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Abstract Assuming that the relativistic universe is homo-
geneous and isotropic, we can unambiguously determine its
model and physical properties, which correspond with the
Einstein general theory of relativity (and with its two spe-
cial partial solutions: Einstein special theory of relativity and
Newton gravitation theory), quantum mechanics, and obser-
vations, too.
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1 Introduction

In September 28, 1905 Albert Einstein published the article
Zur Elektrodynamik bewegter Körper (Einstein 1905) which
contained the special theory of relativity.

Einstein in his special theory of relativity—which rep-
resents the theory of physical homogeneous and isotropic
space and time—discovered the essential connection of
the four-dimensional physical homogeneous and isotropic
space-time.

This connection is expressed by

Lorentz transformation (group) (Lorentz 1904):

x′ = x − vt√
1 − v2

c2

, (1a)

y′ = y, (1b)
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z′ = z, (1c)

t ′ = t − v

c2 x√
1 − v2

c2

, (1d)

where x′, y′, z′ are the space co-ordinates and t ′ is the time
in the inertial system, which move relative to the observer at
the velocity v;x, y, z are the space co-ordinates and t is the
time in the observer’s own inertial system.

In 1907–1915 Einstein generalised the special theory of
relativity on the phenomenon of gravity and elaborated the
general theory of relativity, in which he discovered the es-
sential connection of matter, space and time as the unified
physical theory of matter-space-time.

The mathematical and physical fundament of the Ein-
stein theory of general relativity represents the Einstein field
equations.

On Thursday November 25, 1915 at the meeting of the
Royal Prussian Academy of Sciences in Berlin1 Einstein pre-
sented the article Die Feldgleichungen der Gravitation (Ein-
stein 1915), which contained the final version of

Einstein field equations

Gim = −κ

(
Tim − 1

2
gimT

)
, (2)

where Gim is the Einstein or conservative tensor, κ Ein-
stein gravitational constant [κ = (8πG) /c4], Tim energy-
momentum tensor, gim metric or fundamental tensor, and
T scalar or trace of energy-momentum tensor (T ≡ T i

i ).
Discovery of the general relativity by Einstein has a large

significance for the cosmology, too. Einstein was well aware

1Meetings of the Royal Prussian Academy of Sciences in Berlin took
place on Thursdays.
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of it; therefore he attempted to apply the field equations (2)
to the whole universe.

Einstein in the spirit of tradition anticipated that the rel-
ativistic universe is homogeneous, isotropic and static. The
field equations (2), applied to the whole homogeneous and
isotropic relativistic universe do not give a static solution.
Therefore, Einstein tried to modify (generalise) them so that
the application to the whole homogeneous and isotropic rel-
ativistic universe would result in a static solution.

The only possible generalisation of the Einstein field
equations (2) which, when applied to the whole homoge-
neous and isotropic relativistic universe gives a static solu-
tion and does not violate the principles of general relativity,
is an addition by the supplement, representing a hypothetical
energy of the physical vacuum.

On Thursday February 8, 1917 at the meeting of the
Royal Prussian Academy of Sciences in Berlin Einstein
presented his article Kosmologische Betrachtungen zur all-
gemeinen Relativitätstheorie (Einstein 1917a), which con-
tained historically first model of the relativistic universe,
which is a solution the theoretically most possible gener-
alised version of

Einstein modified field equations

Gμν − λgμν = −κ

(
Tμν − 1

2
gμνT

)
, (3)

where λ is the Einstein cosmological constant.
The Einstein supplementary cosmological member λgμν

in the Einstein modified field equations (3) can have pos-
itive, negative, or zero values, depending on the value of
Einstein adjustable cosmological constant λ, which can ob-
tain all hypothetically (mathematically) possible values, i.e.:
λ > 0, λ < 0, or λ = 0.

The Einstein field equations (2), or (3), represent a non-
linear system of ten partial differential equations of the sec-
ond order for ten unknown functions of four variables. For
their solution general method does not exist.

The Einstein theory of general relativity is logically sim-
ple, complete and unambiguously determined theory, which
cannot be modified. The general theory of relativity is either
valid or not, another possibility does not exist, tertium non
datur.

Einstein drew the attention to this relevant property of the
general theory of relativity, in the paper What is the theory
of relativity? which was first published in the London Times
in November 28, 1919. Einstein wrote in it: “The chief at-
traction of the theory lies in its logical completeness. If a
single one of the conclusions drawn from it proves wrong, it
must be given up; to modify it without destroying the whole
structure seems to be impossible.” (Einstein 1919b).

Thirty years later in the article On the Generalised The-
ory of Gravitation Einstein wrote: “In favour of this the-

ory are, at this point, its logical simplicity and its “rigid-
ity”. Rigidity means that theory is either true or false, but
not modifiable.” (Einstein 1950).

The logical simplicity, completeness and “rigidity” of the
Einstein general relativity theory are manifested in the Ein-
stein field equations, too.

The Einstein field equations (2) contain only one ad-
justable parameter: the Newton gravitation constant G,
whose value is gradually being precised on the basis of ob-
servations.

The Einstein field equations (3) contain two adjustable
parameters: Besides the Newton gravitational constant G,
contain even the Einstein cosmological constant λ, which
can be adjusted, based on observation, or determined on the
basis of any physical principle.

The Einstein theory of general relativity at present time
is the most verified physical theory. By many years of ob-
servations of the binary pulsar PSR 1913 + 16, which was
discovered in July 2, 1974 by Russell A. Hulse and Joseph
H. Taylor, Jr.,2 the general relativity is verified with the un-
certainty 10−14 (Hawking and Penrose 1996, p. 61; Penrose
1997, p. 26).

According to Roger Penrose “. . . this accuracy has ap-
parently been limited merely by the accuracy of clocks on
earth.” (Hawking and Penrose 1996, p. 61).

All the predictions of the general theory of relativity—
and its special partial solution: the special theory of relativity
—have been confirmed.

Just one of the predictions of the general theory of rela-
tivity: prediction of the gravitational waves was confirmed
only indirectly.

The gravitation field on the Earth and in its near sur-
roundings is relatively weak. The velocities of matter objects
on the Earth and in its near surroundings—in comparing
with boundary velocity of signal propagation c—are rela-
tively small. Therefore, when determining the matter-space-
time properties of matter objects on the Earth and in its near
surroundings in most cases we suffice with the Newton grav-
itation theory and the classical mechanics.

The differences of calculating mater-space-time proper-
ties in the region of Earth which we are making using the
Newton gravitation theory or the classical mechanics and us-
ing the Einstein general relativity or special relativity are rel-
ative small, prevailingly irrelevant, or even—using common
measuring instruments—non-measurable. For example—
according to the general theory of relativity—the relativis-
tic mass of matter objects on the surface of Earth, as a re-
sult of the local gravitational field, is higher about approxi-
mately 7 × 10−10 of their own (rest, Newtonian or classical-
mechanical) mass.

2Russell A. Hulse and Joseph H. Taylor, Jr. were “for the discovery of
a new type of pulsar, a discovery that has opened up new possibilities
for the study of gravitation” awarded the Nobel Prize in Physics 1993.
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However, if we are to achieve results with accuracy pro-
vided by current top observational technology, the Newton
gravitational theory and the classical mechanics (which ab-
stracts from relativistic effects) is not sufficient. In these
cases we have to take into account general-relativistic ef-
fects caused by the local gravitational field, and with mov-
ing physical objects we have to take into account special-
relativistic effects.

At present time the special-relativistic and general-
relativistic effects are not only a matter of physical obser-
vations and experiments, but they are exploited in some
high technologies. One of them is for example the American
satellite navigation system in common commercial use, best
known on the acronym GPS (Global Positioning System).

2 The equations of homogeneous and isotropic
relativistic universe dynamics

The mathematical-physical fundament of the relativistic
cosmology is represented by the Friedmann equations of
the homogeneous and isotropic relativistic universe dynam-
ics (Friedmann 1922, 1924), which—using the Robertson-
Walker metrics (Robertson 1935, 1936a, 1936b; Walker
1936)—can be expressed in the following form:

ȧ2 = 8πGρa2

3
− kc2 + �a2c2

3
, (4a)

2aä + ȧ2 = −8πGpa2

c2
− kc2 + �a2c2, (4b)

p = wε, (4c)

where a is the gauge factor, ρ mass density, k curvature in-
dex, � cosmological constant, p pressure, w state equation
constant, and ε energy density.

The relativistic cosmology is based on the assumption of
the homogeneous and isotropic distribution of matter objects
in space. “The homogeneity and isotropy of the space means
that we can choose such a cosmological time that in each
moment the space metrics is the same in all of its points and
in all directions.” (Landau and Lifshitz 1988, p. 458).

There exist only three geometric spaces of constant cur-
vature space:

(a) Spherical (Riemannian) geometric space with constant
positive space curvature.

(b) Hyperbolic (Lobachevskian) geometric space with con-
stant negative space curvature.

(c) Flat (Euclidean) geometric space with constant zero
space curvature.

The FRW equations (4a), (4b) and (4c) are an applica-
tion of the Einstein modified field equations (3) for all three
geometrical spaces with constant curvature space, i.e. they

have solutions with curvature index k = +1, k = −1, and
k = 0; with all mathematically possible values of cosmolog-
ical constant �, i.e. with � > 0,� < 0 and � = 0; and with
all mathematically possible values of state equation constant
w, i.e. with w > 0, w < 0 and w = 0.

The logical simplicity, completeness and “rigidity” of the
Einstein theory of general relativity, combined with the met-
rics with constant curvature of space, gives possibility on the
unambiguously theoretical determination of the model and
physical properties of the homogeneous and isotropic rela-
tivistic universe.

It follows from these facts:
Neither the Einstein field equations (2), nor the Einstein

modified field equations (3), applied to the whole relativis-
tic universe, do not give a static solution; therefore, the rela-
tivistic universe principally cannot be static.3

The FRW equations (4a), (4b) and (4c) with the values of
the curvature index k = +1, k = −1, k = 0, the cosmolog-
ical constant � > 0,� < 0,� = 0, and the state equation
constant w > 0, w < 0, w = 0, describe an infinite number
of the hypothetical homogeneous and isotropic relativistic
universes in a linear approximation, in which we abstract
from their relativistic properties, but do not abstract from
their expansion velocity. This is the fact which allows theo-
retically to identify (select) unambiguously from an infinite
set of mathematically possible solutions of the FRW equa-
tions of the linearized model of expansive homogeneous and
isotropic relativistic universe, describing the expansive ho-
mogeneous and isotropic relativistic universe in the first (lin-
ear) approximation.

According to the special theory of relativity, the mat-
ter objects can expand at velocity v in the interval (0, c),
therefore, the dynamic homogeneous and isotropic relativis-
tic universe which expands in finite distances at velocities
v ≤ c, principally cannot be infinite.

The finite dynamic homogeneous and isotropic relativis-
tic universe is (must be) closed in space-time manner, there-
fore, in principle, it cannot be contractile.

In the expansive homogeneous and isotropic relativis-
tic universe the energy density of matter objects decrease,
the energy density of the hypothetical physical vacuum en-
ergy, determined by the cosmological constant λ, does not
change. Therefore, the law of energy-momentum conserva-
tion is valid in it only when the λ = 0.

3Einstein in 1917 on the base of the field equations (3) constructed
a model of the spherical static homogeneous and isotropic relativistic
universe (Einstein 1917a). However, Arthur S. Eddington in the arti-
cle On the Instability of Einstein’s Spherical World (Eddington 1930)
showed that not even Einstein field equations (3), applied to the whole
homogeneous and isotropic relativistic universe, do not give static, but
only quasi-static solution, because the Einstein model of spherical sta-
tic homogeneous and isotropic relativistic universe is extremely unsta-
ble, therefore, any small fluctuation converted it into a dynamic.
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All models of hypothetical spherical (Riemannian) ex-
pansive homogeneous and isotropic relativistic universes,
which are the solution of the FRW equations (4a), (4b) and
(4c) with k = +1 and � = 0, have the total dimensionless
density of matter objects 	tot > 1.

