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The Mode III Crack Problem in
Microstructured Solids Governed
by Dipolar Gradient Elasticity:
Static and Dynamic Analysis
This study aims at determining the elastic stress and displacement fields around a cr
a microstructured body under a remotely applied loading of the antiplane shear (m
III) type. The material microstructure is modeled through the Mindlin-Green-Rivlin di
lar gradient theory (or strain-gradient theory of grade two). A simple but yet rigoro
version of this generalized continuum theory is taken here by considering an isot
linear expression of the elastic strain-energy density in antiplane shearing that invo
only two material constants (the shear modulus and the so-called gradient coefficien
particular, the strain-energy density function, besides its dependence upon the sta
strain terms, depends also on strain gradients. This expression derives from form
Mindlin’s theory, a form that is appropriate for a gradient formulation with no coup
stress effects (in this case the strain-energy density function does not contain any ro
gradients). Here, both the formulation of the problem and the solution method are e
and lead to results for the near-tip field showing significant departure from the predict
of the classical fracture mechanics. In view of these results, it seems that the conven
fracture mechanics is inadequate to analyze crack problems in microstructured mate
Indeed, the present results suggest that the stress distribution ahead of the tip exh
local maximum that is bounded. Therefore, this maximum value may serve as a me
of the critical stress level at which further advancement of the crack may occur. Als
the vicinity of the crack tip, the crack-face displacement closes more smoothly as
pared to the classical results. The latter can be explained physically since materials
microstructure behave in a more rigid way (having increased stiffness) as compar
materials without microstructure (i.e., materials governed by classical continuum
chanics). The new formulation of the crack problem required also new extended d
tions for the J-integral and the energy release rate. It is shown that these quantities
be determined through the use of distribution (generalized function) theory. The boun
value problem was attacked by both the asymptotic Williams technique and the
Wiener-Hopf technique. Both static and time-harmonic dynamic analyses are provid
@DOI: 10.1115/1.1574061#
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1 Introduction

The present work is concerned with the exact determination
mode III crack-tip fields within the framework of the dipolar gr
dient elasticity~or strain-gradient elasticity of grade two!. This
theory was introduced by Mindlin@1#, Green and Rivlin@2#, and
Green@3# in an effort to model the mechanical response of ma
rials with microstructure. The theory begins with the very gener
concept of a continuum containing elements or particles~called
macromedia!, which are in themselvesdeformablemedia. This
behavior can easily be realized if such a macro-particle is view
as a collection of smaller subparticles~called micromedia!. In this
way, each particle of the continuum is endowed with aninternal
displacement field, which is expanded as a power series in inte
coordinate variables. Within the above context, the lowest-or
theory~dipolar or grade-two theory! is the one obtained by retain
ing only the first~linear! term. Also, since these theories introdu
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dependence on strain and/or rotation gradients, the new mat
constants imply the presence of characteristic lengths in the
terial behavior, which allow the incorporation of size effects in
stress analysis in a manner that the classical theory cannot af

The Mindlin-Green-Rivlin theory and related ideas, after a fi
development and some successful applications mainly on s
concentration problems during the sixties~see, e.g., Mindlin and
Eshel@4#, Weitsman@5#, Day and Weitsman@6#, Cook and Weits-
man@7#, Herrmann and Achenbach@8#, and Achenbach et al.@9#!,
have also recently been employed to analyze complex problem
materials with microstructure~see, e.g., Vardoulakis and Sule
@10#, Fleck et al.@11#, Lakes @12#, Vardoulakis and Georgiadis
@13#, Wei and Huthinson@14#, Begley and Huthinson@15#, Exa-
daktylos and Vardoulakis@16#, Huang et al.@17#, Zhang et al.
@18#, Chen et al.@19#, Georgiadis and Vardoulakis@20#, Georgia-
dis et al.@21,22#, Georgiadis and Velgaki@23#, and Amanatidou
and Aravas@24#!. More specifically, recent work by the author an
co-workers@13,20–23#, on wave-propagation problems showe
that the gradient approach predicts types of elastic waves tha
not predicted by the classical theory~SH and torsionalsurface
waves in homogeneous materials! and also predictsdispersionof
high-frequency Rayleigh waves~the classical elasticity fails to
predict dispersion of these waves atany frequency!. Notice that
all these phenomena are observed in experiments and are
predicted by atomic-lattice analyses~see, e.g., Gazis et al.@25#!.
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Thus, based on existing gradient-type results, one may conc
that the Mindlin-Green-Rivlin theory extends the range of app
cability of continuum theories in an effort towards bridging t
gap between classical~monopolar or nongeneralized! theories of
continua and theories of atomic lattices.

In the present work the concept adopted, following the afo
mentioned ideas, is to view the continuum as a periodic struc
like that, e.g., of crystal lattices, crystallites of a polycrystal
grains of a granular material. The material is composed wholly
unit cells ~micromedia! having the form of cubes with edges o
size 2h. This size is therefore an intrinsic material length. W
further assume~and this is a rather standard assumption in stud
applying the Mindlin-Green-Rivlin theory to practical problem!
that the continuum ishomogeneousin the sense that the relativ
deformation~i.e., the difference between the macrodisplacem
gradient and the microdeformation—cf. Mindlin@1#! is zero and
the microdensity does not differ from the macrodensity. Then,
formulate the mode III crack problem by considering an isotro
and linear expression of the strain-energy densityW. This expres-
sion in antiplane shear and with respect to a Cartesian coord
systemOx1x2x3 readsW5m«p3«p31mc(]s«p3)(]s«p3), where
the summation convention is understood over the Latin indic
which take the values 1 and 2 only, («13,«23) are the only iden-
tically nonvanishing components of the linear strain tensor,m is
the shear modulus,c is the gradient coefficient~a positive con-
stant accounting for microstructural effects!, and ]s( )
[]( )/]xs . The problem is two-dimensional and is stated in t
plane (x1,x2). The above strain-energy density function is t
simplest possible form of case II in Mindlin’s@1# theory and is
appropriate for a gradient formulation withno couple-stress ef-
fects, becauseW is completelyindependentupon rotation gradi-
ents. Indeed, by referring to a strain-energy density function
depends upon strains and strain gradients in a three-dimens
body ~the Latin indices now span the range~1,2,3!!, i.e., a func-
tion of the formW5(1/2)cpqs j«pq«s j1(1/2)dpqs jlmkpqsk j lm with
(cpqs j ,dpqs jlm) being tensors of material constants andkpqs
5]p«qs[]p«sq , and by defining the Cauchy~in Mindlin’s nota-
tion! stress tensor astpq5]W/]«pq and the dipolar stress tenso
~a third-rank tensor! as mpqs5]W/](]p«qs), one may observe
that the relationsmpqs5mp(qs) andmp[qs]50 hold, where ( ) and
@ # as subscripts denote the symmetric and antisymmetric par
a tensor, respectively. Accordingly, couple stresses do not ap
within the present formulation by assuming dipolar~internal!
forces with vanishing antisymmetric part~more details on this are
given in Section 2 below!. A couple-stress, quasi-static solution
the mode-III crack problem was given earlier by Zhang et al.@18#.
Note in passing that in the literature one may find mainly t
types of approaches: In the first type~couple-stress case! the
strain-energy density depends on rotation gradients and ha
dependence upon strain gradients of the kind mentioned ab
~see, e.g.,@11,17–19,23#!, whereas in the second type the stra
energy density depends on strain gradients and has no depen
upon rotation gradients~see, e.g.,@13,16,20–22#!. Exceptions
from this trend exist of course~see, e.g.,@5–7#! and these works
employ a more complicated formulation based on form III
Mindlin’s theory, @1#.

