of # Composition will emerge in a slightly different guise
(namely, in the form of the axioms (OComp)# in the following section).3

The new setting into which we intend to transpose the study of agreement is that
of Kripke-style model theory for modal logics, in which we are typically given a
set W of points (or “worlds”) and a stipulation (notated by ‘V ’ in Section 2 below,
as well as at the end of this section) as to which of them are to verify which of the
propositional variables, and some further apparatus—accessibility relations and so
forth—varying from case to case, in terms of which truth at a point x ∈ W for a
formula A is defined. Representing the latter by the notation ‘M |Hx A’, where M is
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the model concerned, we say that x, y agree on the formula A when either M |Hx A
and M |Hy A or else M 6|Hx A and M 6|Hy A. This is not really a new use of the
“agreement” terminology introduced above for valuations, since every pair 〈M, x〉

with x ∈ W gives rise to

the valuation vM

x defined by vM

x (A) = T iff M |Hx A (for all formulas A),

and then the agreement (relative to M) between points x and y on the formula A is
just a matter of the valuations vM

x and vM
y agreeing on A in the sense of our opening

sentence. By way of motivation for the change of setting, we say a few words about
some of the content of von Kutschera [35], which leads directly to the discussion in
our Section 2. In Section 3 we shall point out, among other things, the connections
between that discussion and a traditional focus of occasional concern in the litera-
ture on modal logic: the subject of noncontingency. Since the noncontingency of a
statement is a matter of all (accessible) worlds agreeing on its truth-value, it is not
surprising that a modal approach to agreement should bear on that subject.

That aspect of von Kutschera’s discussion in [35] we want to consider is his reac-
tion to (some variations on) the Fitch Derivation (originating in Fitch [10], Theorem
4) of the conclusion that every truth is known from the apparently less implausible
starting point that every truth is capable of being known. A somewhat informal ver-
sion of this derivation runs as follows. Suppose that something, p, say, is true but not
known to be true. Then we have as a truth p ∧ ¬Kp, so if everything true is capable
of being known, we have (writing ‘♦’ for the possibility operator) ♦K(p ∧ ¬Kp).
But this last formula is refutable in any mixed alethic-epistemic logic on minimal as-
sumptions, since it will (given such assumptions) imply ♦(Kp ∧ K¬Kp) and hence
♦(Kp ∧ ¬Kp), where the expression in the scope of ‘♦’ is an explicit contradiction.
There have been several philosophical reactions to this derivation, and in particular
to the question of whether what it shows is that a “principle of knowability” to the
effect that every truth is (logically) capable of being known is correctly captured in
the form of the schema A → ♦KA, as assumed here in deriving from it the unpalat-
able consequence that every truth is, in fact, known. (In the preceding derivation
sketch, this schema is instantiated by taking A as ‘p ∧ ¬Kp’. One interesting rejec-
tion of this proposed formalization of the principle of knowability may be found in
Edgington [8] (itself further discussed in, for example, Sorensen [33], pp. 124–29,
where additional references to the literature may be found). It concentrates on the
fact that the embedding of ‘A’ under ‘♦K’ in the consequent misleadingly directs
us to consider A from the perspective of worlds different from the world at which
we thought we were hypothesizing, with the antecedent, that A was true. Thus the
principle requires amendment by the judicious insertion of occurrences of an “Actu-
ally” operator (written as ‘A’ in Section 4 below, where this is mentioned for other
reasons).4 A quite different proposal, essentially that to be found in [35], consid-
ers instead the imposition of a restriction on the schematic A: intuitively that we
should not allow the substitution for A of (partially) epistemic statements such as
that represented by the crucial ‘p ∧ ¬Kp’ in the above derivation. Von Kutschera in
fact considers similar problems for the notions of belief and true belief, rather than
knowledge. Since we are using A, B, . . . as schematic letters for formulas here, let
us write the belief-operator as ‘K0’ rather than ‘B’. In this notation, von Kutschera
([35], p. 104) considers two principles which have untoward consequences unless
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subjected to some restriction, calling them P1* and P2*:

P1∗ ♦A → ♦K0A

P2∗ A → ♦(K0A ∧ A)

It is the second of these which yields, by minor modifications of the Fitch derivation
sketched above, to the conclusion that every truth is truly believed. (Von Kutschera
does not actually allude to this derivation—and indeed makes no mention of Fitch—
but it is clearly what he has in mind with the remark that “any logic is unacceptable
in which this assumption implies omniscience”). P1* presents a somewhat different
difficulty, since von Kutschera wants to consider doxastic logics in which the “self-
confidence” principle K0(K0A → A) is provable for all A. As he notes, putting
‘K0 p ∧ ¬p’ for ‘A’ here makes trouble because the hypothesis that ♦(K0 p ∧ ¬p)

leads by P1* to the conclusion that ♦K0(K0 p ∧ ¬p), clashing with the necessitation
of corresponding instance of the self-confidence schema with this same substitution
for ‘A’, given the additional (consistency) principle that K0A implies ¬K0¬A. Thus
we can conclude that ¬♦(K0 p ∧¬p), most implausibly since consistency (and other
aspects of rationality) together with what we are calling self-confidence should not
preclude the possibility of false belief. The situation is somewhat different from that
of the original Fitch derivation because in the latter case the critical subformula was
p ∧ ¬Kp (or ¬Kp ∧ p, as it may more conveniently be put for the present contrast)
whereas in the current case it is K0 p ∧ ¬p.

The replacements for P1* and P2* which von Kutschera offers are subject to
a further restriction expressed by the use of a new operator O, with the informal
reading of OA as ‘it is an objective (or nondoxastic) proposition that A’:

P1 (OA ∧ ♦A) → ♦K0A

P2 (OA ∧ A) → ♦(K0A ∧ A).

To interpret this language with the non-Boolean 1-ary operators K0 and ♦ (or rather
the necessity operator �, in terms of which we may take ♦ to be defined in the usual
fashion) as well as the novel O, von Kutschera uses models 〈W, ∼, S, V 〉 with W
a nonempty set (the worlds), ∼ an equivalence relation (on W ), S a binary relation
(on W ) satisfying certain conditions we need not go into, to make it suitable as the
accessibility relation for the belief operator K0 in a fairly strong doxastic logic,5

and V assigning subsets of W to the propositional variables as the sets of worlds at
which they are to be true, subject to the special condition that whenever for w, x ∈ W
we have w ∼ x , we must have w ∈ V (pi) if and only if x ∈ V (pi). There is no
special accessibility relation supplied for �, which is instead interpreted by universal
quantification over W . Finally—and this is the aspect of the semantics which we
take up below—for O a model deems OA true at any world just in case every pair of
worlds standing in the relation ∼ agree on the truth-value of A.6

Unlike P1* and P2*, the schemes P1 and P2 can be added to the set of formulas
valid (i.e., have only unfalsifiable instances) according to this semantics, without pro-
ducing untoward consequences. (Von Kutschera is more interested in certain other
extensions of his basic set of valid formulas, expressing the independence of be-
lief and the objective world, and the tension between them and some supervenience
theses. See [35] for details.) We will pursue the O-fragment of von Kutschera’s
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language along more or less the above semantic lines, without the alethic and dox-
astic operators. The latter present no novelties since they just have familiar clauses
in the definition of truth, just requiring the truth of the formula after the operators
at a range of worlds, rather than, as for the case of ‘O’, agreement as to the truth of
that formula at a range of pairs of worlds. We continue to use von Kutschera’s ‘O’
notation as well, though preferring to think of it as neutrally mnemonic for ‘operator
(of current concern)’ rather than for ‘objective’. Our principal object in the following
section will be the provision of a simple and illuminating axiomatic description of
the set of valid formulas. (Von Kutschera’s discussion is entirely model-theoretic.)

As already remarked, our semantic treatment follows more or less the treatment
von Kutschera gives: there are two respects of difference. In the first place, we will
not impose the special condition on V that w ∼ x ⇒ (w ∈ V (pi) ⇔ x ∈ V (pi)),
because—however appropriate it may be for the philosophical agenda of [35]—
this leads to an inconvenient failure of the set of valid formulas to be closed un-
der uniform substitution (of arbitrary formulas for propositional variables): on von
Kutschera’s semantics, p → Op comes out valid while substituting K0 p for p at
both occurrences gives an invalid formula, for instance.7 The second respect in
which for technical reasons it is appropriate not to follow precisely von Kutschera’s
example is over the equivalence relation ∼ in his models. The clause governing O
says that OA is true at a world w just in case every pair of worlds standing in this
relation to each other agree on A, and this truth-condition conspicuously makes no
reference to the world w itself. An appropriately basic modal logic of agreement
should allow the truth-value of OA at w to depend on w, leaving it open to us to
consider strengthening the logic in such a way as to rule out, should the application
demand it, the effects of this dependence: variation in the truth value of OA from
world to world in a model. The situation is entirely parallel to the treatment of �

in alethic modal logic without the use of accessibility relations in the models. It is
better to work with the general case to begin with (obtaining the smallest normal
modal logic K, and then consider the effects of the special condition that the acces-
sibility relation holds between every pair of worlds and so can be dispensed with, as
it can be for the much stronger logic S5. (Note its absence from the semantics of
[35] summarized above.) Similarly, we concentrate in Section 2 on the basic logic
allowing world-to-world variation that corresponds to von Kutschera’s relation, the
relation ∼, and then ask later how to strengthen the logic to iron out this variation. To
mark this difference, we will actually employ a different notation and write ‘x ≡w y’
to mean that x and y are equivalent relative to w, invoking this relation for the de-
termination of OA’s truth value at the point w. In Section 3 we will look into the
question of what difference it makes to the validation of formulas that, for a fixed w,
this relation between x and y be an equivalence relation at all. Finally, as all this talk
of formulas will have made clear, we are from now thinking of logics in the same
way as most mainstream work in modal logic: as (certain) sets of formulas, rather
than as (inference-determined) consequence relations. The reason for this is simply
a desire for continuity with such work (including of course von Kutschera’s). The
reader who prefers to think in terms of consequence relations can easily recover suit-
able proof-systems, using sequent-to-sequent rules, from the axiomatic systems we
describe. Its semantic characterization (analogous to Theorem 2.4 below) will then
be as the consequence relation inference-determined by the class of all valuations
vM

x for M a model in the sense of our discussion below and x a point in that model.
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In the terms with which this introduction opened, such an emphasis on the inference-
determination (as opposed to supervenience-determination) of a logic by a class of
valuations is not a departure from the theme of studying “agreement” from a logical
point of view, though it represents the choice of a different locus for that study: now
on the logical behavior of a sentence operator whose raison d’être is to invoke from
within the object language itself the relation of agreement in truth-value.

2 The Basic Logic of Agreement and an Extension Thereof

With the preceding remarks as motivation, for the purposes of the present section a
model M will be taken to be a structure 〈W, ≡, V 〉 in which W is a nonempty set, ≡

is a function assigning to each w ∈ W an equivalence relation ≡w⊆ W × W, and V
is a function assigning to each propositional variable a subset of W . Truth at w ∈ W
in M for a formula A (notated ‘M |Hw A’) is defined inductively in terms of the
construction of the formula A:

M |Hw pi if and only if w ∈ V (pi),

M |Hw A ∧ B if and only if M |Hw A and M |Hw B,

and similarly for the other Boolean primitives, which for convenience we assume to
include the binary → and also the nullary >, ⊥.

