The Mode Il Crack Problem in
Microstructured Solids Governed
by Dipolar Gradient Elasticity:
Static and Dynamic Analysis

This study aims at determining the elastic stress and displacement fields around a crack in
a microstructured body under a remotely applied loading of the antiplane shear (mode
II) type. The material microstructure is modeled through the Mindlin-Green-Rivlin dipo-
lar gradient theory (or strain-gradient theory of grade two). A simple but yet rigorous
version of this generalized continuum theory is taken here by considering an isotropic

H. G. Georgladls linear expression of the elastic strain-energy density in antiplane shearing that involves
Mechanics Division, only two material constants (the shear modulus and the so-called gradient coefficient). In
National Technical University of Athens, particular, the strain-energy density function, besides its dependence upon the standard
1 Konitsis Street, strain terms, depends also on strain gradients. This expression derives from form Il of

Zographou GR-15773, Greece Mindlin’s theory, a form that is appropriate for a gradient formulation with no couple-
e-mail: georgiad@central.ntua.gr stress effects (in this case the strain-energy density function does not contain any rotation
Mem. ASME gradients). Here, both the formulation of the problem and the solution method are exact

and lead to results for the near-tip field showing significant departure from the predictions
of the classical fracture mechanics. In view of these results, it seems that the conventional
fracture mechanics is inadequate to analyze crack problems in microstructured materials.
Indeed, the present results suggest that the stress distribution ahead of the tip exhibits a
local maximum that is bounded. Therefore, this maximum value may serve as a measure
of the critical stress level at which further advancement of the crack may occur. Also, in
the vicinity of the crack tip, the crack-face displacement closes more smoothly as com-
pared to the classical results. The latter can be explained physically since materials with
microstructure behave in a more rigid way (having increased stiffness) as compared to
materials without microstructure (i.e., materials governed by classical continuum me-
chanics). The new formulation of the crack problem required also new extended defini-
tions for the J-integral and the energy release rate. It is shown that these quantities can
be determined through the use of distribution (generalized function) theory. The boundary
value problem was attacked by both the asymptotic Williams technique and the exact
Wiener-Hopf technique. Both static and time-harmonic dynamic analyses are provided.
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1 Introduction dependence on strain and/or rotation gradients, the new material

c?nstants imply the presence of characteristic lengths in the ma-

The present work is concerned with the exact determination o . . . . ) -
g s . erial behavior, which allow the incorporation of size effects into
mode Il crack-tip fields within the framework of the dipolar gra-

dient elasticity(or strain-gradient elasticity of grade veThis stress analysis in a manner that the classical theory cannot afford.

. oo L The Mindlin-Green-Rivlin theory and related ideas, after a first
theory was introduced by Mindlift], Green_ and Riviir 2], and development and some successful applications mainly on stress
Green[3] in an effort to model the mechanical response of matey - -entration problems during the sixtieee, e.g., Mindlin and
rials with microstructure The theory begins with the very generaIEshe|[4] Weitsmar{5], Day and WeitsmaﬁG]l Coo’k and Weits-
concept of_ a cor_1tinuum _containing elements or parti_tt@leq man[7], Herrmann and AchenbagB], and Achenbach et d19]),
macromedig which are in themselvedeformablemedia. This paye also recently been employed to analyze complex problems in
behavior can easily be realized if such a macro-particle is vieweth iariais with microstructurésee, e.g., Vardoulakis and Sulem
as a collection _of smallersubparticléwfilled microme_di)z_l In this [10], Fleck et al.[11], Lakes[12], Vardoulakis and Georgiadis
way, each particle of the continuum is endowed withirgeernal  [13] wej and Huthinsori14], Begley and Huthinsofl5], Exa-
displacement field, which is expanded as a power series in '“terﬂﬁktylos and Vardoulaki§16], Huang et al.[17], Zhang et al.
coordinate variables. Within the above context, the lowest-orderg], Chen et al[19], Georgiadis and Vardoulak[®0], Georgia-
_theory(dlpola_r or_grade-two theoiys_the one obtalne_d b)_/ retain- dis et al.[21,22, Georgiadis and VelgaKi23], and Amanatidou
ing only the first(linean term. Also, since these theories introduceind Aravag24]). More specifically, recent work by the author and

co-workers[13,20-23, on wave-propagation problems showed
" ContributedEby the Am;lied '\fﬁch&}nic_s DLViSAOQMOSEAMER'CANASOC'ETYMOF that the gradient approach predicts types of elastic waves that are
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Thus, based on existing gradient-type results, one may conclygghich again has dimensions @fength?) in the couple-stress

that the Mindlin-Green-Rivlin theory extends the range of appliheory without the effects of collinear dipolar forces, wherés

cability of continuum theories in an effort towards bridging thehe couple-stress modulus apds the shear modulus of the ma-

gap between classicénonopolar or nongeneralizetheories of terial. Of course, one of the quantitiesor (/) also appears

continua and theories of atomic lattices. within a dynamic analysis, which therefore may allow for an in-
In the present work the concept adopted, following the aforéerrelation of the two different characteristic lengilise one in-

mentioned ideas, is to view the continuum as a periodic Strucn}rgggceer?eirg;fszgariglaet?v%gv)\/loarag tbhye ggh;;iiggigdgﬁgg] igrfge ki-
like that, e.g., of crystal lattices, crystallites of a polycrystal o eorgiadis and Velgaki23)). Indeed, by comparing the forms of

grains of a granular material. The material is composed wholly gispersion curves of Rayleigh waves obtained by the dipolar

unit cells (micromedia having the form of cubes with edgeS Of(“pure" gradient and Coup|e_stre58pproaches with the ones ob-

size Zh. This size is therefore an intrinsic material length. Weained by the atomic-lattice analysis of Gazis ef 28], it can be

further assuméand this is a rather standard assumption in studiestimated that is of the order of (0.h)2, [22], and 7 is of the

applying the Mindlin-Green-Rivlin theory to practical problems orger of 0.3:h?, [23).

that the continuum iflomogeneous the sense that the relative  The mathematical analysis of the dynamical problem here pre-

deformation(i.e., the difference between the macrodisplacemeBgnts some novel features related to the Wiener-Hopf technique

gradient and the microdeformation—cf. Mindlja]) is zero and not encountered in dealing with the static case. The Wiener-Hopf

the microdensity does not differ from the macrodensity. Then, Wechnique is employed to obtain exact solutions in both cases, and

formulate the mode Il crack problem by considering an isotropigiso the Williams technique is employed for an asymptotic deter-

and linear expression of the strain-energy dendityThis expres- mination of the near-tip fields. Also, since the gradient formula-

sion in antiplane shear and with respect to a Cartesian coording exhibits asingular-perturbationcharacter, the concept of a

systemOX;X,X3 readsW= pep3e 3+ uc(dseps)(dseps), Where  houndary layeris employed to accomplish the solution. On the

the summation convention is understood over the Latin indicagther hand, the gradient formulation demands extended definitions

which take the values 1 and 2 only;6,&,3) are the only iden- of the J-integral and the energy release rate. It is further proved,

tically nonvanishing components of the linear strain tengois by utilizing some theorems of distribution theory, that both energy

the shear modulug; is the gradient coefficienta positive con- quantities remain bounded despite the hypersingular behavior of

stant accounting for microstructural effectsand ds() the near-tip stress field. Finally, physical aspects of the solution

=d( )/dxs. The problem is two-dimensional and is stated in thare discussed with particular reference to the closure of the crack

plane &;,X,). The above strain-energy density function is th@aces and the nature of cohesive tractions.

simplest possible form of case Il in Mindlinsl] theory and is

appropriate for a gradient formulation witio couple-stress ef- 2 Fyndamentals of the Dipolar Gradient Elasticity

fects, becaus®V is completelyindependentpon rotation gradi-

ents. Indeed, by referring to a strain-energy density function that™ : . .

depends upon strains and strain gradients in a three-dimensid@d}ing to the elastodynamics of homogeneous and isotropic ma-

body (the Latin indices now span the range2,3), i.e., a func- terials is given here. If a continuum W|th.m|cro.structure is viewed

tion of the formW=(1/2)C,qs & pae <+ (1/2)dogeiimkoaskiim With as a collection of subpartu_:le(smcromeqlla having t_he f_orm of
pasi€pasj pasjimXpgskjim