Here, in addition to the quasi-static case, we also treat the ti
harmonic dynamical case, which is pertinent to the problem
stress-wave diffraction by a pre-existing crack in the body. In
latter case, besides the standard inertia term in the equatio
motion, a micro-inertia term is also taken into account~in a con-
sistent and rigorous manner by considering the proper kine
energy density! and this leads to anexplicit appearance of the
intrinsic material lengthh. We emphasize that quasi-static a
proaches cannot include explicitly the size of the material cel
their governing equations. In these approaches, rather, a ch
teristic length appears in the governing equations only through
gradient coefficientc ~which has dimensions of@ length#2) in the
gradient theory without couple-stress effects or the ratio~h/m!
518 Õ Vol. 70, JULY 2003
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~which again has dimensions of@ length#2) in the couple-stress
theory without the effects of collinear dipolar forces, whereh is
the couple-stress modulus andm is the shear modulus of the ma
terial. Of course, one of the quantitiesc or ~h/m! also appears
within a dynamic analysis, which therefore may allow for an i
terrelation of the two different characteristic lengths~the one in-
troduced in the strain energy and the other introduced in the
netic energy—see relative works by Georgiadis et al.@22# and
Georgiadis and Velgaki@23#!. Indeed, by comparing the forms o
dispersion curves of Rayleigh waves obtained by the dipo
~‘‘pure’’ gradient and couple-stress! approaches with the ones ob
tained by the atomic-lattice analysis of Gazis et al.@25#, it can be
estimated thatc is of the order of (0.1h)2, @22#, andh is of the
order of 0.1mh2, @23#.

The mathematical analysis of the dynamical problem here p
sents some novel features related to the Wiener-Hopf techn
not encountered in dealing with the static case. The Wiener-H
technique is employed to obtain exact solutions in both cases,
also the Williams technique is employed for an asymptotic de
mination of the near-tip fields. Also, since the gradient formu
tion exhibits asingular-perturbationcharacter, the concept of
boundary layeris employed to accomplish the solution. On th
other hand, the gradient formulation demands extended definit
of the J-integral and the energy release rate. It is further prov
by utilizing some theorems of distribution theory, that both ene
quantities remain bounded despite the hypersingular behavio
the near-tip stress field. Finally, physical aspects of the solu
are discussed with particular reference to the closure of the c
faces and the nature of cohesive tractions.

2 Fundamentals of the Dipolar Gradient Elasticity
A brief account of the Mindlin-Green-Rivlin theory,@1–3#, per-

taining to the elastodynamics of homogeneous and isotropic
terials is given here. If a continuum with microstructure is view
as a collection of subparticles~micromedia! having the form of
unit cells ~cubes!, the following expression of the kinetic-energ
density ~kinetic energy per unit macrovolume! is obtained with
respect to a Cartesian coordinate systemOx1x2x3 , @1#,

T5
1

2
ru̇pu̇p1

1

6
rh2~]pu̇q!~]pu̇q!, (1)

wherer is the mass density, 2h is the size of the cube edges,up is
the displacement vector,]p( )[]( )/]xp , (˙)[]( )/]t with t de-
noting the time, and the Latin indices span the range~1,2,3!. We
also notice that Georgiadis et al.@22# by using the concept of
internal motions have obtained~1! in an alternative way to that by
Mindlin @1#. In the RHS of Eq.~1!, the second term representin
the effects of velocity gradients~a term not encountered within
classical continuum mechanics! reflects the greater detail with
which the dipolar theory describes the motion.

Next, the following expression of the strain-energy density
postulated:

W5
1

2
cpqs j«pq«s j1

1

2
dpqs jlmkpqsk j lm , (2)

where (cpqs j ,dpqs jlm) are tensors of material constants,«pq
5(1/2)(]puq1]qup) is the linear strain tensor, andkpqs5]p«qs
is the strain gradient. Notice that in the tensorscpqs j anddpqs jlm
~which are of even rank! the number of independent componen
can be reduced to yield isotropic constitutive relations. Such
isotropic behavior is considered here. Again, the form in~2! can
be viewed as a more accurate description of the constitutive
sponse than that provided by the classical elasticity, if one thi
of a series expansion forW containing higher-order strain grad
ents. Also, one may expect that the additional term~or terms! will
be significant in the vicinity of stress-concentration points wh
the strain undergoes very steep variations.

Then, pertinent stress tensors can be defined by taking
variation ofW
Transactions of the ASME
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tpq5
]W

]«pq
, (3a)

mpqs5
]W

]kpqs
[

]W

]~]p«qs!
, (3b)

wheretpq5tqp is the Cauchy~in Mindlin’s notation! stress tensor
andmpqs5mpsq is the dipolar~or double! stress tensor. The latte
tensor follows from the notion ofmultipolar forces, which are
antiparallel forces acting between the micro-media contained
the continuum with microstructure~see Fig. 1!. As explained by
Green and Rivlin@2# and Jaunzemis@26#, the notion of multipolar
forces arises rather naturally if one considers a series expan
for the mechanical powerM containing higher-order velocity gra
dients, i.e.,M5Fpu̇p1Fpq(]pu̇q)1Fpqs(]p]qu̇s)1 . . . , where
Fp are the usual forces~monopolar forces! within classical con-
tinua and (Fpq ,Fpqs, . . . ) are the multipolar forces~dipolar or
double forces, triple forces and so on! within generalized con-
tinua. In this way, the resultant force on an ensemble of sub
ticles can be viewed as being decomposed intoexternalandinter-
nal forces with the latter ones being self-equilibrating~see Fig. 1!.
However, these self-equilibrating forces~which are multipolar
forces! producenonvanishingstresses, the multipolar stresses. E
amples of force systems of the dipolar collinear or noncollin
type are given, e.g., in Jaunzemis@26# and Fung@27#.

As for the notation of dipolar forces and stresses, the first in
of the forces denotes the orientation of the lever arm between
forces and the second index the orientation of the pair of
forces; the same meaning is attached to the last two indices o
stresses, whereas the first index denotes the orientation o
normal to the surface on which the stress acts. The dipolar fo
Fpq have dimensions of@force#@length#; their diagonal terms are
double forces without moment and their off-diagonal terms
double forces with moment. The antisymmetric partF [ pq]
5(1/2)(xpFq2xqFp) gives rise to couple stresses. Here, we
not consider couple-stress effects emphasizing that this is com
ible with the particular choice of the form ofW in ~2!, i.e., a form
dependent upon the strain gradient but completely indepen
upon the rotation gradient.

Further, the equations of motion and the tractionboundary c
ditions along a smooth boundary can be obtained either f
Hamilton’s principle~Mindlin @1#! or from the momentum balanc
laws and their application on a material tetrahedron~Georgiadis
et al. @22#!:

]p~tpq2]smspq!5rüq2
rh2

3
~]ppüq!, (4)

Fig. 1 Monopolar „external … and dipolar „internal … forces act-
ing on an ensemble of subparticles in a material with micro-
structure
Journal of Applied Mechanics
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nq~tqs2]pmpqs!2Dq~npmpqs!1~Dlnl !npnqmpqs1
rh2

3
nr~] r üs!

5Ps
(n) , (5a)

nqnrmqrs5Rs
(n) , (5b)

where body forces are absent,Dp( )5]p( )2npD( ), D( )
5nl] l( ), ns is the unit outward-directed vector normal to th
boundary,Ps

(n) is the surface force per unit area~monopolar trac-
tion!, andRs

(n) is the surface double force per unit area~dipolar
traction!.

Finally, it is convenient for calculations to introduce anoth
quantity, which is a kind of ‘‘balance stress’’~see Eq.~7! below!,
and is defined as

spq5tpq1apq , (6)

whereaqs5(rh2/3)(]qüs)2]pmpqs. With this definition, Eq.~4!
takes the more familiar form

]pspq5rüq . (7)

Notice thatspq is not an objective quantity since it contains th
acceleration terms (rh2/3)(]qüs). These micro-inertia terms als
are responsible for the asymmetry ofspq . This, however, does
not pose any inconsistency but reflects the role of micro-ine
and the nonstandard nature of the theory. In the quasi-static c
where the acceleration terms are absent,spq is an objective tensor.
On the other hand, the constitutive equations should defini
obey the principle of objectivity~cf. Eqs.~9! and ~10! below!.

Now, the simplest possible form of constitutive relations is o
tained by taking an isotropic version of the expression in~2! in-
volving only three material constants. This strain-energy den
function reads

W5
1

2
l«pp«qq1m«pq«pq1

1

2
lc~]s«pp!~]s«qq!

1mc~]s«pq!~]s«pq!, (8)

and leads to the constitutive relations

tpq5ldpq«ss12m«pq , (9)

mspq5c]s~ldpq« j j 12m«pq!, (10)

where~l,m! are the standard Lame´’s constants,c is the gradient
coefficient~material constant with dimensions of@ length#2), and
dpq is the Kronecker delta. Equations~9! and ~10! written for a
general three-dimensional state will be employed below only
an antiplane shear state.