M |Hw OA if and only if for all x, y ∈ W such that x ≡w y

we have M |Hx A iff M |Hy A.

A formula A is valid just in case for every model M = 〈W, ≡, V 〉, for every w ∈ W ,
we have M |Hw A. (More refined terminology: abstracting from the details of what
V does in a model, we have the notion of a frame 〈W, ≡〉, on which a formula is said
to be valid if it is true at every point in every model 〈W, ≡, V 〉 on that frame. The
formulas valid tout court are then those which are valid on every frame.) We turn to
the project of axiomatizing the valid formulas.

We offer two axiom schemes, one to supply classical propositional logic for the
Boolean connectives, and one special O-axiom:

(TF) A for A any substitution-instance of a truth-functional tautology,

(OComp) (OA1 ∧ · · · ∧ OAn) → O#(A1, . . . , An)

for all formulas A1, . . . , An and every primitive n-ary Boolean connective #. For
the cases of #, =, ∧, ¬, >, ⊥, in which n is respectively 2, 1, 0, 0, this metascheme
instantiates to the schemes,

(OComp)∧ (OA1 ∧ OA2) → O(A1 ∧ A2)

(OComp)¬ OA → O¬A

(OComp)> O>

(OComp)⊥ O⊥ .

We also present two rules, one (Modus Ponens) for the truth-functional machinery,
and the other a special rule for O, rendering it “congruential” (capable of supporting
the replacement of provable equivalents):

(MP) From A → B and A to B
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(OCong) From A → B and B → A to OB → OA.

Note that in view of what we call (TFC) below, (OCong) could equivalently be for-
mulated as licensing the transition from A ↔ B to OA ↔ OB.

The smallest logic containing all instances of the axiom-schemes (TF) and
(OComp) and closed under the rules (MP) and (OCong) we call LO, and to indicate
that a formula A belongs to this logic we write `LO A.8 For the sake of establishing
the soundness of this logic (the validity of all A for which `LO A, that is), a result we
incorporate into Theorem 2.4 below, we note that all instances of (TF) and (OComp)
are valid—in the latter case by essentially the same reasoning as was deployed in
Section 1 a propos of what we called the principle of # Composition (which is why
we use the label ‘OComp’). Note that the converse of (OComp)∧ has, by contrast,
invalid instances, showing that LO is not a normal modal logic (i.e., when ‘O’
is taken as �); in particular, the operator O is not monotone. (For ‘normal’ and
‘monotone’, not defined here—see, for example, Chellas and McKinney [3], or §8.2
of Chellas [2]—though the authors use “monotonic” instead of “monotone”, a usage
we prefer to avoid in case of confusion with the unrelated issue of monotonic versus
nonmonotonic logics.) It is clear that (MP) preserves validity, since it preserves truth
at an arbitrarily selected point in any model, while for (OCong) validity is preserved
because, as we now show, this rule preserves, not truth at an arbitrary point in a
model, but rather the property of being true at every point in a model (as with the
rule of Necessitation in normal modal logics). Assume then that A → B and B → A
are both true throughout a model M = 〈W, ≡, V 〉, with a view to showing that
OB → OA is likewise. If this last formula is not true throughout M, we have some
w ∈ W with M |Hw OB while M 6|Hw OA. From this last, we have x, y ∈ W
with x ≡w y while, say (without loss of generality) M |Hx A but M 6|Hy A. Since
A → B and B → A are true throughout M, A and B have the same truth values as
each other at the points x and y, so M |Hx B and M 6|Hy B, contradicting the fact
that M |Hw OB, since x ≡w y.

One might think that although for soundness purposes this argument is fine, in
the interest of completeness (having LO prove all the valid formulas, that is), we
should provide not only a rule licensing the passage to the conclusion OB → OA
from the premise that A ↔ B, but another one to that same conclusion from the
premise that A ↔ ¬B, since a corresponding argument will work in this case also:
having to give opposite truth-values to A and B will work just as well to contradict
the assumption that M |Hw OB, since it will force M |Hy B and M 6|Hx B. In fact,
however, (OCong) does not need to be supplemented in this way since it takes us
from A ↔ ¬B to OA ↔ O¬B and we have `LO O¬B ↔ OB, in the backward
direction by appeal to (OComp)¬, and in the forward direction by another appeal
to (OComp)¬, giving `LO O¬B → O¬¬B, and so by (OCong) with the equiva-
lence of B and ¬¬B as its starting point, and truth-functional reasoning, we get the
conclusion that `LO O¬B → OB.

Note that by (TF) and (MP), when B is a truth-functional consequence of
A1, . . . , An then if `LO Ai (for each i = 1, . . . , n) then `LO B. We will appeal to
this fact about truth-functional consequences by writing (TFC). This is an example
of what falls under the heading (just used) of “truth-functional reasoning.”

Unlike the various axioms (OComp)# in which the implications take us from O-
prefixed components to O-prefixed compounds, the principle governing negation just



102 Lloyd Humberstone

derived (i.e., O¬B → OB) goes in the reverse “decompositional” direction. Other
examples of this phenomenon are worth noting at this point, since they require no
more than the resources of LO but have in the past received attention (e.g., Humber-
stone [16], p. 218) only in the context of stronger logics—namely, modal noncontin-
gency logics, the weakest of which will be displayed as a proper extension of LO in
Section 3 below. We have, for example,

`LO (O(A ↔ B) ∧ OA) → O((A ↔ B) ↔ A)

by (OComp)↔, and hence, by (OCong),

`LO (O(A ↔ B) ∧ OA) → OB,

which is decompositional in that the ‘B’ on the right is a component of one of the
O-prefixed formulas on the left. Further, exporting the second conjunct and noting
the symmetrical situation of A and B here, we get the following, the schema which
often figures as an axiom in noncontingency-based modal logics (with ‘O’ usually
written as ‘1’ in that case, our present point being that this fact only depends on
the “agreement” aspect of the situation, and not the distinctively “noncontingency”
aspect):

`LO O(A ↔ B) → (OA ↔ OB).

Other decompositional principles include the following, for which the ‘A’ in the con-
sequent can be taken as obtained by (OCong) from the disjunction and from the
conjunction, respectively, of the O-prefixed formulas in the antecedent:

`LO (O(A ∧ B) ∧ O(A ∧ ¬B)) → OA

`LO (O(A ∨ B) ∧ O(A ∨ ¬B)) → OA.

Slightly further afield are some interesting cases neither compositional nor decom-
positional:

`LO (O(A ∧ B) ∧ O(A ↔ B)) → O(A ∨ B)

`LO (O(A ∨ B) ∧ O(A ↔ B)) → O(A ∧ B)

`LO (O(A ∨ B) ∧ O(A ∧ B)) → O(A ↔ B)

for which in all three instances the relevant case of (OComp)# takes # as ↔. Using
this same choice of #, we have, similarly, the more fully decompositional

`LO (O(A ∧ B) ∧ O(A → B)) → OA.

If one is wondering of a candidate principle of the ‘conjunction of O-formulas im-
plies a given O-formula’ whether it is provable—for example, that last cited but with
‘B’ in place of ‘A’ in the consequent—a simple test is provided by the notion we
baptized as ‘V’ in Section 1 (for V the class of Boolean valuations).9 Replace the
schematic letters by propositional variables, getting, in this case,

(O(p ∧ q) ∧ O(p → q)) → Oq,

and ask whether we have p ∧ q, p → q V q. A simple truth-table test shows that
the answer is negative (in each of the last two lines of a conventionally set out four-
line truth-table, the formulas on the left have the same value while the value of that
on the right changes) from which it follows that the inset formula above is not LO-
provable. The criterion we are using here is that for O-free formulas A1, . . . , An, B,
we have A1, . . . , An V B if and only if `LO (OA1 ∧ · · · ∧ OAn) → OB, the
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unobvious (if) half of which claim follows from the completeness theorem for LO
given below (Theorem 2.4).

To make our way in the direction of that result, we need to begin with a general-
ized version of (OComp).

Lemma 2.1 If B is a Boolean compound of formulas A1, . . . , An , then
`LO (OA1 ∧ · · · ∧ OAn) → OB.

Proof The proof is by induction on the number of Boolean connectives used to
construct B from A1, . . . , An, appealing to (OComp). �

We presume familiarity with the notions of consistency (with respect to a logic) and
maximal consistency, and of the fact that every consistent set of formulas can be
extended to a maximal consistent set (Lindenbaum’s Lemma). Any standard text on
modal logic—for example, [13], [2]— will supply these details.

The canonical model for LO is the model MLO = 〈WLO, ≡LO, VLO〉 in
which WLO is the set of all maximal LO-consistent sets of formulas, VLO(pi) =

{w ∈ WLO|pi ∈ w}, and for all w ∈ WLO, ≡LOw
is that relation holding between

x, y ∈ W just in case for every formula OC ∈ w, we have C ∈ x if and only if C ∈ y.
Since this is clearly an equivalence relation MLO is a model, provided that WLO
is nonempty. But this last is equivalent to the claim that LO is consistent, which
follows from the soundness of LO, already established. (Alternatively, consider a
nonstandard truth-functional interpretation, in which O is interpreted as expressing
the constant true 1-ary truth-function, on which all theorems of LO are easily seen
to be truth-functional tautologies.) From now on, we will usually drop the subscript
‘LO’, at least in the proofs (if not the initial formulation) of numbered results.

Given a set 0 of formulas, we define a signing of 0 to be any set of formu-
las whose elements comprise, for each C ∈ 0, exactly one of C, ¬C. If the ele-
ments of 0 are enumerated as C1, . . . , Cn, . . . we can think of a signing of 0 as
s1C1, . . . , snCn, . . . where each “sign” si is either positive (null) or negative—that
is, siCi is either Ci or ¬Ci . When the ordering of the formulas concerned is clear, we
sometimes refer to s itself, conceived of as a function assigning si to i , as a signing
of 0.

Lemma 2.2 For w ∈ WLO with OA /∈ w, suppose that 0 = {C1, . . . , Cn, . . .} is
the set of formulas C for which OC ∈ w. Then there is some signing of 0 which is
LO-consistent with A and also LO-consistent with ¬A.