From the Schwarzschild solution of the Einstein’s field
equations (Schwarzschild 1916) follow unambiguously that
the hypothetical expansive homogeneous and isotropic rel-
ativistic universes with the total dimensionless density of
matter objects 	tot > 1 would in the initial period of its ex-
pansive evolution have to expand at velocities v > c.

However, according to the special theory of relativity,
the matter objects in principle cannot expand at the hyper-
velocities.

It means that an expansive homogeneous and isotropic
relativistic universe in principle cannot have total dimen-
sionless density 	tot > 1, i.e. in the first (linear) model ap-
proximation, it cannot have constant positive curvature of
space, determined by the curvature index k = +1.

The volumes of spaces of the hypothetical hyperbolic
(Lobachevskian) relativistic universes with the negative cur-
vature space are determined by the divergent integral, there-
fore, they are an infinite (Friedmann 1924). It means al-
though that they have total dimensionless density 	tot < 1,
at a finite distance from observers they would expand at ve-
locities v > c. But that—according to the special theory of
relativity—in principle it is not possible.

It means that an expansive homogeneous and isotropic
relativistic universe in the first (linear) approximation in
principle cannot have a constant negative space curvature,
determined by the curvature index k = −1.

In the model of the expansive homogeneous and isotropic
relativistic universe with the constant zero space curvature
the Euclid geometry is valid.

For the Euclidean sphere is valid the known relation:

V = 4

3
πr3, (5)

where V is the volume, and r radius.
For the mass m of the Euclidean homogeneous matter

sphere the relation:

m = 4

3
πr3ρ (6)

is valid. Therefore, using the relation (6) and the relation:

a := r, (7)

the relation for the mass of a flat (Euclidean) expansive
homogeneous and isotropic relativistic universe in the first
(linear, Newtonian or classical-mechanical) approximation
can be determined:

m = 4

3
πa3ρc, (8)

where ρc is the critical mass density.
The FRW equations (4a), (4b) and (4c) fulfil the restric-

tive condition, determined by the relations (8), only with
k = 0, � = 0 and w = −1/3 (Skalský 2004).

It means that the flat (Euclidean) expansive homoge-
neous and isotropic relativistic universe (ERU) model—
determined by the FRW equations (4a), (4b) and (4c) with
k = 0, � = 0, and w = −1/3 (Skalský 1991)—is the only
one model of the expansive homogeneous and isotropic rela-
tivistic universe with the flat (Euclidean) geometry (Skalský
2004).

3 The model of a flat (Euclidean) expansive
non-decelerative non-accelerative homogeneous and
isotropic relativistic universe

Using the FRW equations (4a) and (4b) with k = 0, � = 0,
and total zero energy state equation (Skalský 1991)

p = −1

3
ε, (9)

we can determine the fundamental matter-space-time para-
meters of the ERU model, i.e. the universe model, which
describes observed expansive homogeneous and isotropic
relativistic–quantum-mechanical universe in the linear ap-
proximation, in which we abstract from its relativistic and
quantum-mechanical properties (Skalský 1991):

m = c2

2G
a = c3

2G
t, (10)

where t is the (cosmological) time (age of universe).
According to the relations (10) the fundamental parame-

ters of ERU model, i.e. the mass (of matter objects) m, gauge
factor (radius) a, and (cosmological) time t , grow linearly.

From the relations (10) result these increases of the fun-
damental parameters of ERU model:

increase of universe mass


m = c2

2G

a = 6.73297 × 1026 kg m−1, (11)


m = c3

2G

t = 2.01849 × 1035 kg s−1, (12)

increase of gauge factor


a = 2G

c2

m = 1.48522 × 10−27 m kg−1, (13)


a = c
t = 2.99792458 × 108 m s−1, (14)

increase of cosmological time


t = 2G

c3

m = 4.95412 × 10−36 s kg−1, (15)
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t = 1

c

a = 3.33564095 × 10−9 sm−1. (16)

In the relations (10) each from three fundamental mater-
space-time parameters of the ERU model—i.e. the mass of
universe m, the gauge factor a, and the cosmological time
t—is unambiguously bounded linearly with other two fun-
damental parameters. Through FRW equations (4a), (4b)
and (4c) with k = 0, � = 0 and w = −1/3, each from fun-
damental parameters of the ERU model m,a, and t , is un-
ambiguously linearly bounded and with parameters ρ,p and
ε. Therefore, if in the ERU model we determine the relation
of any next derived parameter with an arbitrary from men-
tioned parameters m,a, t, ρ,p and ε, at the same time are
unambiguously determined and its relations with all other
fundamental and derived parameters of the ERU model. It
makes possible a simple introduction of further derived pa-
rameters of the ERU model, and gives possibility to clarify
its properties.

The parameters of the ERU model, which are determined
by the relations (9) and (10), can be extended by next derived
parameters: about the energy (of matter objects) E, deter-
mined by the Einstein relation E = mc2 and by the Hubble
parameter H , determined by the relation (45).

For better transparency, the parameters of the ERU model
a, t,H,m,E,ρ, ε, and p, are presented in all possible rela-
tions and variations (Skalský 2004):

a = ct = c

H
= 2Gm

c2
= 2GE

c4
=

√
3c2

8πGρ
=

√
3c4

8πGε
,

(17a)

a2 = − c4

8πGp
,

t = a

c
= 1

H
= 2Gm

c3
= 2GE

c5
=

√
3

8πGρ
=

√
3c2

8πGε
,

(17b)

t2 = − c2

8πGp
,

H = c

a
= 1

t
= c3

2Gm
= c5

2GE
=

√
8πGρ

3
=

√
8πGε

3c2
,

(17c)

H 2 = − c2p

8πG
,

m = c2a

2G
= c3t

2G
= c3

2GH
= E

c2

=
√

3c6

32πG3ρ
=

√
3c8

32πG3ε
, (17d)

m2 = − c8

32πG3p
,

E = c4a

2G
= c5t

2G
= c5

2GH
= c2m =

√
3c8

32πG3ρ

=
√

3c10

32πG3ε
, (17e)

E2 = − c10

32πG3p
,

ρ = 3c2

8πGa2
= 3

8πGt2
= 3H 2

8πG
= 3c6

32πG3m2

= 3c8

32πG3E2
= ε

c2
= −3p

c2
, (17f)

ε = 3c4

8πGa2
= 3c2

8πGt2
= 3c2H 2

8πG
= 3c8

32πG3m2

= 3c10

32πG3E2
= c2ρ = −3p, (17g)

p = − c4

8πGa2
= − c2

8πGt2
= −c2H 2

8πG

= − c8

32πG3m2
= − c10

32πG3E2
= −c2ρ

3
= −1

3
ε. (17h)

In the relations (17a)–(17h) we can see, that all (funda-
mental and derived) parameters of the ERU model are un-
ambiguously linearly bounded each to other, include the re-
lation for the pressure p and the energy density (of mat-
ter objects) ε, representing the total zero energy state equa-
tion, which is determined by the relation (9), and presented
among the relations (17h), too.

In the cosmological literature instead of the (cosmologi-
cal) time (age of universe) t sometimes is used and the di-
mensionless conform time η, defined by the relation:

η = ±c

∫
dt

a(t)
. (18)

Therefore, any chosen parameters of the ERU model, ex-
pressed in the dimensionless conform time η, determined by
the relation (18), are shown in the Table 1.

4 The observed and model properties of the universe

Based on the observations at present time we reliably know
that the observed universe at smaller cosmological distances
is non-homogeneous and anisotropic, structured into a hi-
erarchical gravitationally bound rotating systems (HGRSs)
with supercritical mass density and only one resultant cen-
tre of gravity. HGRSs form (in case of neglecting the smaller
systems): the galaxies, clusters of galaxies and super clus-
ters.

From these facts, it results unambiguously, that in smaller
cosmic distances (i.e. in the range of the largest HGRSs), the



378 Astrophys Space Sci (2010) 330: 373–398

Table 1 Parameters of the expansive homogeneous and isotropic relativistic universe model with the total zero energy state equation p = − 1
3 ε

(0 < η < ∞)

Curvature index k Gauge factor a Cosmological time t Hubble parameter H Energy density ε Dimensionless density 	

0 ct0e
η = ct t0e

η = a
c

e−η

t0
= 1

t
3c2e−2η

8πGt2
0

= 3c2

8πG
1
t2 1

Note: According to Skalský (1991)

Table 2 Selected cosmological parameters

Description Symbol WMAP-only WMAP + BAO + SN

Selected Parameters for Standard �CDM Model

Age of universe t0 13.69 ± 0.13 Gyr 13.72 ± 0.12 Gyr

Hubble constant H0 71.9+2.6
−2.7 km s−1 Mpc−1 70.5 ± 1.3 km s−1 Mpc−1

Redshift of decoupling z∗ 1090.51 ± 0.95 1090.88 ± 0.72

Age of decoupling t∗ 380081+5843
−5841 yr 376971+3162

−3167 yr

Selected Parameter for Extended Models

Total density 	tot 1.099+0.100
−0.085 1.0050+0.0060

−0.0061

Note: According to Hinshaw et al. (2009)

universe has the supercritical mass density. Because only un-
der this condition can exist the HGRSs, in which the gravi-
tational interaction of matter objects is compensated by their
inertial rotational motion.

In larger cosmic distances (than are dimensions of the
largest HGRSs), observed universe cannot have supercriti-
cal mass density. Because if it had supercritical mass den-
sity, HGRSs would have to exist with larger dimensions than
super clusters have, i.e. they would have to exist super-super
clusters, super-super-super clusters. . . etc. What would
we—with the present level of observational techniques—
undoubtedly observe.

In larger cosmic distances (than the dimensions of the
largest HGRSs), observed universe is expansive, homoge-
neous and isotropic.

At present time with relatively high accuracy we know
some of the physical and model parameters of the observed
universe. For example: In 2009 G. Hinshaw et al. published
the article Five-year Wilkinson Microwave Anisotropy Probe
(WMAP) observations: Data processing, sky maps, and ba-
sic results (Hinshaw et al. 2009) with the cosmological pa-
rameters derived from the WMAP measurements, and with
the cosmological parameters, derived from the WMAP data
combined with the distance measurements from the Type
Ia Supernovae (SN) and the Baryon Acoustic Oscillations
(BAO). Some of them you can see in Table 2.

The observed expansive homogeneous and isotropic
relativistic–quantum-mechanical universe represents a max-
imum actual whole of physical reality, which from a macro-
physical point of view has the relativistic properties and

from a micro-physical point of view has the quantum-
mechanical properties.

The relativistic and quantum-mechanical properties are
complementary. The quantum-mechanical objects (parti-
cles) generate the relativistic macro-world and vice versa,
the particles can exist only in the relativistic macro-world.

The observed universe from the relativistic point of
view represents the relativistic matter-space-time (or the
matter-spacetime), in which the matter objects determine
the properties (geometry) of the space-time, and the space-
time has influence on the relativistic properties and move-
ment of matter objects. Therefore, to complete observed
physical properties (and with it unambiguously bounded
model properties), of observed expansive homogeneous and
isotropic relativistic–quantum-mechanical universe we need
to know:

(a) total mass (energy) of the universe, or:
(b) spacetime properties of the universe.

Using the total energy of the universe, or using the space-
time properties of the universe, we can determine the model
and the physical matter-spacetime properties of the observed
universe.

The FRW equations (4a), (4b) and (4c) describe the mod-
els of homogeneous and isotropic relativistic universe in the
first (linear) approximation.

In the observed expansive homogeneous and isotropic
relativistic–quantum-mechanical universe in the first (linear)
approximation the Newtonian relations are valid.

In the ERU model the Euclid geometry is valid and the
same geometry is valid in the Newton theory of general
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gravitation. The ERU model and the Newton gravitation the-
ory describe the physical macro-world in the linear approx-
imation (which abstracts from the relativistic and quantum-
mechanical properties). It means that the ERU model is a
special partial solution of the Newton gravitational theory.