In summary, Eqs.~4!, ~5!, ~9!, and~10! are the governing equa
tions for the isotropic dipolar-gradient elasticity with no coup
stresses. Combining~4!, ~9!, and~10! leads to the field equation o
the problem. Pertinentuniquenesstheorems have been proved fo
various forms of the general theory~Mindlin and Eshel @4#,
Achenbach et al.@9#, and Ignaczak@28#! on the basis ofpositive
definitenessof the strain-energy density. The latter restriction r
quires, in turn, the following inequalities for the material co
stants appearing in the theory employed here~Georgiadis et al.
@22#!: (3l12m).0, m.0, c.0. In addition, stability for the
field equation in the general inertial case was proved in@22# and
to accomplish this the conditionc.0 is a necessary one~we
notice incidentally that some heuristic gradient-like approac
not employing the rigorous Mindlin-Green-Rivlin theory appear
in the literature that take a negativec—their authors, unfortu-
nately, do not realize that stability was lost in their field equatio!.
Finally, the analysis in@22# provides the order-of-magnitude est
mate (0.1h)2 for the gradient coefficientc, in terms of the intrin-
sic material lengthh.
JULY 2003, Vol. 70 Õ 519
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3 Formulation of the Quasi-Static Mode III Crack
Problem, the J-Integral, and the Energy Release Rate

Consider a crack in a body with microstructure under a qu
static antiplane shear state~see Fig. 2!. As will become clear in the
next two sections, the semi-infinite crack model serves in
boundary layertype of analysis of any crack problem provide
that the crack faces in the problem under consideration are
tion free. It is assumed that the mechanical behavior of the bod
determined by the Eqs.~4!, ~5), (9), and~10! of the previous
section. AnOxyzCartesian coordinate system coincident with t
systemOx1x2x3 utilized previously is attached to that body, an
an antiplane shear loading is taken in the direction ofz-axis. Also,
a pure antiplane shear state will be reached, if the body has
form of a thick slab in thez-direction. In such a case, the follow
ing two-dimensional field is generated:

ux5uy50, (11a)

uz[wÞ0, (11b)

w[w~x,y!, (11c)

and Eqs.~8)–(10! take the forms

W5m~«xz
2 1«yz

2 !1mcF S ]«xz

]x D 2

1S ]«xz

]y D 2

1S ]«yz

]x D 2

1S ]«yz

]y D 2G ,
(12)

txz5m
]w

]x
, (13a)

tyz5m
]w

]y
, (13b)

mxxz5mc
]2w

]x2 , (14a)

mxyz5mc
]2w

]x]y
, (14b)

myxz5mc
]2w

]x]y
, (14c)

myyz5mc
]2w

]y2 . (14d)

Further,~4! provides the equation of equilibrium

]

]x S txz2
]mxxz

]x
2

]myxz

]y D1
]

]y S tyz2
]mxyz

]x
2

]myyz

]y D50,

(15)

which along with~13! and~14! leads to the following field equa
tion of the problem

Fig. 2 A crack under a remotely applied antiplane shear load-
ing. The contour G surrounding the crack tip serves for the
definition of the J -integral.
520 Õ Vol. 70, JULY 2003
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c¹4w2¹2w50, (16)

where¹25(]2/]x2)1(]2/]y2) and¹45¹2¹2. Finally, one may
utilize spq defined in~6! for more economy in writing some equa
tions in the ensuing analysis. The antiplane shear componen
this quantity are as follows:

sxz5mS ]w

]x D2mc¹2S ]w

]x D , (17a)

syz5mS ]w

]y D2mc¹2S ]w

]y D . (17b)

Assume now that the cracked body is under aremotelyapplied
loading that is alsoantisymmetricabout thex-axis ~crack plane!.
Also, the crack faces are traction-free. Due to the antisymmetr
the problem, only the upper half of the cracked domain is cons
ered. Then, the following conditions can be written along t
plane (2`,x,`,y50):

tyz[tyz2
]mxyz

]x
2

]myyz

]y
2

]myxz

]x
50 for ~2`,x,0,y50!,

(18)

myyz50 for ~2`,x,0,y50!, (19)

w50 for ~0,x,`,y50!, (20)

]2w

]y2 50 for ~0,x,`,y50!, (21)

where~18! and~19! directly follow from Eqs.~5! ~notice also that
~18! can be written assyz2(]myxz/]x)50 by using thespq
quantity!, tyz is defined as thetotal monopolarstress, and~20!
together with~21! always guarantee an antisymmetric displac
ment field w.r.t. the line of the crack prolongation. The definiti
of the stresstyz follows from ~5a!. The problem described by
~11)–(21! will be considered by both the asymptotic William
method and the exact Wiener-Hopf technique. Notice finally t
no difficulty will arise by having zero boundary conditions alon
the crack faces since, eventually, the solution will be matched
regions where gradient effects are not dominant~i.e., for x
@c1/2) with the K III field of the classical theory and in this wa
the remote loading will appear in the solution.

Next, we present the new extended definitions of theJ-integral
and the energy release rateG. These definitions of the energ
quantities are pertinent to the present framework of dipolar gra
ent elasticity and to the aforementioned case of a crack in a qu
static antiplane shear state. By following relative concepts fr
Rice @29,30#, we first introduce the definition

J5E
G
S Wdy2 P̄z

(n)
]w

]x
dG2R̄z

(n)DS ]w

]x DdG D , (22)

whereG is a two-dimensional contour surrounding the crack
~see Fig. 2!, whereas the monopolar and dipolar tractionsP̄z

(n) and
R̄z

(n) on G are given as

P̄z
(n)5nq~tqz2]pmpqz!2Dq~npmpqz!1~Dlnl !npnqmpqz,

(23a)

R̄z
(n)5npnqmpqz. (23b)

In the above expressions,np with components (nx ,ny) is the unit
outward-directed vector normal toG, the differential operatorsD
andDp were defined in Section 2,W is the strain-energy density
function given by~12!, and the indices (l ,p,q) take the valuesx
andy only.

Of course, the above expressions for the tractions onG are
compatible with Eqs.~5!. Further, it can be proved that the inte
gral in ~22! is path independent by following Rice’s,@29#, proce-
dure. Path independence is of great utility since it permits al
nate choices of integration paths that may lead to a dir
Transactions of the ASME
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evaluation ofJ. We should mention at this point that~22! is quite
novel within the present version of the gradient theory~i.e., a form
without couple stresses!, but expressions forJ within the couple-
stress theory were presented before by Atkinson and Leppin
@31#, Zhang et al.@18#, and Lubarda and Markenscoff@32#. In
particular, the latter work gives a systematic derivation of cons
vation integrals by the use of Noether’s theorem. Finally, we
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tice that the way theJ-integral will be evaluated below is quite
different than that by Zhang et al.@18#. Indeed, use of the theory
of distributions in the present work leads to a very simple way
evaluateJ ~see Section 7 below!.

As for the energy release rate~ERR! now, we also modify the
classical definition in order to take into account a higher-or
term that is compatible with the present strain-gradient framew
G5 lim
Dx→0

E
0

DxF tyz~x,y50!•w~x,y50!1myyz~x,y50!•
]w~x,y50!

]y Gdx

Dx
, (24)
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whereDx is the small distance of a crack advancement.
Of course, any meaningful crack-tip field given as solution

an associated mathematical problem, should result in afinite value
for the energy quantities defined above. Despite the strong si
larity of the stress field obtained in Sections 5 and 6, the result
Section 7 prove thatJ andG are indeed bounded.

4 Asymptotic Analysis by the Williams Method
As is well known, Williams@33,34# ~see also Barber@35#! de-

veloped a method to explore the nature of the stress and disp
ment field near wedge corners and crack tips. This is acc
plished by attaching a set of (r ,u) polar coordinates at the corne
point and by expanding the stress field as an asymptotic serie
powers ofr . By following this method here we are concerned,
a way, only with the field components in the sharp crack at v
small values ofr , and hence we imagine looking at the tip regio
through a strong microscope so that situations like the ones,
on the left of Fig. 3~i.e., a finite length crack, an edge crack or
crack in a strip! appear to us like the semi-infinite crack on th
right of this figure. The magnification is so large that the oth
surfaces of the body, including the loaded remote boundaries
pear enough far away for us to treat the body as an ‘‘infin
wedge’’ with ‘‘loading at infinity.’’ The field is, of course, a com
plicated function of (r ,u) but near to the crack tip~i.e., as r
→0) we seek to expand it as a series of separated variable te
each of which satisfies the traction-free boundary conditions
the crack faces.

