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THE  MODEL  COMPANION  OF  THE  THEORY

OF  COMMUTATIVE  RINGS WITHOUT
NILPOTENT ELEMENTS

L. LIPSHITZ and d. saracino1

Abstract. We show that the theory of commutative rings

without nilpotent elements has a model companion. The model

companion is decidable and is the model completion of the theory

of commutative regular rings.

Recall that a theory K is model-complete if for any model M of K,

KuD(M) is complete, where D(M) denotes the diagram of M. A natural

generalization of this notion is that of a model completion. We say that

K' is a model completion of K if K' extends K and, for any model M

of K, K'\JD(M) is consistent and complete (see [5]). For example the

theory of algebraically closed fields is a model completion of the theory

of fields and the theory of real closed fields is a model completion of the

theory of ordered fields.

A further generalization is the idea of a model companion. We say that

K and K' are mutually model consistent if every model of K can be

embedded in a model of K' and vice versa. K' is a model companion of

K if K and K' are mutually model consistent and K' is model-complete.

Model completions and model companions (when they exist) are

unique. For this and other elementary properties see [5] and [6].

In everything that follows we shall use the word ring to mean ring with

identity. We call a ring £ regular (in the sense of von Neumann) if for

any x e R there exists y e R such that xyx=x. (A good general reference

for the algebra relevant to this paper is [3].) Notice that in any commuta-

tive ring the set of idempotents forms a Boolean algebra under the

operations eKJf=e+f—ef, eC\f=ef. Hence when we say that e is a

subidempotent off we mean that ef=e (i.e. eC\f=e). e is a minimal idem-

potent if e/=/implies that/is either e or 0. We shall say that a quantifier-

free formula y(alt ■ • • , an) holds on an idempotent e of a ring £ if the

formula obtained from y> by multiplying every term in y by e holds in £.
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Using nilpotent elements G. Cherlin has recently shown that the theory

of commutative rings has no model companion. We shall show that the

existence of nilpotents is the only obstacle, i.e. that the theory of com-

mutative rings without nilpotent elements has a model companion. We

are able to write down a set of axioms for this model companion; we also

show that it is the model completion of the theory of commutative regular

rings. It has been brought to our attention that this answers a question

posed in [7].

Definition.    Let K denote the theory of commutative rings without

nilpotent elements. Let K' have the following axioms:

(i) the axioms of K,

(ii) the axiom of regularity, i.e. Vx3y(xyx=x),

(iii) a statement that there are no minimal idempotents,

(iv) a set of statements saying that every monic polynomial has a root.

Theorem 1.    K' is the model companion of K.

Proof. First we establish the mutual model consistency of K and K'.

Since K' extends Kit suffices to show that any model of Kcan be embedded

in a model of K'. Let R he a model of K. Since R has no nilpotents we

know that the intersection of all prime ideals P of R is trivial (see [3]).

Hence we have an embedding R-^\~1p -^/-P-*Í1p Fp, where P varies

over all prime ideals of R and FP is the quotient field of RjP. Thus we

clearly have an embedding R^Yliei P% where each Ft is an algebraically

closed field, for some index set I. For each i e I let Xt be a copy of the

Cantor space, and let C¿ be the set of locally constant functions from Xt to

F{. (We say f:X~>F is locally constant if for each xeX there is an open

set in X which contains x and on which/is constant.) Let M=n¿6/ Ct.

There is a natural embedding F—>C¿ and hence an embedding of R into

M. It is not difficult to check that each C¿ is a model of K' and that

consequently M is a model of K'.

Next we must show that K' is model-complete. To do this we shall use

Robinson's test (see [5]). Let A<^B be two models of K'. Consider a

primitive formula

q>iax, ■ ■ ■ , an) = 3xí • • ■ 3xJ f\ <p} /\ f\ym\,
\j=l m=l        /

where the at axe in A, each (p¡ is an equality and each y>m is an inequality.

Assume B¥q>; we must show A¥q>. We will do this in two steps, the first

using axioms (ii) and (iv), the second axioms (ii) and (iii).

As above we can embed B in the product f/T B/P, where P varies over

Spec(i?), the set of prime ideals of B. Notice that since Dp L4nP)={0}

we can embed A into JT A/iA nP), and in fact we have a commutative
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diagram

A e £

Y Y

YlAKAnP)—»YlB/P

NowJT B¡P¥q>. But each A\(A n£) and £/£ is a field because every prime

ideal in a commutative regular ring is maximal [3], and is in fact algebraic-

ally closed by axiom (iv). Therefore by the model-completeness of the

theory of algebraically closed fields [5], \~\ A¡(Ar\P)¥(p. For if bx, • • • ,

bk in Y\ B¡P satisfy A>=i f/ALi Vm> we can> by this model-complete-

ness, let ax, • ■ • , an in F] A/(A n£) be such that, modulo any £ in Spec(£),

ax, ■ • ■ , ak satisfy the same cp/s and yTO's as do bly ■ ■ ■ , bk, then clearly

fi AKA ^^MÂ^aÂ V«)(«i.   • * » ak)-
\j=l m=l        /

This completes the first part of the proof; axiom (iv) has done its work,

and we will not use it again.