We can convince ourselves about it:
In the Newton gravitational theory

escape velocity

vesc =
√

2Gm

r
. (19)

If in the relation (19) for vesc we put the velocity c, we
receive the relation for

Schwarzschild critical (gravitational) radius

rc = 2Gm

c2
. (20)

If in the relation (20) instead rc we put the gauge factor a,
we receive:

a = 2Gm

c2
,

given among the relations (17a).
From the relations (17a) and (20) unambiguously results:

The ERU model is also a special partial solution of the first
non-trivial spherical symmetrical exterior (vacuum) solu-
tion of the Einstein field equations, found by Karl Schwarz-
schild (1916).

Using the relation (6) we can rewrite the relation (20) into
the form:

rc =
√

3c2

8πGρc

. (21)

If in the relation (21) instead rc we put the gauge factor
a we get the relation:

a =
√

3c2

8πGρc

,

given among the relations (17a).
From the relation (21) it results:

ρc = 3c2

8πGr2
c

. (22)

If in the relation (22) instead rc we put the gauge factor a,
we get the relation:

ρc = 3c2

8πGa2
,

given among the relations (17f).

According to the Einstein general relativity, for the total
mass mtot of an arbitrary Euclidean homogeneous matter
sphere with the radius r is valid the relation:

mtot = 4

3
πr3

(
ρ + 3p

c2

)
. (23)

In the expansive homogeneous and isotropic relativistic
universe the positive energy of the matter objects is exactly
compensated by their negative gravitational energy. It means
that: “. . . the total energy of the universe is exactly zero.”
(Hawking 1988, p. 129). Therefore, for the total energy Etot

and the total mass mtot of the expansive homogeneous and
isotropic relativistic universe is valid the relations:

Etot = mtot c
2 = 0. (24)

For the total mass of the expansive homogeneous and
isotropic relativistic universe in the linear approximation
mtot —with the non-zero values of the gauge factor a and
the mass density ρ—can be valid:

mtot = 4

3
πa3

(
ρ + 3p

c2

)
= 0 (25)

only on the condition (Skalský 2002, 2004):

ρ + 3p

c2
= 0. (26)

For the mass density ρ and the energy density ε is valid
the relation:

ε = ρc2, (27)

therefore, the relation (26) we can—using the relation
(27)—rewrite into the form:

ε + 3p = 0. (28)

If in the relation (28) we express the value of pressure p,
we receive: the total zero energy state equation

p = −1

3
ε,

which is shown above as the relation (9) and among the re-
lations (17h).

From the above mentioned unambiguously results: The
ERU model is only one non-formal model of the expansive
homogeneous and isotropic relativistic–quantum-mechani-
cal universe in the linear approximation with the total zero
and local non-zero mass (energy).

The ERU model, determined by the FRW equations (4a),
(4b) and (4c) with k = 0, � = 0 and w = −1/3, is the only
model of the expansive homogeneous and isotropic relativis-
tic universe in the linear approximation with non-zero mass
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density ρ in which the total energy Etot is unchanged. It
means that: The ERU model is the only non-formal model
of the expansive homogeneous and isotropic relativistic uni-
verse in the linear approximation in which the law of energy
conservation is valid.

In 1973, Edward P. Tryon in the journal Nature published
an article Is the Universe a Vacuum Fluctuation? in which he
postulates the hypothesis according to which the observed
relativistic–quantum-mechanical universe is a vacuum fluc-
tuation (Tryon 1973).

The Tryon hypothesis is based on a combination of
quantum-mechanical properties of the physical vacuum and
mathematical-physical properties of the expansive homoge-
neous and isotropic relativistic universe with the total zero
energy.

The ERU model is the only one non-formal model of the
expansive homogeneous and isotropic relativistic–quantum-
mechanical universe in the linear approximation, which has
a total mass (energy) equal to zero. It means that: The ERU
model is the only model of the universe, which in the linear
approximation describes the expansive homogeneous and
isotropic relativistic–quantum-mechanical universe, which
may be regarded as a vacuum fluctuation (Skalský 2002).

The expansive homogeneous and isotropic relativistic–
quantum-mechanical universe with the total zero mass (en-
ergy) cannot have any other acceleration than zero.

The expansion of the homogeneous and isotropic relativ-
istic–quantum-mechanical universe in the linear model ap-
proximation conforms to the Newton general gravity law.

The negative acceleration (i.e. deceleration), of the matter
objects a on the surface of a Euclidean homogeneous matter
sphere is determined by the relation:

a = −Gm

r2
. (29)

If in the relations (29) we substitute the mass of the
Euclidean homogeneous matter sphere m by the total mass
mtot = 0 and the radius r by the gauge factor a, we get:

a = −Gmtot

a2
= 0. (30)

The relation (30) can be expressed using the relation (25),
too.

If in the relation (30) instead mtot = 0 we put the relation
(25), we obtain:

a = −4

3
πGa

(
ρ + 3p

c2

)
= 0. (31)

The relations (30) and (31) mathematically and physi-
cally express that what we already knew thanks to a sim-
ple, trivial consideration: The ERU with the total energy
Etot = mtot c

2 = 0 throughout the whole expansive evolu-
tion expands at a constant velocity.

The acceleration a in the relation (29) can be zero only
under condition that the quantity which we put instead of the
mass m is zero. It means that: The ERU model is the only
model of expansive homogeneous and isotropic relativistic–
quantum-mechanical universe with non-zero gauge factor a,
non-zero mass density ρ and acceleration a = 0.

In the expansive homogeneous and isotropic relativis-
tic universe with total zero energy gravitational interaction
of matter objects is compensated by their expansion, deter-
mined by the pressure p in the relations (17h), i.e. the matter
objects in larger distances (than are the dimensions of the
largest HGRSs), are moving away from each other by a con-
stant velocity. Therefore: In the expansive homogeneous and
isotropic relativistic universe with the total energy Etot = 0
gravitational interaction of matter objects does not occur,
it affects only their special-relativistic properties that are a
result of their relative uniform rectilinear motion.

The same conclusion we reach also by identifying the
spacetime properties of the universe.

According to the observations, the universe expands in
finite distances by finite velocities (Hubble 1929).

According to the Einstein special theory of relativity
(Einstein 1905) physical objects may expand at velocities
v in the interval (0, c). Therefore: A homogeneous and
isotropic relativistic universe in principle cannot expand at
velocity v > c.

An expansive homogeneous and isotropic relativistic uni-
verse in which the physical objects in finite distances expand
at velocities v ≤ c is finite in the space-time manner.

From the fact that the observed finite expansive homo-
geneous and isotropic relativistic–quantum-mechanical uni-
verse from the relativistic point of view represents mater-
space-time, unambiguously result: The finite expansive ho-
mogeneous and isotropic relativistic universe is closed in
space-time (Einstein 1919a).

A backward extrapolation of evolution of the expansive
homogeneous and isotropic relativistic universe from the
relativistic point of view leads to a geometrical point (“be-
ginning” limit cosmological singularity).

From the backward extrapolation of the universe expan-
sion it unambiguously results: The finite expansive homo-
geneous and isotropic relativistic universe can be closed in
spacetime only in one possible way: by the “initial” limit
cosmological singularity.

The finite expansive homogeneous and isotropic relativis-
tic universe can be limit-singularly closed in space-time only
if during the whole expansive evolution in the maximum
(limit) distance from each observer expands at the maximum
(limit) velocity of signal propagation c, i.e. only on the as-
sumption if the gravitational properties of matter objects in
it are exactly compensated by their expansion and due to
their relative movements only their special-relativistic prop-
erties are manifested.
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These properties result also from the fact that observed
expansive relativistic universe in larger distances (than the
dimensions of the largest HGRSs) is homogeneous and
isotropic.

The expansive relativistic universe can be homogeneous
and isotropic only on the assumption that during the whole
expansive evolution it expands at the maximum possible
velocity of signal propagation c. Therefore, the maximum
(boundary, limit) velocity of signal propagation c is the only
velocity, which is not dependent on the velocity of its source,
and therefore, nor on the velocity and location of the ob-
server.

By the fact that in the larger distances of the expansive
homogeneous and isotropic relativistic universe with the to-
tal zero energy are manifested only special-relativistic prop-
erties of matter objects all its other physical and model prop-
erties are given.

The observers in the expansive homogeneous and isotro-
pic relativistic universe—due to the Lorentz time dilation,
determined by the relation (1d)—are contemporaries of all
cosmological times, including a limit “beginning” of the ex-
pansive evolution of the relativistic universe. It means that:
The expansion velocity of the relativistic universe is deter-
mined by the velocity at which evolution of relativistic uni-
verse expansion “began”, because as a result of the Lorentz
time dilation is identical with it. Therefore: The relativistic–
quantum-mechanical universe throughout the whole expan-
sive evolution may expand at only one possible velocity:
boundary (maximum, limit) velocity of signal propagation c.

A hypothetical universe which would expand at a ve-
locity v < c, would be non-homogeneous and anisotropic,
would have only one privileged centre and would not be
closed in the space-time manner. Therefore, an assumption
of an expansive homogeneous and isotropic relativistic uni-
verse, which expands at velocity v < c, represents contra-
dictio in adjecto.

The observed expansive homogeneous and isotropic rela-
tivistic universe in which the gravitational interaction of ma-
terial objects is compensated by their expansion is pseudo-
flat (pseudo-Euclidean), i.e. it has the Minkowski pseudo-
Euclidean geometry, which differs from Euclidean geometry
in such a way that it is influenced by the special-relativistic
effects equally straightforward expanding inertial matter ob-
jects.

The pseudo-flat (pseudo-Euclidean) expansive homoge-
neous and isotropic special-relativistic universe in the linear
approximation is a flat (Euclidean).

In the model of the expansive homogeneous and isotropic
relativistic–quantum-mechanical universe (in which we ab-
stract from the relativistic and quantum-mechanical ef-
fects, i.e. in the model universe which describes the ob-
served universe in linear, i.e. non-relativistic approxima-
tion), the Euclidean geometry is valid (i.e. de facto lin-

earized Minkowski pseudo-Euclidean geometry, in which
we abstract from the special-relativistic effects), and

Galilean transformation:

x′ = x − vt, y′ = y, z′ = z, t ′ = t, (32)

i.e. de facto linearized Lorentz transformation, determined
by the relations (1).

For the gauge factor a and the cosmological time t of
the homogeneous and isotropic relativistic universe with the
total zero and local non-zero mass (energy), which expands
at a constant maximum possible (limit) velocity c, is valid
the relation (Skalský 1992, 1989):

a = ct, (33)

which is shown among the relations (17a), too.
From the relations (7), (19) and (33) it results that matter

objects in the ERU model in any distance r ≤ a expand at
an escape velocity (Skalský 2004)

vesc = r

a
c. (34)

From the relation (34) it results that the model of the ERU
in the distance of gauge factor a expands at the escape ve-
locity vesc = c, in the distance r = a/2 expands at escape
velocity vesc = c/2, in the distance r = a/3 expands at es-
cape velocity vesc = c/3 . . . etc.

That is indeed the case, we can be persuaded by a simple
calculation:

From the relations (17a), (17d) and (17f)—or from the
relations (8), (36), (37) and (38)—it results that the expan-
sive non-decelerative non-accelerative homogeneous and
isotropic relativistic universe with the total energy Etot = 0
at certain cosmological time t , for example at

cosmological time

tx = 15 Gyr, (35)

in the first (linear) approximation will have:

gauge factor

ax = ctx ≡ 3

√
3mx

4πρx

= 1.419 × 1026 m, (36)

mass

mx = c3tx

2G
≡ 4

3
πa3

xρx = 9.554 × 1052 kg, (37)

mass density

ρx = 3

8πGt2
x

≡ 3mx

4πa3
x

= 7.981 × 10−27 kg m−3. (38)
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The expansive homogeneous and isotropic relativistic
universe with the total zero energy in the cosmological time,
determined by the relation (35), in the linear approximation
will have mass density ρx , determined by the relations (38),
mass mx , determined by the relations (37), and in the dis-
tance of gauge factor ax , determined by the relations (3),
will—according to the relation (19)—expand at the escape
velocity vesc = 2.997 924 58 × 108 m s−1 = c.