(Cpasj»Opqsjim) DEING tensors of material constants aRgg unit qells(cubes, the foIIowmg.expressmn of _the kln.etlc-en.ergy

L pasi»Tpasil - N 9 density (kinetic energy per unit macrovolumés obtained with

= dpeqs= dpEsq, and by defining the Cauchyn Mindlin's nota- t 10 a Cartesi dinat o 1

tion) stress tensor as,q=JW/de,q and the dipolar stress tensor' ©SPECt 10 @ Lartesian coordinate systemxoXs, (1],

(a third-rank tensoras myqs=dW/d(dpeqs), One may observe 1 T, _

that the relationsn,qs= My (qs) @andmyqg =0 hold, where () and T=5pUplp+ gph (FpUg)(dplg), 1)

[ ] as subscripts denote the symmetric and antisymmetric parts of

a tensor, respectively. Accordingly, couple stresses do not appadrerep is the mass density,[2is the size of the cube edges, is

within the present formulation by assuming dipol@nterna) the displacement vectad,( )=d( )/dx,, (1)=d( )/dt with t de-

forces with vanishing antisymmetric pdrhore details on this are noting the time, and the Latin indices span the rafigg,3. We

given in Section 2 beloyA couple-stress, quasi-static solution ofalso notice that Georgiadis et 422] by using the concept of

the mode-IIl crack problem was given earlier by Zhang ef#8].  internal motions have obtained) in an alternative way to that by

Note in passing that in the literature one may find mainly twilindlin [1]. In the RHS of Eq(1), the second term representing

types of approaches: In the first tygeouple-stress capdahe the effects of velocity gradient& term not encountered within

strain-energy density depends on rotation gradients and hasal@ssical continuum mechanjcseflects the greater detail with

dependence upon strain gradients of the kind mentioned abovikich the dipolar theory describes the motion.

(see, e.g.[11,17—19,2B, whereas in the second type the strain- Next, the following expression of the strain-energy density is

energy density depends on strain gradients and has no depend@gséulated:

upon rotation gradientgsee, e.g.,[13,16,20—23. Exceptions

A brief account of the Mindlin-Green-Rivlin theoryl—3], per-

. h 1
from this trend exist of coursesee, e.g.[5—7]) and these works W= Ecpququsstr Edpqulprqujlm , )
employ a more complicated formulation based on form Il of
Mindlin's theory, [1]. where €pqsj dpgsjim) @re tensors of material constantsy,

Here, in addition to the quasi-static case, we also treat the tim(l/Z)(apuq+aqup) is the linear strain tensor, anth,s=dpeqs
harmonic dynamical case, which is pertinent to the problem @f the strain gradient. Notice that in the tensopgs; and dyqgs;im
stress-wave diffraction by a pre-existing crack in the body. In theuhich are of even rankthe number of independent components
latter case, besides the standard inertia term in the equationcgh be reduced to yield isotropic constitutive relations. Such an
motion, a micro-inertia term is also taken into acco(inta con- isotropic behavior is considered here. Again, the fornncan
sistent and rigorous manner by considering the proper kinetise viewed as a more accurate description of the constitutive re-
energy density and this leads to aexplicit appearance of the sponse than that provided by the classical elasticity, if one thinks
intrinsic material lengthh. We emphasize that quasi-static apof a series expansion fal containing higher-order strain gradi-
proaches cannot include explicitly the size of the material cell ignts. Also, one may expect that the additional téomterms will
their governing equations. In these approaches, rather, a chaigg-significant in the vicinity of stress-concentration points where
teristic length appears in the governing equations only through tig strain undergoes very steep variations.
gradient coefficient (which has dimensions diengtt]?) in the Then, pertinent stress tensors can be defined by taking the
gradient theory without couple-stress effects or the réagu) variation of W
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F2 ~dipolar forces ph? )
Ng(Tgs— IpMpgs) — D g(NpMpgs) + (DN NgngMp st 3 n,(d,us)

!
j g/sub-parﬁcles _p. )

E E o | — NgNMgrs=RY, (5b)
F1 (monopolar

where body forces are abserD,()=d,()—n,D(), D()
:l |: ::l force) =n,d,( ), ng is the unit outward-directed vector normal to the

boundary,Pé”) is the surface force per unit aré@monopolar trac-

l tion), andR{" is the surface double force per unit ar@tpolar
F2 (monopolar force) traction).
0 1 Finally, it is convenient for calculations to introduce another

quantity, which is a kind of “balance stres¢See Eq(7) below),
Fig. 1 Monopolar (external) and dipolar (internal ) forces act-  and is defined as
ing on an ensemble of subparticles in a material with micro-
structure Opq= Tpgt Xpq> (6)

WheranS=(ph2/3)(¢?qus)*¢9pmpqs. With this definition, Eq(4)
takes the more familiar form

IW

- 7

9 g (39) IpTpq= PUq )
Notice thato,q is not an objective quantity since it contains the

W AW acceleration termSp(n2/3)((9qUS). These micro-inertia terms also

(30) are responsibl_e for t_he asymmetry @fq. This, howevgr, dc_Jes _
not pose any inconsistency but reflects the role of micro-inertia

and the nonstandard nature of the theory. In the quasi-static case,

where the acceleration terms are absept,is an objective tensor.

On the other hand, the constitutive equations should definitely

m ==
PIS OKpgs I dpEqs)

wherer,q= 74, is the Cauchyin Mindlin's notation) stress tensor
andmy,s=Myq is the dipolar(or doublg stress tensor. The latter - L
tensor follows from the notion ofmultipolar forces, which are Obfly th?hprln_mplle otf obJe_cbt;vn]}(cf. ch‘s'(g) ?{]?.(10) blel_ovv). is ob
antiparallel forces acting between the micro-media contained in ow, the simplest possible torm ot constitutive refations 1S ob-
the continuum with microstructurgsee Fig. 1 As explained by ta'”‘?d by taking an Isotropic version of the exp_ressmrﬁzhln- .
Green and Rivlif[2] and Jaunzemik26], the notion of multipolar voIvmg only three material constants. This strain-energy density
forces arises rather naturally if one considers a series expansfildlﬂct'on reads

for the mechanical powet1 containing higher-order velocity gra- 1 1

dients, i.e., M=F,u,+F4(dplg) +Fpodpdqlis) + ..., where W= S\eppeqqT L& pgEpqT 5 MC(dse pp) (dsEqq)

F, are the usual force@nonopolar forceswithin classical con- 2 2

tinua and €,q,Fpgs: - - -) are the raltipolar forces(dipolar or T uclo P 8
double forces, triple forces and so)owithin generalized con- 1958 pg) (758pa), ®)
tinua. In this way, the resultant force on an ensemble of subpaiind leads to the constitutive relations
ticles can be viewed as being decomposed éxternalandinter-

nal forces with the latter ones being self-equilibratiisge Fig. 1 Toq= N OpqEssT 21 Epqs 9)
However, these self-equilibrating forcéwhich are multipolar

forceg producenonvanishingtresses, the multipolar stresses. Ex- Mg pq= Cs(NOpgeij+ 21Epg), (10)
amples of force systems of the dipolar collinear or noncollinear , . .
type are given, e.g., in Jaunzenfizs] and Fung27]. where (\,u) are the standard Lariseconstantsg is the gradient