Proof We begin by showing that for all n, there is a signing of {C1, . . . , Cn, . . .}

which is LO-consistent with A and also with ¬A. Suppose otherwise. Then for
every signing s of this set we have either

` (s1C1 ∧ · · · ∧ snCn) → ¬A (1)

or else
` (s1C1 ∧ · · · ∧ snCn) → A. (2)

Let B be the disjunction of all those conjunctions s1C1 ∧ · · · ∧ snCn falling un-
der the description (2) here, and B′ be the disjunction of all those conjunctions
s1C1 ∧ · · · ∧ snCn falling under (1). Then by (TFC) we have

`LO B → A (3)
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and
`LO B′ → ¬A. (4)

But by (TF) we have ` B∨B′, since this is the disjunction of all “state-descriptions”
in the Ci . Rewriting this as

`LO ¬B → B′ (5)

makes it obvious, in view of (5), that

`LO ¬B → ¬A (6)

and so
`LO A → B (7)

giving us, in (3) and (7), the two premises for an application of (OCong) which yields

`LO OB → OA. (8)

Now, recalling that B is a certain disjunction of conjunctions s1C1 ∧ · · · ∧ snCn
each of whose conjuncts is either Ci or ¬Ci , and is thus a Boolean combination of
formulas—the Ci —for each of which we have OCi ∈ w, we invoke Lemma 2.1 to
conclude that OB ∈ w, and hence, by (8), that OA ∈ w, contradicting our initial
supposition concerning OA. This contradiction establishes, then, that for all n, there
is a signing of {C1, . . . , Cn} which is LO-consistent with A and also with ¬A. To
complete the proof, we must show that there is such a signing of the whole infinite
set 0 = {C1, . . . , Cn . . .}. (This set is clearly infinite because it has among its el-
ements, for instance >, O>, OO>, . . ., each of these being a formula C for which
OC ∈ w.) But this conclusion follows from the finite version just established, by
König’s Lemma. Consider the infinite binary branching tree all of whose nodes ex-
cept the origin are labeled with formulas, the labeling effected in the following way.
At the first level (i.e., immediately dominated by the root) we have nodes labeled
with the formulas C1 in the one case and ¬C1 in the other, each in turn dominat-
ing nodes labeled, respectively, with C2 and ¬C2, and so on. Each branch of this
tree represents in the obvious way a signing of the set 0. Now prune this tree by
erasing any node such that the set of labels from the origin to that node is not both
LO-consistent with A and also with ¬A, together with all descendants of that node.
The resulting tree is finitary but still has infinitely many nodes, since, by the “finite
version” established above, for each n there is a node with either Cn or ¬Cn as its
label, there being a signing of {C1, . . . , Cn . . .} which is LO-consistent with A and
also with ¬A. Thus by König’s Lemma, the pruned tree contains at least one infinite
branch, representing a signing of 0 which is LO-consistent with each of A, ¬A. �

Lemma 2.3 For every formula B, and every w ∈ WLO, MLO |Hw B if and only if
B ∈ w.

Proof The proof follows the standard pattern by induction on the construction of B,
so we deal only with the novel (inductive) case in which B = OA for some formula
A, with the inductive hypothesis assuring us that for all u ∈ WLO, MLO |Hu A if
and only if A ∈ u. Let w be an arbitrary element of WLO. By the truth-definition,
MLO |Hw OA if and only if for all x, y ∈ W such that x ≡w y we have M |Hx A
if and only if M |Hy A. (Here we suppress the subscripted ‘LO’.) Thus by the
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inductive hypothesis and the definition (for the canonical model) of ≡, what we have
to establish is

OA∈w ⇔ ∀x, y ∈W [[(∀C(OC∈w ⇒ (C∈x ⇔ C∈ y))] ⇒ (A∈x ⇔ A∈ y)].

The ⇒ direction is immediate, instantiating the universally quantified variable ‘C’
here to the formula A itself. For the ⇐ direction, suppose that OA /∈ w. We must
find x, y ∈ W , which “agree” in respect of all formulas C for which OC ∈ w (i.e.,
C ∈ x if and only if C ∈ y, for such C), yet do not agree on A. Lemma 2.2 tells us that
there is some signing of the set 0 = {C|OC ∈ x}, 0′, say, which is LO-consistent
with A and also LO-consistent with ¬A. Accordingly, let the desired x and y be
maximal consistent extensions of the LO-consistent sets 0 ′ ∪ {A} and 0′ ∪ {¬A},
respectively. Then x and y disagree on A but agree on all the C for which OC ∈ w,
since for each such C, 0′ contains either C or else ¬C. �

Theorem 2.4 For all formulas A, `LO A if and only if A is valid.

Proof The “only if” direction (soundness) having already been established, we deal
with the “if” direction (completeness), which follows directly from Lemma 2.3: if
6`LO A, then {¬A} is consistent and so can be extended some w ∈ WLO, which
accordingly does not also have A as an element, whence by that lemma MLO 6|Hw A,
showing that A is not valid. �

At the end of Section 1, a question was raised which we can now describe as the
question of how to extend the basic logic LO to obtain a logic sound and com-
plete with respect to the class not of all models but rather with respect to the class
of all those models 〈W, ≡, V 〉 in which the equivalence relation assigning function
≡ is a constant function, thereby returning to (suitable reducts—〈W, ∼, V 〉—of)
the models figuring in von Kutschera’s discussion in [35]. In other words, how
can we strengthen our axiomatization of LO so that the provable formulas of the
strengthened logic are precisely those that are valid+ in the sense of being true at
every w ∈ W in any model 〈W, ≡, V 〉 satisfying the further condition that for all
u, w, x, y ∈ W, x ≡u y ⇒ x ≡w y (or equivalently, with ‘⇔’ replacing ‘⇒’ here).

One way of obtaining the desired extension of LO is to strengthen the rule
(OCong) from − in its ‘↔ in the premise’ formulation:

(OCong) A ↔ B
OA → OB

to the following rule (or rules, if we count each choice of m, n ≥ 0, as making for a
different rule):

(OCong)+ ((OD1 ∧ · · · ∧ ODm) ∧ (¬OE1 ∧ · · · ∧ ¬OEn)) → (A ↔ B)

((OD1 ∧ · · · ∧ ODm) ∧ (¬OE1 ∧ · · · ∧ ¬OEn)) → (OA → OB)
.

Let us denote by LO+ the logic axiomatized by (TF), (OComp), (OCong)+, and
(MP). Then we have the following theorem.

Theorem 2.5 For all formulas A, `LO+ A if and only if A is valid+.

Proof The “only if” (soundness) direction just requires that (OCong)+ preserves
truth throughout a model with constant ≡, the crucial point being that such constancy
means that O-formulas have the same truth-values everywhere in the model. For the
“if” (completeness) direction, we modify the earlier canonical model construction,
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beginning with Lemma 2.2, which should be replaced with this: For w ∈ WLO+

with OA /∈ w, suppose that 0 = {C1, . . . , Cn, . . .} is the set of formulas C for which
OC ∈ w. Then, putting 1 = {OD|OD ∈ w} ∪ {¬OE|OE /∈ w}, there is some
signing of 0 which is LO+-consistent with 1 ∪ {A} and also LO+-consistent with
1 ∪ {¬A}. This is established by using (OCong)+ at the point at which (OCong)
was used in the proof of Lemma 2.2. The effect of building in 1 to what, when
the proof of Lemma 2.3 is adapted, is that when dealing with the hypothesis that
OA /∈ w, we can find x, y ∈ W , which “agree” in respect of all formulas C for
which OC ∈ w (i.e., C ∈ x if and only if C ∈ y, for such C), yet do not agree on
A, and which both contain precisely the same O-formulas as w. If we start with a
formula B for which 6`LO+ B, and let w be a maximal consistent extension of {¬B},
then we consider only the points from the full canonical model for LO+ which have
precisely the same O-formulas in them as w, a restriction which by the reasoning just
given, still gives the coincidence of truth and membership Lemma 2.3 (as adapted)
speaks of, but now in a model for which ≡ is a constant function (since all points in
the submodel thus generated agree on all O-formulas), showing that the unprovable
B is not valid+. �

The new rule (OCong)+, though very convenient for the sake of the above proof,
looks rather cumbersome, and so some interest attaches to its replaceability by some
simple axiom-scheme(s), to be taken alongside the axioms and rules—including the
original (OCong)—used to axiomatize LO. The valid+ principle OOA shows some
promise in this regard.10 It can be derived from the above basis for LO+ thus. We
take an instance of (TF): OA → (OA ↔ >) to which we apply (OCong)+ with
m = 1 (and D1 = A), n = 0, getting the conclusion OA → (OOA ↔ O>), whence
by (OComp)> and (TFC), we get OA → OOA. To conclude that `LO+ A by (TFC) it
suffices to show that we can also prove ¬OA → OOA. Again we start with a premise
for (OCong)+, this time with m = 0, n = 1 (and E1 = ¬OA): ¬OA → (OA ↔⊥),
by (TF). The conclusion is then ¬OA → (OOA ↔ O ⊥), which by (TFC) and
(OComp)⊥ yields ¬OA → OOA, as desired. However, the author does not know
whether taking OOA as an axiom-scheme yields the derivability of (OCong)+—this
does not seem especially likely—or, more generally, whether LO+ can be presented
as an axiomatic extension of LO by some finite set of similar principles (such as
those quoted from Kuhn [22] and Zolin [37] for noncontingency versions of K4 and
K5 in Section 4 below).

3 Variations on the Semantics and a Noncontingency Extension of the Basic Logic

We want to consider another extension of LO in this section in the interest of bringing
the notion of noncontingency into the range of our study of agreement. (Whenever
we speak of extensions of LO, we mean extensions closed under (MP) and (OCong).)
But we begin somewhere else, by drawing attention to two possible variations on the
notion of model and on the clause for ‘O’ in the definition of truth. Let us consider
the latter first. In Section 2, we defined truth at a point in a model with the aid of the
following clause for ‘O’:

M |Hw OA if and only if for all x, y ∈ W such that x ≡w y

we have M |Hx A ⇔ M |Hy A.
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Now consider what we shall call the ⇒-variant:

M |Hw OA if and only if for all x, y ∈ W such that x ≡w y

we have M |Hx A ⇒ M |Hy A.

Since ≡w is an equivalence relation, the two clauses are equivalent. In more detail,
if OA is true at w in M in the sense of the first definition then since we may weaken
the ‘⇔’ to a ‘⇒’, OA is true at w in M in the sense of the second definition. Con-
versely, suppose that OA is true at w in M in the sense of the second, ⇒-employing
definition. This gives us that if x ≡w y then M |Hx A ⇒ M |Hy A, and also,
interchanging variables, that if y ≡w x then M |Hy A ⇒ M |Hx A. But since ≡w

is an equivalence relation, x ≡w y implies y ≡w x , so if x ≡w y then we have not
only M |Hx A ⇒ M |Hy A, but also M |Hy A ⇒ M |Hx A; in other words, we
have M |Hx A ⇔ M |Hy A, and OA is true at w in the sense of the first definition.
We have labored this very obvious point because we shall presently need to allude
to the particular feature of the original semantics which gives rise to the fact that
there is no difference between the ‘⇔’ form of the clause for O and the ‘⇒’ variant:
specifically this is because, being an equivalence relation, ≡w is symmetric.

Now consider what we may call generalized models 〈W, S, V 〉 in which W and
V are as before and S (no relation to the S of [35] mentioned in Section 1) assigns
to each w ∈ W any binary relation on W , rather than specifically an equivalence
relation. We write ‘Swxy’ to say that x and y stand in the relation which is the value
of S for the argument w. Of course, we can equally well regard S here an arbitrary
ternary relation on W . But we continue to subscript the first relatum, to emphasize
its different status (as the point of evaluation for the O-formula concerned) and for
continuity with the ‘x ≡w y’ notation. The clause for O in the truth-definition just
replaces ≡ with S:

M |Hw OA if and only if for all x, y ∈ W such that Swxy

we have M |Hx A ⇔ M |Hy A.

Call the formulas which are true at every point in one of these generalized models,
with the above clause in place for O, valid in the generalized sense.