The sphere with the radius r = ax/2 = 7.095 × 1025

m, with mass density ρx , determined by the relations (38),
have—according to the relation (8)—the mass m = 1.194 ×
1052 kg, and—according to the relation (19)—in the dis-
tance r = ax/2 expand at the escape velocity vesc = 1.498
962 29 × 108 m s−1 = c/2. . . etc.

As mentioned above, the backward extrapolation of
the evolution of expansive homogeneous and isotropic
relativistic–quantum-mechanical universe leads to the “ini-
tial” limit cosmological singularity. Therefore, in the “ini-
tial period” its expansive evolution the relation (33) must be
consistent also with the conditions arising from the Planck
quantum hypothesis and from the Heisenberg uncertainty
principle.

In the years 1897–1899 in the Royal Prussian Academy
of Sciences in Berlin, Max K.E.L. Planck presented with five
sequels of his article Über irreversible Strahlungsvorgänge.

On Thursday June 1, 1899 he presented the fifth and fi-
nal sequel of the named article (Planck 1899). Planck in it,
using four constants: the Newton gravitational constant G,
constant velocity of light in vacuum c, Planck quantum con-
stant h and Boltzmann constant kB , determined the funda-
mental physical units of mass, temperature, length and time
that are now named after him.

The Planck mass mP , Planck temperature TP , Planck
length lP and Planck time tP at present time are presented
with the following values:

mP =
√

�c

G
= 2.17644 × 10−8 kg, (39)

TP =
√

�c5

G

kB

= 1.416785 × 1032 K, (40)

lP = �

mP c
=

√
�G

c3
= 1.616252 × 10−35 m, (41)

tP = lP

c
=

√
�G

c5
= 5.39124 × 10−44 s. (42)

The value of the Planck mass mP , determined by the
relation (39), from macro-physical point of view is very
small (approximately two hundred thousandth of gram). The
Planck temperature TP , determined by the relation (40), is—
according to the Planck quantum hypothesis—theoretically
the maximum possible temperature, therefore, from point of
view of its effect is gigantic (maximum possible).

The mass m manifests itself inertially and gravitation-
ally. The temperature T manifests itself repulsively (by
pulling or negative pressure). From comparison of the
Planck mass mP with the Planck temperature TP —taking
into account quantization of the mass-space-time of the
universe—it results that the expansive evolution of universe
“began” at the maximum possible velocity.

This deductive conclusion confirmed and specifies the
values of Planck length lP , determined by the relation (41),
and Planck time tP , determined by the relation (42), from
which result:

lP = ctP . (43)

If in the relation (43) instead Planck length lP we put a
Planckian gauge factor aP , defined by the relation: aP :=
lP , we obtain:

aP = ctP , (44)

which is the special partial solution of the relation (33).
Therefore, from the relations (39)–(44) it results unam-

biguously that according to the Planck quantum hypothesis
the universe its expansive evolution “begin” at only one pos-
sible velocity: at the boundary velocity of signal propaga-
tion c.

In 1927 Werner Heisenberg in the article Über den an-
schaulichen Inhalt der quantentheoretischen Kinematik und
Mechanik (Heisenberg 1927) postulated an uncertainty prin-
ciple, according to which is not possible with unlimited pre-
cision determine simultaneously both the position and the
momentum of any particle.

From the Heisenberg uncertainty principle (relations) it
results that the particle cannot remain on certain place—
because it would have an exact position and exact (i.e. zero)
momentum—but it must permanently fluctuate.

The observations confirmed that if we minimise the space
in which the particle can fluctuate (i.e. if we specify its posi-
tion), then its fluctuations are accelerated, and—in result of
the trembling motions—its uncertainty of momentum grows.

The universe at the “beginning” of it expansive evolution
had minimum size parameters, therefore, the particles in it
fluctuate at the maximum possible velocities. The result of
these fluctuations was the maximum possible negative pres-
sure, which compensated their mutual gravitational interac-
tion and was one of the causes of the maximum possible ve-
locity of the increase of matter-space-time of the universe.—
It means that even according to the Heisenberg uncertainty
principle (one of the fundamental principles of the quantum
mechanics), an expansive evolution of the universe “began”
his expansive evolution at the only possible velocity: at the
maximum possible (limit) velocity of signal propagation c.

These deductive conclusions are confirmed by the obser-
vations, too:
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In 1929 Edwin P. Hubble discovered the expansion of the
universe (Hubble 1929).

Hubble on the basis of astronomical observations of the
nebulae (galaxies) found: “. . .a roughly linear relation be-
tween velocities and distances among nebulae. . .” (Hubble
1929, p. 173).

At present time this relation is known as the Hubble law
and is written in this form:

v = HR, (45)

where v is the velocity of a cosmic distant object, R is its
distance, and H Hubble “constant” (coefficient, parameter).

From the relations (33) and (45) it results the relation for
the Hubble parameter H and the cosmological time (age of
universe) t (Skalský 1991):

H = v

R
= c

a
= c

ct
= 1

t
, (46)

shown among the relations (17c), too.
According to the WMAP measurements (Hinshaw et al.

2009):

(present) age of universe

t0 = 13.69 ± 0.13 Gyr, (47)

and

(present value of ) Hubble constant

H0 = 71.9+2.6
−2.7 km s−1Mpc−1

= 69.2–74.5 km s−1Mpc−1. (48)

From the relations (46) and (47) result:

H0 = 1

t0
= 71.42+0.68

−0.67 km s−1Mpc−1

= 70.75–72.10 km s−1Mpc−1. (49)

The value of H0, determined by the relation (49), is in
the frame of measurement uncertainty of the value of H0,
determined by the relation (48).

According to the WMAP + BAO + SN measurements
(Hinshaw et al. 2009):

t0 = 13.72 ± 0.12 Gyr, (50)

and

H0 = 70.5 ± 1.3 km s−1 Mpc−1

= 69.2–71.8 km s−1 Mpc−1. (51)

From the relations (46) and (50) result:

H0 = 1

t0
= 71.27+0.63

−0.62 km s−1 Mpc−1

= 70.65–71.90 km s−1 Mpc−1. (52)

The maximum value of H0, determined by the relation
(52), differs from the maximum value of H0, determined by
the relation (51), by the value +0.10 km s−1 Mpc−1.

From the comparison of the relations (48) and (49) and
the relations (51) and (52) result, that according to the
WMAP and the WMAP + BAO + SN observations, deter-
mined by the relations (47), (48), (50) and (51), the observed
universe—in the frame measurement uncertainty—expands
at the boundary velocity of signal propagation c.

According to the WMAP measurements (Hinshaw et al.
2009):

age of decoupling

t∗ = 380081+5843
−5841 yr, (53)

and

redshift of decoupling

z∗ = 1090.51 ± 0.95 = 1089.56 − 1091.46. (54)

From the relations (54) and (77) result

velocity of decoupling v∗:

vz=1089.56 ≤ v∗ ≤ vz=1091.46, (55)

where vz=1089.56 = 1189320.1136
1189322.1136c = 0.999998318 . . . c, and

vz=1091.46 = 1193467.8516
1193469.8516c = 0.999998324 . . . c.

According to the WMAP + BAO + SN measurements
(Hinshaw et al. 2009):

t∗ = 376971+3162
−3167 yr, (56)

and

z∗ = 1090.88 ± 0.72 = 1090.16–1991.60. (57)

From the relations (57) and (77) result:

vz=1090.16 ≤ v∗ ≤ vz=1991.60, (58)

where vz=1090.16 = 1190629.1456
1190631.1456c = 0.999998320 . . . c, and

vz=1991.60 = 3970453.76
3970455.76c == 0.999999496 . . . c.

From the relation (55), or (58), taking into account the
age of the universe, determined by the relation (47), or (50),
and the age of decoupling, determined by the relation (53),
or (56), it results that the WMAP and the WMAP + BAO +
SN observations confirmed that the observed universe—in
the frame measurement uncertainty—expands at the veloc-
ity c.

The expansive non-decelerative non-accelerative homo-
geneous and isotropic relativistic universe with the total zero
energy which during the whole expansive evolution expands
at the escape velocity vesc = c, has the critical mass (energy)
density, i.e.:
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total (dimensionless) density (of the universe)

	tot = 1. (59)

According to the WMAP measurements (Hinshaw et al.
2009):

	tot = 1.099+0.100
−0.085 = 1.014–1.199. (60)

The value of 	tot , determined by the relation (59), differs
from the minimum value of 	tot, determined by the relation
(60), by the value −0.014.

According to the WMAP + BAO + SN measurements
(Hinshaw et al. 2009):

	tot = 1.0050+0.0060
−0.0061 = 0.9989 − 1.0110. (61)

The value of 	tot , determined by the relation (59), is in
the frame measurement uncertainty of the value of 	tot , de-
termined by the relation (61).

5 The model and physical properties of the expansive
homogeneous and isotropic relativistic universe

The ERU model, determined by the FRW equations (4a),
(4b) and (4c) with k = 0, � = 0 and w = −1/3, describes
the expansive homogeneous and isotropic relativistic–
quantum-mechanical universe in the linear approximation
(in which we abstract from its relativistic and quantum-
mechanical properties).

The ERU model is flat (Euclidean), however, the real ex-
pansive homogeneous and isotropic relativistic universe is
a pseudo-flat (pseudo-Euclidean), i.e. it has the Minkowski
pseudo-Euclidean geometry, which differs from Euclidean
geometry “only” in that, that it is influenced by the special-
relativistic effects of the expanding inertial matter objects.

This fact makes it possible—by comparing the linearized
(i.e. non-relativistic) properties of the ERU model and the
non-linearized (i.e. special-relativistic) properties of the ac-
tual observed expansive homogeneous and isotropic rela-
tivistic universe—to get a certain idea about the relation-
ship between them, and about possibilities of using the ERU
model in the relativistic cosmology.

Probably you cannot imagine the evolution of the ob-
served four-dimensional pseudo-flat (pseudo-Euclidean) ex-
pansive non-decelerative non-accelerative homogeneous
and isotropic relativistic universe. However, you can imag-
ine it without problems in the linear (Euclidean) model
approximation, in which we abstract from its special-
relativistic properties. Therefore, we start the comparison
of the ERU model with the real pseudo-flat expansive ho-
mogeneous and isotropic relativistic universe by this 4-
dimensional image:

Fig. 1 The evolution of 4-dimensional expansive homogeneous
and isotropic relativistic universe in the 3-dimensional Euclidean
(non-relativistic) presentation in the cosmological times t1, t2, . . . , tn

The relativistic universe during its whole expansive evo-
lution “expands” at a constant, maximum possible velocity
of signal propagation c in the distance of the gauge factor a.

The maximum velocity of signal propagation c is not de-
pendent on the velocity of its source and hence nor on the ve-
locity and location of the observer. Therefore, all observers
in the relativistic universe are in its “centre” and in Euclid-
ean approximation (in which we abstract from its relativistic
properties), it can be imagined as an expanding Euclidean
homogeneous matter sphere, whose surface is moving away
from them at a constant velocity c.

If we separate the time component from spatial compo-
nents and if we abstract from one spatial dimension, the
evolution of 4-dimensional expansive homogeneous and
isotropic relativistic universe in the Euclidean projection—
which you have just imagined—can be presented in
3-dimensional linear (Euclidean) approximation in the form
of a time cone, which we show in Fig. 1.

The ellipses in Fig. 1 represent the 2-dimensional Euclid-
ean (non-relativistic) projection of the 3-dimensional
pseudo-Euclidean space of expansive homogeneous and
isotropic relativistic universe in the linear approximation in
the cosmological times t1, t2, . . . , tn.

If the 3-dimensional Euclidean projection of the expan-
sive homogeneous and isotropic relativistic universe (shown
in Fig. 1), is reduced by another spatial dimension and
the times t1, t2, . . . , tn are reduced to only one, we get
2-dimensional linearized space-time (Euclidean) projection
of the 4-dimensional expansive homogeneous and isotropic
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Fig. 2 Two-dimensional Euclidean (non-relativistic) projection of the
4-dimensional expansive homogeneous and isotropic relativistic uni-
verse in an arbitrary cosmological time t

relativistic universe in an arbitrary cosmological time t ,
shown in Fig. 2.