In view of the above, we consider the following separated fo
w(r ,u)5r v11u(u), where the displacement satisfies~16!. Fur-
ther, if only the dominant singular terms in~16! are retained, the
PDE of the problem becomes¹4w50, where ¹45¹2¹2

5(]2/]r 2 1 1/r ]/]r 1 1/r 2]2/]u2)2. Also, in view of the defini-
tions of stresses as combinations of derivatives ofw and by re-

Fig. 3 William’s method: the near-tip fields of „i… a finite length
crack, „ii … an edge crack, and „iii … a cracked strip correspond to
the field generated in a body with a semi-infinite crack
to
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taining again only the dominant singular terms, the boundary c
ditions tyz(x,y560)50 andmyyz(x,y560)50 will give at u
56p

S ]2

]r 2 1
1

r 2

]2

]u2 1
1

r 2D ]w

]u
50, (25a)

S 1

r

]

]r
1

1

r 2

]2

]u2Dw50. (25b)

In addition, the pertinent antisymmetric solution~i.e., with odd
behavior inu! to the equation¹4w50 has the following genera
form:

w5r v11~A1 sin@~v11!u#1A2 sin@~v21!u#!, (26)

wherev is ~in general! a complex number and (A1 ,A2) are un-
known constants. Now,~25! and~26! provide theeigenvalueprob-
lem

~v11!cos@~v11!p#•A123~v21!cos@~v21!p#•A250,
(27a)

~v11!sin@~v11!p#•A11~v23!sin@~v21!p#•A250.
(27b)

For a nontrivial solution to exist, the determinant of the coe
cients of (A1 ,A2) in the above system should vanish and th
gives the result: sin(2vp)50⇒v50,1/2,1,3/2,2, . . . . Next, by
observing from~12! that the strain-energy density W behaves
most as (]2w/]r 2) or, by using the formw(r ,u)5r v11u(u), no
worse thanr v21, we conclude that the maximum eigenvalue a
lowed by theintegrability condition of the strain-energy density i
v51/2.

The above analysis suggests that the general asymptotic
tion is of the formw(r ,u)5r 3/2u(u), which by virtue of~26! and
~27b! becomes

w~r ,u!5Ar3/2@3sin~u/2!25 sin~3u/2!#, (28)

whereA[2A1 and the other constant in~26! is given by~27b! as
A253A1 /5. The constantA ~amplitude of the field! is left un-
specified by the Williams technique but still the nature of t
near-tip field has been determined. Finally, the total monopo
stress has the following asymptotic behavior:

tyz~x,y50!5O~x23/2! as x→10. (29)

This asymptotic behavior will also be corroborated by the res
of the exact analysis in the next section.

5 Exact Analysis by the Wiener-Hopf Method
An exactsolution to the problem described by~11!–~21! will

be obtained through two-sided Laplace transforms~see, e.g., van
der Pol and Bremmer@36# and Carrier et al.@37#!, the Wiener-
JULY 2003, Vol. 70 Õ 521



t

o
o

.

the

n,
olar
n

w-

ts
dis-
’s
tri-

the

e,
two
ard
av-
-

ua-
Hopf technique~see, e.g., Roos@38# and Mittra and Lee@39#! and
certain results from the theory of distributions~see, e.g., Gel’fand
and Shilov@40# and Lauwerier@41#!.

The direct and inverse two-sided Laplace transforms are
fined as

f * ~p,y!5E
2`

`

f ~x,y!e2pxdx, (30a)

f ~x,y!5
1

2p i EBr
f * (p,y)epxdp, (30b)

whereBr denotes the Bromwich inversion pathwithin the region
of analyticity of the functionf * (p,y) in the complexp-plane.
Transforming~16! with ~30a! gives the ODE

c
d4w*

dy4 1~2cp221!
d2w*

dy2 1~cp42p2!w* 50. (31)

The above equation has the following general solution tha
bounded asy→1`

w* ~p,y!5B~p!• exp~2by!1C~p!• exp~2gy! for y>0,
(32)

where B(p) and C(p) are yet unknown functions,b[b(p)
5(«22p2)1/2 with « being a real number such that«→10, and
g[g(p)5@(1/c)2p2#1/2[(a22p2)1/2 with a5(1/c)1/2. In fact,
introducing « facilitates the introduction of the branch cuts f
b5(2p2)1/2-cf. @20# and @37# for this procedure as applied t
related situations. To obtain a bounded solution asy→1`, the
p-plane should be cut in the way shown in Fig. 4. This introdu
tion of branch cuts secures that the functions~b,g! are single-
valued and that Re(b).0 and Re(g).0 along the Bromwich path

Fig. 4 Branch cuts for the functions „b,g…
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The transformed expressions for the stresses that enter
boundary conditions are also quoted~for convenience, thesyz
quantity is employed in the boundary conditions!

syz* ~p,y!52mBbe2by, (33)

myyz* ~p,y!5m~Bcb2e2by1Ccg2e2gy!, (34)

myxz* ~p,y!52mp~Bcbe2by1Ccge2gy!. (35)

Next, in preparation for formulating the Wiener-Hopf equatio
the one-sided Laplace transforms of the unknown total monop
stresstyz(x.0,y50) ahead of the crack tip and the unknow
crack-face displacementw(x,0,y50) are defined

T1~p!5E
0

`

tyz~x,y50!e2pxdx[E
0

`Fsyz~x,y50!

2
]myxz~x,y50!

]x Ge2pxdx, (36)

W2~p!5E
2`

0

w~x,y50!e2pxdx. (37)

Further, we assume the followingfiniteness conditions at x
→6`: utyz(x,y50)u,M• exp(2pTx) for x→1` and uw(x,y
50)u,N• exp(pWx) for x→2`, where (M ,N,pT ,pW) are posi-
tive constants. As a consequence,T1(p) is analytic and defined in
the right half-plane2pT,Re(p) ~the ‘‘plus’’ half-plane!, while
W2(p) is analytic and defined in the left half-plane Re(p),pW
~the ‘‘minus’’ half-plane!.

Then, enforcement of boundary conditions results in the follo
ing equations:

T1~p!5syz* ~p,y50!2p•myxz* ~p,y50!, (38)

W2~p!5w* ~p,y50!. (39)

The above equations along with the equation]2w* (p,y50)/]y2

50, Eqs.~33!–~35! and the general solution in~32! provide an
algebraic system of three equations in four unknowns~the func-
tionsT1, W2, B, C). Finally, eliminatingB andC in this system
leads to the following Wiener-Hopf problem

T1~p!

~a1p!1/252mcp2~a2p!1/2
•L~p!•W2~p!, (40)

where the kernel functionL(p) is given as

L~p!52cp2F11
12cp2

cp2

~a22p2!1/2

~«22p2!1/2G . (41)

The next target will be to determine bothT1 andW2 from the
single Eq.~40!. This will be effected through the use of elemen
of the theories of complex variables, integral transforms, and
tributions ~theorem of analytic continuation, extended Liouville
theorem, Abel-Tauber asymptotic theorems, transforms of dis
butions!. First, we check that the functionL(p) has no zeros in the
complex plane. This was found independently by using both
principle of the argument, @37#, and the program
MATHEMATICA™. We notice that unlike the current static cas
the counterpart kernel function in the dynamic case exhibits
~nonextraneous! zeros, a fact that modifies somehow the stand
Wiener-Hopf method. Further, we find that the asymptotic beh
ior of the kernel is limupu→`L(p)523/2 and this leads us to in
troduce a modified kernel given asN(p)52(2/3)•L(p), which
possesses the desired asymptotic property limupu→`N(p)51. In-
deed, this new form of the kernel facilitates itsproduct splitting
by the use of Cauchy’s integral theorem. The Wiener-Hopf eq
tion takes now the form

T1~p!