Proposition 3.1 The following are equivalent for any formula A:

1. A is valid in the generalized sense,
2. A is valid,
3. `LO A.

The equivalence of (2) and (3) here is already the content of Theorem 2.4. We can
bring (1) into the fold either via (3) or via (2). Taking the first route, we note that a
soundness proof for LO in terms of the generalized models presents no difficulties:
at no point was the fact that for a given w, ≡w was an equivalence relation, actually
relied upon in establishing soundness with respect to the original models. And of
course the same canonical model completeness proof works to show that when Swxy
is defined exactly as x ≡w y, except that for the proof in this case we do not need
to allude to the fact—which still is a fact—that this relation (for any given w) is
an equivalence relation. Taking now, instead, the second route, let us explore the
relation between (1) and (2) in purely semantic terms, without bringing in (3) with
its reference to the axiomatically presented logic LO. We isolate the right-hand sides
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of the original clause and the new generalized clause as (∗) and (∗∗):

(∗) ∀x, y ∈ W (x ≡w y ⇒ (M |Hx A) ⇔ M |Hy A))

(∗∗) ∀x, y ∈ W (Swxy ⇒ (M |Hx A ⇔ M |Hy A)).

Abstracting from the present context, it is easy to see that whenever R1, R2 are bi-
nary relations on a set U , with R2 an equivalence relation, then R1 ⊆ R2 if and
only if Req

1 ⊆ R2, where Req
1 is the smallest equivalence relation including R1. (Of

course this is a special case of a more general phenomenon, another case of which
would be that on the hypothesis that R2 is, say, some transitive relation, rather than
specifically an equivalence relation, then R1 ⊆ R2 if and only if Rtr

1 ⊆ R2, where
Rtr

1 is the smallest transitive relation including—alias the transitive closure of—R1.)
Applying this fact to our current concerns, we note that the relation (playing here
the role of R2) for a given formula A and model M holding between x and y when
M |Hx A ⇔ M |Hy A, the relation of “agreeing on” A, is an equivalence relation,
we see that claim made by (∗∗), that the binary relation Sw is included in this rela-
tion, is itself equivalent to the claim that Seq

w is included in this relation. Thus (∗∗) is
equivalent to (∗) for a suitable choice of ≡, and there is nothing to choose between
the notions of validity and validity in the generalized sense.

We have considered two minor variants on the semantics of Section 2. First we
considered replacing the original ‘⇔’ form of the clause for O with the ‘⇒’, and
noted that this made no difference to the class of valid formulas. Then we considered
another variant, which consisted in replacing the original notion of model (truth at
a point of which was defined using the ‘⇔’ form of the clause for O) with a more
general notion in which an arbitrary binary relations Sw replaced the equivalence
relations ≡w, and again found that the alteration had no impact on validity. However,
if both changes are made at once, there is a dramatic effect on the class of valid
formulas, as is predictable from the fact that our demonstration of the equivalence of
the ‘⇒’ and ‘⇔’ clauses for O conspicuously exploited the symmetry of the relations
≡w. If we employ the ‘⇒’ style clause in the setting of generalized models and say

M |Hw OA if and only if for all x, y ∈ W such that Swxy,

we have M |Hx A ⇒ M |Hy A,

then we lose the validity of various cases of the (OComp) scheme, most obviously
(OComp)¬ as we see from a consideration of its instance Op → O¬p. We can
falsify this at a point w in a generalized model M = 〈W, S, V 〉 with the above
clause in place for O, by having for some w ∈ W, M |Hw Op while M 6|Hw O¬p,
as the latter requires there to be x, y ∈ W for which Swxy, with M |Hx ¬p and
M 6|Hy ¬p, so that M 6|Hx p and M |Hy p. In the semantics with the ‘⇔’ clause
for O, this would cause trouble because x and y would then disagree on p, making
it impossible after all that M |Hw Op. But in the present context, there is no such
trouble, since from the hypothesis that Swxy, all that is required by the supposition
that M |Hw Op, is that if p is true at x , it must be true at y; we are not given that if
p is false at x , it must be false at y. To put it another way: we are not given that if p
is true at y, it must be true at x . For that we should require, not the hypothesis that
Swxy, but rather, that Sw yx , something we are in no position to conclude since we
have not required the relations Sw to be symmetric.
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As the reasoning just gone through makes evident, a proof-system for the set of
formulas valid when the ‘⇒’ variant truth-definition is used with generalized models
requires a weakening of (OComp), specifically by deleting the cases (OComp)# for
# which are not (in an obvious sense) monotone #; which means, for the Boolean
connectives # with which we have been working, that we lose not only the case of
# = ¬, but also those of → (nonmonotone in the first position) and ↔ (not monotone
in either position). Into the question of whether the LO proof-system thus trimmed
provides a complete axiomatization of the formulas valid in the sense just isolated,
the author has made no investigations. Though the question has considerable interest,
it is somewhat removed from the topic of agreement, which requires a clause at
least equivalent to the ‘⇔’ form. (The ‘⇒’ form is instead close to the relation of
‘persistence’ or ‘heredity’ familiar from the Kripke semantics for intuitionistic logic,
with the requirement that the truth of a formula A persists on passage from a point x
to an accessible point y.) Returning to agreement proper, then, we pass to the special
case of this idea: the notion of noncontingency. We shall need to use the generalized
models 〈W, S, V 〉 of our recent discussion in order to treat this topic, rather than
the 〈W, ≡, V 〉 models of Section 2, for a reason which will become clear shortly
(immediately after (∗∗∗) below, in fact).

We recall (see [16], [22], and references) that in terms of a Kripke model for
normal modal logic 〈W, R, V 〉 with R a binary relation (accessibility) on W , the
noncontingency operator 4 is interpreted by a clause in the definition of truth to the
effect that 4A is true at w ∈ W for such a model just in case either A is true at
all y for which Rxy or else false at all x for which Rxy. Thus if sufficiently many
conditions on R have been imposed for universal quantification over R-accessible to
amount to (some intuitive notion of) necessity at a given point, this amounts to saying
that 4A is true at w just in case either A is necessary at x , or A is impossible at x . We
are not concerned with such additional conditions here—such as reflexivity11 —but
rather with the fact that this account of 4 can be formulated in terms of agreement
in an obvious way: 4A is true at w just in case all points in R(w) = {x ∈ W |Rwx}

agree on the formula A. Accordingly, for continuity with the foregoing discussion,
we can write ‘OA’ rather than ‘4A’, and ask how LO might need to be strengthened
to reflect this special noncontingency interpretation of ‘O’. Begin by considering how
to convert a model 〈W, R, V 〉 into one of our generalized models 〈W, S, V 〉 with the
same W and V , in such a way that (∗∗) above amounts to the noncontingency of A
at w ∈ W . (i.e., A’s truth throughout R(w) or A’s falsity throughout R(w)). The
appropriate S is of course given by

Swxy ⇔ Rwx & Rwy

since plugging this in for S in (∗∗) gives

(∗∗∗) ∀x, y ∈ W ((Rwx & Rwy) ⇒ (M |Hx A ⇔ M |Hy A)).

(Note that the relations Sw as defined here are not in general reflexive, which is why
for this part of the discussion we have dropped the ‘≡w’ and moved to generalized
models.) Since LO is sound and complete with respect to the class of generalized
models and the structures arising from Kripke models with binary accessibility rela-
tions via the above definition of S are generalized models, LO is sound with respect
to this special class and there arises the question of whether LO is also complete
for this class. A negative answer means that S’s being equivalent to a definiens of
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the above form is sufficient to validate some special formulas not true throughout
arbitrary generalized models.

Such a negative answer may be gleaned from a perusal of the very elegant ax-
iomatization in [22] of the basic system of noncontingency logic K4. This logic
comprises those formulas true at every point in every model when 4A is taken to
be true at a point w if and only if condition (∗∗∗) is satisfied. As already explained,
we shall write ‘OA’ rather than ‘4A’ in order to display the logic as an extension
of LO (reverting to the ‘4’ notation later, after we have finished with our commen-
tary on how the details of this transition from LO to K4 work). In this notation,
and with other minor cosmetic alterations, Kuhn’s axiomatization of K4 extends our
axiomatization by one further scheme (his A3 on p. 231 of [22])—which we take
the liberty of referring to as an axiom, though of course it is really schematic for all
those axioms we obtain on substituting particular formulas for the ‘A’, ‘B’, ‘C’:

Kuhn’s Axiom OA → (O(A ∨ B) ∨ O(¬A ∨ C)).

While invalid (i.e., having some invalid instances) on the generalized models seman-
tics for ‘O’, or equivalently, on the semantics with models as in Section 2, this is
valid when attention is restricted to models—call them noncontingency models—
with S defined by the inset equivalence above in terms of some binary relation R.
(Informally: the antecedent then says that A is noncontingent, in which case it is
either necessary, making the first disjunct of the consequent true, or else impossible,
making the second disjunct true.) Thus cutting down from the class of generalized
models to the class of noncontingency models does indeed properly extend the class
of valid formulas and calls for a stronger logic than LO. Another scheme which is
interdeducible with Kuhn’s Axiom, given the deductive apparatus of LO (as axiom-
atized in Section 2) is the following ¬-free principle, whose validity for the class of
noncontingency models is evident—in fact the same justification informally sketched
applies here too:

OA → (O(A ∨ B) ∨ O(A ∧ C)).

A further alternative, especially easily seen to be equivalent to Kuhn’s Axiom via the
above variant, would be to employ a rule which weakens what would be an incorrect
claim that noncontingency is monotone (as embodied in a rule allowing passage from
B → C to OB → OC) as well as an incorrect claim that noncontingency is antitone
(embodied in a rule allowing passage from A → B to OB → OA): namely, the rule

A → B B → C
OB → (OA ∨ OC)

.

It is always regarded as an improvement in simplicity when such rules are shown to
be replaceable without loss of deductive power by axioms, however. (Indeed [22]
provides just such a simplification in replacing a cumbersome set of rules from [16],
in which the rule just formulated appears as (2.9) on p. 218.) Another dimension of
simplicity in the formulation of axioms is the number of variables or (with axiom
schemes) the number of distinct schematic letters. Kuhn’s Axiom can itself be sim-
plified in this regard, because the ‘B’ and ‘C’ can in fact be identified. Here we write
them as ‘D’ to avoid confusion:

OA → (O(A ∨ D) ∨ O(¬A ∨ D)).

Obviously we obtain this form from Kuhn’s Axiom by putting ‘D’ for ‘B’ and ‘C’. To
obtain Kuhn’s Axiom from the simplified form, we note that classical propositional
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logic allows us the following claim: for any formulas A, B, and C, there is a formula
D with the property that (1) A ∨ D is logically equivalent to A ∨ B and (2) ¬A ∨ D
is logically equivalent to ¬A ∨ C. The desired D can be written most perspicuously
(though not most concisely) as (¬A → B) ∧ (A → C). This is accordingly the
substitution to make for D to obtain (with the aid of (OCong), since we are making
this replacement within the scope of ‘O’) Kuhn’s Axiom in its original form from
the above two-letter form. We shall stick with Kuhn’s Axiom in its original form,
since that is the form most immediately employed in the proof given in [22] (see also
Section 4 below) that LO with this added axiom is sound and complete with respect
to the class of noncontingency models, so what we want to do here is to analyze
the semantic effect of the addition against the background of our discussion to this
point.12

The author originally hoped that this analysis could take a particularly simple
form: it would be shown that a certain first-order condition—roughly, the conjunc-
tion of symmetry with a condition we call [∧] below—would be guaranteed to be
satisfied by the canonical model’s relations Sw (defined as the canonical ≡w were
in Section 2) for any logic extending LO with Kuhn’s Axiom, and which condition
was necessary and sufficient for there to exist a binary relation R for which (∗∗∗)
above held. This initial thought turned out to be overly optimistic, since there ap-
pears to be no way to force the canonical accessibility relation(s) to satisfy [∧], and
a slightly more complicated condition, which we shall call [∧] 6=, is needed instead.
With this alteration, the strategy just sketched does indeed work, as we shall see after
supplying some explanation for this rather cryptic summary.