In Fig. 2 the abscissa connecting the point t (in which is
the observer), with point A, and point t with point B , repre-
sent the radius of Euclidean sphere r , i.e. the gauge factor a

of the ERU model, and the abscissa connecting point A with
point B represents the diameter of Euclidean sphere d , i.e.
1-dimensional model projection of the 3-dimensional space
of the expansive homogeneous and isotropic relativistic uni-
verse in the linear (Euclidean) projection at any cosmologi-
cal time t .

As mentioned earlier, the Minkowski pseudo-Euclidean
geometry differs from Euclidean geometry “only” therein,
that is influenced by special-relativistic effects of the iner-
tial matter objects, expanding at constant velocities, there-
fore, in the place of the observer (i.e. with zero velocity of
matter objects), the Minkowski pseudo-Euclidean geometry
is identical with the Euclid geometry.

These facts allow us to construct 2-dimensional pseudo-
Euclidean model of 4-dimensional expansive homogeneous
and isotropic relativistic universe. We can do it in such a way
that in the 2-dimensional Euclidean space-time model of
ERU (projected in Fig. 2), we take into account the special-
relativistic space-time effects of expanding inertial matter
objects.

From the fourth equation of the Lorentz transformation,
in this article shown as the relation (1d), results dimension-
less

dilated time

t ′ = t√
1 − v2

c2

. (62)

Dimensionless proportion v/c in the relation (62), repre-
senting the velocity of matter object v, expressed as a frac-
tion of the velocity of light c—at present time prevailingly
designated by letter β—is known as the dimensionless

velocity parameter

β = v

c
. (63)

The expansive homogeneous and isotropic relativistic
universe throughout its whole expansive evolution expands
at constant velocity c. For its gauge factor a and the cosmo-
logical time t is valid the relation (33). Therefore, for the
dimensionless distance of the matter object r , expanding at
velocity v is valid the relation:

r = vt. (64)

From the relations (33), (63) and (64) it results the di-
mensionless proportion r/a, representing a distance of ex-
panding matter object r , expressed as a fraction of the gauge
factor a, which represents the dimensionless

distance parameter

R = r

a
, (65)

expressing a linearized (non-relativistic) distance of the ex-
panding matter object.

From the relations (33), (63), (64) and (65) it results:

R = r

a
= vt

ct
= v

c
= β. (66)

The dimensionless inverted value of the root, presented
in the relation (62)—at present time mainly designed by the
letter γ —is known as the dimensionless

Lorentz factor

γ = 1√
1 − β2

. (67)

Using the relation (67) we can rewrite the relation (62)
into the form:

t ′ = γ t. (68)

As a result of the time dilation, determined by the relation
(62), or by the relation (68), looking into the distance, in
certain sense, we look into “the past”. Strictly speaking, we
observe the events, which—from observers’ point of view
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Fig. 3 The proportional time tp = t/t ′ at the velocities, determined by
the velocity parameter β = v/c

who are located on the observed place—are already in the
past.

The object expanding at an arbitrary velocity, which is
determined by the dimensionless velocity parameter β , is
observed in the corresponding dimensionless

proportional time

tp = t

t ′
≡ 1

γ
≡

√
1 − β2. (69)

The dimensionless proportional time tp , determined by
the relations (69), is shown in Fig. 3.

In the expansive relativistic universe the distances be-
tween expanding inertial matter objects, increase propor-
tionally to time. Therefore, if we look into the distance—
due to the Lorentz time dilatation—we observe the regions
of the universe in which the distance between the matter ob-
jects expanding at the same velocities are smaller. Therefore,
if we project the real (non-linearized) properties of the ex-
pansive homogeneous and isotropic relativistic universe we
must take into account also this fact.

The distances of the inertial matter objects, which expand
at the velocities, expressed by the dimensionless velocity pa-
rameter β , determined the dimensionless

spacetime parameter

δ = βtp ≡ β

γ
= R

γ
≡ Rtp. (70)

In Fig. 4 into 2-dimensional linearized (non-relativistic)
projection of the evolution of the expansive relativistic uni-
verse, which is shown in Fig. 2, we projected the propor-
tion time tp , determined by the relations (69), and shown
in Fig. 3. The result is a 2-dimensional projection of evolu-
tion of the 4-dimensional pseudo-Euclidean expansive ho-
mogeneous and isotropic relativistic universe, projected into
2-dimensional linearized model of ERU.

Fig. 4 Two-dimensional projection of the 4-dimensional pseudo-
Euclidean expansive homogeneous and isotropic relativistic universe.

To be able to visually compare the proportional time tp ,
shown in Fig. 3, with the proportional time tp , projected
in the 2-dimensional linearized ERU model and shown in
Fig. 4, we have inserted spatial-temporal grids into Figs. 3
and 4.

In Fig. 4 we can see that the dimensionless proportional
time tp , projected into the 2-dimensional linearized ERU
model, expanding at velocities, expressed by dimensionless
velocity parameter β , represents the dimensionless space-
time parameter δ, determined by the relations (70). (Com-
pare with the values of δ in Table 3 on pp. 391 and 392.)

In order to accentuate the coincidences and the differ-
ences between linearized (non-relativistic) model of evo-
lution of expansive relativistic universe (in Figs. 3 and 4
projected in 2-dimensional Euclidean projection) and the
expansive relativistic universe (in Fig. 4 projected in 2-
dimensional model pseudo-Euclidean projection) the Fig. 4
was modified (simplified and supplemented), into the form
of Fig. 5.

In Figs. 4 and 5 we can compare the properties of the
model of expansive relativistic universe, projected in the 2-
dimensional linearized (flat, Euclidean, i.e. non-relativistic),
model projection, with the model of the expansive rela-
tivistic universe, projected in the 2-dimensional pseudo-flat
(pseudo-Euclidean) special-relativistic model projection.

In Fig. 5 we can see that to the gauge factor a (which
connects the point t with the point A in the 2-dimensional
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Fig. 5 Two-dimensional projection of the 4-dimensional expansive
homogeneous and isotropic relativistic universe at an arbitrary cosmo-
logical time t

linearized (i.e. Euclidean, non-relativistic) projection of the
expansive homogeneous and isotropic relativistic universe,
corresponds to the special-relativistic gauge factor a′ (which
connects the point t—in which is the observer—with the
point t0 ≡ A′ ≡ B ′), in the 2-dimensional pseudo-Euclidean
projection.

In Figs. 4 and 5, we see that properties of the linearized
ERU model and the properties of the model of expansive ho-
mogeneous and isotropic (special-)relativistic universe coin-
cide only in the observer coordinate system (i.e. at point t),
with the value of dimensionless velocity parameter β = 0.
Because the relation (62) (or the relation (68)) gives the
value t ′ = t only at the velocity v = 0. From this fact it re-
sults the relation of the linearized ERU model and the ex-
pansive homogeneous and isotropic relativistic universe:

The ERU model (determined by the FRW equations (4a),
(4b) and (4c) with k = 0, � = 0 and w = −1/3), is the ex-
trapolation of the local (idealised) properties of the expan-
sive non-decelerative non-accelerative homogeneous and
isotropic relativistic universe in the observer place to the
whole universe.

With an arbitrary small velocity v the linearized (Euclid-
ean) parameters of the ERU model and special-relativistic
(pseudo-Euclidean) parameters of the expansive homoge-
neous and isotropic relativistic universe are different.

Fig. 6 The evolution of the 4-dimensional expansive pseudo-
Euclidean relativistic universe in the 2-dimensional projection in the
cosmological times t1, t2, . . . , tn

In Figs. 4 and 5 we can see that at low velocities, the
differences between the dimensionless linearized cosmolog-
ical time t and dimensionless proportional time tp are small.
With bigger velocities differences nonlinearly increase and
in the value of β = 1 the difference exceeds all limits.

In order to make a conception about whole evolution
of the 4-dimensional expansive homogeneous and isotropic
relativistic universe, in Fig. 6, we projected its evolution
in the 2-dimensional projection in the cosmological times
t1, t2, . . . , tn.

The time-cone in Fig. 6 represents the horizon of (all)
events. Curves for observers in the points t1, t2, . . . , tn con-
nect relatively simultaneous events, therefore, they represent
the optical horizons (horizons of visibility, horizons of par-
ticles). The points inside the optical horizons (curves) rep-
resent the past events. The points between the horizon of
events (time-cone) and the optical horizons (curves) are the
future events.

In Fig. 6 we can see that the pseudo-Euclidean expansive
homogeneous and isotropic relativistic universe is closed in
the space-time and during the whole expansive evolution in
the largest (limit) distance from each observer R′

max = a′,
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i.e. at the point t0, it “expands” at the maximum velocity of
signal propagation c.4

According to the Einstein special theory of relativity, the
expanding objects with its own (rest) mass at a velocity c

would have an infinite special-relativistic mass. Therefore,
the material objects with non-zero rest mass in principle can-
not expand at the velocity c.

According to the Planck quantum hypothesis (Planck
1899), matter objects in the expansive universe could orig-
inate in the time t > tP (where tP is the Planck time).
Therefore, although the expansive relativistic–quantum-
mechanical universe in the largest (limit) distance from each
observer “expands” at maximum possible (limit) velocity c,
the matter objects with own non-zero (rest) mass in it ex-
pands at velocities v < c.

Einstein in his book Über die spezielle und die allge-
meine Relativitätstheorie (Gemeinverständlich) in the sec-
tion, dedicated to the analysis of the Lorentz transforma-
tion, contextualized that, according to the Lorentz transfor-
mation, the velocity of light c is constant for all observers in
all coordinate systems and has demonstrated on this exam-
ple: “A light-signal is sent along the positive x-axis, and this
light-stimulus advances in accordance with the equation

x = ct, (71)

i.e. with the velocity c. According to the equations of the
Lorentz transformation, this simple relation between x and
t involves a relation between x′ and t ′. In point of fact, if we
substitute for x the value ct in the first and fourth equations
of the Lorentz transformation, we obtain:

x′ = (c − v)t√
1 − v2

c2

,

t ′ = (1 − v
c
)t√

1 − v2

c2

,

from which, by division, the expression

x′ = ct ′ (72)

immediately follows. . . . The same result is obtained for
rays of light advancing in any other direction whatsoever.
Of course this is not surprising, since the equations of the
Lorentz transformation were derived conformably to this
point of view.” (Einstein 1917b, p. 23).

4The figures, corresponding to the figures that are projected in this ar-
ticle as Figs. 3, 4, 5 and 6, in 1991–2006 were published in several
articles and books. Unfortunately, all these images were displayed in-
correctly (they were deformed curve showing the proportional time tp
and the space-time parameter δ).

If in the relation (71) instead of x we put the gauge factor
a, we get the relation:

a = ct,

which we show above as the relation (33) and among the
relations (17a).

If in the relation (72) instead of x′ we put a′ we receive
the relation:

a′ = ct ′. (73)

From the relations (33) and (73) result the relations:

a

t
= a′

t ′
= c. (74)

From the relations (74) it results that in the expansive
homogeneous and isotropic relativistic universe the gauge
factor a (expressed in a linear approximation, in which we
abstract from special-relativistic effects), and the special-
relativistic gauge factor a′ (expressed in the relation to the
special-relativistic dilated time t ′), for each observer grows
at the same velocity c.

Suppose that in the expansive relativistic universe for the
special-relativistic gauge factor a′ and the linearized gauge
factor a is valid the relation:

a′ = a. (75)

From the relations (74) unambiguously results that on the
assumption that in the expansive homogeneous and isotropic
relativistic universe is valid the relation (75), at the same
time must be valid also the relation:

t ′ = t, (76)

and vice versa: if in it is valid the relation (76), at the same
time must be valid in it also the relation (75).

As mentioned above, in the expansive relativistic uni-
verse in the stand-point of observer, i.e. at the velocity v = 0,
the relation for the dilation of time (62), or (68), gives the
value of dilated time t ′, determined by the relation (76).
From this fact and the relation (74) it results unambiguously
that in the relativistic universe for the special-relativistic
gauge factor a′ and the linearized gauge factor a is valid
the relation (75).

The relations (75) and (76) have general validity, i.e.
they are valid for all observers in all coordinate systems at
any cosmological time of the expansive homogeneous and
isotropic relativistic universe with the total zero mass (en-
ergy).