As for the notation of dipolar forces and stresses, the first ind&gefficient(material constant with dimensions gength]?), and
of the forces denotes the orientation of the lever arm between the; iS the Kronecker delta. Equatiori8) and (10) written for a
forces and the second index the orientation of the pair of tigeneral three-dimensional state will be employed below only for
forces; the same meaning is attached to the last two indices of #feantiplane shear state. _
stresses, whereas the first index denotes the orientation of théh summary, Eqsi4), (5), (9), and(10) are the governing equa-
normal to the surface on which the stress acts. The dipolar fordins for the isotropic dipolar-gradient elasticity with no couple
Foq have dimensions dfforce][length; their diagonal terms are Stresses. Combining), (9), and(10) leads to the field equation of
double forces without moment and their off-diagonal terms afBe problem. Pertinentiniquenessheorems have been proved for
double forces with moment. The antisymmetric paf,y Various forms of the general theorMindlin and Eshel[4],
=(1/2)(x,F—XqFp) gives rise to couple stresses. Here, we déchenbach et all9], and Ignaczal{28]) on the basis opositive
not consider couple-stress effects emphasizing that this is comgigfinitenesf the strain-energy density. The latter restriction re-
ible with the particular choice of the form &% in (2), i.e., a form quires, in turn, the following inequalities for the material con-
dependent upon the strain gradient but completely independ&@nts appearing in the theory employed he@eorgiadis et al.
upon the rotation gradient_ [22]) (3)\+2,LL)>O, ILL>0, C>O !I’l add|t|on,stab|l|ty fOI’ the
Further, the equations of motion and the tractionboundary cofi€ld equation in the general inertial case was provef2&]j and
ditions along a smooth boundary can be obtained either fro® accomplish this the condition>0 is a necessary on@ve
Hamilton’s principle(Mindlin [1]) or from the momentum balance Notice incidentally that some heuristic gradient-like approaches

laws and their application on a material tetrahed(Georgiadis NOt @mploying the rigorous Mindlin-Green-Rivlin theory appeared
et al.[22)); in the literature that take a negative—their authors, unfortu-

nately, do not realize that stability was lost in their field equation
Finally, the analysis ii22] provides the order-of-magnitude esti-

) mate (0.h)? for the gradient coefficient, in terms of the intrin-
sic material lengthh.

2
. P .
Ip(Tpg™ IsMspg) = plq— 3~ (Jpplly),
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cVAw—V2w=0, (16)

whereV?2=(3%/9x?) + (3%l 9y?) andV*=V?V?2. Finally, one may
utilize o defined in(6) for more economy in writing some equa-
tions in the ensuing analysis. The antiplane shear components of
this quantity are as follows:

IW 5 IW

Oxz=p| oo | TREVT (172)
Iw 5 IwW

Ty~ M W —,LLCV W . (17b)

Assume now that the cracked body is undeemotelyapplied
Fig. 2 A crack under a remotely applied antiplane shear load- loading that is als@ntisymmetricabout thex-axis (crack plang.
ing. The contour T surrounding the crack tip serves for the Also, the crack faces are traction-free. Due to the antisymmetry of
definition of the J-integral. the problem, only the upper half of the cracked domain is consid-
ered. Then, the following conditions can be written along the
plane (—o<x<ow,y=0):
3 Formulation of the Quasi-Static Mode Il Crack
IMyy,  IMyy,  IMyy,
Problem, the J-Integral, and the Energy Release Rate t,,=7,,— x oy ax

Consider a crack in a body with microstructure under a quasi- (18)
static antiplane shear stdigee Fig. 2 As will become clear in the

=0 for (—o<x<0y=0),

next two sections, the semi-infinite crack model serves in a myy,=0 for (—»<x<0y=0), (19)
boundary layertype of analysis of any crack problem provided w=0 for (0<x<c,y=0), (20)
that the crack faces in the problem under consideration are trac-

tion free. It is assumed that the mechanical behavior of the body is 9w

determined by the Eqg4), (5), (9), and(10) of the previous (9_yz=0 for (0<x<=,y=0), (21)

section. AnOxyzCartesian coordinate system coincident with the
systemOXx;X,X Utilized previously is attached to that body, andvhere(18) and(19) directly follow from Egs.(5) (notice also that
an antiplane shear loading is taken in the directior-akis. Also, (18) can be written asry,—(dmy,,/dx)=0 by using theo

a pure antiplane shear state will be reached, if the body has t&antity, t,, is defined as theotal monopolarstress, and20)
form of a thick slab in the-direction. In such a case, the follow-together with(21) always guarantee an antisymmetric displace-

ing two-dimensional field is generated: ment field w.r.t. the line of the crack prolongation. The definition
of the stresdty, follows from (5a). The problem described by
u,=uy=0, (112)  (11)-(22 will ‘be considered by both the asymptotic Williams

(11) method and the exact Wiener-Hopf technique. Notice finally that
no difficulty will arise by having zero boundary conditions along
w=w(Xx,y), (11c) the crack faces since, eventually, the solution will be matched at
regions where gradient effects are not dominging., for x
and Eqs(8)—(10 take the forms > Y2 with the K, field of the classical theory and in this way
dexs\? [dexg\? [deyl\? [ dey,)\? the remote loading will appear in the solution.
( ) +( ) + <—) + (—) } Next, we present the new extended definitions ofXHetegral

u,=w#0,

W= (el +e5,)+uc

J J J J e
% y X y (12) and the energy release rae These definitions of the energy
quantities are pertinent to the present framework of dipolar gradi-
aw ent elasticity and to the aforementioned case of a crack in a quasi-
Txz= Mg (13)  static antiplane shear state. By following relative concepts from
Rice[29,30, we first introduce the definition
aw
= — 1 Iw Iw
Tyz= By (130) J:f (Wdy—ﬁgm—dr—ﬁgmo(—)dr), (22)
r X ax
Pw ) ) ) . )
My, = 1 C , (14a) wherel is a two-dimensional contour surrounding the crack tip
X (see Fig. 2 whereas the monopolar and dipolar tracti@é@ and
Pw 1) R onT are given as
Myyz=pmC———,
Ixd
Y P =ng(74,~ dpMpg2) ~ Dg(NpMpgo) + (Dyn)NpNgMyg,,
9w 234)
Myx= UC——, (14c)
a7 oxay R =n,ngmyq;. (2%0)
B Pw In the above expressions, with componentsig, ,n,) is the unit
myyz_:“c(;_yZ' (14d) outward-directed vector normal 1, the differential operator®
. ) . andD, were defined in Section 2V is the strain-energy density
Further,(4) provides the equation of equilibrium function given by(12), and the indicesl(p,q) take the valuex
J My, IM J IMyy,  IM andy only.
—| e = =2+ — | 1y —2 - —2X| =0, Of course, the above expressions for the tractionsl'oare
X X ay ay X ay

compatible with Eqs(5). Further, it can be proved that the inte-
(%) gral in (22) is path independent by following Rices29], proce-

which along with(13) and(14) leads to the following field equa- dure. Path independence is of great utility since it permits alter-

tion of the problem nate choices of integration paths that may lead to a direct
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evaluation of]. We should mention at this point th&22) is quite tice that the way the-integral will be evaluated below is quite
novel within the present version of the gradient the@s., a form different than that by Zhang et dl18]. Indeed, use of the theory
without couple stressgsbut expressions fad within the couple- of distributions in the present work leads to a very simple way to
stress theory were presented before by Atkinson and Leppingt@valuate] (see Section 7 below

[31], Zhang et al[18], and Lubarda and Markenscdf82]. In As for the energy release ratERR) now, we also modify the
particular, the latter work gives a systematic derivation of consestassical definition in order to take into account a higher-order
vation integrals by the use of Noether’s theorem. Finally, we neerm that is compatible with the present strain-gradient framework

A aw(x,y=0)
0 tyZ(X'yzo)'W(X’yzo)+myyz(x1y=0)'T dx
G= lim ’ 24)
Ax—0 AX
I
whereAx is the small distance of a crack advancement. taining again only the dominant singular terms, the boundary con-

Of course, any meaningful crack-tip field given as solution tditions t,(x,y=*0)=0 andmy,(x,y=*0)=0 will give at ¢
an associated mathematical problem, should resulfimtavalue ==«
for the energy quantities defined above. Despite the strong singu-

2 2
larity of the stress field obtained in Sections 5 and 6, the results of (‘9_ + i ‘9_ + i) ‘9_W -0 (25)
Section 7 prove thal andG are indeed bounded. oo r?ae* r? 90
. . . 10 1 92
4 Asymptotic Analysis by the Williams Method Tt e w=0. (29%)