The explanation calls for a detour through some aspects of the general theory
of binary relations. The following points may be found in Humberstone [15] and
references cited therein.13 Let U be any set and suppose T ⊆ U × U . We call T ∧-
representable if there exist X, Y ⊆ U such that for all x, y ∈ U, T xy if and only if
x ∈ X and y ∈ Y . Since the definiens here quantifies over subsets of U , we can think
of it as a second-order condition. Consider now the following condition, written by
contrast in the first-order language14 of the relational structure 〈U, T 〉:

[∧] ∀x, y, u, v((T xy ∧ T uv) → T xv).

Note that this condition strengthens (considerably!) the condition of transitivity for
R, the latter resulting when ‘y = u’ is added as a further conjunct to the antecedent.
It turns out that T is ∧-representable if and only if it satisfies the condition [∧].
Similar first-order conditions can be found which are equivalent to the second-order
condition of ∧-representability when the “and” in “T xy if and only if x ∈ X and
y ∈ Y ” is replaced by other (informal) Boolean connectives, so that we have a sim-
ilar treatment for ∨-representable relations, and so on. Note that we can formulate
the definition of ∧-representability in more succinct (but still second-order) terms by
saying that there exist X, Y ⊆ U with T = X ×Y , for which reason ∧-representable
relations are usually called rectangular in the literature. (Visualize a graphical depic-
tion of T .) We use the vocabulary of ∧-representability, instead of that more conven-
tional terminology to emphasize the analogy with, for example, ∨-representability.
We shall have no need of the latter variants here, however. In fact, what we need is
a further special case of ∧-representability, called sameness-representability in Sec-
tion 4 of [15]. It is the special case in which we require X = Y . That is, with T, U
as above, T is sameness-representable if and only if there is some X ⊆ U such
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that for all x, y ∈ U, T xy if and only if x ∈ X and y ∈ X . In the reference just
cited, it is observed15 that T is sameness-representable just in case T is symmetric
and satisfies [∧]. Taken thus in conjunction with symmetry [∧] could be replaced
by several variants, for instance those resulting from replacing the ‘T xv’ in the con-
sequent by any of T xu, T ux, T yv, T vy. Suitably choosing from among these, we
could even drop the reference to symmetry altogether; this is the case with the last
variant, for instance—a relation T is symmetric and satisfies [∧] if and only if T sat-
isfies ∀x, y, u, v((T xy ∧ T uv) → T vy). While this gives an even more economical
first-order characterization of sameness-representability, we will stick with the sym-
metry + [∧] formulation here. In fact, a much simpler first-order characterization—
at least if simplicity is measured by the number of bound variables involved—of
sameness-representability can be given, as is more or less explicitly noted on p. 251
of Williamson [36], namely, the following:

∀x, y(T xy ↔ (T xx ∧ T yy)).

However, we prefer to focus on (the combination of symmetry with) [∧] as above,
because it is a restricted version ([∧] 6=) of that condition that we shall need below.

Applying all this to our discussion of the relations Sw from our semantic appara-
tus for LO, we can now describe the initial hope mentioned above. Take one such
relation for an element w of the canonical model for K4, understood as the extension
(still required to be closed under (MP) and (OCong)) by Kuhn’s Axiom. The idea
was that we show that the effect of the latter axiom is to force such a relation Sw to
satisfy [∧], and hence, since it is already symmetric by definition (since we envisage
the same definition as for the canonical ≡w from Section 2), the above characteriza-
tion of sameness-representability, with Sw in the role of T , gives us the conclusion
that Sw is sameness-representable. We can thus find a subset X of W ( = U in the
preceding discussion) with Swxy if and only if x and y both belong to X . Accord-
ingly, define a binary accessibility relation on W by stipulating, for one w ∈ W at a
time, that R(w) = X for the relevant choice of X . This then guarantees that Swxy
if and only if Rwx & Rwy and thus that we have on our hands a noncontingency
model. As already remarked, however, there is no reason to expect the canonical
model to supply relations Sw satisfying [∧], and we cannot proceed quite so straight-
forwardly. Instead, we attend to a related condition:

[∧] 6= ∀x, y, u, v[((T xy ∧ x 6= y) ∧ (T uv ∧ u 6= v)) → T xv].

Proposition 3.2 Let 〈W, S, V 〉 be the canonical model for any consistent extension
of K4, with Sw defined to hold between x, y ∈ W just in case for all OA ∈ w, A ∈ x
if and only if A ∈ y. Then the relations Sw satisfy [∧] 6=, when taken as T .

Proof Suppose we have w, x, y, u, v ∈ W with Swxy, x 6= y, Swuv, u 6= v. We
must show that Swxv. Suppose the latter is not the case. Then for some OA ∈ w, we
have A ∈ x and A /∈ v or vice versa: but if we have the “vice versa” case for a given
A, we have the original case for its negation, the result of attaching O to which is
also an element of w—by (OComp)¬—so it suffices to deal with the case described.
Also, since OA ∈ w and Swxy, we have A ∈ y (as A ∈ x), and since OA ∈ w and
Swuv, we have A /∈ u (as A /∈ v). Further, since x /∈ y, there is some formula C
with C ∈ x and C /∈ y. (Again, if for a given C we have the reverse distribution, take
its negation.) Likewise, since u /∈ v, there is some B ∈ u with B /∈ v. Taking stock
of all this: we have A, C ∈ x , A ∈ y, C /∈ y, which means that x and y disagree
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on ¬A ∨ C (in x , not in y); and we also have A /∈ u, B ∈ u, A /∈ v, B /∈ v, which
means that u and v disagree on A ∨ B (in u, not in v). We now have a contradiction
with Kuhn’s Axiom, since OA ∈ w, so by that axiom, we must have O(A ∨ B) ∈ w

or O(¬A ∨ C) ∈ w, contradicting the disagreements just noted since we supposedly
also have Swuv and Swxy. �

We need now to recall the understanding of Sw mentioned above (before (∗ ∗ ∗)) in
terms of which the noncontingency of A at w amounts to the agreement between all
Sw-related pairs x, y in respect of A, which for ease of reference we now label (α),
and a propos of which we remarked that this cannot in general be expected to be
reflexive16—since that would imply that R(w) = W :

(α) Swxy ⇔ Rwx & Rwy

Now in Proposition 3.2, our effort to extract some structural information about a
canonical S relation from the provability of Kuhn’s Axiom, we used the same defi-
nition as for the canonical ≡ of Section 2, meaning that the relations Sw were equiv-
alence relations, and hence, in particular, reflexive. Fortunately, however, for the
purpose of showing that Kuhn’s Axiom turns LO into a complete logic for non-
contingency models—or more accurately, since this was already shown in [22]—for
the purpose of analyzing the role of that axiom against the background of the more
agreement models of our discussion, we do not need to show how to supply our
canonical model(s) with an R satisfying (α). (Cf. the discussion following (∗) and
(∗∗) above.) It will be sufficient to find a binary relation R for which (β) and (γ ) are
equivalent for the canonical model M = 〈W, S, V 〉 of any consistent extension of
K4, understood as LO + Kuhn’s Axiom, for arbitrary w ∈ W and any formula A:

(β) ∀x, y ∈ W (Swxy ⇒ (M |Hx A ⇔ M |Hy A));

(γ ) ∀x, y ∈ W ((Rwx & Rwy) ⇒ (M |Hx A ⇔ M |Hy A)).

Accordingly, consider the following way of defining R ⊆ W×W , quantifiers ranging
over W :

(δ) ∀w, u(Rwu ⇔ ∃v 6= u.Swuv).

Then we have the following.

Proposition 3.3 If M = 〈W, S, V 〉 is the canonical model for K4 or any consistent
extension thereof, then for the binary relation R on W defined by (δ), we have (β)
and (γ ) equivalent for any formula A, any w ∈ W.

Proof (β) ⇒ (γ ): Assume (β), and that for x, y ∈ W we have Rwx and Rwy,
meaning, by (δ), that Swxx ′ for some x ′ 6= x and Sw yy ′ for some y ′ 6= y, in which
case, since Sw is symmetric, Sw y′y. By Proposition 3.2, Sw satisfies the condition
[∧] 6=, so Swxy, and thus by (β), M |Hx A ⇔ M |Hy A, establishing (γ ).

(γ ) ⇒ (β): Assume (γ ) and that for x, y ∈ W we have Swxy. Distinguish two
cases. First, x = y. In that case certainly M |Hx A ⇔ M |Hy A. Next, x 6= y.
In that case, since Swxy and x 6= y, Rwx by (δ), and since Sw is symmetric Sw yx
and again by (δ), Rwy. So by (γ ), M |Hx A ⇔ M |Hy A. Thus in either case
M |Hx A ⇔ M |Hy A, establishing (β). �
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We have now explained the way Kuhn’s Axiom succeeds in completing LO, our
general modal logic of agreement, to the stronger logic required for the noncontin-
gency interpretation of ‘O’ via its securing the satisfaction of the condition [∧] 6= for
the canonical models of logics containing all its instances. Any consistent formula
of such a logic is true at some point in its canonical model, whose relation S can
be used to define a binary relation R, as Proposition 3.3 assures us, in such a way
that any formula OA is true at point w not only if and only if (β) is satisfied (as for
all models) but also if and only if (γ ) is, that is, in the manner of a noncontingency
model.

As a footnote to this discussion, we may extract from it the following general
observation in the style of ‘a binary relation T is ∧-representable if and only if T
satisfies [∧]’, ‘T is sameness-representable if and only if T is symmetric and satisfies
[∧]’, and the like, with the aid of the following notation. For any T ⊆ U × U , we
denote by T ref (the reflexive closure of T ) the smallest reflexive relation extending
T . By contrast with the operations (·)eq and (·)tr considered earlier, (·)ref has a very
simple explicit description: T ref = T ∪ {〈u, u〉|u ∈ U}. Now the observation to be
extracted can be put thus: T ref = T ref

0 for some sameness-representable T0 if and
only if T is symmetric and satisfies [∧] 6=. The “only if” direction here is routine.
For the “if” direction, assume T is symmetric and satisfies [∧] 6=, and define X ⊆ U
as {u ∈ U |∃v ∈ U . u 6= v & T uv}, and show that taking T0 as X × X , we have
T ref

0 = T ref.

4 More on Noncontingency

An interesting further issue is raised by our progress toward the conclusion sum-
marized in the second to last paragraph of Section 3. Suppose we started with a
traditional Kripke model 〈W, R1, V 〉 with a binary accessibility relation R1 and a
truth-definition setting the truth of OA, or 4A, as we shall now write it for confor-
mity with the usual notation for noncontingency, at a point w equal to the satisfac-
tion of the condition (∗∗∗). Suppose, next, that we introduced a ternary relation S
by means of the natural definition (α) above (with R1 for R), and finally, that we
employed (δ) to define a binary relation R2 (where (δ) speaks of R). Would we be
back where we started? Would, that is, R2 be the original relation R1?