~a1p!1/25S 2
3

2D ~2mc!p2~a2p!1/2N~p!•W2~p!, (42)
Transactions of the ASME
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Fig. 5 Contour integrations for the factorization of the kernel function in Eq.
„42…
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and the kernel is written as the following product of two analy
and nonzero functions defined in pertinent half-plane domain
the complex plane,@38,39#,

N~p!5N1~p!•N2~p!, (43)

where

N1~p!5expH 2
1

2p i ECl

ln@N~z!#

z2p
dzJ , (44a)

N2~p!5expH 1

2p i ECr

ln@N~z!#

z2p
dzJ . (44b)

The use of Cauchy’s integral theorem is depicted in Fig. 5.N1(p)
is analytic and nonzero in Re(p).2« andN2(p) is analytic and
nonzero in Re(p),«. The original integration paths (Cl ,Cr) ex-
tend parallel to the imaginary axis in the complexz-plane. Finally,
an alteration of the integration contour~also depicted in Fig. 5!
along with use of Cauchy’s theorem and Jordan’s lemma allo
taking as equivalent integration paths the (Cl8 ,Cr8) contours
around the branch cuts extending along2a,z,2« and «,z
,a. This eventually leads to the following forms of the sectio
ally analytic functionsN6(p):

N6~p!5expH 1

p E
0

a

arctanF ~a22z2!3/2

z3 G dz

z6pJ , (45)

with the propertyN1(2p)5N2(p).
With the product factorisation in hand, Eq.~42! takes the fol-

lowing form that defines a functionE(p):

T1~p!

N1~p!•~a1p!1/25
3mc

2
p2~a2p!1/2N2~p!•W2~p![E~p!.

(46)

The above equation definesE(p) only in the strip2«,Re(p)
,0. But the first member in the equation is a nonzero anal
function in Re(p).2«, and the second member is a nonzero a
lytic function in Re(p),0. Then, in view of the theorem of ana
lytic continuation~or identity theorem for single-valued analyt
functions!, the two members define one and the same function
is analytic over the wholep-plane,@38,39#. In other words,E(p)
is anentire function. Polynomial and exponential functions are t
types of entire functions. The case of an exponential function~i.e.,
a function of the form exp@g(p)#, whereg(p) is a polynomial!
should be excluded because such a function has anessential sin-
gularity at infinity. Indeed, an exponential growth of the functio
involved in ~46! would result in violating the so-callededge con-
dition, i.e., the condition of bounded energy density around
geometrical singularity~crack edge! in the physical domain.
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Therefore,E(p) should be a polynomial since only algebra
growth of the fields in the neighborhood of the crack tip is
lowed. Further, determining the coefficients of this polynom
will lead to the desired decoupling ofT1(p) andW2(p). Below,
we determine the form ofE(p) by the use of asymptotic analysis

In particular, we will use theorems of the Abel and Tauber ty
having the form

lim
x→0

f ~x!↔
LT

lim
upu→`

f * ~p!, (47)

lim
x→`

f ~x!↔
LT

lim
upu→0

f * ~p!, (48)

where the symbol↔
LT

means that the image functionf * (p) and the
original function f (x) are connected through theone-sided
Laplace-transform relationsf * (p)5*0

` f (x)e2pxdx and f (x)
5(1/2p i )*Br f * (p)epxdp, andp is a complex variable which in
~47! and~48! tends to infinity or zero along paths in the pertine
half-plane of convergence~analyticity!. Relations~47! and ~48!
hold under certain conditions given, e.g., in@36#. Also, the ex-
tended Liouville’s theorem,@39#, will be utilized. Referring to
~46!, this states that ifT1(p)•@N1(p)•(a1p)1/2#215O(pn) and
(3mc/2)p2(a2p)1/2N2(p)•W2(p)5O(pj) in the respective
half-planes of analyticity, thenE(p) is a polynomial of degree no
exceeding the minimum of~@n#,@j#!, where the symbol@ # denotes
the integral part of a number.

Now as a first possibility of the near-tip behavior, one m
adopt a behavior of the total monopolar stress and the crack-
displacement that is analogous to the classical fracture mecha
behavior, viz.

tyz~x,y50!5O~x21/2! as x→10, (49a)

w~x,y50!5O~x1/2! as x→20. (49b)

This field gives by ~47! and the transformation formula

xk↔
LT

G(k11)•p2k21 ~with G( ) being the Gamma function an
k.21), @36,38#, the following asymptotic behavior in the trans
form domain

T1~p!5O~p21/2! as upu→`, (50a)

W2~p!5O~p23/2! as upu→`. (50b)

Then, Liouville’s theorem leads to the conclusion thatE(p)50,
which, however, is an inadmissible result since it shows that
stress field is zero everywhere~although the cracked body is unde
loading!. Therefore, the possibility of a near-tip behavior given
~49! should be discarded.
JULY 2003, Vol. 70 Õ 523
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Next, prompted by the results of the Williams asympto
method obtained before, i.e., the results in~28! and~29!, we con-
sider the following possibility of near-tip behavior

tyz~x,y50!5O~x23/2! as x→10, (51a)

w~x,y50!5O~x3/2! as x→20. (51b)

Here, certain results of the theory of generalized functions will
employed concerning transforms ofsingular distributions,
@40,41#. In this connection, we note that the distributionx1

l for
Re(l).21 is identified with the functionx1

l 5xl for x.0 and
x1

l 50 for x,0. For other values of the complex parameterl ~of
course,l here is not to be confused with the Lame´ constant! it is
defined by analytic continuation of the functional^x1

l ,h&
[*0

`xlh(x) dx, whereh(x) is a test function. In this way, a dis
tribution is obtained for all complex values ofl with the excep-
tion of l521,22,23, . . . . In a similar manner,x2

l is defined
by starting fromx2

l 50 for x.0 andx2
l 5uxul for x,0. Then,

~51! and the transformation formulaxl↔
LT

G(l11)•p2l21 ~with
lÞ21,22,23, . . . ), @40,41#, provide the following asymptotic
behavior in the transform domain:

T1~p!5O~p1/2! as upu→`, (52a)

W2~p!5O~p25/2! as upu→`. (52b)

Further the extended Liouville’s theorem leads to the conclus
that E(p)5E0 , where E0 is a constant. As shown below thi
constant will be determined from conditions at remote regions
the physical plane. The previous result is mathematically adm
sible, while any other case like, e.g.,tyz(x,y50)5O(x21) or
O(x22) asx→10 is precluded since even analytic continuati
fails to define one-sided Laplace~or Fourier! transforms of the
associated singular distributions~cf. Gel’fand and Shilov@40#, p.
171!. Of course, it remains to prove that the field in~51! gives a
boundedvalue for the energy quantities ofJ-integral and ERR,
despite the hypersingular character of stress. This will be show
Section 7. Finally, the requirement of boundedness of energy
pressions is not only to be imposed on physical grounds but
generally~Ignaczak@28# and Knowles and Pucik@42#! a necessary
condition for uniqueness.

Our task now is to determineE0 . As in the work of Zhang et al.
@18#, a matching procedure is followed that equates theinner so-
lution limx→`tyz(x,y50), as obtained by the present gradie
analysis, with theouter solution K III /(2px)1/2 provided by the
conventional fracture mechanics.K III is the stress intensity facto
for each specific problem treated by the conventional fracture
chanics. The latter field~singular solution! dominates over an are
that is relatively close to the crack tip but lies outside the dom
where gradient effects are pronounced. We notice the followin
support of the assertion that this procedure is indeed reason
~i! as shown below the stress behaves astyz5O(x21/2) for x
→`, ~ii ! the very form of the field Eq.~16! exhibits the singular-
perturbation character of the gradient formulation and there
suggests aboundary layerapproach~Van Dyke@43#! to the crack
problem~one may observe that an extremely small quantity—
coefficientc—multiplies the higher-order term, which is the on
introduced by the nonconventional formulation!. Finally, one may
observe that this concept is in some respects similar to the
introduced by Rice@44# in analyzing small scale yielding around
crack tip.