As is well known, Williams[33,34] (see also Barbd35]) de- B ] ) ] » )
veloped a method to explore the nature of the stress and displafeaddition, the pertinent antisymmetric soluti¢ie., with odd
ment field near wedge corners and crack tips. This is accolehavior in6) to the equatiorV*w=0 has the following general
plished by attaching a set of (¢) polar coordinates at the cornerform:
point and by expanding the stress field as an asymptotic series in o+l ; ; _
powers ofr. By following this method here we are concerned, in w=r? (A (@ + 1) 6]+ Apsinl(0=1)6]),  (26)
a way, only with the field components in the sharp crack at vewherew is (in general a complex number andA; ,A,) are un-
small values of, and hence we imagine looking at the tip regiotknown constants. Now25) and(26) provide theeigenvalugrob-
through a strong microscope so that situations like the ones, elgm
on the left of Fig. 3(i.e., a finite length crack, an edge crack or a _
crack in a strip appear to us like the semi-infinite crack on the (w+1)cos{(w+1)71]-A173(w71)c0§[(w71)77]-Az—((2),7a)
right of this figure. The magnification is so large that the other
surfaces of the body, including the loaded remote boundaries, ap- (w+1)siN(w+1)7]-A;+(w—3)si(w—1)7]-A,=0.
pear enough far away for us to treat the body as an “infinite (27b)

V‘?Qd%e;"\f”th “tl_oadlnfg a(tglngnltty." Thet f'etlr? is, of I((:otl_Jr_se, aCom- £or a nontrivial solution to exist, the determinant of the coeffi-
plicated function of (,6) but near to the crac |m|.e.,. ast cients of A1,A,) in the above system should vanish and this
—0) we seek to expand it as a series of separated variable ter Ses the result: sin@m=0=0=0,1/2,1,3/2,2 Next, by
each of which satisfies the traction-free boundary conditions @Bserving from(iz) that the strain-éner’g)’/ de,ns.ify. W behaves at
the crack faces. 2 5 f 1
In view of the above, we consider the following separated forrWoSt as ¢ W/ﬂ ) or, by using the fomw(r,z?)—r _u(e), no
worse tharr ™+, we conclude that the maximum eigenvalue al-

w(r,0)=r®*tu(g), where the displacement satisfi€ks). Fur- . I ” ) S
ther, if only the dominant singular terms {@6) are retained, the I(f))v:\/el(jzby theintegrability condition of the strain-energy density is

P/ 4_g2yg2
IiDEZ/;fZ Jtrhi/ g’/r(?blfT/ Zg‘ifgggefA"lv—oz where thh_Z fV . The above analysis suggests that the general asymptotic solu-
= (/or rolor r%9°/96%). Also, in view of the defini- ;g of the formw(r, ) =r>2u( @), which by virtue of(26) and
tions of stresses as combinations of derivativesvoéind by re- (27b) becomes

w(r,8)=Ar¥33sin 0/2)—5 sin36/2)], (28)

whereA= — A, and the other constant {26) is given by(27b) as
A,=3A,/5. The constan (amplitude of the fieldis left un-
specified by the Williams technique but still the nature of the
near-tip field has been determined. Finally, the total monopolar
stress has the following asymptotic behavior:

t,(X,y=0)=0(x"¥) as x—+0. (29)

This asymptotic behavior will also be corroborated by the results
of the exact analysis in the next section.

5 Exact Analysis by the Wiener-Hopf Method

Fig. 3 William's method: the near-tip fields of (i) a finite length An exactsolution to the problem described 1§1)—(21) will
crack, (i) an edge crack, and (i) a cracked strip correspond to be obtained through two-sided Laplace transfofses, e.g., van
the field generated in a body with a semi-infinite crack der Pol and Bremmeff36] and Carrier et al[37]), the Wiener-
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A i Im{p) The transformed expressions for the stresses that enter the
boundary conditions are also quotér convenience, ther,,
quantity is employed in the boundary conditidns

U§z(va): _MBBeiﬂyv (33)
my,(P.y)=u(Bcp’e™#+Ccy’e™), (34)

+|pl

+|pl -ilpl
-i|p] -€ *e  +ilpl Re(p)

my,4AP,y)=—up(BcBe #+Ccye ). (39)

Next, in preparation for formulating the Wiener-Hopf equation,
the one-sided Laplace transforms of the unknown total monopolar
stresst, (x>0,y=0) ahead of the crack tip and the unknown
+{p| crack-face displacememt(x<0y=0) are defined

ay(X,y=0)

T+(|O)=fxtyz(x,y=0)e‘deXEfx
0 0
Ai _

,l (k) f—amy”(;('y 0)}erdx, (36)
+lvl .
Wf(p)=f w(x,y=0)e PXdx. (37)

+ily| -ilyl Further, we assume the following§initeness conditions atx
=> —*o: |ty (x,y=0)|<M- exp(—prx) for x—+% and |w(x,y
-ily] -a +a  +ily] Re(p) =0)|<N- exppuX) for x——oo, where M,N,p;,pw) are posi-
tive constants. As a consequenté(p) is analytic and defined in
the right half-plane— p;<Re(p) (the “plus” half-plane, while
+lvl W™ (p) is analytic and defined in the left half-plane Re{pw
(the “minus” half-plane.
Then, enforcement of boundary conditions results in the follow-
ing equations:

T (p)=03,(p,y=0)—p-mj,(p,y=0), (38)
W~ (p)=w*(p,y=0). (39)

Hopf technique(see, e.g., Roo88] and Mittra and Le¢39]) and  The above equations along with the equatisn* (p,y=0)/ay?
certain results from the theory of distributioteee, e.g., Gel'fand =0, Egs.(33)—(35 and the general solution i(82) provide an

Fig. 4 Branch cuts for the functions  (8,7)

and Shilov[40] and Lauwerie[41]). algebraic system of three equations in four unknoiithe func-
The direct and inverse two-sided Laplace transforms are disnsT*, W™, B, C). Finally, eliminatingB andC in this system
fined as leads to the following Wiener-Hopf problem
* T+(p) 2 1/2 —
f*(py)=| flxye Pdx (308) Garp= KeP(a=p)7L(p)-W(p), (40)
1 where the kernel functioh(p) is given as
fxy)=5—| f*(p.y)e”dp, (30) 1-cp? (a?—p?)?
2mi Br L(p):—cpz 1+T2pﬁ§ . (41)

whereBr denotes the Bromwich inversion pattithin the region

of analyticity of the functionf*(p,y) in the complexp-plane. single Eq.(40). This will be effected through the use of elements
Transforming(16) with (30a) gives the ODE of the theories of complex variables, integral transforms, and dis-
A d2w* tributions (theorem of analytic continuation, extended Liouville’s
c—— +(2cp?—1)—— +(cp*—p?)w*=0.  (31) theorem, Abel-Tauber asymptotic theorems, transforms of distri-
dy* dy butiong. First, we check that the functidn(p) has no zeros in the
gomplex plane. This was found independently by using both the
principle of the argument, [37], and the program
MATHEMATICA™. We notice that unlike the current static case,
w* (p,y)=B(p)- exp(— By)+C(p)- exp— yy) for y=0, the counterpart kernel function in the dynamic case exhibits two
(32) (nonextraneoyszeros, a fact that modifies somehow the standard
. Wiener-Hopf method. Further, we find that the asymptotic behav-
where B(Zpglzan_d C(p) are yet unknown functions5=A(p) jor of the kernel is limy,_..L(p)=—3/2 and this leads us to in-
=(e°=p%) " with £ being a real number such that>+0, and  troduce a modified kernel given & p)= —(2/3)-L(p), which
y=7(p)=[(1/c) — p*]¥*=(a®~p?) 2 with a=(1/c)* In fact, possesses the desired asymptotic property, limN(p)=1. In-
introducing ¢ facilitates the introduction of the branch cuts fordeed, this new form of the kernel facilitates fisoduct splitting
B=(—p?)Y2cf. [20] and [37] for this procedure as applied toby the use of Cauchy’s integral theorem. The Wiener-Hopf equa-
related situations. To obtain a bounded solutioryas+», the tion takes now the form
p-plane should be cut in the way shown in Fig. 4. This introduc- N
tion of branch cuts secures that the functigisy) are single- T (p) 3
2

valued and that R@)>0 and Ref)>0 along the Bromwich path. (a+ p)m:

The next target will be to determine both andW~ from the

The above equation has the following general solution that
bounded ay— +x

)(*MC)pz(afp)”ZN(p)W’(p), (42)
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Fig. 5 Contour integrations for the factorization of the kernel function in Eq.
(42)

and the kernel is written as the following product of two analytidherefore, E(p) should be a polynomial since only algebraic
and nonzero functions defined in pertinent half-plane domains gfowth of the fields in the neighborhood of the crack tip is al-
the complex plan€,38,39, lowed. Further, determining the coefficients of this polynomial
will lead to the desired decoupling @f" (p) andW™ (p). Below,

—NTt -
N(p)=N"(p)-N"(p), (43) we determine the form dE(p) by the use of asymptotic analysis.
where In particular, we will use theorems of the Abel and Tauber type
having the form
N (ool - L [ N@I ) .
P= 2@ Jo, ¢-p [ i im f*
< limf(x) lim f*(p), (47)
x—0 [p|—e
1 IN[N
N(p)=exp[2—f ﬂd{] (44b) LT
m Je, (=P lim f(x)« lim f*(p), (48)
X0 [p|—0

The use of Cauchy’s integral theorem is depicted in Fig\N 5(p)
is analytic and nonzero in Re(>—e andN™(p) is analytic and where the symbodLl means that the image functiéti(p) and the
nonzero in Re@<e. The original integration paths,C,) ex- original function f(x) are connected through thene-sided
tend parallel to the imaginary axis in the compleglane. Finally, . S pN oo —pxg df

an alteration of the integration conto(also depicted in Fig. )5 Laplacejtransffrm rslaﬂons‘ (p)—fof(x)e X an _(X)_
along with use of Cauchy’s theorem and Jordan’s lemma alloys(1/271)Je/f* (p)e”dp, andp is a complex variable which in
taking as equivalent integration paths th€/(C!) contours (47) and(48) tends to infinity or zero along paths in the pertinent

around the branch cuts extending alor@<{< —& and s<{¢ half-plane of convergencénalyticity). Relations(47) and (48)

. : . hold under certain conditions given, e.g.,[86]. Also, the ex-
<a. This ‘?Ve“t“?”y le"ids t_o the following forms of the SeCtIontended Liouville’s theorem[39], will be utilized. Referring to
ally analytic functiondN=(p):

(46), this states that it ™ (p)-[N"(p)-(a+p)*3~*=0(p") and

. 1 (2 (a2— %)% d¢ (3ucl2)p?(a—p)Y’N~(p)-W (p)=0(pé) in the respective
N™(p)=ex o | arctan—/._— ' (45)  half-planes of analyticity, theB(p) is a polynomial of degree not

3 P
0 £ ep exceeding the minimum df v],[£]), where the symbdl ] denotes
with the propertyN*(—p)=N"(p). the integral part of a number.
With the product factorisation in hand, E@t2) takes the fol- ~ Now as a first possibility of the near-tip behavior, one may
lowing form that defines a functioB(p): adopt a behavior of the total monopolar stress and the crack-face
T*(p) 3uc displacement that is analogous to the classical fracture mechanics
© B B - .
N (o) (arp= 2 MA@ YN (0) W (p)=E(p).  Penavionviz
(46) ty(x,y=0)=0(x"3) as x—+0, (4%)
The above equation defindg(p) only in the strip —e<Re() w(x,y=0)=0(x"? as x——0. (4%)

<0. But the first member in the equation is a nonzero analyti is field gives by (47) and the transformation formula
function in Rep)>—e¢, and the second member is a nonzero ana- 7 g y

lytic function in Re)<<0. Then, in view of the theorem of ana-x*—T'(x+1)-p *"* (with T'( ) being the Gamma function and
lytic continuation(or identity theorem for single-valued analytick>—1), 36,38, the following asymptotic behavior in the trans-
functiong, the two members define one and the same function tfatm domain

is analytic over the whol@-plane,[38,39. In other wordsE(p) N 1

is anentirefunction. Polynomial and exponential functions are the T'(p)=0(p™ "% as |p|—, (508)
types of entire functions. The case of an exponential fundtien — Y — ~312

a function of the form exm(p)], whereg(p) is a polynomial W (p)=0(p™™) as |p|—e. (5C0)
should be excluded because such a function hassaantial sin- Then, Liouville’s theorem leads to the conclusion tEgp)=0,
gularity at infinity. Indeed, an exponential growth of the functionsvhich, however, is an inadmissible result since it shows that the
involved in (46) would result in violating the so-callegidge con- stress field is zero everywhef@though the cracked body is under
dition, i.e., the condition of bounded energy density around tHeading. Therefore, the possibility of a near-tip behavior given by
geometrical singularity(crack edgg in the physical domain. (49) should be discarded.
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Next, pror_npted by th_e results of the Williams asymptotiqm‘plﬁONJr(p) is to use lim,oN(p) and perform a product fac-
method obtained before, i.e., the resultg28) and(29), we con- torization of the latter limit byinspection This way is easier than

sider the following possibility of near-tip behavior finding limp oN*(p) from (45). Indeed, one may obtain first
t(xy=0)=0(x"3?) asx—+0 (513) from (41) and the definition ofN(p) the limit lim,_oN(p)
Y =2(3cY?) Y(e?—p? Y and then
w(x,y=0)=0(x*? as x——0. (51b) , 2 g
Here, certain results of the theory of generalized functions will be lim NWp)z(W) Gip ™2 (54)
employed concerning transforms o$ingular distributions, [p|—0 p

[40,41]. In this connection, we note that the distributigh for  Fyrther, a combination ab3) and (54) provides the limit
Re(\)>—1 is identified with the function&:xA for x>0 and

12
x, =0 for x<0. For other values of the complex parametgof lim T (p)=Eq- (_) %_ (55)
course\ here is not to be confused with the Lamenstant it is [p|—0 3c/ p
defined by analytic continuation of the functiondk’; ,h) T

= [5x*h(x) dx, whereh(x) is a test function. In this way, a dis- Which by (48) and the transformation formula®—T'(«+1)

tribution is obtained for all complex values dfwith the excep- P~ *~* (with k>—1) allows writing

tion of A=—1,—2,—3, ... . In a sinlar mannerx" is defined 2\12 1
(ﬁ) (

by starting fromx* =0 for x>0 andx* =|x|* for x<0. Then, lim t,(x,y=0)=Eg- o (56)
X—+o

LT
(51) and the transformation formute —T(A+1)-p *"1 (with _ _ "
N#—1,-2,—3,...),[40,41, provide the following asymptotic Finally, matching the above expression wily, /(27x)™* pro-

behavior in the transform domain: vides the value of the constant Bg= K, (3c)"42.
o - In view of the above, we record the final transformed expres-
T'(p)=0(p™) as |p|—2, (528)  sjons(valid for all p in the pertinent half-plane of convergeice
W (p)=0(p %2 as |p|—=. (520) fqr the total monopolar stress ahead of the tip and the crack-face
displacement
Further the extended Liouville’s theorem leads to the conclusion 12
that E(p)=E,, whereE, is a constant. As shown below this T*(p)= K (3c) N*(p)- (a+ p)L2 (57)
constant will be determined from conditions at remote regions in 2 '
the physical plane. The previous result is mathematically admis- K
sible, while any other case like, e.d.,(x,y=0)=0(x"1) or -(p) = m
O(x ?) asx— +0 is precluded since éven analytic continuation W) (3c)*up*a—p)* N (p)’ 8)

fails to define one-sided Laplader Fourie) transforms of the where it is reminded thai= (1/c)"2 andN*( -

- . T . : \ p) andN~(p) are
associated singular distributionsf. Gel'fand and Shilof40], p.  giyen by (45). Exact expressions for the original functions(x
171). Of course, it remains to prove that the field(Bil) gives a >0y=0) andw(x<0y=0) can be derived froni57) and (58)
boun_dedvalue for _the energy guantities dﬁlnteg_ral z_and ERR, through one-sided Laplace-transform inversions. Such an inver-
despite the hypersingular character of stress. This will be showndjy, will be performed in Section 8, where we elaborate more on

generally(lgnaczal{ 28] and Knowles and Pucil¢2]) a necessary
condition for uniqueness.