In general, the answer to the question just raised is negative: R2 will be a proper
subrelation of R1, though as we shall see, this difference makes no difference to
the point-by-point truth-values of formulas in the language whose sole non-Boolean
connective is 4, as we pass between the models 〈W, R1, V 〉 and 〈W, R2, V 〉. To
see why the answer is negative, unpack the suggested definition a la (δ) of R2 by
replacing references to S in terms of R1 a la (α); this gives the following equiva-
lence, in which the replaceability of the ‘R2’ on the left by ‘R1’ would amount to an
affirmative answer to our question:

∀w, u(R2wu ⇔ ∃v 6= u(R1wu & R1wv)).

If we replace ‘R2’ on the left with ‘R1’ we get something unobjectionable in its
⇐ direction, but far from guaranteed to be true in its ⇒ direction: just because w

bears R2 to u, why should it follow that w bears R2 to something other than u as
well? Plainly, the equivalence inset above tells us that u is an R2-successor of w

(i.e., R2wu) if and only if u is one of at least two R1-successors of w, and thus
R2 coincides with R1 only in the case in which for all w, |R1(w)| 6= 1. For the



Agreement and Noncontingency 115

general case, the passage from R1 to R2 is as described here in Section 4 of [16]—
several themes from which are recalled here for current purposes—in terms of “R1-
reduction,” though here we use a more explicit terminology: Given a Kripke model
M1 = 〈W, R1, V 〉 we say that M2 = 〈W, R2, V 〉 is obtained from M1 by severance
of sole successors just in case

R2 = R1 \ {〈w, x〉|R1(w) = {x}}.

Note that we do not exclude the case in which x = w here. Note also that the
change from M1 to M2 here described can be regarded as a change from one frame
to another (since V is not affected).

If we had ‘�’ in the language, interpreted as usual, then the transition from M1 to
M2 would make a difference to which formulas were true at points w for which this
transition severs the accessibility connection from w to its sole successor, since in
M1 a formula �A is true at w just in case A is true at x , whereas in M2 all formulas
�A are true regardless of what A is. (In particular, then, �⊥ is bound to change
from being false at w in M1 to be being true at w in M2.) By contrast, in the case in
which the only non-Boolean primitive is 4, there is no difference over 4-formulas
between successorless points and points with a single successor: both such points
verify all such formulas, since the only way for 4B to be false at a point is for it
to have successors disagreeing on B—which requires at least two successors. This
reasoning gives the heart of the inductive case for 4 in a proof of the following (=
Lemma 4.1(i) in [16]), by induction on the construction of A, the remainder of which
proof the reader is invited to supply.

Theorem 4.1 If M2 is obtained from M1 by severance of sole successors, then we
have M1 |Hw A if and only if M2 |Hw A, for all w ∈ W, all formulas A (with 4 as
the only non-Boolean connective).

The following is evident even from our informal remarks above; it tells us that �,
with its customary interpretation, is not definable in terms of the Boolean connec-
tives and 4 in K4. (Think of A(p) below as a candidate definiens for �p. More
information on the definability of � in terms of 4 may be found in Creswell [4].)

Corollary 4.2 There is no formula A(p) of the language of K4 with the property
that for all models M = 〈W, R, V 〉 and all w ∈ W, M |Hw A(p) if and only if for
all x ∈ R(w), M |Hx p.

Proof Suppose, for a contradiction, that A(p) is a formula of the kind claimed here
not to exist. With W = {u}, R1 = {〈u, u〉}, R2 = ∅, and V (pi) = ∅ for all
i , the models M1 = 〈W, R1, V 〉 and M2 = 〈W, R2, V 〉 are as in Theorem 4.1,
which therefore implies M1 |Hu A(p) ⇔ M2 |Hu A(p), contradicting the fact
that M1 6|Hu A(p) and M2 |Hu A(p), the former being given by A(p)’s requiring
for its at u truth throughout R1(u) = {u} " V (p), and the latter by the fact that
R2(u) = ∅. �

In [16] an easy corollary of Theorem 4.1 was stressed, showing the resemblance
between severance of sole successors and other operations on frames, such as taking
disjoint unions, generated subframes, and p-morphic images in standard �-based
modal logic (results which remain intact in the present setting): for a class C of
frames to be modally definable, C and its complement must be closed under the
transition from 〈W, R1〉 to 〈W, R2〉 by severance of sole successors.17 As noted in
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[16], several familiar classes of frames modally definable in the �-language can be
shown to be undefinable in the 4-language by appeal to this fact. These include the
classes of reflexive frames, which are not closed under severance of sole successors,
and the classes of transitive frames and symmetric frames, whose complements are
not closed under this operation. To them we can readily add the class of serial frames
and the class of euclidean frames. Much more information on modal definability in
the 4-language can be found in [37]; a similar study of the more general agreement
operator O of LO would be equally welcome. (In that setting the anomalies raised
by sole successors here are raised by the situation in which for a given w, we only
have Swxy—or x ≡w y—when x = y: no O-formula can then be false at w.) The
other side of the coin from these facts of undefinability consists of corresponding
facts of multiple determination, where (as usual) a logic is determined by a class
of frames when its theorems coincide with the formulas valid (in the sense there
defined) on every frame in the class. Many distinct classes of frames can determine
the same normal modal logic in the usual language with �, but the feature we are now
highlighting concerns the fact that classes of frames determining different �-based
modal logics can, because of the expressive weakness just alluded to, determine the
same 4-based logic. An example related to the severance of sole successors issue
was given in [16], p. 225: In fact for any (�-based) S determined by a class of
frames in which for every frame element w, |R(w)| ≤ 1 we have (using the notation
of note 12) S4 = K4 + 4A (i.e., the extension of K4 by the schema 4A); thus
the Verum system KVer = K + �⊥, the logic K + ♦A ↔ �A (‘KD!’ in Chellas’s
nomenclature—see [2]), and their intersection K + ♦A → �A (‘KDc’), as well as
KTc and KT! (= K + A → �A and K + A ↔ �A, respectively) all have the same
noncontingency fragment. (As mentioned in [16], this is the sole Post-complete
extension of K4—or of NC as it was there called. The interested reader will find
such themes from [16] taken further in [37].)

Before we turn temporarily to a slightly different language, one allowing proposi-
tional quantifiers in terms of which a workable surrogate � can be defined (using 4),
we mention a further aspect of the passage from S to S4 inspired by the inclusion
of KDc on the above list, which as mentioned, is the intersection of two other logics
on the list, neither of which is included in the other: K + �⊥ and KD!. As is well
known,18 this guarantees that the logic KDc is Halldén-incomplete, that is, proves
for some A, B, the formula A ∨ B without proving A or proving B, even when A and
B have no propositional variables in common. For an example in the case of KDc,
take A = �p and B = ♦q ↔ �q. It is an immediate consequence of the definitions
that it is Halldén-completeness (rather than Halldén-incompleteness) that is passed
from S to S4, however, so the fact that K4+4A is (K+�⊥)4 as well as being KD4

c
shows that this noncontingency logic is Halldén-complete. It would be interesting
to know if this is also the case for K4 itself, in view of the Halldén-incompleteness
of K. The best known witnessing disjunctions in the latter case are formulas such as
�p ∨ ♦(q ∨ ¬q) and �(p ∧ ¬p) ∨ ♦(q ∨ ¬q), the latter being a reformulation of
the variable-free �⊥ ∨ ♦> designed to exhibit variable-disjoint disjuncts: it is not
clear how to say anything analogous in the 4-language. To clinch matters, as in the
case of K4 +4A just reviewed, it would suffice to show that K4 is also S4 for some
Halldén-complete S.
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We turn now to the promised temporary change of language. The languages we
have been considering do not allow propositional quantification, but it is worth not-
ing that if that is added to our expressive resources, then we can come quite close
to defining necessity in the resulting second-order propositional K4.19 The formu-
lation we have in mind is inspired by Kuhn’s Axiom, repeated here for convenience,
though now with ‘4’ in place of the ‘O’ of our earlier discussion (especially as we
shall have more to say about it below):

Kuhn’s Axiom 4A → (4(A ∨ B) ∨ 4(¬A ∨ C)).

Recall that if 4A is true at w because points in R(w) verify A—that is, informally
speaking, because A is necessary at w—then the first disjunct of the consequent is
true at w, for any formula B. This gives the forward direction of what we have in
mind as close to a suitable definition of �, and we shall instead take to define a new
operator �−, so that we can compare its upshot with �.

Definition 4.3 (�−) �− A ↔ ∀q4(A ∨ q).

In Definition 4.3 we require ‘q’ to be a variable not occurring in A, so if A does con-
tain q(= p2), just replace q by pk+1 where all variables in A are among {p1, . . . , pk}.

Proposition 4.4 Let M = 〈W, R, V 〉 be a model interpreting the language of K4

with � added (understood as usual), and w any element of W with |R(w)| 6= 1.
Then M |Hw � A if and only if M |Hw �− A.

Proof (only if) This direction holds without requiring the condition on w, since if
M |Hw �A then all elements of R(w) verify A and hence A ∨ q, independently
of V (q); thus however V is altered to V ′ like V on all propositional variables
other than q, 〈W, R, V ′〉 = M

′ |Hw �(A ∨ q) and thus M
′ |Hw 4(A ∨ q), so

M |Hw ∀q 4 (A ∨ q), that is, M |Hw �−A.

(if) Take w ∈ W with |R(w)| 6= 1 and M 6|Hw �A, with a view to showing
that M 6|Hw �−A. If |R(w)| = 0, we cannot have M 6|Hw �A, so it suffices to
consider the case of |R(w)| ≥ 2. As M 6|Hw �A, there is some x ∈ R(w) with
M 6|Hx A, and since |R(w)| ≥ 2 we can find y ∈ R(w) with y 6= x . Let V ′

differ from V at most on q (and hence not at all on the variables in A) in any way
that puts y ∈ V ′(q), x /∈ V ′(q). For the resulting model M

′ = 〈W, R, V ′〉, we
have R-successors of w (namely, x, y) differing on A ∨ q, since M

′ 6|Hx A ∨ q
while M

′ |Hy A ∨ q. Thus M
′ 6|Hw 4(A ∨ q, so M 6|Hw ∀q 4 (A ∨ q), that is,

M 6|Hw �−A. �

Since Kripke models whose accessibility relations satisfy |R(w)| = 1 for all model
elements w are called functional in the literature (the relation R being a functional
relation—or, not to put too fine a point on it, a function—in this case), we might
call models in which |R(w)| = 1 for no element w, antifunctional models. Propo-
sition 4.4 tells us that our necessity surrogate �− behaves exactly like the real thing
(�) in any antifunctional model. Although we shall have no more to say about
second-order propositional modal logic and �− in what follows, some observations
on this antifunctionality property are in order.