The transformed total monopolar stressT1(p) is given by~46!
as

T1~p!5E0•N1~p!•~a1p!1/2, (53)

an expression that holds forall values of the Laplace transform
variable p in the right half-plane. For the moment, we need
evaluate only limupu→0T1(p) in order to obtain then
limx→`tyz(x,y50) by ~48!. One way to obtain the expression o
524 Õ Vol. 70, JULY 2003
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limupu→0N1(p) is to use limupu→0N(p) and perform a product fac
torization of the latter limit byinspection. This way is easier than
finding limupu→0N1(p) from ~45!. Indeed, one may obtain firs
from ~41! and the definition ofN(p) the limit limupu→0N(p)
52(3c1/2)21(«22p2)21/2 and then

lim
upu→0

N1~p!5S 2

3c1/2D 1/2 1

~«1p!1/2. (54)

Further, a combination of~53! and ~54! provides the limit

lim
upu→0

T1~p!5E0•S 2

3cD 1/2 1

p1/2, (55)

which by ~48! and the transformation formulaxk↔
LT

G(k11)
•p2k21 ~with k.21) allows writing

lim
x→1`

tyz~x,y50!5E0•S 2

3cD 1/2 1

~px!1/2. (56)

Finally, matching the above expression withK III /(2px)1/2 pro-
vides the value of the constant asE05K III (3c)1/2/2.

In view of the above, we record the final transformed expr
sions~valid for all p in the pertinent half-plane of convergenc!
for the total monopolar stress ahead of the tip and the crack-
displacement

T1~p!5
K III ~3c!1/2

2
N1~p!•~a1p!1/2, (57)

W2~p!5
K III

~3c!1/2mp2~a2p!1/2
•N2~p!

, (58)

where it is reminded thata5(1/c)1/2, andN1(p) andN2(p) are
given by ~45!. Exact expressions for the original functionstyz(x
.0,y50) andw(x,0,y50) can be derived from~57! and ~58!
through one-sided Laplace-transform inversions. Such an in
sion will be performed in Section 8, where we elaborate more
the stress ahead of the crack tip providing the exact expres
and several comparisons. In closing now this section, we give
near-tip asymptotic expressions oftyz(x.0,y50) andw(x,0,y
50). These expressions, however, suffice for the evaluation
the J-integral and the ERR and possess also much practical
portance as explained below.

The limits of the expressions in~57! and ~58! for upu→` are
found to be

lim
upu→`

T1~p!5
K III ~3c!1/2

2
p1/2, (59)

lim
upu→`

W2~p!5
K III

~3c!1/2m

1

p5/2, (60)

which by the inversions p1/2↔
LT

@G(21/2)#21x23/2

52(2p1/2)21x23/2 and p25/2↔
LT

@G(5/2)#21(2x)3/2

54(3p1/2)21(2x)3/2 give the following near-tip field

lim
x→10

tyz~x,y50!52
K III ~3c!1/2

4p1/2

1

x3/2, (61)

lim
x→20

w~x,y50!5
4K III

3~3pc!1/2m
~2x!3/2. (62)

In view of the fact thatK III is the stress intensity factor obtaine
by a classical elasticity analysis for the same crack problem~same
geometry and loading! as that considered through the dipolar gr
dient approach, Eqs.~61! and ~62! provide a kind ofcorrespon-
dence principle. This correspondence principle connects any cl
sical fracture mechanics solution~through the pertinentK III value
Transactions of the ASME
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obtained for each specific problem! with the near-tip field result-
ing by the nonclassical gradient formulation of the problem
question. Thus, a host of classical fracture mechanics solution
crack problems may serve within a nonclassical gradient fra
work as well.

Three final notices pertain to the form of the above asympt
field. First, the cusp-like closure of the crack faces~a closure
smoother than the one predicted by the classical theory! implied
by ~62! is not unusual in experiments~see, e.g., Mills@45# and
Elssner et al.@46#!. Secondly, an aggravation of the stress field
compared to the respective result of the conventional theory~this
aggravation appears here through the strongerx23/2 singularity! is
not unusual in analyses with nonclassical effects~see, e.g., the
couple-stress results of Bogy and Sternberg@47# and Zhang et al.
@18#!. In addition, Prakash et al.@48# have provided an analysi
and experimental evidence supporting the possibility of anx23/2

stress singularity in dynamic crack initiation. All this eviden
shows that deviations from predictions of classical fracture m
chanics are possible in some situations and are, at least, wort
investigation. Of course, by no means we claim that the result
~61! and ~62! carry over to other situations like, e.g., the pla
strain/stress case. An appropriate dipolar gradient analysis fo
latter case is needed to give the answer. Thirdly, the minus sig
the RHS of ~61! shows that the asymptotic gradient crack-
stress field has a cohesive-traction nature. This point will be
ther elaborated in Section 8 below. It will be shown also in S
tion 8 that~61! dominates only within an extremely small regio
adjacent to the crack tip.

6 Evaluation of the J-Integral and the Energy Release
Rate „ERR…

The evaluation of the energy quantities is accomplished her
using Fisher’s theorem,@49#, concerning the product of distribu
tions. For theJ-integral, we also consider the new rectangul
shaped contourG ~see Fig. 6! with vanishing ‘‘height’’ along the
y-direction and with«→10. This change of contour permits us
ing solely the asymptotic near-tip field in~61! and ~62!. Notice
that Zhang et al.@18# in evaluating the ERR for a mode III crac
problem with couple stresses followed a rather involved met
based on earlier work by Bueckner@50#. It seems that the proce
dure followed here is simpler and more direct. Indeed, taking i
account~14d!, ~18!, ~19!, and~21!, the definitions in~22! and~24!
provide the following integral for both energy quantities:

J5G5 lim
«→10

H 2 E
2«

«

tyz~x,y50!•
]w~x,y50!

]x
dxJ . (63)

Now, by using the solution~61! and ~62!, we obtain

Fig. 6 Rectangular-shaped contour surrounding the crack tip
for the evaluations of the J -integral and the energy release rate
Journal of Applied Mechanics
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J5G5 lim
«→10

H 2~21!
K III ~3c!1/2

4p1/2

3
4K III

3~3pc!1/2m

3

2 E2«

«

~x1!23/2~x2!1/2dxJ . (64)

Further, the product of distributions inside the integral is obtain
through the use of Fisher’s theorem,@49#, i.e., of the operational
relation (x2)l(x1)212l52pd(x)@2 sin(pl)#21 with lÞ21,
22,23, . . . andd(x) being the Dirac delta distribution. Then, i
view of the fundamental property of the Dirac delta distributi
that *2«

« d(x)dx51, Eq. ~64! provides the result

J5G5
K III

2

2m
, (65)

which shows that theJ-integral and the ERR arebounded~despite
the hypersingular nature of the near-tip stress! and identical with
the respective classical elasticity result. Our findings sugg
therefore that, at least for the one-parameter theory of microst
ture employed here, theoverall energy situation~rate of total po-
tential energy! of the cracked body is not affected by the mater
microstructure and only thelocal crack-tip field is influenced.

7 Exact Expression for the Stress Ahead of the Crack
Tip

In this section we elaborate more on the stress ahead of
crack tiptyz(x.0,y50) and its nature, and also provide compa
sons of the exact expression with both the asymptotic form in~61!
and the classicalx21/2 field. First, an exact one-sided Laplac
transform inversion ofT1(p) in ~57! will be obtained.

One may write formally

tyz~x.0,y50!5
K III ~3c!1/2

2

1

2p i EBr
@N1~p!•~a1p!1/2#epxdp

[
K III ~3c!1/2

2

1

2p i
I , (66)

where the integration variable takes values only in the half-pl
Re(p).2« («→10) and any line, in this half-plane, parallel t
the Im(p)-axis may serve as the Bromwich path. TheI -integral
defined above depends uponx andc. I is evaluated by deforming
the integration path in the left half-plane~see Fig. 7! where the
integrand is nonanalytic, exploiting in this way the existence
branch cuts for the functionsN1(p) and (a1p)1/2. Noting the
property limupu→`N1(p)51 and also thatN1(p)5N(p)/N2(p)
~cf. Eq. ~43!!, the I -integral is written by Cauchy’s theorem as

Fig. 7 Contour integration for the evaluation of the complex
integral in Eq. „66…
JULY 2003, Vol. 70 Õ 525
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Fig. 8 Graphs of the exact gradient „total monopolar stress …, asymptotic gradient „total
monopolar stress …, and classical K III field solutions in normalized forms
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p/2

p

R3/2 expS i
3w

2
2ax1RxeiwDdw

1 i E
2`

2a

N1~p!•~ ua1pu!1/2epxdp

1E
2a

0 @ReN~p!2 i Im N~p!#~ ua1pu!1/2epx

N2~p!
dp

1E
0

2a @ReN~p!1 i Im N~p!#~ ua1pu!1/2epx

N2~p!
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2 iE
2a

2`

N1~p!•~ ua1pu!1/2epxdp1 i E
2p

2p/2

R3/2

3expS i
3w

2
2ax1RxeiwDdwJ , (67)

whereR is the radius of the two quarter-circular paths having
center at the pointp52a ~see Fig. 7! and the anglew is defined
by the relationp1a5R•exp(iw). Also, R→` in the left half-
plane, and ReN(p)52cp2/3 and ImN(p)52(12cp2)(a2

2p2)1/2@3upu#21 for p real andupu<a. Further, it can be shown

1

2p i
I 5

1

p H E
0

a @ Im N~p!#~a2p!1/2e2px

N1~p!
dx

2E
a

`

N2~p!•~p2a!1/2e2pxdp1R3/2e2ax

3E
p/2

p

exp~Rx•cosw!•cosS 3w

2
1Rx•sinw DdwJ .