Our task now is to determir,. As in the work of Zhang et al.
[18], a matching procedure is followed that equatesitimer so- | tance as explained below.
lution lim,_..t,,(x,y=0), as obtained by the present gradien? The limits of the expressions i(67) and (58) for |p|—= are
analysis, with theouter solution Ky, /(2mx)*? provided by the found to be
conventional fracture mechanids,;, is the stress intensity factor
for each specific problem treated by the conventional fracture me-

near-tip asymptotic expressions gf(x>0,y=0) andw(x<0y
=0). These expressions, however, suffice for the evaluation of
the J-integral and the ERR and possess also much practical im-

K|||(3C)l/2p1/2

i + —
chanics. The latter fielésingular solutioh dominates over an area | l"mmT (P)=—> ' (59)
that is relatively close to the crack tip but lies outside the domain =
where gradient effects are pronounced. We notice the following in . Ky
support of the assertion that this procedure is indeed reasonable: lim W™ (p)= —=1z— —=n. (60)
: gy pl—2 (3¢)™u p
(i) as shown below the stress behavestgs- O(x 2 for x

— oo, (ii) the very form of the field Eq(16) exhibits the singular- . ) ) 1t e
perturbation character of the gradient formulation and therefopdlich by the inversions p ?[F(—1/2)] X
suggests doundary layerapproach(Van Dyke[43]) to the crack — _ (271~ 1302 and p %25 (5/2)] 1(—x)%2
probl_er_n(one may_observe that an extremely sma!l qu_antity—thg 4(3712)~1(—x)32 give the following near-tip field
coefficientc—multiplies the higher-order term, which is the one

introduced by the nonconventional formulatioRinally, one may . Ku(3c)¥? 1
observe that this concept is in some respects similar to the one lim ty,(x,y=0)==——m— {3m. (61)
introduced by Ric¢44] in analyzing small scale yielding around a X0
crack tip. 4K,
The transformed total monopolar stré&s(p) is given by(46) lim w(x,y=0)= m(—x)w- (62)
as x——0
T*(p)=Eo-N*(p)-(a+p)*2 (53) In view of the fact thaK, is the stress intensity factor obtained

by a classical elasticity analysis for the same crack proljame
an expression that holds fall values of the Laplace transform geometry and loadingas that considered through the dipolar gra-
variable p in the right half-plane. For the moment, we need talient approach, Eqg61) and (62) provide a kind ofcorrespon-
evaluate only Iim,POT*(p) in order to obtain then dence principleThis correspondence principle connects any clas-
limy_...ty(x,y=0) by (48). One way to obtain the expression ofsical fracture mechanics solutigthrough the pertineri;, value
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Y A~ . Ky (3¢)"?
1 J=G=Iim {2(—1) ——p—
i e—+0 4
1
i XW 7| (x4 ¥x_)Ydx (64)
(-£0%) | (€0") coo
I _ Further, the product of distributions inside the integral is obtained
f <+ ] through the use of Fisher’s theorefd9], i.e., of the operational
ey relation x)Mx,) 'TM=—wS(X)[2sin@N)] Tt with N# -1,
l 0 X —2,—3, ... andd(x) being the Dirac delta distribution. Then, in
vo_ > > view of the fundamental property of the Dirac delta distribution
(-£07) (£.07) that [¢ 5(x)dx=1, Eq. (64) provides the result
Fig. 6 Rectangular-shaped contour surrounding the crack tip K|2||
for the evaluations of the  J-integral and the energy release rate J=G=—, (65)

which shows that thé-integral and the ERR afsoundeddespite
the hypersingular nature of the near-tip styemsd identical with

obtained for each specific problgmith the near-tip field result- the respective classical elasticity result. Our flndlngs. suggest
ing by the nonclassical gradient formulation of the problem ifnerefore that, at least for the one-parameter theory of microstruc-
question. Thus, a host of classical fracture mechanics solutiond#¢ employed here, theverall energy situatiorirate of total po-
crack problems may serve within a nonclassical gradient frami@ntial energy of the cracked body is not affected by the material
work as well. microstructure and only thiecal crack-tip field is influenced.

Three final notices pertain to the form of the above asymptotic
field. First, the cusp-like closure of the crack fadesclosure 7 Eyact Expression for the Stress Ahead of the Crack
smoother than the one predicted by the classical theorglied .
by (62) is not unusual in experimentsee, e.g., Millg45] and Tip
Elssner et al[46]). Secondly, an aggravation of the stress field as In this section we elaborate more on the stress ahead of the
compared to the respective result of the conventional thébry crack tipt,,(x>0,y=0) and its nature, and also provide compari-
aggravation appears here through the stromgéf singularity) is ~ sons of the exact expression with both the asymptotic for(61n
not unusual in analyses with nonclassical effestse, e.g., the and the classicak™ ' field. First, an exact one-sided Laplace
couple-stress results of Bogy and Sternk@® and Zhang et al. transform inversion off *(p) in (57) will be obtained.
[18]). In addition, Prakash et a[48] have provided an analysis One may write formally
and experimental evidence supporting the possibility okaff? K, (30)Y2 1
stress singularity in dynamic crack initiation. All this evidence ; (x>0y=0)= i ( _J' [N*(p)-(a+ p)ll2]ep><dp
shows that deviations from predictions of classical fracture me-Y? ' 2 2w g
chanics are possible in some situations and are, at least, worthy of
investigation. Of course, by no means we claim that the results in _Ku@Bo)*? 1
(61) and (62 carry over to other situations like, e.g., the plane o 2 2@’
strain/stress case. An appropriate dipolar gradient analysis for th . . . .
latter case is needed to give the answer. Thirdly, the minus sign/fj€re the integration variable takes values only in the half-plane
the RHS of (61) shows that the asymptotic gradient crack-tigc®>—¢ (e—+0) and any line, in this half-plane, parallel to

stress field has a cohesive-traction nature. This point will be ff1e IM()-axis may serve as the Bromwich path. Théntegral

ther elaborated in Section 8 below. It will be shown also in Sed€fined above depends uperandc. | is evaluated by deforming

tion 8 that(61) dominates only within an extremely small regiont€ integration path in the left half-plarisee Fig. 7 where the

adjacent to the crack tip. integrand is nonanalytic, exploiting in this way the existence of
branch cuts for the functioni™(p) and @+ p)*% Noting the

property limpy_.N"(p)=1 and also thaN™(p)=N(p)/N~(p)

(cf. Eq. (43)), thel-integral is written by Cauchy’s theorem as

(66)

6 Evaluation of the J-Integral and the Energy Release
Rate (ERR)

The evaluation of the energy quantities is accomplished here by i Im(p)
using Fisher’s theorenj49], concerning the product of distribu-
tions. For theJ-integral, we also consider the new rectangular-
shaped contouF (see Fig. 6 with vanishing “height” along the
y-direction and withe — + 0. This change of contour permits us- A
ing solely the asymptotic near-tip field i%1) and (62). Notice
that Zhang et al[18] in evaluating the ERR for a mode Il crack
problem with couple stresses followed a rather involved method >
based on earlier work by BueckniQ]. It seems that the proce- 0 Re(p)
dure followed here is simpler and more direct. Indeed, taking into
account(14d), (18), (19), and(21), the definitions in(22) and(24)
provide the following integral for both energy quantities:

] & aw(x,y=0)
J=G= Ilim {2 ty(X,y=0)- ————dx;. (63)
e—+0 € IX

Fig. 7 Contour integration for the evaluation of the complex
Now, by using the solutioii61) and(62), we obtain integral in Eq. (66)
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Fig. 8 Graphs of the exact gradient  (total monopolar stress ), asymptotic gradient (total
monopolar stress ), and classical K, field solutions in normalized forms