The velocity of cosmic objects expansion expresses the
dimensionless
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Dopplerian redshift

z = 1 + v
c√

1 − v2

c2

− 1 ≡
√

c + v

c − v
− 1 ≡

√
1 + β

1 − β
− 1. (77)

From the relations (70) and (77) it results that in the ex-
pansive homogeneous and isotropic special-relativistic uni-
verse the value of dimensionless space-time parameter δ in-
creases non-linearly from the value of δ = 0 with the value
of dimensionless velocity parameter β = 0 in the observer
stand-point to the maximum value δmax , which is obtained
in dimensionless

inverse distance

δi ≡ δmax ≡ 0.5a′ = 0.5a, (78)

with the value of dimensionless

velocity parameter

β = √
0.5 ≡ 1√

2
≡

√
2

2
= 0.70710678 . . . , (79)

i.e. with

radial velocity

v = √
0.5c = 2.11985280 . . . × 108 m s−1, (80)

and dimensionless

Dopplerian red shift

z =
√

1 + β

1 − β
− 1 ≡

√
c + v

c − v
− 1

= √
2 = 1.414213562 . . . . (81)

With bigger velocities—as a consequence of the special-
relativistic dilation of time, dependent on the expansion ve-
locity of matter objects—the values of dimensionless space-
time parameter δ nonlinearly decrease: from the value of in-
verse parameter δi = 0.5, determined by the relations (78),
with the value of the dimensionless velocity parameter β ,
determined by the relations (79), to the value of δ = 0 with
the maximum value of dimensionless velocity parameter
β = 1.

In Figs. 4 and 5 the special-relativistic gauge factor a′
(connecting the point t with the point t0)—as a result of lin-
earity dilation of time t ′ and 2-dimensional projection ex-
pansive relativistic universe (in which we separate the spa-
tial component from the time component)—is represented
by the curve. In the reality, to the special-relativistic gauge
factor a′ correspond straight lines (abscissas) connecting the
point t (in which is the observer), with points δmax in largest

pseudo-Euclidean geometric distance with the values of ve-
locity parameter β = 0 till β = √

0.5 in each direction from
the observer and the abscissas connecting the points δmax

with the point t0 ≡ A′ ≡ B ′ with the values of the velocity
parameter β = √

0.5 till β = 1.
To be able to make a visual image, the 2-dimensional pro-

jection of the 4-dimensional large pseudo-Euclidean expan-
sive homogeneous and isotropic relativistic universe in an
arbitrary cosmological time t , projected in Fig. 5, in Fig. 7
we reduced in the 1-dimensional projection (by which we
reductively eliminated geometric separation of spatial and
temporal components in the 2-dimensional projection of the
4-dimensional pseudo-Euclidean space-time of the expan-
sive homogeneous and isotropic relativistic universe).

In order to point out in the Fig. 7 the relations of the 2-
dimensional projection of the 4-dimensional expansive ho-
mogeneous and isotropic relativistic universe with its 1-
dimensional projection, between the 2-dimensional projec-
tion of evolution of expansive homogeneous and isotropic
relativistic universe (Fig. 7(a)) and its 1-dimensional projec-
tion (Fig. 7(c)), we projected the 2-dimensional projection
(Fig. 7(b)), in which we have reduced a time component by
half.

In Figs. 4, 5, 7(a) and 7(c) we can see that the value
of the dimensionless pseudo-Euclidean space-time parame-
ter δ with increasing velocity up to the velocity v = √

0.5c

grows in the interval δ = 0 up to δi = 0.5. With the veloci-
ties v >

√
0.5c the value δ decreases in the interval δi = 0.5

till δ = 0. It means that special-relativistic pseudo-Euclidean
(non-linearized) distances in the expansive homogeneous
and isotropic relativistic universe are determined by two re-
lations:

(a) In the interval in which the value of the dimension-
less space-time parameter δ increases, i.e. in the interval
special-relativistic (non-linearized) distance of expand-
ing inertial matter objects, from the value R′ = 0 up to
the value R′ = 0.5a′ is valid the dimensionless relation:

R′ = δ. (82a)

(b) In the interval in which the value of δ decreases, i.e. in
the interval special-relativistic distance of the expanding
matter objects, from the value R′ = 0.5a′ up to the value
R′ = a′ is valid the dimensionless relation:

R′ = 1 − δ. (82b)

To the dimensionless linearized distance of the expan-
sive inertial matter objects R, determined by the relation
(66), corresponds the dimensionless distance of expanding
special-relativistic inertial matter objects R′, determined by
the relation (82a) and (82b).
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Fig. 7 The reduction of the 2-dimensional projection of evolution of
the expansive relativistic universe in an arbitrary cosmological time t

(Fig. 7(a)), in the 1-dimensional projection (Fig. 7(c))

For the maximum linearized distance Rmax and the (lin-
earized) gauge factor a is valid the relation:

Rmax = a. (83)

For the maximum special-relativistic (non-linearized)
distance R′

max and the (non-linearized) special-relativistic
gauge factor a′ is valid the relation:

R′
max = a′. (84)

Table 3 shows the values of the dimensionless Dopp-
lerian redshift z, values of dimensionless Lorentz factor γ ,
dimensionless values of proportional time tp , values of di-
mensionless space-time parameter δ, values of dimension-
less distances special-relativistic distances of expanding in-
ertial matter objects R′ and values of difference distances
R − R′ with any arbitrary velocities, expressed by means of
dimensionless velocity parameter β = R.

For illustration we show in Fig. 8, the correlation of some
selected linearized (non-relativistic) distances R and non-
linearized special-relativistic (pseudo-Euclidean) distances
R′ with corresponding values of dimensionless velocity pa-
rameter β .

In Fig. 8 and Table 3 is shown that although in the expan-
sive homogeneous and isotropic relativistic universe for the
linearized (non-relativistic) gauge factor a and the special-
relativistic (non-linearized) gauge factor a′ is valid the rela-
tion (75), the linearized distances R and special-relativistic

distances R′ have the same values only with values of di-
mensionless velocity parameter β = 0 and β = 1. For other
velocities they have different values.

Differences between the linearized distances R and the
special-relativistic distances R′ with relatively low veloci-
ties are relatively small. With greater velocities up to the
value of velocity parameter

β = √
0.75 ≡

√
3

2
= 0.866025403 . . . , (85)

i.e. to the linearized dimensionless distance R = β =
0.866 . . . , which corresponds to the dimensionless special-
relativistic (non-linearized) distance R′ = 0.566 . . . , differ-
ences between R and R′ increase nonlinearly. With the value
of velocity parameter β = √

0.75 the difference R − R′ ob-
tains maximum, which is approximately 0.299. With the ve-
locities v >

√
0.75c differences between R and R′ nonlin-

early decrease. Initially, only slightly, later faster. With the
value of velocity parameter β = 1 the difference R−R′ = 0.

All parameters of the pseudo-flat (pseudo-Euclidean)
expansive non-decelerative non-accelerative homogeneous
and isotropic relativistic universe and linearized parameters
of the ERU model are mutually unambiguously bounded.
Therefore, if we know any from presented special-relativis-
tic (non-linearized) parameters, or any from linearized (i.e.
non-relativistic), parameters of the expansive homogeneous
and isotropic relativistic universe, with the same accuracy—
with which is determined the relevant parameter—we can
determine all the other (linearized and non-linearized) para-
meters.

6 The hypothetical decelerative and accelerative models
of expansive relativistic universe, the ERU model, and
the Type Ia supernova observations

The body with a relatively small mass (for example a satel-
lite), in the gravitational field of a body with a relatively
large mass (for example in the gravitational field of Earth)
can move: (a) at the velocity which is less than the escape
velocity from its gravitational field; (b) at the escape veloc-
ity; (c) at the velocity greater than the escape velocity.

In all three cases, as a consequence of mutual gravita-
tional interaction of matter objects, the velocity of the body
is slowing down. In the first case the body moves in ellip-
tical trajectory, in the second case the body moves in par-
abolic trajectory, and the in third case the body moves in
hyperbolic trajectory.

After origin of the relativistic cosmology analogically
there were postulated three hypothetical variants of so-
called decelerative model of relativistic universe:

(a) Model of elliptical decelerative relativistic universe
with the total zero dimensionless density of matter ob-
jects 	tot > 1.
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Table 3 Selected values of some dimensionless parameters of expansive non-decelerative non-accelerative homogeneous and isotropic relativistic
universe with total zero mass (energy)

Velocity parameter β = R Red shift z Lorentz factor γ Proportional time tp Space-time parameter δ Distance R′ Difference R − R′

0 0 1 1 0 0 0

0.01 0.01005 1.00005 0.99994 0.00999 0.00999 5.00013 ×10−7

0.02 0.02020 1.00020 0.99979 0.01999 0.01999 4.0004 ×10−6

0.03 0.03046 1.00045 0.99954 0.02998 0.02998 1.3503 ×10−5

0.04 0.04083 1.00080 0.99919 0.03996 0.03996 3.20128 ×10−5

0.05 0.05131 1.00125 0.99874 0.04993 0.04993 6.25391 ×10−5

0.06 0.06191 1.00180 0.99819 0.05989 0.05989 0.00010

0.07 0.07263 1.00245 0.99754 0.06982 0.06982 0.00017

0.08 0.08347 1.00321 0.99679 0.07974 0.07974 0.00025

0.09 0.09444 1.00407 0.99594 0.08963 0.08963 0.00036

0.1 0.10554 1.00503 0.99498 0.09949 0.09949 0.00050

0.11 0.11677 1.00610 0.99393 0.10933 0.10933 0.00066

0.12 0.12815 1.00727 0.99277 0.11913 0.11913 0.00086

0.13 0.13967 1.00855 0.99151 0.12889 0.12889 0.00110

0.14 0.15133 1.00994 0.99015 0.13862 0.13862 0.00137

0.15 0.16315 1.01144 0.98868 0.14830 0.14830 0.00169

0.16 0.17513 1.01305 0.98711 0.15793 0.15793 0.00206

0.17 0.18728 1.01477 0.98544 0.16752 0.16752 0.00247

0.18 0.19959 1.01660 0.98366 0.17705 0.17705 0.00294

0.19 0.21207 1.01855 0.98178 0.18653 0.18653 0.00346

0.2 0.22474 1.02062 0.97979 0.19595 0.19595 0.00404

0.21 0.23759 1.02280 0.97770 0.20531 0.20531 0.00468

0.22 0.25064 1.02511 0.97549 0.21460 0.21460 0.00539

0.23 0.26388 1.02754 0.97319 0.22383 0.22383 0.00616

0.24 0.27733 1.03010 0.97077 0.23298 0.23298 0.00701

0.25 0.29099 1.03279 0.96824 0.24206 0.24206 0.00793

0.26 0.30487 1.03561 0.96560 0.25105 0.25105 0.00894

0.27 0.31898 1.03857 0.96286 0.25997 0.25997 0.01002

0.28 0.33333 1.04166 0.96 0.2688 0.2688 0.0112

0.29 0.34792 1.04490 0.95702 0.27753 0.27753 0.01246

0.3 0.36277 1.04828 0.95393 0.28618 0.28618 0.01381

0.31 0.37787 1.05181 0.95073 0.29472 0.29472 0.01527

0.32 0.39326 1.05550 0.94741 0.30317 0.30317 0.01682

0.33 0.40892 1.05934 0.94398 0.31151 0.31151 0.01848

0.34 0.42488 1.06334 0.94042 0.31974 0.31974 0.02025

0.35 0.44115 1.06752 0.93674 0.32786 0.32786 0.02213

0.36 0.45773 1.07186 0.93295 0.33586 0.33586 0.02413

0.37 0.47465 1.07638 0.92903 0.34374 0.34374 0.02625

0.38 0.49191 1.08109 0.92498 0.35149 0.35149 0.02850

0.39 0.50953 1.08599 0.92081 0.35911 0.35911 0.03088

0.4 0.52752 1.09108 0.91651 0.36660 0.36660 0.03339

0.41 0.54590 1.09638 0.91208 0.37395 0.37395 0.03604

0.42 0.56469 1.10189 0.90752 0.38116 0.38116 0.03883

0.43 0.58391 1.10762 0.90282 0.38821 0.38821 0.04178

0.44 0.60356 1.11358 0.89799 0.39511 0.39511 0.04488

0.45 0.62368 1.11978 0.89302 0.40186 0.40186 0.04813

0.46 0.64429 1.12622 0.88791 0.40844 0.40844 0.05155

0.47 0.66540 1.13293 0.88266 0.41485 0.41485 0.05514

0.48 0.68705 1.13990 0.87726 0.42108 0.42108 0.05891

0.49 0.70925 1.14715 0.87172 0.42714 0.42714 0.06285

0.5 0.73205 1.15470 0.86602 0.43301 0.43301 0.06698
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Table 3 (Continued)