(68)

The third integral inside the braces vanishes asR→` and it is
interesting to note that although the conditions for Jordan’s lem
are not met by the integrand in~66!, the contribution of the
quarter-circular paths is zero because of the existence of
LY 2003
a

ma

the

branch cut for the function (a1p)1/2. Therefore, the total mo-
nopolar stress ahead of the crack tip is found from the follow
expression involving two real integrals:

tyz~x,y50!5
K III ~3c!1/2

2p H E
0

a @ Im N~p!#~a2p!1/2e2px

N1~p!
dx

2E
a

`

N2~p!•~p2a!1/2e2pxdpJ . (69)

It can be checked that both integrals are convergent. Also, a
merical evaluation of these integrals can easily be accomplis
Finally, the above expression can be written in a more conven
dimensionless form as

tyz~x,y50!

5
K III 3

1/2

2pc1/4 H E
0

1 @ Im N~p!#~12p!1/2 exp~2c1/2xp!

N1~p!
dp

2E
1

`

N2~p!•~p21!1/2 exp~2c1/2xp!dpJ , (70)

where

N6~p!5expH 1

p E
0

1

arctanF ~12z2!3/2

z3 G 1

z6p
dzJ , (71)

Im N~p!5
2~12p2!3/2

3p
for 0<p<1. (72)

The graph of the exact gradient expression for the total m
nopolar stress ahead of the crack tip in the normalized fo
(2pc1/4tyz/3

1/2K III ) versusc21/2x is given in Fig. 8. In the same
figure the normalized graphs of the asymptotic gradient solu
(2p1/2c3/4/2x3/2) and the classical K III field solution
(2p/3x)1/2c1/4 versusc21/2x are also shown. The latter two graph
are provided for the purpose of comparison with the exact gra
ent stress distribution. Also, Fig. 9 presents the variation of
exact stress, in the normalized form (2ptyz /(3c)1/2K III ) with
(x/h), where 2h is the size of the unit cell of the structure
material ~intrinsic material length—see Section 2!. The two
Transactions of the ASME
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Fig. 9 Variation of the exact total monopolar stress „according to the gradient theory …

with „x Õh … for the cases cÄh 2 and cÄ„0.01h …2. The graphs depict that the cohesive zone
is small as compared to the intrinsic material length h and that the stress ahead of the
cohesive zone exhibits a bounded maximum.
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graphs of Fig. 9 were obtained for the relationsc5(0.01h)2 and
c5h2. As mentioned in the Introduction, the study by Georgia
et al. @22# gives the estimatec5(0.1h)2. Thus, in the latter case
the stress graph will be in between the two graphs of Fig. 9.
purpose of presenting these two graphs is to make apparen
boundsof the region ahead of the tip at which the stress takes
negative values for possible relations between the gradient c
ficient c and the intrinsic lengthh.

On Fig. 8 now, an immediate observation is that the asympt
gradient solution is inaccurate except for the region very nea
the crack tip. Another observation is that the exact gradient str
field tends to the classicalK III stress field at points lying outsid
the domain where the effects of microstructure are pronoun
i.e., for x@c1/2. However, in the near-tip region where the di
tance from the crack-tip is comparable to the lengthc1/2, the two
fields differ radically indicating therefore that material microstru
ture is a significant factor in the fracture behavior of solids. T
behavior of the exact solution depicted in Fig. 8 reminds som
how typical boundary layerbehavior as, e.g., that found for th
surface pressure near the leading edge of a Joukowski airfoil~Van
Dyke @43#!. In particular, the following remarks deserve mo
attention. Forx,0.5c1/2, the stresstyz(x.0,y50) takes on nega-
tive values exhibiting therefore acohesive-tractioncharacter
along the prospective fracture zone~see, e.g.,@51,52# for the na-
ture of fracture cohesive zones!. However, in view of the relation
betweenc andh, the lengthLc ~cohesive-zone length of the orde
of 0.5c1/2) along whichtyz,0 is extremelysmall. For instance,
even if h is rather large, sayh5231024 m ~case of a
geomaterial—see@13#!, for c5(0.1h)2 we have Lc50.05h
51025 m. The same conclusion can also be reached by obser
the graphs of Fig. 9 which show thatLc is a very small fraction of
h. It is also interesting to note thatLc does not vary appreciably
althoughc varies over a wide range, i.e., fromc5(0.01h)2 to c
5h2. Therefore, the lengthLc can be considered practically equ
to zero and be ignored. Accordingly, the domain of dominance
thex23/2-singularity being of extremely small size can be cons
ered of no physical importance. Instead, one may attribute ph
cal importance to the solution outside the cohesive zone, wh
the stress exhibits a maximum that isbounded. This maximum
may serve as a measure of the critical stress level at which fur
advancement of the crack may occur. In other words, this resu
the present gradient formulation of the crack problem permit
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simple statement of the fracture criterion. Of course, the class
fracture mechanics analysis does not possess this feature sinc
stress maximum is unbounded at the crack-tip positionx50 and
the stress drops monotonically forx.0 with no anylocal maxi-
mum. Finally, outside the cohesive zone, the stresstyz(x.Lc ,y
50) predicted by the gradient theory is lower than that predic
by the classical elasticity theory.

8 Dynamical Time-Harmonic Mode III Crack Prob-
lem

We consider again the semi-infinite crack configuration of S
tion 4 but now assume a dynamical antiplane shear state.
transient problem leads to an extremely difficult mathemati
initial/boundary value problem. Here, as a first step we deal w
the time-harmonicinertial crack problem which, to our knowl
edge, consists the first attempt to analyze a dynamical crack p
lem within gradient elasticity. The more general transient solut
may follow from the present one through Fourier synthesis. I
also expected that the basicspatial behavior of the solution~e.g.,
the order of singularities and the near-tip behavior! will be re-
tained in the transient case as well. Within classical elastic
problems involving cracks under remotely applied time-harmo
loading have been considered by, among others, Cherepanov@53#
and Freund@54#.

The cracked body is subjected to a remotely applied tim
harmonic loading and the crack faces are traction-free. In view
the general expressions given in Section 2, Eqs.~12)–(14! remain
the same but~11! and ~15)–(17! are replaced by

ux5uy50, (73a)

uz[wÞ0, (73b)

w[w~x,y,t !5w~x,y!•exp~ iVt !, (73c)

]

]x S txz2
]mxxz

]x
2

]myxz

]y D1
]

]y S tyz2
]mxyz

]x
2

]myyz

]y D
5r

]2w

]t2 2
rh2

3
¹2S ]2w

]t2 D , (74)

c¹4w2g¹2w2k2w50, (75)
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sxz5mg
]w

]x
2mc¹2S ]w

]x D , (76a)

syz5mg
]w

]y
2mc¹2S ]w

]y D , (76b)

where V is the frequency of the time-harmonic state,g5(1
2V2(rh2/3m)), and k5(V/V) with V5(m/r)1/2 being the
shear-wave velocity in the absence of gradient effects~i.e., in
classical elasticity!. Equation ~75! is the field equation of the
problem. It is called metaharmonic and appears also in the p
lem of bending vibrations of thin plates~Vekua@55#!. More details
about it can be found in@13,20#. In what follows, as is standard in
time-harmonic problems, it is understood that all field quantit
are to be multiplied by the factor exp(iVt) and that the real part o
the resulting expression is to be taken.