The second part of the proof consists of showing that T~[ A¡(Ar\P)tcp

implies AVcp. Before going on with this, we state the following

Lemma. Consider A as a subring of\~\A\(Ac\P), as above. For any

open sentence %(ûi, • * • , an) defined in A there exists an idempotent in A on

which x holds identically and on whose complement —¡x holds identically.

(Any idempotent e in \~[ A\(A C\P) has either a zero or a one corresponding

to each factor in the product. When we say x holds identically on e, we

mean that % holds at each factor where e takes the value 1.)

Proof. Since the idempotents in A form a Boolean algebra, it suffices

to prove the result for atomic statements.

Consider p(ax, • • •, an)=q(ax, • • • , an), where p and q are polynomials.

Since A is regular there is an x in A such that (p—q)x(p—q)=p—q. Let

f=x(p—q). Then ff=x(p—q)x(p—q)=x(p—q)=f Let e=l—f Then
ee=e. Now (p—q)e=(p—q)(l—f) = (p—q)—(p—q)=0. Therefore p=q

holds identically on e. On f=l—e, p(ax, ■ • • , an)^q(a1, • • • , an) holds

identically, since (p—q)xf=jf=f
Now suppose FJ Aj(Ac^P)¥cp; to show A\=<p we claim first that it

suffices to consider the case where tp contains only one negation, i.e. i=l.

For if 0m=Aí=i 9>ïA?f»> then for any m, 1_w_í, Y\AiiAr^P)^

3*i • ■ ■ lxkOm, whence by the assumption of the claim At3xx • ■ • 3xk6m.

Let cMpl, • • • , cmk satisfy 6m in A. Then, by the Lemma, dm(cml, ■••, cmk)

holds identically on  some idempotent em in A,  and  em7^0 because
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öm(cral, • ■ •, cmk) holds at some factor A/iAnP) due to the fact that dm

contains only one negation (just pick a factor in which fmicmX, • • • , cmk)

holds). Using the fact that there are no minimal idempotents in A we can

find disjoint idempotents fi^O such that 0m(cm x, ■ • • , cmk) holds

identically on/m. Then if

Ci = ¿ Cm.ifm + (1   —   U fm)Cl,i'
rn=l

say, ^1=93(0,, • • • , ck), proving the claim.

Next we claim that it suffices to consider the case where 99 contains no

negations at all. For consider 6=f\rj=x qjjAy such that TJ A¡(AnP)¥

3x, • • • 3**0. If n Al(AnP)¥6(bx, ■■■ , bk) then dfa, • • ■ , bk) holds in
some factor A/iAnP) because 0 contains only one negation. Therefore

since A-+A/iAnP) is surjective there exist cx, • ■ • , ck in A such that

Bfa, • ■ ■ , ck) holds in the same factor. Therefore if e is, by the Lemma,

the idempotent in A on which 6 fa, • • ■ , ck) holds, e^O; if we could find

dx, ■ • • , dk in A such that A¥/\rj=x (p¡idx, • ■ • , dk), then we could set

xi=eci+il—e)di and conclude A¥0ixx, • • • , xk), finishing the proof.

So suppose that TJ A/iAnP)\=lxx ■ ■ ■ 3xkiAri=i <Pi)- Then Aj=1 cp¡ is

solvable modulo any (/InP). Now {AriP}, as P varies over Spec(i?), in-

cludes all maximal (=prime, by regularity) ideals in A. For given a prime

ideal Q in A, we claim that QB is a proper ideal in B. If not there exist

qx, ■ ■ • ,qn in Q and bx, ■ • ■ , bn in B such that qxbx + - • -+qnbn=l;

therefore, if Qx denotes the ideal in A generated by qx, • ■ ■ , qn, we have

QXB=B. But Qx is principal (see [3]) with generator q, say. So qB=B,

implying that q is a unit and therefore QX=A, so Q=A, contradicting the

properness of Q. Thus QB is a proper ideal in B such that QBC\A = Q.

If by Zorn's lemma we let P be a proper ideal in B which is maximal with

respect to this property, then P is a maximal ideal in B by the maximality

of QinA, and Ar\P=Q.
Thus Arj=x cpj is solvable modulo all maximal ideals in A. We can

assume y¡ has the form p¡=0 for some polynomial p¡; then if for any

/c-tuple b=bx, ■ • ■ , bk of elements of A we let

N(b) = {P e SpecOO | pAß), ■■■ , Prib) e P},

{Nih)} covers Spec(^(). Now

Nm= D {P e SpeciA) \p¿b) eP};
¿=i

if by regularity c¡ is an element of A such that pjib)cjpjib)=pjib), then
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Pjfycj is an idempotent in A and

{£ e Specie) | Pj(b) e £} = {£ e Spec(A) | P¡(b)c¡ e £}

= {Pe Specie) | (1 -Pj(b)Cj)£P},

by the primeness of £ and the fact that pj(b)(l—p}(b)cj)=0. This last set

is by definition an open set in the Zariski topology on Spec(A); hence

each /V(i,) is open. By the compactness of the Zariski topology (see e.g. [3]),

a finite number of A^j's cover Spec(A). It is now clear how to piece together

Xx, • • • , xk in A such that A¥Arj=i 9>j(*i, ' ' ', xk). This completes the

proof.