1 1 ™ 3¢ .
=] 312 R )
5 iI 5 i{lL/ZR exp(l > ax+Rx€e?|de

-a
+i f N*(p)- (Ja+p|)*%e”dp

° [ReN(p)—i ImN(p)](|a+p|)*%P
+f_a N"(p) dp

f‘a[ReN(PHi Im N(p)](|a+p|)*%
+ —
0 N~ (p)

dp

72
R3/2

=i fﬁwN+(p)~(\a+ p|>1’2e"xdp+if

—a -
3¢ ;
X ex |7—ax+Rxé“’ do},

whereR is the radius of the two quarter-circular paths having
center at the poinp= —a (see Fig. 7 and the anglep is defined
by the relationp+a=R-exp(¢). Also, R—x in the left half-
ImN(p)=2(1—cp?)(a?
—pAY43|p|17* for p real and|p|<a. Further, it can be shown

plane, and Re&l(p)=2cp¥/3 and

11
2w

a[Im N(p)](a—p)*%e~>
fo N*(p) dx

_ J Ni(p) . (p_a)lIZefpxdp_i_ R3/2efax

a

g 3
xf exp(Rx~005(p)~cos(7¢+Rx-singo)d<p].
2

(68)

The third integral inside the braces vanishesRas>~ and it is

(67)

branch cut for the functiona+ p)*2. Therefore, the total mo-
nopolar stress ahead of the crack tip is found from the following
expression involving two real integrals:

¢ —0)= Ky (3¢)™? Jaﬂm N(p)](a—p)*%e P
yz(X7y_ )_ 2 0 N+(p)

dx

—f N‘(p)-(p—a)l’ze“’xdp]- (69)
a

It can be checked that both integrals are convergent. Also, a nu-
merical evaluation of these integrals can easily be accomplished.
Finally, the above expression can be written in a more convenient
dimensionless form as

tyz(xay:())
~ Ku8Y2( [L[ImN(p)](1-p)*2exp —c**p)
B 27TC1/4 JO N+(p) dp
’ _fN(p)'(p‘l)llzexp(—cl’zxmdp]’ (70)
1
where

N+( ) 1 fl . +(1_§2)3/2} 1 dg (71)
“(p)=exp — | arctan——m—|>—— ,
P T Jo IS {*p
2(17p2)3/2
Im N(p)=T for O<p=<l1. (72)

The graph of the exact gradient expression for the total mo-
nopolar stress ahead of the crack tip in the normalized form
(2w, /3V%K ) versusc™ % is given in Fig. 8. In the same
figure the normalized graphs of the asymptotic gradient solution
(—7Yc¥2x¥% and the classical K,, field solution
(2713x)Y2cY* versusc ~ Y%x are also shown. The latter two graphs
are provided for the purpose of comparison with the exact gradi-
ent stress distribution. Also, Fig. 9 presents the variation of the

interesting to note that although the conditions for Jordan’s lemmeaact stress, in the normalized form 7(1‘%,2/(30)1’2K”,) with
are not met by the integrand i(66), the contribution of the (x/h), where 2 is the size of the unit cell of the structured
quarter-circular paths is zero because of the existence of tmaterial (intrinsic material length—see Section). 2The two
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Fig. 9 Variation of the exact total monopolar stress (according to the gradient theory )
with (x/h) for the cases c=h? and c¢=(0.01h)2. The graphs depict that the cohesive zone

is small as compared to the intrinsic material length h and that the stress ahead of the
cohesive zone exhibits a bounded maximum.

graphs of Fig. 9 were obtained for the relatians (0.01h)? and simple statement of the fracture criterion. Of course, the classical
c=h?. As mentioned in the Introduction, the study by Georgiadi§acture mechanics analysis does not possess this feature since the
et al.[22] gives the estimate=(0.1h)2. Thus, in the latter case Stress maximum is unbounded at the crack-tip positierd and

the stress graph will be in between the two graphs of Fig. 9. THee stress drops monotonically far-0 with no anylocal maxi-
purpose of presenting these two graphs is to make apparent M. Finally, outside the cohesive zone, the sttggs<>L..y
boundsof the region ahead of the tip at which the stress takes gn0) Predicted by the gradient theory is lower than that predicted
negative values for possible relations between the gradient coy-the classical elasticity theory.

ficient c and the intrinsic lengtfn.

On Fig. 8 now, an immediate observation is that the asymptotic
gradient solution is inaccurate except for the region very near &
the crack tip. Another observation is that the exact gradient stre?s-
field tends to the classic#,, stress field at points lying outside em
the domain where the effects of microstructure are pronouncedWe consider again the semi-infinite crack configuration of Sec-
i.e., for x>c'2 However, in the near-tip region where the distion 4 but now assume a dynamical antiplane shear state. The
tance from the crack-tip is comparable to the leng/t}, the two transient problem leads to an extremely difficult mathematical
fields differ radically indicating therefore that material microstruciitial/boundary value problem. Here, as a first step we deal with
ture is a significant factor in the fracture behavior of solids. Thiae time-harmonicinertial crack problem which, to our knowl-
behavior of the exact solution depicted in Fig. 8 reminds somedge, consists the first attempt to analyze a dynamical crack prob-
how typical boundary layerbehavior as, e.g., that found for thelem within gradient elasticity. The more general transient solution
surface pressure near the leading edge of a Joukowski gveil  may follow from the present one through Fourier synthesis. It is
Dyke [43]). In particular, the following remarks deserve moreilso expected that the basipatial behavior of the solutioite.qg.,
attention. Fox<0.5¢Y2 the stress, ,(x>0y=0) takes on nega- the order of singularities and the near-tip behavieill be re-
tive values exhibiting therefore” @ohesive-tractioncharacter tained in the transient case as well. Within classical elasticity,
along the prospective fracture zofsee, e.g.[51,57 for the na- problems involving cracks under remotely applied time-harmonic
ture of fracture cohesive zonesiowever, in view of the relation loading have been considered by, among others, Cherep&8pv
betweerc andh, the lengthL . (cohesive-zone length of the orderand Freund54]. _ _ o
of 0.5c*? along whicht,,<0 is extremelysmall. For instance, ~The cracked body is subjected to a remotely applied time-
even if h is rather large, sayh=2x10"%m (case of a harmonic loading and the crack faces are traction-free. In view of
geomateria—see[13]), for c=(0.1h)2 we have L,=0.0%h the general expressions given in Section 2, E8)—(14 remain

=10"° m. The same conclusion can also be reached by observms same but11) and(15)—(17 are replaced by

Dynamical Time-Harmonic Mode 1ll Crack Prob-

the graphs of Fig. 9 which show thiat is a very small fraction of Uy=uy=0, (73)
h. It is also interesting to note thaf, does not vary appreciably
althoughc varies over a wide range, i.e., from= (0.01h)? to ¢ u=w#0, (7)

=h2. Therefore, the length, can be considered practically equal

to zero and be ignored. Accordingly, the domain of dominance of WEWYH=w(x.y)-expif), (7%0)
the x~¥2singularity being of extremely small size can be considd My, IMyys| 9 IMyy, My,

ered of no physical importance. Instead, one may attribute physi | 7z~ ~ 53~ — ay + ﬁ_y( TyzT o ay

cal importance to the solution outside the cohesive zone, where

the stress exhibits a maximum thatbsunded This maximum 9w ph? ) R

may serve as a measure of the critical stress level at which further =P 52 = 73~ W) g (74)
advancement of the crack may occur. In other words, this result of )