The above equations are also supplied by the boundary co
tions ~18!–~21!. The resulting boundary value problem is attack
again by the Wiener-Hopf method. First, transforming~75! with
(30a) gives the ordinary differential equation

c
d4w*

dy4 1~2cp22g!
d2w*

dy2 1~cp42gp22k2!w* 50, (77)

with the following general solution~bounded asy→1`)

w* ~p,y!5B~p!•exp~2b̄y!1C~p!•exp~2ḡy! for y>0,
(78)

where

b̄[b̄~p!5 i ~p21s2!1/2 (79a)

with

s5
@~g214ck2!1/22g#1/2

~2c!1/2 .0, (79b)

ḡ[ḡ~p!5~t22p2!1/2 (80a)

with

t5
@~g214ck2!1/21g#1/2

~2c!1/2 .0. (80b)

In the above equations,B(p) and C(p) are unknown functions,
and the complexp-plane should be cut in the way shown in Fi
10. Finally, the Laplace-transformed stresses that enter the bo
ary conditions are found to be

syz* ~p,y!52mc~t2Bb̄e2b̄y2s2Cḡe2ḡy!, (81)

myyz* ~p,y!5mc~Bb̄2e2b̄y1Cḡ2e2ḡy!, (82)

myxz* ~p,y!52mcp~Bb̄e2b̄y1Cḡe2ḡy!. (83)

Next, to formulate the Wiener-Hopf equation, the same ‘‘ha
line’’ transforms are defined as in~36! and ~37!. Also, ~38! and
~39! apply in the present case too. The usual procedure of el
nating the functions (B,C) in the system of equations resultin
from the transformed boundary conditions leads then to the
lowing Wiener-Hopf equation

T1~p!5
mc

x2 b̄ḡ~ b̄32ḡ3!•W2~p!, (84)

wherex25(g214ck2)1/2/c is a positive real constant depende
upon the material properties and the frequency. Notice also
x25(s21t2)5ḡ22b̄2.

Further, since a product factorization of the functionḡ is im-
mediately accomplished by inspection asḡ(p)5(t1p)1/2(t
2p)1/2, Eq. ~84! takes the form
528 Õ Vol. 70, JULY 2003
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T1~p!

~t1p!1/252
mc

x2 ~t2p!1/2~s21p2!•L̄~p!•W2~p!, (85)

where the kernel functionL̄(p) is given as

L̄~p!5~s21p2!1
~t22p2!3/2

i ~s21p2!1/2. (86)

Now, contrary to the static case analyzed in Section 6, the ke
function in the present dynamic case exhibits two zeros in
complex plane. This was found through a rather involved pro
dure using the principle of the argument,@37#, and taking care of
the behavior and the branch cuts of the functions (b̄,ḡ). In addi-
tion, a check was made by the symbolic progra
MATHEMATICA™. Thus, the functionL̄(p) exhibits the~non-
extraneous! zeros

6Z56H g

2c
1 i F ~g2/4c2!1~k2/c!

3 G1/2J 1/2

, (87)

and, in addition, has the asymptotic behavior limupu→`L̄(p)
→3x2/2. Next, the functionM (p) is introduced as

M ~p!5
2

3x2

~t22p2!•L̄~p!

p22Z2 , (88)

which no longer exhibits zeros and also has the desired asymp
property limupu→`M (p)→1. This new form of the kernel permits
its product factorization through Cauchy’s integral theorem.

In view of the above, the Wiener-Hopf equation of the proble
becomes

Fig. 10 Branch cuts for the functions „b̄,ḡ…
Transactions of the ASME
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T1~p!•~t1p!1/2

~p1Z!
52

3mc

2

~s21p2!~p2Z!

~t2p!1/2 M ~p!•W2~p!,

(89)

and the kernel is written as the following product of two analy
and nonzero functions defined in pertinent half-plane domain
the complex plane

M ~p!5M 1~p!•M 2~p!, (90)

where

M 1~p!5expH 2
1

2p i ECl81Cl9

ln@M ~z!#

z2p
dzJ , (91a)

M 2~p!5expH 1

2p i ECr81Cr9

ln@M ~z!#

z2p
dzJ . (91b)

The use of Cauchy’s integral theorem to accomplish~90! is de-
picted in Fig. 11. Notice that Cauchy’s theorem still applies in t
case of anonsimplecontour ~a contour with self-intersections!
because the number of intersections is finite~see for the genera
result in, e.g., Ablowitz and Fokas@56#!. M 1(p) is analytic and
nonzero in Re(p).0 and M 2(p) is analytic and nonzero in
Re(p),0. The integration path (Cl81Cl9) begins from the pointS
at (2 is1 i«), with « real such«→10, and runs along the entir
imaginary axis~along the two cuts, it runs parallel to them on th
right! and around the cut along the positive real axis. The integ
tion path (Cr81Cr9) begins from the pointS, it runs along the
entire imaginary axis~along the two cuts, it runs parallel to them
on the left! and around the cut along the negative real axis. B
integration paths end at the pointS, and the second path is con
sidered a continuation of the first so that Cauchy’s theorem
applied and~90! is obtained. In both cases, the quarter-circu
paths at infinity have a zero contribution according to Jorda
lemma. Finally, the small semi-circular paths around the bra
points have a zero contribution.

Then, with the formal product factorization in hand, Eq.~89! is
written under the following form that defines a functionĒ(p):

T1~p!•~t1p!1/2

~p1Z!•M 1~p!
52

3mc

2

~s21p2!~p2Z!

~t2p!1/2 M 2~p!•W2~p!

[Ē~p!. (92)

The above equation strictly holds along the segment of the im
nary axis (Re(p)50,2s,Im(p),s) and Ē(p) is therefore de-
fined only along this segment. This restriction of the validity
the Wiener-Hopf equation to afinite segment only~notice that in
the static case treated before and invariably in crack probl
within classical elasticity—both static and dynamic—the Wien
Hopf equation holds along an infinite line or strip! is another

Fig. 11 Contour integrations for the factorization of the kernel
function defined in Eq. „88…
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novel feature of the present mathematical problem. Still, the th
rem of analytic continuation applies and leads us to conclude
Ē(p) is an entire function. Working also along the same lines
those in the respective analysis of the previous static case, we
that the near-tip stress and displacement fields behave as in~51!.
Results analogous to the ones in the static case can be fu
obtained from the basic analysis of this section.

9 Conclusions
The present work was concerned with the exact determina

of mode III crack-tip fields in a microstructured body under
remotely applied loading. The material microstructure was m
eled according to the Mindlin-Green-Rivlin theory of generaliz
elastic continua~dipolar gradient or strain-gradient theory o
grade two!. A simple but yet rigorous version of this theory wa
employed by considering an isotropic linear expression of
elastic strain-energy density in antiplane shearing that invol
only two material constants~the shear modulus and the gradie
coefficient!. The formulation of the problem and the solutio
methods were exact. The boundary value problem was attacke
the Wiener-Hopf technique but the asymptotic Williams techniq
was also employed in a preliminary analysis. Both static and tim
harmonic dynamic analyses were provided. A singul
perturbation character was exhibited within the gradient formu
tion and the concept of a boundary layer was employed.

The results for the near-tip field showed significant depart
from the predictions of the classical fracture mechanics. In p
ticular, it was found that cohesive stresses develop in the im
diate vicinity of the crack tip and that, ahead of the small cohes
zone, the stress distribution exhibits a local maximum that
bounded. This maximum value may serve, therefore, as a mea
of the critical stress level at which further advancement of
crack may occur. In addition, the crack-face displacement clo
more smoothly, in the vicinity of the crack tip, as compared to
classical result. The new formulation of the crack problem
quired also new extended definitions for theJ-integral and
the energy release rate. The determination of these quan
was made possible through the use of the theory of general
functions.

A final notice pertains to the possibility of generalizing th
present analysis by considering a continuum theory of even hig
order than that of dipolar gradient theory. The next step could
a tripolar theory. The dipolar theory involves doublets of forc
~double forces! as ‘‘internal’’ forces. The tripolar theory will in-
volve rather doublets of moments~triple forces!. Besides the fact
that the latter generalized forces possess a not so clear phy
meaning, the increased complexity of such a theory does not
much hope for treating practical problems.
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