For any set S of primes let Ch(5) be the following set of axioms:

{p is not invertible|/? e S}v{p is invertible|/> ^ S}. For each infinite set of

primes S let K's = K'KjCh(S). For each finite set of primes S let

K'Si0 = K' U Ch(S) ujrip^ OJ,
\peS 1

K's_, = K' U Ch(S) U (n P = OJ.

Theorem 2. The complete extensions of K' are precisely the K's,

K's.o, K's.i-

Proof. Define Ks, Ks 0, Kstl from K in the same way that K's, K's.0,

K's.x were defined from K'. A trivial modification of the proof of Theorem

1 shows that Ks, Ks,0, KS1 have model companions K's, K's,0, K'SA

respectively. To finish the proof it suffices to show that K's, K's,0, K's¡1

are complete because any complete extension of K' must extend one of

these. To establish this completeness it suffices to show that all the Ks,

Kso, and Ks x have the joint embedding property (see [6]).

First consider Ks 0. By Lowenheim-Skolem considerations it suffices to

consider two countable models Rx and £2 of Ks 0. For eachp e Skj{0} let

Fv be the algebraically closed field of characteristic p and transcendence

degree 2*°. Let £=nBeSU{o} (TLe«. Fp)- Then ^ is a model of Ks 0,

and Rx and £2 can be embedded in £ since for /= 1, 2 at least one factor of

characteristic p occurs in the representation £¿—*-Oij PjP-> f°r each

peSv{0}.

A similar argument without the factors of characteristic zero handles

Finally consider Ks, S infinite. Let £ be as above. Any countable model

of Ks is a subring of a countable product of £„'s, p e S, or of £j,'s,

p e Su{0}. The latter case may be handled as above. For the former case

it suffices to show that £i=n»e.s (iliem Fp) can be embedded in £.
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Since S is infinite M={1, 2, 3, • • •}<=-/?! is a multiplicative set not con-

taining zero. Let P be a prime ideal in the complement of M. Then Rx/P

is an integral domain of characteristic zero, with quotient field a subfield

of F0. We have a homomorphism p:Rx^>-F0. Then the mapping which

takes {XjJ^^eñ, to {xpi}peS<Jl0],iEia, where x0,¿ = p(x) and ;£„,,=

x„t for p e S, is an embedding of Rx into R.

Remark. These results should be compared with the situation for

fields, where we have as model companion the theory of algebraically

closed fields, with complete extensions corresponding to the primes and

zero.

Theorem 3.    K' is decidable.

Proof. If <p is not a theorem of K' then -199 is a theorem of some

K's, K's.o, or K's.i and consequently a theorem of some finite extension of

K' contained in some K's, K'SA), or K'SiX. Since K' is axiomatized, each of

these finite extensions is axiomatized, and these finite extensions can be

effectively listed, K' is decidable.

Theorem 4. Let K0 be the theory of commutative regular rings. Then K'

is the model completion of K0.

Proof. As in the proof of Theorem 1, since every regular ring is

without nilpotents, K0 and K' are mutually model consistent. Therefore

K' is the model companion of K0. Notice that K' extends K0. Therefore

to show that K' is the model completion of K0 it suffices to show that K0

has the amalgamation property (see [2]). This follows from a theorem of

P. M. Cohn [1, Theorem 4.7].

Remark. K has no model completion, because the amalgamation

property fails for K. For example let S be the ring of all real valued

continuous functions on (0, 1) which extend to continuous functions on

[0, 1]. Let Rx he the ring of all real valued functions on (0, 1) and let

R2 be the ring of all real valued functions on [0, 1]. Then S<^RX and

S<^R2. Consider the function fix)=x in S.f is invertible in Rx and is a

zero divisor in R2. Hence Rx and R2 cannot be amalgamated over S.

We also remark that the failure of the amalgamation property for K

implies that K' does not admit elimination of quantifiers. However if we

augment the language by a function symbol / and state the axiom of

regularity in the form V xixfix)x=xAfix)xfix)=fix)), then fix) is

uniquely determined by x in any commutative regular ring, so fix) is

definable in the unaugmented language, and therefore K' is model-complete

in the new language (by the above), and hence the model completion of

K0 in the new language. But K0 in the new language is a universal theory,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1973]     MODEL  COMPANION   OF  THE  THEORY  OF  COMMUTATIVE  RINGS       387

so by a theorem of A. Robinson [5], K' in the new language admits

elimination of quantifiers.
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