In the first place, the models 〈W, R2, V 〉 obtained from models 〈W, R1, V 〉 by
severance of sole successors are obviously antifunctional. Secondly, the Kripke
models 〈W, R, V 〉 arising from the canonical models 〈W, S, V 〉 of Propositions 3.2
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and 3.3 by means of the definition (δ) of R in terms of S are all antifunctional, since
if Rwu then, by (δ), there is a v ∈ W which is distinct from u and for which Swuv,
in which case, by the symmetry of Sw and (δ) again, Rwv. So if w bears R to
something, it bears R to something else as well. One might wonder whether every
w bears R to something. It turns out to be possible to have R(w) = ∅, namely,
if and only if for every formula A, we have 4A ∈ w.20 The same is true of the
canonical model constructed in [22]. Kuhn there uses an ingenious but straightfor-
ward definition of the canonical accessibility relation R for the canonical model for
the basic system K4 of noncontingency logic. For a maximal consistent set w, we
define λ(w) = {A| 4 (A ∨ B) ∈ w for all formulas B}. This is a way of simu-
lating, in the absence of ‘�’, the set of formulas which are ‘necessary according to
w’ (cf. our ‘�−’ above).21 Accordingly we then define the canonical accessibility
relation R by: Rwx ⇔ λ(w) ⊆ x . R(w)’s being empty then amounts to λ(w)’s
being inconsistent.22 If for every formula A, 4A ∈ w, then for every formula A, for
every formula B, 4(A∨B) ∈ w—not because, case by case, 4(A∨B) follows from
4A (which is of course not so), but because A ∨ B is itself a formula which could
be chosen instead of the original A, our having said “for every formula A, 4A ∈ w.”
Thus every formula belongs to λ(w), so R(w) = ∅. Conversely, if R(w) = ∅, then
λ(w) is inconsistent, and so for all A, B, 4(A ∨ B) ∈ w, and thus (e.g., taking B as
A), for all A, 4A ∈ w.

We can extend the above reasoning to show that Kuhn’s canonical model for K4

is antifunctional. Suppose for maximal consistent w, x , we have R(w) = x . Then
for every A ∈ x , A ∈ λ(w), so for all formulas B, 4(A ∨ B) ∈ w and as before, this
implies that 4A ∈ w. Now for each formula A, either A ∈ x , or else ¬A ∈ x , so
for each formula A, either 4A ∈ w or 4¬A ∈ w. But 4¬A ∈ w implies 4A ∈ w

(since as noted in Section 2, O¬A provably implies OA even in LO). Thus for every
formula A, 4A ∈ w, and in that case by the reasoning of the preceding paragraph,
R(w) = ∅ 6= {x} after all.

The same definition of the canonical accessibility relation yields completeness
results for K44 and K54 with respect to the classes of transitive and of euclidean
frames, respectively, when the following axiom-schemes are added to K4:

4A → 4(4A ∨ B) and ¬ 4 A → 4(¬ 4 A ∨ B)

as is shown in [22] and [37], respectively. (The latter work also gives first-order
characterizations of the classes of frames these schemes modally define—which,
as we have already noted, are certainly not the classes of transitive and euclidean
frames.) The author does not know if the same definition for the canonical R works
to show that this relation is reflexive for KT4 = K4+

(4(A ∨ B) ∧ 4A) → (A ∨ 4B)

though in this case we can use the standard definition for canonical accessibility
in normal modal logic because of the definability of �A as 4A ∧ A (i.e., put
Rwu ⇔ {A| 4 A ∧ A ∈ w} ⊆ u). (The following fact would appear to bear on this
question. We can also characterize KT4 as LO+

(4A ∧ A) → 4(A ∨ B).

In other words, this schema is LO-interderivable with the combination of the pre-
ceding schema and Kuhn’s Axiom.) Apart from combining these various ingredients
to obtain S54, we have in any case another axiomatic route available, by replacing
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(OCong) by (OCong)+ in the above axiomatization of K4 (i.e., add Kuhn’s Axiom
not to LO but to LO+). We conclude our discussion with some variants on the theme
of noncontingency, returning to the ‘O’ notation to avoid confusion with noncontin-
gency proper.

Suppose that for a Kripke model M = 〈W, R, V 〉 we used the following clause
in the truth-definition:

M |Hw OA if and only if for all y ∈ W such that Rwy, M |Hw A iff M |Hy A.

The truth of OA at w requires then the agreement of all of w’s successors with
w on A. This implies that all of w’s successors agree with each other on A (i.e.,
the truth of 4A at w) but is in general stronger if w /∈ R(w).23 In terms of the
generalized models of Section 3 with their ternary relations S, this amounts to setting
Swxy ⇔ (x = w & Rxy). A sound and complete axiomatization is obtained by
replacing Kuhn’s Axiom with the following variant:

4A → ((A ∧ 4(A ∨ B)) ∨ (¬A ∧ 4(¬A ∨ C))).24

Soundness is clear and completeness follows by an easy adaptation of Kuhn’s argu-
ment on p. 232 of [22]. (For this adaptation, define λ′(w) = {A|A ∧ O(A ∨ B) ∈ w

for all B}, then putting Rwu ⇔ λ′(w) ⊆ u.)
Because of the fact that in terms of our generalized models with S, for the last case

we have Swxy if and only if x = w and Rxy, the effect of the universal quantifier on
x in our general clause, repeated here for convenience,

M |Hw OA if and only if for all x, y ∈ W such that Swxy,

we have M |Hx A ⇔ M |Hy A,

is nullified: the only candidate for x is w itself. There are some reasonably well-
motivated further variants in which not only the quantifier on x but also that on y
is similarly nullified. Consider, for example, the models 〈W, w∗, V 〉 with w∗ ∈ W
sometimes used to interpret an “actually”operator—thinking of the distinguished el-
ement w∗ as the actual world of the model. (If we have � in the language we can
supplement these models with an accessibility relation satisfying some reasonable
conditions, or simply interpret it—for an S5 treatment of necessity—as quantifying
over the whole of W .) Writing this operator as ‘A’, we take AA as true at an ar-
bitrary w ∈ W relative to such a model just in case A itself is true at w∗. (See
Chapter 9 of Davies [5] for further details, applications, and references.) Now con-
sider the following clause governing our agreement operator O in this setting, where
M = 〈W, w∗, V 〉:

M |Hw OA iff M |Hw A iff M |Hw∗ A.

In terms of the earlier general clause for O formulated with the aid of S, what
we have done with this now wholly ∀-free condition amounts to taking Swxy ⇔

(x = w & y = w∗). OA means ‘Things stand as they do in the actual world in-
sofar as the truth-value of A is concerned’; an alternative gloss on ‘OA’ that works
well for many applications (especially indirect speech and propositional attitude em-
beddings) is simply ‘whether A’: see Lewis [24] for further details, presented in the
framework of two-dimensional modal logic. Notice that not only is O definable in
the object language in terms of the actuality operator—since our truth-definition val-
idates OA ↔ (A ↔ AA)—but also, rearranging this biconditional, we could have
started with O and defined A, by means of the valid AA ↔ (A ↔ OA). This allows
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one to mimic a completeness proof for an axiomatization of the valid formulas in
the language of LO by translating a complete axiomatization of the appropriate ac-
tuality logic. A related subvariation of this second variant on noncontingency arises
when there is an accessibility relation which is functional, in which context we have
already seen standard noncontingency (4) is a dull affair, everything being noncon-
tingent everywhere. Rather than writing R(w) = {x}, let us write f (w) = x for this
case, thinking of the models as of the form 〈W, f, V 〉 with f : W −→ W . Then we
can put

M |Hw OA if and only if M |Hw A iff M |H f (w) A.

In terms of the general clause, we have now put Swxy ⇔ (x = w & y = f (w)). If
we thought of W as a set of discretely ordered moments of time and of f (x) as the
immediate successor of moment x , then OA says that there is no change over whether
or not A between now and the next moment. (This is not really a “subvariation” but
a “supervariation”, since plainly the w∗ example is just the special case in which f
is a constant function.)

Whatever its own interest might be, we have described the first of the above two
variants on noncontingency (the one with Swxy ⇔ (x = w & Rxy)) in order to no-
tice an analogous variant on von Kutschera’s treatment of O described in Section 1.
Here again the models had a binary relation ∼, and since this is all that concerns us
we may take such models to be triples 〈W, ∼, V 〉; again, while [35] imposes a spe-
cial condition on the interaction between V and ∼, we ignored this, and concentrated
only on the restriction that ∼ should be an equivalence relation. We axiomatized the
complete logic for this semantics as the system LO+ in Section 2. Theorem 2.5
showed that system to be determined by the class of frames 〈W, ≡, V 〉, with ≡ an
equivalence-relation assigning function and assigning the same equivalence relation
to each w ∈ W : thus we could simply treat these models as having the type of von
Kutschera’s models. We will use the ‘≡’ rather than the ‘∼’ notation. Then the
first of the following two clauses gives the semantic treatment of ‘O’ with which we
became familiar in Section 2, while the second is related to it in exactly as that con-
templated above for ‘O’ is related to noncontingency. So as to compare the different
notions, we write the operator as ‘O′’ in the second case; we take M in both cases to
be of the type 〈W, ≡, V 〉, ≡ an equivalence relation on W :

M |Hw OA if and only if for all x, y ∈ W such that x ≡ y

we have M |Hx A iff M |Hy A;

M |Hw O′A if and only if for all y ∈ W such that w ≡ y

we have M |Hw A iff M |Hy A.

The first of these is the von Kutschera clause for O. We suggested at the end of
Section 1 that it was an inappropriate starting point for investigating the logical issues
because it made the truth of OA at w independent of the choice of w, the latter not
putting in any appearance after the ‘if and only if’. Our way of fixing this in Section 2
was to change ‘x ≡ y’ to ‘x ≡w y,’ giving the choice of w a chance of mattering
by having it affect which equivalence relation was at issue. (As we saw in Section 3
this added element of generality was especially useful when ‘x ≡w y’ was replaced
by ‘Swxy’ so we could stop insisting that the binary relation left after fixing w was
an equivalence relation, and thereby subsume the case in which this relation was that
holding between R-successors x and y of w for a traditional accessibility relation R.)
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But the second clause above, written for ‘O′’, reintroduces the feature of dependence
on w in a different way: not by making which binary relation is at issue depend on
w, but much more straightforwardly, by taking w as the world with which ≡-related
worlds must agree on A.

We have stopped talking in abstract terms about “points” in our models, and
started talking about them as worlds, to get back to the motivation we extracted from
[35] for pursuing the modal logic of agreement in the first place. Von Kutschera was
working with the idea—an idea which had been impressively elaborated and applied
by Lewis in [25], [26]—that subject matters be identified with (perhaps only cer-
tain “natural”) equivalence relations on the set of possible worlds, a statement (or
declarative sentence) being entirely about a given subject matters when any worlds
standing in the equivalence relation in question agreed on the sentence in question.25

In von Kutschera’s discussion, we fix on a thinker and consider the equivalence rela-
tion of being alike with respect to everything with the possible exception of thinker’s
mental states. One of Lewis’s favored examples in [25] concerns the seventeenth-
century statements being entirely about that subject matter when any worlds whose
seventeenth-century parts are duplicates (are exactly alike, qualitatively, that is) agree
on the sentence. Another, showing that not all subject matters are thus “part-based,”
the subject matter of how many stars there are, worlds standing in the corresponding
equivalence relation when there are the same number of stars in each, and a statement
entirely about this subject matter is one on which any two worlds alike in respect of
that number agree.26 Now, fixing on a subject matter and its associated equivalence
relation ≡, the clause for ‘O’ above says that OA is true (at any world) just in case
A is entirely about the subject matter in question. With the clause for ‘O′’ on the
other hand, interpreted with the same equivalence relation ≡, OA’s truth at a world
amounts to what is called in Humberstone [17] A’s being settled in w on the basis
of the subject matter concerned. For example, the statement that either there were
some carpenters alive in 1650 or there would be in 1750 is not entirely about the sev-
enteenth century, since there are worlds which are seventeenth-century-alike which
differ as to its truth-value (say, because in one there are no carpenters before 1740 but
there are from then on, and in the other there are no carpenters before 1760 but there
are from then on). But this disjunction is settled—and settled as true—in the actual
world on the basis of facts about the seventeenth century, since any world whose
seventeenth-century duplicates that of the actual world (with all of its 1650 carpen-
ters) agrees with the actual world on the truth-value of the statement. This, then, is
a simple example in which, taking out disjunction as A and taking ≡ as the relation
of having matching seventeenth centuries and the actual world as w, OA is false in
w while O′A is true in w. Note that while in general OA does not follow, as this
example shows, from O′A, there is an entailment in the opposite direction. In fact,
if we had in the same language a necessity operator understood in terms of universal
quantification over the whole of W , then we could define OA as �O′A. Though we
conclude our discussion here and do not consider any such extensions of the language
here, one other dimension of expressiveness that might be explored would include
the simultaneous several operators playing the roles of O and O′, one pair for each
subject matter, together with binary functors on the operators to correspond to meets
and joins in the lattice of subject matters (cf. the program-combining operations of
propositional dynamic logic)—so that various logical relations whose description is
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usually confined to the metalanguage (e.g., in Humberstone [21]) would find expres-
sion in the object language itself.