Velocity parameter β = R Red shift z Lorentz factor γ Proportional time tp Space-time parameter δ Distance R′ Difference R – R′

0.51 0.75545 1.16255 0.86017 0.43868 0.43868 0.07131

0.52 0.77951 1.17073 0.85416 0.44416 0.44416 0.07583

0.53 0.80425 1.17924 0.84799 0.44943 0.44943 0.08056

0.54 0.82970 1.18812 0.84166 0.45449 0.45449 0.08550

0.55 0.85592 1.19736 0.83516 0.45934 0.45934 0.09065

0.56 0.88293 1.20701 0.82849 0.46395 0.46395 0.09604

0.57 0.91080 1.21707 0.82164 0.46833 0.46833 0.10166

0.58 0.93956 1.22757 0.81461 0.47247 0.47247 0.10752

0.59 0.96927 1.23853 0.80740 0.47636 0.47636 0.11363

0.6 1 1.25 0.8 0.48 0.48 0.12

0.61 1.03179 1.26198 0.79240 0.48336 0.48336 0.12663

0.62 1.06474 1.27453 0.78460 0.48645 0.48645 0.13354

0.63 1.09890 1.28767 0.77659 0.48925 0.48925 0.14074

0.64 1.13437 1.30144 0.76837 0.49175 0.49175 0.14824

0.65 1.17124 1.31590 0.75993 0.49395 0.49395 0.15604

0.66 1.20960 1.33108 0.75126 0.49583 0.49583 0.16416

0.67 1.24957 1.34705 0.74236 0.49738 0.49738 0.17261

0.68 1.29128 1.36386 0.73321 0.49858 0.49858 0.18141

0.69 1.33486 1.38157 0.72380 0.49942 0.49942 0.19057

0.7 1.38047 1.40028 0.71414 0.49989 0.49989 0.20010

0.707106 1.414213 1.414213 0.707106 0.5 0.5 0.207106
0.71 1.42828 1.42004 0.70420 0.49998 0.50001 0.20998

0.72 1.47847 1.44097 0.69397 0.49966 0.50033 0.21966

0.73 1.53128 1.46317 0.68344 0.49891 0.50108 0.22891

0.74 1.58694 1.48675 0.67260 0.49772 0.50227 0.23772

0.75 1.64575 1.51185 0.66143 0.49607 0.50392 0.24607

0.76 1.70801 1.53864 0.64992 0.49394 0.50605 0.25394

0.77 1.77410 1.56729 0.63804 0.49129 0.50870 0.26129

0.78 1.84445 1.59800 0.62577 0.48810 0.51189 0.26810

0.79 1.91955 1.63103 0.61310 0.48435 0.51564 0.27435

0.8 2 1.66666 0.6 0.48 0.52 0.28

0.81 2.08647 1.70523 0.58642 0.47500 0.52499 0.28500

0.82 2.17979 1.74714 0.57236 0.46933 0.53066 0.28933

0.83 2.28096 1.79287 0.55776 0.46294 0.53705 0.29294

0.84 2.39116 1.84302 0.54258 0.45577 0.54422 0.29577

0.85 2.51188 1.89831 0.52678 0.44776 0.55223 0.29776

0.86 2.64495 1.95965 0.51029 0.43885 0.56114 0.29885

0.866025 2.732050 2 0.5 0.433012 0.566987 0.299038
0.87 2.79270 2.02818 0.49305 0.42895 0.57104 0.29895

0.88 2.95811 2.10537 0.47497 0.41797 0.58202 0.29797

0.89 3.14509 2.19317 0.45596 0.40580 0.59419 0.29580

0.9 3.35889 2.29415 0.43588 0.39230 0.60769 0.29230

0.91 3.60675 2.41191 0.41460 0.37729 0.62270 0.28729

0.92 3.89897 2.55155 0.39191 0.36056 0.63943 0.28056

0.93 4.25085 2.72064 0.36755 0.34183 0.65816 0.27183

0.94 4.68624 2.93105 0.34117 0.32070 0.67929 0.26070

0.95 5.24499 3.20256 0.31224 0.29663 0.70336 0.24663

0.96 6 3.57142 0.28 0.2688 0.7312 0.2288

0.97 7.10349 4.11345 0.24310 0.23581 0.76418 0.20581

0.98 8.94987 5.02518 0.19899 0.19501 0.80498 0.17501

0.99 13.10673 7.08881 0.14106 1.39656 0.86034 0.12965

0.999 43.71017 22.36627 0.04471 0.04466 0.95533 0.04366

1 – – – 0 1 0
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Fig. 8 The relation of the
linearized distances R and the
special-relativistic distances R′
in the expansive homogeneous
and isotropic relativistic
universe with some selected
values of dimensionless velocity
parameter β

(b) Model of parabolic decelerative relativistic universe
with the 	tot = 1.

(c) Model of hyperbolical decelerative relativistic universe
with the 	tot < 1.

From the backward extrapolation of the expansive evo-
lution of the relativistic universe expansion, however, it re-
sults that the expansive relativistic universe could “start”
its expansive evolution only at one possible velocity: the
boundary velocity of signal propagation c, and due to the
Lorentz time dilation (1d), in maximum (limit) distance
from each observer, i.e. in distance of gauge factor a = a′,
it must expand at this velocity throughout its expansive evo-
lution. Therefore, the expansive relativistic universe princi-
pally cannot be decelerative. (There are many other impor-
tant reasons, which—because of limited space—will be not
discussed in this article.)

If we ignore these facts and we assume that observed
expansive homogeneous and isotropic relativistic–quantum-
mechanical universe is decelerative, it would have to be-
gin its expansive evolution at the velocity v > c.—However,
this hypothetical decelerative assumption would be possible
only with the assumption of invalidity of the theory of rela-
tivity.

This presented problem stands out best in an illustrative
model projection, therefore, in Fig. 9 we projected three
variants of a hypothetical model of the expansive deceler-
ative universe: (a) model of elliptical decelerative universe,
(b) model of parabolic decelerative universe, (c) model of
hyperbolic decelerative universe, and model (d), the model
of ERU.

In Fig. 9 we can see that the ERU model (d) during the
whole expansive evolution expands at a constant maximum
possible velocity of signal propagation c.
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Fig. 9 The evolution of (a) elliptical, (b) parabolic, and (c) hyper-
bolic model variants of a model of hypothetical expansive deceler-
ative universe, and (d) ERU model, in two-dimensional linearized
(non-relativistic) model projection

All three variants of a hypothetical model of expansive
decelerative relativistic universe: (a) elliptical, (b) parabolic,
and (c) hyperbolic, in their initial period of expansive evo-
lution expand at velocities v > c. But what is—according
to the Einstein special theory of relativity—in principle not
possible.

The late nineties of the last century, two international
cooperating teams on the basis of observations of Type Ia
supernovae came to a surprising conclusion: The observed
universe in the present time of its expansive evolution is
not decelerative—which was at that time almost generally
expected—but it is accelerative, i.e. the velocity of its expan-
sion is not slowing but accelerating. The results of their ob-
servations were reported in the articles: Observational Ev-
idence from Supernovae for an Accelerating Universe and
a Cosmological Constant (Riess et al. 1998), and Measure-
ments of Omega and Lambda from 42 High-Redshift Super-
novae (Perlmutter et al. 1999).

When and how was the hypothetical accelerative evo-
lution phase of the universe to the relativistic cosmology
specifically introduced, refers Robert P. Kirshner (who has
been involved in the observation of the supernova since
1970), in his book The Extravagant Universe. Exploding
Stars, Dark Energy and the Accelerating Cosmos (Kirshner
2004):

Since Hubble discovery of universe expansion in 1929,
astronomers have been trying—through observations of cos-
mic objects—to clarify the history of its expansive evolu-
tion. But as written by Kirshner: “. . . toward the end of 1997
we were already beginning to see hints of something more
interesting than just a low-	m universe that would expand
forever. Adam Riess was assembling our high-z data at his
office . . . Adam thought he was beginning to see evidence
for cosmic acceleration. Our data showed that the distant su-
pernovae were fainter than they would be in a low-density

universe. Faint supernovae meant larger distances. Larger
distances meant cosmic acceleration. Every time he tried
to use the data to determine 	m without � the value for
the mass kept coming out negative. That wasn’t right. So he
added in 	� , and the best fit to the data points kept giving a
value of the cosmological constant that was bigger than zero.
As the data trickled in, Adam added more supernovae to the
analysis. The statistics were beginning to make the case for
the cosmological constant.” (Kirshner 2004, p. 214).

Completing the model of a hypothetical expansive de-
celerative homogeneous and isotropic relativistic universe
by a hypothetical accelerative evolution phase, a model of
an expansive decelerative-accelerative homogeneous and
isotropic relativistic universe, was introduced, now mostly
known as a standard �CDM model.

During the expansive evolution of the universe the den-
sity of positive energy material objects ε = ρc2 decreases,
the density of a hypothetical negative dark energy, deter-
mined by the cosmological constant �, however, remains
unchanged. Therefore—on the assumption that at the begin-
ning of expansive evolution of universe the absolute value
of density of hypothetical negative dark energy, determined
by the cosmological constant �, compared with positive en-
ergy density material objects ε, was relatively small—in the
early period of expansive evolution of universe dominated
the matter. Therefore—according to the standard �CDM
model—universe in the initial period of its expansive evo-
lution was decelerative.

The positive energy of matter objects grows more slowly
than the hypothetical negative dark energy, therefore, in a
certain period of expansive evolution of universe the value
of positive energy and the absolute value of the hypotheti-
cal negative dark energy—according to the standard �CDM
model—were in balance.

In the next period of expansive evolution of the universe
began to dominate the hypothetical negative dark energy,
therefore—according to the standard �CDM model—the
universe in the present time of its expansive evolution is ac-
celerative.

However, from the results of observations of WMAP
and WMAP + BAO + SN (Hinshaw et al. 2009) and, from
our analysis above, clearly showed that the observed ex-
pansive homogeneous and isotropic relativistic–quantum-
mechanical universe in the largest (the limit) distance from
each observer, i.e. in the distance of the gauge factor a = a′,
expands at a constant maximum possible velocity of signal
propagation c.—Of course, in such circumstances the uni-
verse cannot be nor decelerative, nor accelerative.

In Fig. 8 and in Table 3 we can compare the model (lin-
earized) and actual physical (i.e. non-linearized), parameters
of the observed universe (determined on the assumption that
the observed universe has the total energy Etot = 0 and fur-
ther mutually bound model and physical properties).
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On the left side of Fig. 8 we show the linearized di-
mensionless distance of expanding matter objects R, deter-
mined by the relation (65), linearly bound with dimension-
less velocity parameters β , which are determined by the re-
lation (63).

On the right side of Fig. 8 we show the actual physi-
cal (non-linearized) dimensionless distances of matter ob-
jects R′, determined by the relations (82a) and (82b), which
expand at the velocities, expressed by the corresponding di-
mensionless velocity parameters β .

In the bottom part of right side of Fig. 8, between the
relatively low velocities (in comparison with the boundary
velocity of signal propagation c), and relatively small dis-
tances expanding matter objects (in comparison with the
gauge factor a = a′), roughly linear relationships exist, as
already seen in Hubble (1929).5

With linear growing of the velocities of expanding mat-
ter objects—as a result of expansion of the universe and
special-relativistic dilation of time—their actual relativistic
distances R′ are reduced till to the distance a/2 = a′/2. In
bigger distances they extend. The change happens in the in-
verse distance δi , determined by the relations (78), with the
radial velocity, determined by the relation (80), and with the
Dopplerian redshift z, determined by the relation (81).