the present gradient formulation of the crack problem permits a cV4w—gV2w—k?w=0, (75)
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ow oW i Im(p)
= w0 — — 2|
Oxz= g~ HCV X (769)
oW o[ W o +|B1 ||-1BI
O'yz_:Ung_/J* W J (760)
.
where ) is the frequency of the time-harmonic statgs= (1 +i|-l§| '@ +i||§|
—Q?(ph?/3u)), and k=(Q/V) with V=(u/p)*? being the >
shear-wave velocity in the absence of gradient efféces, in -io Re(p)
classical elasticity Equation(75) is the field equation of the
problem. It is called metaharmonic and appears also in the prc -1Bl +|B|
lem of bending vibrations of thin platé¥ekua[55]). More details
about it can be found if13,20. In what follows, as is standard in |
time-harmonic problems, it is understood that all field quantitie
are to be multiplied by the factor exgXt) and that the real part of
the resulting expression is to be taken.
The above equations are also supplied by the boundary con
tions (18)—(21). The resulting boundary value problem is attacke:
again by the Wiener-Hopf method. First, transformiiig) with 4iIm(p)
(30a) gives the ordinary differential equation
4W* 2W* +IVI
- 2_ 4 42— 2\ =
Cgyr T (2eP 9 gz F(epTmgp k*)w* =0, (77)
with the following general solutiobounded ay— + ) +ilyl -il¥l
_ =>
w* (p,y)=B(p)-exp(—By)+C(p)-exp(—7yy) for y>0(, . -ilyl T *T 4yl Re(p)
7
where vl
B=B(p)=i(p*+c?)"? (7%)
with
[(gz+4ck2)1’27 g]1/2 Fig. 10 Branch cuts for the functions (ﬁﬂ
o= 7 >0, (7D)
(2¢)
y=7p)=(=p?)? (808) X
with e = (=) "+ 7) - L(P)- W (), (85)
EE |
[(92+4Ck2)1/2+ g]1/2 o
T= 201 >0. (8M®)  where the kernel functioh(p) is given as
In the above equation®(p) and C(p) are unknown functions, T(p)=(o2+ p2 (r*—p?)3? 86
and the complex-plane should be cut in the way shown in Fig. (p)=(o"+p9)+ i(o?+ p2)17 ' (86)
10. Finally, the Laplace-transformed stresses that enter the bound-
ary conditions are found to be Now, contrary to the static case analyzed in Section 6, the kernel
p— o function in the present dynamic case exhibits two zeros in the
oy P.y)=—uc(r*Bpe P —o?Cye ), (81) complex plane. This was found through a rather involved proce-
I -~ dure using the principle of the argumef8y], and taking care of
my,{P.y)=uc(Bp’e™ A+ Cy%e™ ), (82) the behavior and the branch cuts of the functiofis))). In addi-
o _ tion, a check was made by the symbolic program
my,(p.y)=—ucp(BBe »+Crye 7). (83) MATHEMATICA™. Thus, the functionL(p) exhibits the(non-
Next, to formulate the Wiener-Hopf equation, the same “halft_extraneou)szeros
line” transforms are defined as if86) and (37). Also, (38) and g (g2/4c?) + (K3/c)|V2) 12
(39) apply in the present case too. The usual procedure of elimi- +Z= +{—+i —_— ] , (87)
nating the functions&,C) in the system of equations resulting 2c 3

}‘(r)c\JNr?néh\(/avgﬁgfggn;?(éqk:l)Jc;Liir(l)iary conditions leads then to the foalfnd, in addition, has the asymptotic behavior |mef(p)

—3x2/2. Next, the functiorM (p) is introduced as

pC—_—. ~ _
T (p)=— BVB*~7)-W (p), (84) 2 (72—p?)-L(p)

X M(p)= 2 P (88)
where y?=(g%+4ck?)¥?c is a positive real constant dependent

upon the material properties and the frequency. Notice also thgich no longer exhibits zeros and also has the desired asymptotic

x°=(c?+ 1) ="~ p° property lim, _...M(p)— 1. This new form of the kernel permits

Further, since a product factorization of the functipris im-  its product factorization through Cauchy’s integral theorem.
mediately accomplished by inspection agp)=(r+p)*Ar In view of the above, the Wiener-Hopf equation of the problem
—p)*2, Eq.(84) takes the form becomes
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rem of analytic continuation applies and leads us to conclude that
E(p) is an entire function. Working also along the same lines as
those in the respective analysis of the previous static case, we find
that the near-tip stress and displacement fields behave (&4)in
Results analogous to the ones in the static case can be further
obtained from the basic analysis of this section.

Ti Im(p) novel feature of the present mathematical problem. Still, the theo-

Re(p) 9 Conclusions

The present work was concerned with the exact determination
of mode Il crack-tip fields in a microstructured body under a
remotely applied loading. The material microstructure was mod-
eled according to the Mindlin-Green-Rivlin theory of generalized
elastic continua(dipolar gradient or strain-gradient theory of
grade twg. A simple but yet rigorous version of this theory was
employed by considering an isotropic linear expression of the
elastic strain-energy density in antiplane shearing that involves
only two material constantéhe shear modulus and the gradient
coefficien}. The formulation of the problem and the solution
methods were exact. The boundary value problem was attacked by
the Wiener-Hopf technique but the asymptotic Williams technique
(89) was also employed in a preliminary analysis. Both static and time-

and the kernel is written as the following product of two analyti@armonic dynamic analyses were provided. A singular-
grturbation character was exhibited within the gradient formula-

and nonzero functions defined in pertinent half-plane domains i3
the complex plane tion and the concept of a bqunc_iary layer was em_ployed.
The results for the near-tip field showed significant departure
M(p)=M"*(p)-M~(p), (90) from the predictions of the classical fracture mechanics. In par-
ticular, it was found that cohesive stresses develop in the imme-
diate vicinity of the crack tip and that, ahead of the small cohesive
. 1 INfM ()] zone, the stress distribution exhibits a local maximum that is
M7 (p)=exp —5— | | ,,Tdf » (918)  pounded. This maximum value may serve, therefore, as a measure
Gt of the critical stress level at which further advancement of the
1 IN[M()] crack may occur. In addition, the crack-face displacement closes
M~ (p)=exp =— f ——d{}. (91b) more smoothly, in the vicinity of the crack tip, as compared to the
D[ZT” circy €7P ] classical result. The new formulation of the crack problem re-

The use of Cauchy's integral theorem to accompligf) is de- quired also new extended definitions for tleintegral and

picted in Fig. 11. Notice that Cauchy’s theorem still applies in thi@e energy release rate. The determination of these quantities

case of anonsimplecontour (a contour with self-intersections was _made possible through the use of the theory of generalized
because the number of intersections is firitee for the general functfl_onsl. . . H bility of izing th
result in, e.g., Ablowitz and Fokd$6]). M *(p) is analytic and A final notice pertains to the possibility of generalizing the

. _ . : - present analysis by considering a continuum theory of even higher
NONZero in Rgﬁ)>0 gnd M (p/) |s”analy.t|c and NONZEro 1N 4 qer than that of dipolar gradient theory. The next step could be
Re(p)<<0. The integration path@ + Cj’) begins from the poink 3 tinolar theory. The dipolar theory involves doublets of forces
at (—io+ie), with  real suche— +0, and runs along the entire (qoyple forcep as “internal” forces. The tripolar theory will in-
imaginary axig(along the two cuts, it runs parallel to them on thg,g|ve rather doublets of momentsiple forces. Besides the fact
right) and around the cut along the positive real axis. The integrayat the latter generalized forces possess a not so clear physical
tion path C;+C/) begins from the poink, it runs along the meaning, the increased complexity of such a theory does not hold
entire imaginary axigalong the two cuts, it runs parallel to themmuch hope for treating practical problems.
on the lef} and around the cut along the negative real axis. Both
integration paths end at the poibt and the second path is con-
sidered a continuation of the first so that Cauchy’s theorem ,fécknowledgments
applied and(90) is obtained. In both cases, the quarter-circular The author is thankful to Prof. L.M. BrocUniversity of Ken-
paths at infinity have a zero contribution according to Jordantscky) for discussions on aspects of the mathematical analysis
lemma. Finally, the small semi-circular paths around the branclntained in this work. Also, the author is thankful to Prof. I.

Fig. 11 Contour integrations for the factorization of the kernel
function defined in Eq. (88)

T (p)-(r+p)*?  3uc (6’+p*)(p-2)

(p_;,.Z) - T (T_p)l72 M(p)W_(p),

where

points have a zero contribution. Vardoulakis(NTU Atheng and N. Aravas(University of Thes-

Then, with the formal product factorization in hand, E89) is ~ saly) for discussions on generalized continuum theories. Financial
written under the following form that defines a functigip): support of this work under the “Thales” program of the NTUA is

N 12 5. o gratefully acknowledged.

T(p)-(r+p)"®  3uc (o°+p )(p—Z)M,(p) W (p)
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