Notes

1. What lies behind this coincidence is the fact that the relation for a given formula A be-
tween valuations u and v when u(A) = v(A) is dual to the relation for a given valuation
v between formulas A and B when v(A) = v(B) in terms of a certain Galois duality dis-
cussed in Humberstone [20]. (These relations are of course the agreement-on-A relation
and the condition for A ↔ B to be true on a ↔-Boolean valuation v.)

2. As metalinguistic analogues of ↔, →,∧, we sometimes use ⇔,⇒, & , respectively.

3. More information on supervenience-determination may be found in Humberstone [19],
[20].

4. There is a very serious technical problem with this suggestion (if it is understood against
the background of the standard possible worlds semantics of the operators concerned),
as explained in [32]; Rabinowicz and Segerberg there offer a revised semantics to fix the
problem and compare their solution with one proposed by Lindström (then unpublished,
but now available in Lindström [27]).

5. KD45, to be precise.

6. At several points in this summary of von Kutschera’s discussion, we have assimilated
his notation to ours in various ways. As already noted, he writes ‘B’ where we write
‘K0’; he writes ‘N’, ‘M’, for our ‘�’, ‘→’; and he uses the V part of the model to
assign truth-values to all formulas rather than just the propositional variables, as in our
summary. (This departure foreshadows our use of ‘|H’ in the following section for the
general truth-relation.)

7. A similar failure of closure under uniform substitution holds for the epistemic-doxastic
logic of Halpern [11], where it is again the result of an objective/subjective distinction
which puts all the propositional variables on the objective side: Kp → K0 p is valid
on Halpern’s semantics, as is the result of substituting any objective (i.e., K, K0-free)
formula for p, though—as he is keen to have be the case—the substitution-instance
K¬Kp → K0¬Kp is not. (Of course, we are using our own temporary notation here.
[11] has ‘B’ for ‘K0’.)

8. ‘LO’ is just mnemonic for ‘the Logic of O’. There is little danger of confusion with other
similarly named systems in the literature such as the system LO of Ono [29], [30], etc.

9. Note that the notion of a Boolean valuation still makes sense for a language such as that
of LO, not all of whose connectives are Boolean: it simply places no constraints on a
formula with a non-Boolean main connective.

10. This is inspired by the use made in Montgomery and Routley [28] of 44A as a schema—
one of several alternatives considered in this regard—for extending the noncontingency
formulation of KT to a noncontingency formulation of S5 (KT5). We discuss some as-
pects of the logic of ‘4’ (or of ‘O’ as it behaves in what we call noncontingency models)
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in Section 3. Unaware of [28], Demri provides his own noncontingency treatment of S5
in [6], using semantic methods to show that it deserves this description (whereas Mont-
gomery and Routley employ purely syntactic arguments). A more elaborate version of
a similar idea, with an intended epistemic application, can be found in Demri [7]. Both
[6] and [7] make the incorrect claim that ‘KA’ in Hintikka [12] is interpreted as meaning
‘It is known whether A’ (whereas in fact Hintikka reads this as ‘It is known that A’—the
epistemic analogue of necessity, in other words, rather than of noncontingency). This
misconception may have arisen from the fact that this nonstandard interpretation of ‘K’
is to be found in work by Orłowska cited in [6] and [7]. Readers interested in [28] will
find other papers on noncontingency formulations of several modal logics in their sub-
sequent papers in the same journal, in Volumes 11 (1968) and 12 (1969). Additional
historical information: Prior ([31], p. 313) cites an unpublished axiomatization, dated
1959, of (non)contingency-based S5 by Lemmon and Gjertsen.

11. If attention is restricted to models with reflexive accessibility relations, then not only
is 4 definable in terms of the (familiarly interpreted) � and the Boolean connectives,
by putting 4A = �A ∨ �¬A, but also—and this is where we need the reflexivity—
conversely, we can put �A = 4A ∧ A.

12. Some misprints in [22] may slow readers down. Though Kuhn undoubtedly intends
to call his basic logic for noncontingency ‘K4’ (replacing the label ‘NC’ from [16],
associated there with a particular axiomatization which differs from Kuhn’s), this label
does not actually appear in [22], being misprinted as ‘K44’ on p. 231 when the system
is introduced, as well as at four later occurrences on that page, and as ‘K’ on another
occasion there. Of the five occurrences of ‘K44’ on p. 233, the first and third should
also be ‘K4’. The general convention is clear enough though: where S is a �-based
modal logic, S4 is to be its 4+ Boolean connectives fragment, thinking of 4 as having
been introduced into S by the definition of 4A as �A ∨ �¬A. We shall follow instead
the conventions of [37] and write ‘S4’ in place of ‘S4’.

13. The cited source uses ‘R’ rather than ‘T ’ as a general variable for binary relations,
avoided here since we have associated ‘R’ with the binary accessibility relations of
Kripke models (and when we come to apply these ideas to the semantics, the relations
T will correspond instead to the binary relations Sw); there are some other notational
changes also.

14. Though for simplicity we make no notational distinction between the relation R and the
relation symbol with this relation as its extension in the structure 〈U, R〉.

15. See Proposition 7(i) of [15].

16. It is for this reason that we use the ‘S’ notation, and generalized models, rather than
the ‘≡’ notation of the models of Section 2, even though in our canonical generalized
models, the S-relations, or more accurately the relations Sw for w an element of such a
model, are indeed equivalence relations.

17. We are using the “frame” terminology parenthetically introduced after the truth-
definition at the start of Section 2 (though now understood to apply to frames as
abstracted from Kripke models rather than the models there in play) and say that a set of
formulas 6 modally defines a class C of frames when for every frame 〈W, R〉, we have
〈W, R〉 |H A for all A ∈ 6 if and only if 〈W, R〉; here we have written ‘〈W, R〉 |H A’
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for ‘A is valid on the frame 〈W, R〉’. (If 6 consists of a single formula A, we say that A
modally defines C in this case.) A class C of frames for which there is some 6 modally
defining C is called modally definable. (See van Benthem [34] for these concepts and
their properties in the �-based setting.) Theorem 4.1 and Corollary 4.2 just stated can
be strengthened and have been formulated as above for easy visualizability. The key is
that it doesn’t matter whether a point has no successors or exactly one, so we can add
or delete sole successors as we please, rather than having to do so uniformly. Thus the
general situation for Theorem 4.1 is that M1 = 〈W, R1, V 〉 and M2 = 〈W, R2, V 〉

stand in the following relation: for all w ∈ W , if |R1(w)| ≥ 2 or |R2(w)| ≥ 2, then
R1(w) = R2(w). This allows for considerably more leeway in “rewiring” elements w

with |Ri (w)| < 2 than Theorem 4.1, but still suffices for the inductive case of 4 in the
proof.

18. The connection between Halldén-completeness and this intersection characterization
may be found in Lemmon [23]; it can also be found as Theorem 15.22 in Chagrov and
Zakharyaschev [1] together with further information and references on the topic.

19. The π+ semantics from §2.1 of Fine [9] will do for our purposes here, which allows
every subset of W as a proposition. (All we actually exploit in the proof of the ‘if’ half
of Proposition 4.4 below, however, is the assumption that for any pair of elements there
is a proposition containing one and not the other.)

20. If some 4A /∈ w then by Lemmas 2.2, 2.3—where we were writing ‘O’ rather than
‘4’—there are two points agreeing on all C for which 4C ∈ w but disagreeing on A, so
if we call them x and y we have Swxy(‘x ≡ w y’ we wrote there) with x 6= y; thus each
of x, y, belongs to R(w) as defined by (δ), making R(w) nonempty. Conversely if R(w)

is nonempty then there are distinct x, y for which, canonically, Swxy, so there must be
some formula in x but not in y, say B, in which case 4B /∈ w.

21. The ‘λ’ in [22] is, as in [16], mnemonic for ‘labeling’ where a labeling of (maximal
consistent) w is what in Section 2 above we call a signing of the set {C| 4 C ∈ w}.
Whereas in [16], there is a complicated argument for the existence of a suitable labeling
for each w, in [22] we have the simple explicit definition just given. Kuhn appeals to
what we are calling Kuhn’s Axiom to show that λ(w) is indeed, in the sense just defined,
a labeling of w: see [22], p. 232, Property P3. (The axiom as formulated gives this result
very directly, whereas for the “two schematic letters” version mentioned in Section 3
above, this consequence would be far from evident and extracting it would amount to
deriving the “three schematic letters” form used by Kuhn.) Kuhn’s way of explicitly
specifying λ(w) avoids the appeal to König’s Lemma (or a version thereof called the
“Word Lemma”) in the completeness proof in [16]. It would be interesting to know if
the appeal we make to König’s Lemma at the end of Lemma 2.2 above is also avoidable.

22. Inconsistency can be understood here, not in the weak sense of having every formula as
a consequence, but of actually containing every formula as an element, because λ(w) is
actually closed under (LO)-consequences, that is, if (A1 ∧ · · · ∧ An) → B is provable
in LO, and each Ai ∈ λ(w), then B ∈ λ(w). (See Properties 1, 3, 4, on p. 232 of [22].)
The definition of the canonical accessibility relations R in [37] is essentially the same
as Kuhn’s. Instead of the definition just given of λ, that in [37] amounts to taking λ(w)

as {A| 4 (B → A) ∈ w for all formulas B}, thus replacing the B in Kuhn’s 4(A ∨ B)

formulation by its negation. While this is a different set of formulas from Kuhn’s λ(w),
the one is included in any set closed under consequences if and only if the other is, so
the same canonical R emerges from both definitions. (The ‘λ(w)’ is not used in [37].)
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23. The distinction arises only for nonreflexive R, of course. Another way of describing the
effect of the above clause is to say that for OA to be true at w, we require that all points
in R(w) ∪ {w} agree on A.

24. We can drop the first conjunct of either disjunct in the consequent here, provided we
leave the first conjunct of the other intact. But the present form is easiest for conducting
the completeness argument sketched immediately below.

25. The fact that what we call (OComp)# holds for the various Boolean # is already explicit
with Lewis’s “Compositional Condition” in [25], when ‘OA’ is interpreted as the claim
that A is entirely about a given subject matter. (See [17], p. 123 and note 6 for a slightly
more accurate statement of this point.)

26. A fuller discussion of part-based versus other subject matters may be found in [21].
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