Tomas Dahlen, Louis-Gregory Strolger and Adam G.
Riess completed their joint paper The Extended HST Super-
nova Survey: The Rate of SNe Ia at z > 1.4 Remains Low
by these Conclusions and summary: “Here we present new
measurements of the Type Ia SNR to z ∼ 1.6. Similar to
our previous results based on a smaller sample, these ob-
servations show a decrease in the SNR at redshifts z � 1.4,
with a high significance. The results are consistent with a
characteristic delay time in the order of τ = 2–3 Gyr. Re-
cent two-component models for the Type Ia SNR, with one
dominating prompt and one less prominent delayed channel
seems to fit low redshift SNR data well. These models are
also consistent with a higher star formation, and they may
also explain the Fe content of the inter-cluster medium in
clusters of galaxies. However, these two-component mod-
els predicts rates at z > 1.4 that deviates from the measured
rates from this investigation. Here we have discussed possi-
ble solutions to this discrepancy and found:

• It is unlikely that the difference between model predicted
rates and observed rates is due to statistical fluctuations or
cosmic variance.

• It is also unlikely that the low rate we measure is due to
an underestimate of the host galaxy dust extinction or an
overestimate detection efficiency.

5In order for Fig. 8 shows that at relatively low velocities of expanding
matter objects, their distances accrue not exactly linearly, we had to
show them with accuracy on three decimal places.

• A bimodal model with a larger fraction of delayed Type
Ia and that takes into account SNR hidden by dust results
in a better fit to data.

• Another possible scenario that would result in a decrease
in the high redshift SNR is the WD explosion efficiency
deceases at high redshift.” (Dahlen et al. 2008, p. 14).

The results of remote observations of Type Ia supernovae
are objective, i.e.—in the frame measurements uncertainty
—corresponds to the observed objective physical reality.

According to Dahlen et al. (2008), the Type Ia SNR ob-
servations show a decrease in SNR at redshifts

z � 1.4. (86)

According to the observations (Hinshaw et al. 2009), the
universe expands at the boundary velocity of signal propaga-
tion c, therefore, from comparison of the relations (81) and
(86) unambiguously results that the observations of super-
novae Type Ia detect the special-relativistic properties of the
observed expansive homogeneous and isotropic relativistic–
quantum-mechanical universe, which are a result of expan-
sion of material objects, which compose its matter-space-
time structure (and not the hypothetical acceleration of uni-
verse expansion, which contradicts to the theory of relativity
and to the law of energy and momentum conservation).

7 The generally relevant laws of conservation energy,
momentum, and momentum of momentum in the
expansive homogeneous and isotropic relativistic
universe

In the Einstein general theory of relativity (and in its two
special partial solutions: Einstein special theory of relativ-
ity, and Newton theory of gravitation), and in the quantum
mechanics the generally relevant laws of conservation: law
of energy conservation, law of momentum conservation, and
law of momentum of momentum conservation are valid.

In 1918, Emmy Noether in the article Invariante Vari-
ationsprobleme (Noether 1918) proved that three generally
relevant laws of conservation can be expressed as the sym-
metry of space and time:

• Law of energy conservation results from homogeneity of
time.

• Law of momentum conservation results from homogeneity
of space.

• Law of momentum of momentum conservation results
from isotropy of space.

From the Noether principle of spatial and temporal sym-
metry of generally relevant laws of conservation results:
Generally relevant conservation laws: the law of energy
conservation, the law of momentum conservation and the
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law of momentum of momentum conservation are valid only
in the homogeneous and isotropic universe.

In the expansive homogeneous and isotropic relativistic–
quantum-mechanical universe and in its linearized model
(in which we abstract from its relativistic and quantum-
mechanical properties) are valid the conservation laws of
energy, momentum, and momentum of momentum, i.e. the
total energy, total momentum and total momentum of mo-
mentum in it—throughout the whole expansion evolution—
remain unchanged. These conditions are fulfilled by the ex-
pansive homogeneous and isotropic relativistic–quantum-
mechanical universe with only on the assumption that—
during the whole expansive evolution—the total energy, to-
tal momentum and total momentum of momentum are equal
to zero.

The matter-space-time properties of the expansive ho-
mogeneous and isotropic relativistic universe—in which are
valid generally relevant laws conservation of energy, mo-
mentum and momentum of momentum—are determined by
its “initial” conditions.

In 1977, Steven Weinberg in his book The First Three
Minutes: A Modern View of the Origin of the Universe
wrote: “. . . during the whole of the first second the universe
was presumably in a state of thermal equilibrium, in which
the numbers and distributions of all particles, even neutri-
nos, were determined by the laws of statistical mechanics,
not by the details of their prior history.” (Weinberg 1993,
p. 146).

The properties of the cosmic microwave background ra-
diation, which in the sixties of the last century were discov-
ered by Arno A. Penzias and Robert W. Wilson (Penzias and
Wilson 1965), confirmed that the observed expansive homo-
geneous and isotropic relativistic–quantum-mechanical uni-
verse has undergone a thermal equilibrium state.6

The results of observations of Penzias and Wilson spec-
ify the observation of the COBE (COsmic Background Ex-
plorer) satellite launched in November 18, 1989 by NASA
(Mather et al. 1999; Smoot et al. 1992)7 and observations of
the WMAP (Wilkinson Microwave Anisotropy Probe) satel-
lite launched in June 30, 2001 by NASA (Bennett et al.
2003; Hinshaw et al. 2009).

According to Weinberg: “When collisions or other proc-
esses bring a physical system to a state of thermal equilib-
rium, there are always some quantities whose values do not
change. One of these “conserved quantities” is the total en-
ergy; even though collisions may transfer energy from one

6Arno A. Penzias and Robert W. Wilson were “for their discovery of
cosmic microwave background radiation” awarded the Nobel Prize in
Physics 1978.
7John C. Mather and George F. Smoot were “for their discovery of the
blackbody form and anisotropy of the cosmic microwave background
radiation” awarded the Nobel Prize in Physics 2006.

particle to another, they never change the total energy of the
particles participating in the collision. For each such con-
servation law there is a quantity that must be specified be-
fore we can work out the properties of a system in thermal
equilibrium—obviously, if some quantity does not change as
a system approaches thermal equilibrium, but must be spec-
ified in advance. The universe has passed through a state
thermal equilibrium, so to give a complete recipe for the
contents of the early times, all we need is to know what
were the physical quantities which were conserved as the
universe expanded, and what were the values of these quan-
tities.” (Weinberg 1993, pp. 88–89).

From the above analysis it results unambiguously that in
the expansive homogeneous and isotropic relativistic uni-
verse is valid energy conservation law only on the assump-
tion that its total energy is zero, i.e. only under condition that
the gravitational interaction of material objects in it is ex-
actly compensated by a negative pressure (repulsion).—This
fact unambiguously determines physical and model parame-
ters of the observed expansive homogeneous and isotropic
relativistic–quantum-mechanical universe.

During the first second of the evolution of expansive ho-
mogeneous isotropic relativistic–quantum-mechanical uni-
verse due to its “initial” matter-space-time properties, “ini-
tial” temperature, Heisenberg uncertainty relations and gen-
erally relevant conservation laws of energy, momentum, and
momentum of momentum there were determined its funda-
mental matter-space-time parameters, which in the linear ap-
proximation (in which we abstract from its relativistic and
quantum-mechanical properties) are determined by the rela-
tions (17).

Einstein in the article Die Grundlage der allgemeinen
Relativitätstheorie wrote: “. . . laws of conservation of mo-
mentum and energy do not apply in the strict sense for mat-
ter alone, or else that they apply only when the gμν are con-
stant, i.e. when the field intensities of gravitation vanish.”
(Einstein 1916, p. 810).

According to the Einstein theory of gravitation: “. . . the
absence of gravitational field implies the absence of devia-
tion of the space-time geometry from the Euclid geometry,
and also means that the curvature tensor Rμν and its invari-
ant R are equal to zero. On the other hand, the gravitational
field is absent if the mass tensor T μν , is everywhere equal
to zero. Therefore, equations T μν = 0 and Rμν = 0 must be
in any case simultaneously valid, and it is possible only if
the equations conjoined with Gμν a T μν do not contain the
member λgμν (i.e. only when λ = 0).” (Fock 1961, p. 257).

These facts make it possible to unambiguously deter-
mine the exact solution of the Einstein modified field equa-
tions (3), applied to the whole expansive homogeneous
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and isotropic relativistic universe with the total zero energy
(Skalský 2006):

Gμν − λgμν = −κ

(
T μν − 1

2
gμνT

)
= 0, (87)

where Gμν = 0, λ = 0, T μν = 0, and T = 0.

8 Conclusions

From the analysis given above it results unambiguously that
the relativistic universe is pseudo-flat (pseudo-Euclidean)
expansive non-decelerative non-accelerative homogeneous
and isotropic, has the dimensionless density of matter ob-
jects 	tot = 1, the energy of physical vacuum Evac = 0,
the total energy of matter objects Etot = 0, and throughout
its whole expansive evolution in the maximum (limit) dis-
tance from each observer, i.e. in the distance of gauge factor
a′ = a, expands at the constant maximum possible (limit)
velocity of signal propagation c.

The pseudo-flat (pseudo-Euclidean) expansive non-
decelerative non-accelerative homogeneous and isotropic
relativistic–quantum-mechanical universe in the first (lin-
ear, Newtonian or classical-mechanical) approximation (in
which we abstract from its relativistic and quantum-mechan-
ics properties), is flat (Euclidean).

From the infinite number of theoretically possible lin-
earized model solutions of the FRW equations (4a), (4b) and
(4c) with the values of the curvature index k = +1, k = −1,
k = 0, the cosmological constant � > 0,� < 0,� = 0, and
the state equation constant w > 0, w < 0, w = 0, the above
mentioned conditions, are satisfied only by one model of
homogeneous and isotropic relativistic universe: the ERU
model, which is their solution with the values k = 0, � = 0
and w = −1/3 (Skalský 1991).

If from the FRW equations (4a), (4b) and (4c) we elimi-
nate the solutions in which the general relevant laws of con-
servation: law of energy conservation, law of momentum
conservation, and law of momentum of momentum conser-
vation, are invalid (i.e. the solutions that are based on hypo-
thetical assumptions which contradict to the Einstein gen-
eral theory of relativity, Einstein special theory of relativity,
Newton theory of gravitation, quantum mechanics and ob-
servations), we get the final version of the linearized

equations of the homogeneous and isotropic relativistic uni-
verse dynamics (Skalský 1997, p. 71):

8πGa2ρ − 3c2 = 0, (88a)

8πGa2p + c4 = 0, (88b)

ε + 3p = 0, (88c)

which can be described in a summary form as:

a2 = 3c2

8πGρ
= − c4

8πGp
. (88)

9 Afterword

The final version of the equations of the homogeneous and
isotropic relativistic universe dynamics (88) describes the
universe as a givenness in the linearized reduced form. The
spacetime of the universe in them is reduced to the gauge
factor a, and the energy of universe in them is reduced to
the energy density of matter objects ε = ρc2 and the pres-
sure p.

The ERU model—determined by the FRW equations
(4a), (4b) and (4c) with k = 0, � = 0 and w = −1/3, or by
the final version of the equations of dynamics of the expan-
sive homogeneous and isotropic relativistic universe (88)—
was selected from the FRW equations (4a), (4b) and (4c),
on the assumptions that the observed relativistic–quantum-
mechanical universe is homogeneous and isotropic.

But what was on the very “beginning” of the expansive
universe evolution?

Was the universe created by the “Big Bang”, or other-
wise?

Or, is the universe cyclic (as, for example, the authors
of cyclic an ekpyrotic universe Steinhard and Turok 2007
assume)?

In this article we have deliberately avoided answering
these and further serious questions, because the ERU model
can be unambiguously determined also without their an-
swering.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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